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Abstract. Large earthquakes can contribute to mountain growth by building topography, but also contribute to mass removal

from mountain ranges through widespread mass wasting. On annual to decadal timescales, large earthquakes also have the

potential to significantly alter fluvial sediment dynamics if a significant volume of the sediment generated reaches the fluvial

network. In this contribution, we focus on the Melamchi-Indrawati and Bhote Koshi rivers in central Nepal, which have both

experienced widespread landsliding associated with the 2015 Gorkha (Nepal) earthquake. Using a time series of high-resolution5

satellite imagery, we have mapped exposed gravel along the river from 2012-2021 to identify zones of active channel deposition

and document changes over time. Counter to expectations, we show negligible increases in coarse sediment accumulation in

both catchments since the Gorkha earthquake. However, an extremely high concentration flow event on 15 June 2021 caused an

approximately four-fold increase in exposed gravel along a 30 km reach of the channel with up to 12 m of channel aggradation

in the Melamchi-Indrawati rivers; this event was localised and did not impact the neighbouring Bhote Koshi catchment. Based10

on published reports, new helicopter based photography and satellite data, we demonstrate that this event was sourced from a

localised rainfall event between 4500 and 4800 m, and that the majority of the sediment was supplied from sources that were

unrelated to the landslides generated by the Gorkha earthquake.

1 Introduction

By building topography, large earthquakes contribute to the growth of mountain ranges (Avouac, 2007), but they also play15

a role in their erosion by producing sediment through coseismic landsliding, which will eventually be evacuated from the

mountain range (e.g. Keefer, 1994; Dadson et al., 2004; Larsen et al., 2010; Hovius et al., 2011; Parker et al., 2011; Egholm

et al., 2013). In some cases, the volume lost through mass wasting can equal or even outweigh that gained through surface

uplift (e.g. Hovius et al., 2011; Parker et al., 2011; Marc et al., 2016, 2019; Francis et al., 2020). Malamud et al. (2004)

suggest that earthquakes above a threshold moment magnitude of Mw = 4.3 trigger landslides through ground shaking, with20

landslides usually concentrated in areas of highest peak ground acceleration (PGA) (Khazai and Sitar, 2004) and near the top

of hillslopes (Densmore and Hovius, 2000; Yin et al., 2009). The sediment generated by coseismic landsliding either remains
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on the hillslopes or is delivered to fluvial systems, where it can cause aggradation and decrease channel capacity, thereby

increasing flood risk downstream and causing rapid changes in channel morphology (Korup et al., 2004; Sims and Rutherfurd,

2017). For example, the 1999 Chi-Chi (Taiwan) and 2008 Wenchuan (China) earthquakes were associated with up to 18 m25

and 10 m of channel bed aggradation, respectively (Chen and Petley, 2005; Whadcoat, 2011; Yanites et al., 2010). Coseismic

landslide sediment on hillslopes often remains as loose sediment until hillslopes re-vegetate or re-stabilise, which may take

years. Consequently, large earthquakes are frequently followed by a period of increased landsliding as the ground shaking

destabilises hillslope material, leaving loose sediment readily mobilised during subsequent rainfall events (Dadson et al., 2004;

Chen and Petley, 2005; Huang and Fan, 2013; Marc et al., 2015). In the two years following the Kashmir earthquake, Saba30

et al. (2010) documented an increase in landsliding, succeeded by a period of relative stability, while Li et al. (2022) show a

growth in landslide area for five years after the 2008 Wenchuan earthquake. Similarly, Kincey et al. (2021) noted elevated rates

of landsliding for three years in the wake of the 2015 Gorkha earthquake.

Coseismic landslides are thought to affect the fluvial network for decades to centuries (Croissant et al., 2017; Hovius et al.,

2011; Wang et al., 2015; Yanites et al., 2010; Wang et al., 2017). Wang et al. (2015) estimate that the residence time of35

suspended sediment supplied by coseismic Wenchuan landslides ranges from a year to more than a century, which ties in with

previous estimates of sub-annual to centennial timescales, as suggested by a range of studies from across the globe (Pain and

Bowler, 1973; Pearce and Watson, 1986; Koi et al., 2008; Howarth et al., 2012). The residence time of coseismic bedload

is more challenging to constrain due to the difficulty of monitoring bedload transport (Li et al., 2014; Croissant et al., 2017),

although based on a case study of a large landslide in the Bhote Koshi valley, Croissant et al. (2017) estimate that half the coarse40

fraction of a given sediment volume can be removed within 5-25 years by channel narrowing to increase sediment transport

capacity.

Our study focuses on the Melamchi-Indrawati and Bhote Koshi valleys in central Nepal that were both affected by the 2015

Gorkha earthquake. The earthquake had a similar moment magnitude to the 2008 Wenchuan earthquake (Mw 7.8 compared

to Mw 7.9) and caused widespread landsliding (e.g. Collins and Jibson, 2015; Gnyawali and Adhikari, 2017a; Roback et al.,45

2018). Here, we use optical satellite imagery to identify zones of sediment input and aggradation along the Melamchi-Indrawati

and Bhote Koshi rivers. Our analysis focuses on the period 2012-2021 which includes the Gorkha earthquake, as well as a

series of major hydrological events such as the 2021 Melamchi flood, which will be presented below. The aim of this work

is to constrain the respective roles played by the earthquake, valley morphology and major hydrological events on sediment

production and export. In particular, we will assess the extent to which the Melamchi flood event was pre-conditioned by50

increased sediment availability following the Gorkha earthquake, using photographic evidence from reconnaissance helicopter

flights and initial publications.

2 The 25 April 2015 Mw 7.8 Gorkha (Nepal) earthquake and associated landslides

The April 2015 Gorkha earthquake was the result of a 140 km long rupture along the Main Himalayan Thrust (Avouac et al.,

2015; Hayes et al., 2015; Elliott et al., 2016). A sequence of aftershocks followed the main event, the largest of which occurred55
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on 12 May 2015 in the Dolakha district of Nepal (Fig. 1), reaching a moment magnitude of 7.3 (Collins and Jibson, 2015). Nine

thousand deaths and billions of US dollars in economic losses resulted from the mainshock alone (Kargel et al., 2015). While

initial surveys (e.g. Kargel et al., 2015) reported a significantly lower number of landslides than expected for an earthquake

of moment magnitude 7.8, later inventories identified up to 25,000 coseismic landslides covering a total area of ca. 87 km2

(Martha et al., 2017; Roback et al., 2018), which is more consistent with expectations (Malamud et al., 2004). Most landslides60

observed in the months following the earthquake had been initiated in weathered and fractured surface material (Collins and

Jibson, 2015). In terms of regional landslide distribution, Roback et al. (2018) report no regional lithological control – instead,

landslides are concentrated where high peak ground acceleration (PGA), steep slopes and high mean annual precipitation

coincide. Regarding landslide threat to human populations, Collins and Jibson (2015) documented over 69 partial, full or

temporary landslide dams in the aftermath of the earthquake, although formation of a landslide lake was observed for only65

half the dams. At the time of writing, a wide range of Gorkha landslide inventories have been published, mapping coseismic

landslides as points (Kargel et al., 2016; Tiwari et al., 2017), a mixture of points, polygons and polylines (Robinson et al.,

2017; Williams et al., 2018), or polygons (Regmi et al., 2016; Gnyawali and Adhikari, 2017a; Martha et al., 2017; Roback

et al., 2018; Xu, 2018; Kincey et al., 2021; Valagussa et al., 2021). Of these inventories, Roback et al. (2018) appears the most

complete, including 24,915 landslides covering a total area of 87 km2 and separating the full landslide area from the landslide70

source.

3 Study area

Our study focuses on the Melamchi-Indrawati and Bhote Koshi catchments. Both are located in Nepal’s Sindhupalchok district,

which was one of the worst affected areas in the aftermath of the Gorkha earthquake in terms of landslide density (e.g. Collins

and Jibson, 2015; Kargel et al., 2016; Roback et al., 2018). Of the 87 km2 of landslides triggered by the Gorkha earthquake75

and mapped by Roback et al. (2018), 12.3 km2 are located in the Melamchi-Indrawati catchment and 24.5 km2 in the Bhote

Koshi (Roback et al., 2018). Here, we explore how these mountain catchments react to large-scale input of coseismic landslide

sediment.

The Melamchi-Indrawati catchment is located ca. 20 km east of Kathmandu (Fig. 1) and the Indrawati River is fed by80

three main tributaries, the Melamchi, Yangri, and Larke rivers (Fig. 1b), originating in the Kanja La range. We focus on the

Melamchi River and the Indrawati River downstream of its confluence with the Melamchi River, herein referred to as the

Melamchi-Indrawati rivers. Elevations in the Indrawati catchment range from around 600 m at Dolalghat to >5000 m, and the

climate spans temperate to polar tundra environments (Pandey et al., 2021). Above Nakote, the Melamchi River is steep and

narrow, confined into a “classic” V-shaped valley; it widens downstream of Nakote to include fertile agricultural land on its85

banks (Baskota et al., 2021) (Fig. 1b). Downstream of Melamchi Bazaar, the Indrawati River widens into a braided system

with a floodplain reaching up to a kilometre in width. The catchment also hosts the Melamchi Water Supply Project, currently

under construction, aiming to supply water to households as far away as Kathmandu (e.g. Rest, 2019).
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The Bhote Koshi, called Poiqu in China, originates in China’s Nyalam County (Liu et al., 2020). At 3400 km2, its catchment

is almost three times the size of the Melamchi-Indrawati and sources roughly half of its area from the Tibetan Plateau (Fig. 1c).90

As in the Melamchi-Indrawati, the climate in the Bhote Koshi catchment ranges from temperate to polar (Karki et al., 2016),

and the lower, temperate part of the catchment features distinct wet and dry seasons, with ∼80% of the annual precipitation

occurring during the Indian Summer Monsoon (Bookhagen and Burbank, 2010). Annual rainfall is high, ranging between 1300

and 4100 mm (Tanoli et al., 2017), and the Bhote Koshi is prone to glacial lake outburst floods (GLOFs) – Khanal et al. (2015)

reported six GLOFs in the Bhote Koshi since 1935. The Araniko Highway, an important trade and transport route and one of95

the two routes linking Nepal with China (Liu et al., 2020; Whitworth et al., 2020), runs alongside the Bhote Koshi.

3.1 Geologic and geomorphic setting

Both the Melamchi-Indrawati and Bhote Koshi catchments lie within the gneisses, schists, quartzites and Miocene granitic

intrusions of the Higher Himalayan Crystallines (HHC) and the lower-grade metamorphic rocks (phyllites, quartzites, and

slates) of the Lesser Himalayan Sequence (LHS), which are separated by the Main Central Thrust (MCT) (Gansser, 1964;100

Upreti, 1999; Department of Mines and Geology, 2011). The Bhote Koshi catchment additionally extends into the carbonate-

dominated sedimentary rocks of the Tethyan Himalayan Sequence, separated from the HHC by the South Tibetan Detachment

(STD) (Yin, 2006), as shown in Fig. 1a. Our studied reach along the Melamchi-Indrawati rivers (Fig. 1b) extends through the

HHC, crosses the MCT, and then flows predominantly through LHS units, including the quartzites of the Syangja Formation,

as well as the Seti Formation’s phyllites and quartzites (Department of Mines and Geology, 2011). The Bhote Koshi study105

reach (Fig. 1c) lies mostly within the LHS, predominantly the phyllites and quartzites of the Seti Formation, and also flows

through LHS shales, slates and limestones in the MCT zone near the Nepal-China border (Department of Mines and Geology,

2011).
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Figure 1. (a) Catchment geology adapted from Yin (2006) and Dhital (2015). Gorkha landslides mapped by Roback et al. (2018) shown as

black polygons. The two studied catchments are delineated by the white outline: Melamchi-Indrawati to the west and Bhote Koshi to the

east. (b) Melamchi-Indrawati catchment with main rivers and localities mentioned in text labelled. (c) Bhote Koshi catchment with main

rivers and localities mentioned in text labelled. Studied river reaches are shown in orange. Background of all three panels is a shaded relief

map from a 30 m Copernicus DEM. B = Bahrabise, BT = Bremthang, CB = Chanaute Bazaar, D = Dolalghat, K = Kodari, MB = Melamchi

Bazaar, MG = Melamchigaon, N = Nakote, T = Timbu; MCT = Main Central Thrust, STD = South Tibetan Detachment.
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3.2 Significant hydro-geomorphic events

This section briefly presents significant hydro-geomorphic events in both catchments which occurred in the time frame covered110

by our study (2012-2021).

In August 2014, collapse of the hillside at Jure village along the Bhote Koshi produced 6 million m3 of debris, killing 156

people and creating a deposit 100 m thick that also reached the opposite bank of the river (van der Geest, 2018). The landslide

created a 55 m high dam blocking the river and forming a 3 km long lake which filled and overflowed in 12 hours (Acharya

et al., 2016). The landslide dam eventually breached on 7 September, mostly due to overtopping (Lamichhane et al., 2021).115

According to van der Geest (2018), the landslide was triggered by heavy rainfall during the preceding two days; the slope had

been noted as unstable in the years before the event (Shrestha and Nakagawa, 2016; Ao et al., 2020).

Originating from Gongbatongshacuo Lake in Tibet Autonomous Region, China, a moraine-dammed lake which broke its

dam as a result of a rainfall-induced debris flow, a GLOF swept along the Bhote Koshi on 5 July 2016 (Cook et al., 2018),

destroying or damaging parts of the Araniko highway, buildings in Kodari and Tatopani, and the intake dam of a hydropower120

project.

Four years later, on 9 July 2020, heavy monsoon rainfall caused a debris flow along the Bhote Koshi which killed two

people, destroyed or damaged dozens of houses, swept away a 700 m stretch of the Araniko Highway, and damaged the Middle

Bhotekoshi Hydropower Project (Lamichhane et al., 2021).

Along the Melamchi River, a flash flood occurred on 15 June 2021, lasting for ten hours, and depositing up to 12 m of mostly125

sand and silt in the river channel (Fig. 2) (Pandey et al., 2021). Five people were killed, with 20 still missing as of September

2021, and 525 families were displaced by the event. The flood damaged 337 houses, severely damaged the headworks of

the Melamchi Water Supply Project, delaying delivery of water to households in Kathmandu, and disrupted access to several

villages by blocking roads and damaging or destroying more than a dozen bridges (Baskota et al., 2021; Maharjan et al.,

2021; Pandey et al., 2021). Maharjan et al. (2021) report that within the Melamchi Municipality alone, more than 1.75 km2 of130

agricultural land, crucial for subsistence farming, were lost in the wake of the event. The event is thought to have been caused

by a combination of glacial moraine collapse, landslide dam outburst and heavy precipitation (Baskota et al., 2021; Maharjan

et al., 2021). On 31 July 2021, a second debris flow scoured the area previously devastated by the prior event (Baskota et al.,

2021). The exact source of sediment for this event is explored further below.

The above events are well constrained in space and time, facilitating taking into account their impact during interpretation135

of our data.
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4 Methods

In order to quantify changes in sediment deposition patterns, which could then be linked to events supplying or evacuating

sediment and valley morphology, we map exposed gravel along the Melamchi-Indrawati and Bhote Koshi rivers over a time

period spanning ten years (2012-2021); these data identify zones of sediment input and quantify planform changes in channel140

morphology. We then calculate the connectivity of the coseismic landslides triggered by the 2015 Gorkha (Nepal) earthquake

to the river network. We measure channel steepness through long river profile analysis and valley width along the study

reaches, and we assess their relation to connectivity. Lastly, in light of the significant impact of the 2021 Melamchi event on

the morphology of the Melamchi-Indrawati River, we further use optical satellite data and photographic images to identify the

sources of sediment for the Melamchi flash floods.145

7

Figure 2. Impact of the 2021 Melamchi flood in Melamchi Bazaar. (a) Picture from footbridge towards Melamchi Bazaar, looking NW,

taken on 28/10/2019. Colourful building in the centre of the photo is Hotel Roj, used as a reference in the other photos (position: 27.82917,

85.57714). Note gabions along the gravel bar to limit bank erosion during monsoon floods. (b) Picture from road bridge looking NE, upstream

the Indrawati River, taken on 28/10/2019. Hotel Roj is to the left. Note gabions on the gravel bar. (c) © Google Map of Melamchi Bazaar before

the 2021 Melamchi flood (©2021 Maxar Technologies). Road and foot bridges are located, as well as road junction and Hotel Roj, for

reference. (d) Aerial image of Melamchi Bazaar after the main flood event of June 2021, looking NW (source: Geovation Nepal). Both

bridges have been destroyed, and only the top two floors of Hotel Roj emerge from the sediment, indicating aggradation in excess of 10 m.
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4.1 Determining gravel area along the river channel

4.1.1 Mapping and data processing

We manually mapped exposed gravel along the Melamchi-Indrawati and Bhote Koshi rivers every year from 2012-2021 to

document changes after each monsoon. We used sub-metre resolution imagery from Maxar Technologies and CNES/Airbus,

available in Google Earth Pro, for the time period between 2012 and 2019 inclusive, and 3 m resolution Planetscope imagery,150

obtained through Planet’s Education and Research Program, for 2020 onward (see Appendix A for the full breakdown of

imagery dates and sources). From 2012-2019 inclusive, each river was mapped once per year so that eight post-monsoon

mapping epochs were available. For 2020 and 2021, when sufficient imagery was not available in Google Earth Pro, we

switched to Planetscope imagery. In 2021, we took advantage of Planetscope’s higher temporal resolution to map both rivers

monthly from June-December inclusive. In the Melamchi-Indrawati catchment, mapping was carried out from the confluence155

with the Bhote Koshi at Dolalghat up to 3.5 km upstream of Nakote (Fig. 1b). Along the Bhote Koshi, we mapped from the

confluence with the Indrawati at Dolalghat to 10 km upstream of the Nepal-China border crossing at Kodari (Fig. 1c). As it

was not possible to pick images from the same month or season every year, we mapped exposed sediment and water combined

to avoid changes in exposed gravel area due to seasonal water level variations (Fig. 3).
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Figure 3. Examples of mapped sections, with the mapped gravel area polygons shown in yellow. Top panels show a section around Timbu

overlain on imagery obtained through © Google Earth Pro (©2022 Maxar Technologies). Bottom panels show a section around Melamchi

Bazaar overlain on Planetscope imagery (Planet Team, 2017). See Fig. 1b for location of the sections within Melamchi-Indrawati catchment. (a)

Gravel area on 3 May 2015; (b) Gravel area on 1 February 2016. Note the influx of gravel from the tributary to the NE; (c) Gravel area on 2

June 2021; (d) Gravel area on 29 July 2021. Note the dramatic increase in gravel area extent following the 15 June 2021 Melamchi disaster.
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Total area from each mapping epoch is delineated as a single polygon shapefile. In order to calculate and visualise changes in160

gravel area along the river profile and thereby pinpoint the location of any observed changes, the data are processed as follows

(Fig. 4):

1. Each polygon shapefile of gravel area is converted into a raster of a resolution resr = 40 m.

2. For each river, a polyline shapefile representing the river channel within the studied reach is manually delineated. This

polyline is not intended to represent the actual centreline of the river as it is only used to segment the river longitudinally.165

This polyline shapefile is then split into points with a spacing ds = 50 m.

3. A window of dimensions dp x do is created centred on each of the points, with dp representing the window distance

along the channel and do the window distance orthogonal to the channel. We set dp = 500 m and do = 1000 m in the

following. The sensitivity of the results to changing the size of these windows is explored in Appendix A2.

4. The area of the raster representing the mapped combined channel area is calculated within each window.170

5. This “windowed area” is then plotted against distance along the channel, additionally smoothed using a rolling mean.

In the following, we chose a window size k = 7 which achieves the best balance in terms of providing reach-scale

information while limiting noise (see sensitivity analysis in Appendix A2).
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Figure 4. Steps for processing the data shown using an example section near Melamchi Bazaar (see Figs. 1b and 3c, d for location). (a)

Original mapped channel and gravel areas. (b) The polygon representing the gravel area is converted to a raster and the line representing the

channel is split into points. Note that the rasterisation process creates apparent gaps where gravel areas are narrower than the resolution of

the raster resr; this does not affect the trends in area along the channel (Figs. A1a and A2a in the Supplementary Information). (c) A window

of width do and length dp is created around each channel point and the raster area within each window is calculated. (d) The raster area

calculated within each window along the river is smoothed using a rolling window and plotted as a function of distance along the channel.

4.1.2 Constraining uncertainty in mapping

All the mapping was carried out by one researcher. The rigorous uncertainty calculations following Fan et al. (2018), who had175

five independent mappers and assessed the degree of matching between each of the five data sets and a reference mapping

data set, could therefore not be applied here. Instead, we selected dates on which imagery was available from both Planetscope
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and Google Earth Pro, and mapped the full study reach of each image five times, i.e. ten times in total for each river. For

the Melamchi-Indrawati rivers, 22 April 2018 was selected, and for the Bhote Koshi, we chose 7/9 December 2017 and 10

December 2017 for Google Earth Pro and Planetscope, respectively. Each of the repeatedly mapped areas was then processed180

as outlined in Section 4.1.1, and the median and standard deviation of the ten mapped area values calculated along each point

along the river (Fig. 5). The 75th percentile of the collection of standard deviations was subsequently added as an uncertainty

envelope in all plots showing area along profile, and also carried forwards to plots showing expansion/removal of sediment

along the profile (Figs. 6 and 7). The uncertainty values are 6.2 x 10−3 km2 for the Melamchi-Indrawati rivers and 5.3 x 10−3

km2 for the Bhote Koshi.185

Figure 5. (a) Five versions of both the Google Earth (G1-5) and Planetscope (P1-5) mapped area for Melamchi-Indrawati, 22 April 2018.

(b) Histogram of the standard deviations of the ten different measured areas for each data point in A. (c) Five versions of both the Google

Earth (G1-5) and Planetscope (P1-5) mapped area for Bhote Koshi, 7/9 December 2017 and 10 December 2017, respectively. Visibility in the

Planetscope imagery was too poor to map the section from 0-18 km. (d) Histogram of the standard deviations of the ten different measured

areas for each data point in (c), with the 75th percentile indicated by the dashed black line. G = Google Earth; P = Planetscope.

4.2 Coseismic landslide connectivity

Roback et al. (2018) assessed the connectivity of the landslides in their comprehensive inventory and found that just under a

third of landslides occurred within 50 m of a fluvial channel, while three-quarters were located within 400 m. Larger landslides,

as they tend to have higher runout lengths, are associated with higher connectivity, as are landslides at higher altitude and relief
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(Roback et al., 2018). While Li et al. (2016) found that 40% by volume of landslides triggered by the 2008 Wenchuan (China)190

earthquake were connected to river channels, they also noted a strong spatial variation in connectivity, ranging from 20 to 90%

between catchments. To test how the connectivity of Gorkha earthquake-triggered landslides in the Melamchi-Indrawati and

Bhote Koshi catchments compares to connectivity in Roback et al. (2018)’s study area as a whole, we therefore assess the

connectivity of a subset of Roback et al. (2018)’s data set, limited to the Melamchi-Indrawati and Bhote Koshi catchments, and

add the inventory of Gnyawali and Adhikari (2017a), which is also available online via the U.S. Geological Survey (Gnyawali195

and Adhikari, 2017b; Roback et al., 2017). Here, we follow Roback et al. (2018)’s vector-based approach by applying buffer

zones around all channels exceeding a threshold drainage area Ac, and tagging all landslide polygons intersecting the buffer

as connected to the river network. We set Ac = 0.48 km2, corresponding to the value Roback et al. (2018) found to be the

threshold for fluvial channels, and vary the width of the buffer zone from 50 to 400 m. To assess landslide connectivity by

volume, we use the area-volume scaling law V = αAγ . In their study, Roback et al. (2018) test a wide range of values for200

the scaling parameters α and γ. We use the median values Roback et al. (2018) report for the scaling parameters based on

Himalayan mixed soil and bedrock: log10(α) = -0.59 and γ = 1.36 (Larsen et al., 2010; Roback et al., 2018).

4.3 Valley morphology and channel steepness

We use the topographic analysis package LSDTopoTools (Mudd et al., 2021) to extract river profiles, normalised channel

steepness, and valley width along the reaches of the Melamchi-Indrawati and Bhote Koshi considered in this study. The aim205

of this analysis is to further identify potential zones of sediment storage. For valley width, we use the automated method

developed by Clubb et al. (2017) which first identifies floodplains based on channel relief and local gradient before calculating

the width of the extracted floodplain at each point in the channel. We apply the floodplain and valley width extraction to a

30 m resolution Copernicus Digital Elevation Model (DEM). In order to limit the likelihood of overestimating channel width,

which typically occurs when channels become narrower than a couple of pixels, all tributary channels below a Strahler stream210

order of 3 are ignored. We calculate normalised channel steepness ksn from the equation S = ksnA
−θref , where S = channel

gradient (dimensionless),A = drainage area (m2) and θref = reference concavity index (dimensionless), and using the statistical

approach described in Mudd et al. (2014). The value of θref can significantly affect the values of ksn (Gailleton et al., 2021),

and we therefore constrain θref using the method outlined by Gailleton et al. (2021). This yielded a best fit θref value of 0.15

for the Melamchi-Indrawati and Bhote Koshi catchments combined. This value is relatively low compared to the global data215

set shown in Gailleton et al. (2021), which may reflect the importance of debris flows in controlling the long-term shape of

the long-profiles in these catchments (e.g. Gasparini et al., 2004; Whipple et al., 2013). Additionally, Gailleton et al. (2021)

suggest that the presence of glaciers as well as spatial variations in tectonic processes can obscure the concavity signal.
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5 Results

5.1 Determining gravel area along the river channel220

The changes in gravel area mapped along the Melamchi-Indrawati rivers as well as the valley width extracted from digital

topographic data highlight the transition from a confined river system to a wide and alluvial channel ca. 5 km downstream of

Melamchi Bazaar (Fig. 6b, d), with valley width reaching 1000 m at 45 km. No such signal is seen along the Bhote Koshi (Fig.

7b, d), with valley widths not exceeding 200 m for the full length of the studied reach. Gravel area along the Bhote Koshi is

lower than along the Melamchi-Indrawati rivers in absolute terms, and does not show significant spatial variations. Gravel area225

along both mapped rivers shows temporal noise across all mapping epochs; this is most pronounced in the reach extending

from 40 to 60 km along the Melamchi-Indrawati rivers (Figs. 6b, c). At 37 km downstream along the Bhote Koshi, an increase

in gravel area between February 2013 and May 2015 is visible (Fig. 7b, c). This peak persists over the subsequent mapping

epochs, attenuating slightly beginning in October 2020. The timing and location of this signal is consistent with the 2014 Jure

landslide (Acharya et al., 2016; Croissant et al., 2017; van der Geest, 2018).230

Following the Gorkha earthquake (i.e. from the May 2015 to Jan/Feb 2016 mapping epochs), both rivers experienced lo-

calised increases in gravel area. Although the mainshock of the Gorkha earthquake series pre-dates May 2015 imagery, the

time interval is short enough that we would not expect the majority of coseismic landslide sediment to have yet been delivered

to the river network, or to have been transported a significant distance. The most prominent increase in gravel area following

the Gorkha earthquake is seen at Timbu (Figs. 1 and 6a, b, c), where the Melamchi River received an influx of sediment from235

a debris flow in a tributary channel, as shown in Fig. 3; this peak persists until early 2020. Neither the Melamchi-Indrawati nor

the Bhote Koshi show any signals that could be linked in space or time to the hydro-geomorphic events outlined in Section

3.2, such as the 2016 Bhote Koshi GLOF, until the 2021 event. From June to July 2021, there is a marked, consistent increase

in gravel area along the Melamchi-Indrawati rivers from just upstream of Timbu to ca. 5 km downstream of Melamchi Bazaar

(Fig. 6b, d).240

From June to July 2021, the maximum increase in gravel area observed is 0.18 km2 at ca. 37 km (i.e. downstream of

Melamchi Bazaar), which coincides with the furthest downstream extent of the continuous signal and a marked increase in

valley width (Fig. 6b, c, d). Although the spatially continuous increase in gravel area stops at the transition to a wider alluvial

valley, localised increases of up to 0.08 km2 are observed along the remaining study reach until Dolalghat. The location and

timing of this signal is consistent with field reports documenting the aftermath of the 15 June 2021 Melamchi disaster (Baskota245

et al., 2021; Pandey et al., 2021) (Section 3.2), which is reaffirmed by this signal being absent in the Bhote Koshi (Fig. 7).

Immediately upstream of Melamchigaon, a local increase in gravel area between June and July 2021 of ca. 0.1 km2 is observed

in July 2021, and the resulting peak persists until the last mapping epoch in December 2021. In the same time period, Baskota

et al. (2021) and Pandey et al. (2021) document a reactivation of a landslide at Melamchigaon, which briefly dammed the

Melamchi River, thereby contributing to the scale of the June 2021 Melamchi disaster. Between July and December 2021, we250

observe additional increases in gravel area between Timbu and Chanaute Bazaar, and the July 2021 peak translates several

kilometres more downstream, to the approximate location of the MCT at 40 km along our study reach (Fig. 6b, c). In summary,
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no significant continuous signals in either the spatial or temporal dimension are observed along the Bhote Koshi. The first and

only such signal is observed along the Melamchi-Indrawati rivers in July 2021, following the June 2021 Melamchi disaster,

and persists until the end of our mapping period. While some changes in gravel area along both rivers could be attributed to255

the initial impact of additional sediment yield in the six years following the Gorkha earthquake, these are localised and small

by comparison with the impact of the 2021 Melamchi event.

15

https://doi.org/10.5194/egusphere-2022-1347
Preprint. Discussion started: 12 January 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 6. Changes in gravel area along the Melamchi-Indrawati rivers: (a) Long-profile of Melamchi-Indrawati river within the study area;

(b) Mapped gravel area along profile; (c) Difference in mapped area along profile between each time period; (d) Valley width extracted with

LSDTopoTools plotted alongside mapped expansion in gravel between June and July 2021 (i. e. before and after the Melamchi event). Areas

until November 2019/April 2020 inclusive mapped in Google Earth Pro; areas from June 2021 onward mapped in QGIS from Planetscope

imagery. Locations mentioned in the text are labelled in (a) and shown with vertical grey lines. Dashed grey line indicates approximate

location of Main Central Thrust (MCT), separating the Higher Himalayan Crystallines (HHC) from the Lesser Himalayan Sequence (LHS).
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Figure 7. Changes in gravel area along the Bhote Koshi: (a) Long-profile of Bhote Koshi within the study area; (b) Mapped gravel area along

profile; (c) Difference in mapped area along profile between each time period; (d) Valley width extracted with LSDTopoTools. Areas from

October 2016 and October 2018 onward mapped in QGIS from Planetscope imagery; all other areas mapped in Google Earth Pro. Locations

mentioned in the text are labelled in (a) and shown with vertical grey lines. Dashed grey line indicates approximate location of Main Central

Thrust (MCT), separating the Higher Himalayan Crystallines (HHC) from the Lesser Himalayan Sequence (LHS).
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5.2 Coseismic landslide connectivity

We determined the connectivity of the Gorkha earthquake-triggered landslides mapped by Gnyawali and Adhikari (2017a) and

Roback et al. (2018) in the Melamchi-Indrawati and Bhote Koshi catchments by number, volume, and area (Fig. 8).260

Figure 8. Percentage of landslides triggered by the 2015 Gorkha earthquake connected to the fluvial network, by number (top), area (centre)

and volume (bottom) in the Melamchi-Indrawati and Bhote Koshi catchments. The fluvial network is defined here as all channels exceeding a

threshold drainage area Ac = 0.48 km2 and a buffer zone of widths ranging from 50-400 m created around the channels. A landslide polygon

intersecting a given buffer zone is deemed connected to the river network.

In terms of the connectivity between the rivers and Gorkha induced landslides, our results agree with Roback et al. (2018)’s,

suggesting that landslide-channel connectivity is comparable in the Melamchi-Indrawati and Bhote Koshi catchments relative

to the full area mapped by Gnyawali and Adhikari (2017a) and Roback et al. (2018). It is worth noting that both landslide

inventories assessed here contain only landslides mapped in the immediate aftermath of the Gorkha earthquake (26 April to
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15 June 2015 in the case of Roback et al. (2018)), and we therefore cannot gain an insight into the temporal evolution of265

connectivity in our study catchments. Moreover, merely determining whether a landslide is connected to the river network or

not is not sufficient for quantifying its impact on the sediment dynamics of the river. For this, it is necessary to determine the

extent of the connection (i.e. length of connection), estimate the volume of sediment that can be delivered to the channel, and

determine how mobile this sediment is, as regular flows may not be able to mobilise the wide range of grain sizes provided by

a landslide or debris flow (Korup 2005).270

5.3 Valley width and channel steepness

As shown in Figs. 6d and 7d and further highlighted in Fig. 9a and 9b, the Melamchi-Indrawati and Bhote Koshi rivers show

clear differences in valley width along-profile. While the Melamchi-Indrawati transitions from a confined river system to a

wide, alluvial channel at ca. 37 km, with valley width reaching 1000 m at 45 km, valley width remains comparatively constant

along the studied reach of the Bhote Koshi and does not exceed 200 m. The spatial distribution of normalised channel steepness275

in the Melamchi-Indrawati catchment follows the expectations established by the pattern of total valley width: the headwaters

are steepest, and the wide alluvial section of the Indrawati River downstream of Melamchi Bazaar has the lowest gradient. In

the Bhote Koshi catchment, the pattern of normalised channel steepness is slightly more complex. The lowest gradients are

present in the headwaters on the Tibetan Plateau as well as the lower reaches near the confluence with the Indrawati River. In

the section around the Nepal-China border, the tributary channels and trunk channel show the steepest gradients. The spatial280

distribution of normalised channel steepness in the Balephi River (adjacent to the Melamchi-Indrawati catchment) mirrors

that seen in the Melamchi-Indrawati catchment, with the highest gradients in the headwaters and smaller tributaries and the

gentlest channel slopes in the lower reaches. In the headwaters of the Melamchi River, Fig. 9a and 9b show a wide (>300 m)

section with low gradient compared to the adjacent reaches. Downstream of this section, the valley narrows to <50 m again,

and normalised channel steepness abruptly increases. There is a similar configuration (i.e. a wide, flat section abruptly followed285

by a narrow and steep channel) in the neighbouring Yangri valley, also indicated in Fig. 9a and 9b. Our preliminary analysis

shows no such configurations in the Bhote Koshi catchment or elsewhere in the Melamchi-Indrawati catchment.
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Figure 9. (a) Total valley width in the Melamchi-Indrawati catchment. (b) Total valley width in the Bhote Koshi catchment. (c) Normalised

channel steepness ksn in the Melamchi-Indrawati and Bhote Koshi catchments, using a best fit value of θref = 0.15 for the combined

catchments. Boxes in the headwaters of the Melamchi and Yangri rivers in panels (a) and (c) outline a similar anomalous configuration: a

wide, flat reach followed by a narrow and steep reach (see discussion and Fig. 11). To extract the channel network for this figure, we selected

a drainage area threshold of 15,000 pixels (or 13.5 km2, as pixels are 30x30 m). The minimum and maximum values of the colour bars in all

panels are set to the 10th and 90th percentile, respectively, of the data shown. Background of all three panels is a shaded relief map derived

from a 30 m Copernicus DEM. 20

https://doi.org/10.5194/egusphere-2022-1347
Preprint. Discussion started: 12 January 2023
c© Author(s) 2023. CC BY 4.0 License.

dgg0ald
Sticky Note
It might be worth decreasing the contrast on the hillshade image, to allow the underlying colours to come through more clearly?



6 Exploration of the Melamchi event

Our mapped gravel areas along the Melamchi-Indrawati and Bhote Koshi rivers show temporal noise throughout the mapping

period from 2012-2021, indicating that the two river systems are not static and gravel bars shift over time. Although we note290

several localised increases in gravel area following the Gorkha earthquake, potentially linked to input of coseismic landslide

sediment, these changes are small compared to the significant increase in gravel area along the central reaches of the Melamchi-

Indrawati rivers in the months following the June 2021 Melamchi disaster, or in the Bhote Koshi following the Jure landslide

(Figs. 6 and 7). In the following analysis, we assess whether the Gorkha earthquake was a necessary pre-condition for the 2021

Melamchi disaster. We do this by considering the causes of the Melamchi disaster and the source of its sediment.295

6.1 Reporting of Melamchi disaster

At the time of writing, three detailed reports documenting the impact of the Melamchi disaster and exploring its causes have

been published (Baskota et al., 2021; Maharjan et al., 2021; Pandey et al., 2021). We summarise these reports, and support

them with photographs taken during a subsequent helicopter flight to the region in December 2021. The initial report from

Pandey et al. (2021) describes the event as an outburst flood from a landslide dam triggered by intense localised rainfall.300

The Department of Hydrology and Meteorology’s (DHM) Sermathang station, 5 km ESE of Timbu, did record higher than

normal cumulative rainfall in the six days preceding the event (Maharjan et al., 2021) and Global Precipitation Measurement

(GPM) data shows high precipitation around Melamchi Bazaar on 14 June (Pandey et al., 2021); however, neither of these

measurements are considered extreme enough to explain the scale of the event.

Maharjan et al. (2021) and Baskota et al. (2021), with the benefit of additional information from satellite imagery and305

further field excursions, rule out a single trigger, instead listing multiple factors as a cause of the event. They propose a chain

of events culminating in the Melamchi disaster: first, collapse of glacial moraine in the Pemdang Khola which is a tributary

of the Melamchi River; heavy rainfall or high snowmelt released a wave of glacial lake water and glacial sediments. The

resulting debris accumulated in Bremthang, a wide sandy plain downstream of the confluence between the Pemdang Khola and

Melamchi Khola (Baskota et al., 2021; Maharjan et al., 2021), which itself has been interpreted as a valley fill behind an old310

landslide dam (Maharjan et al., 2021). The floodwaters and debris released in the Pemdang Khola incised into the Bremthang

old dam, mobilizing additional sediment and causing a debris flow that contributed to bank erosion and hillslope toe cutting

further downstream. At Melamchigaon, an old landslide which was reactivated first by the Gorkha earthquake, and subsequently

during this event, is also thought to have dammed the river; the nearby gauging station at Nakote recorded a decrease in water

level followed by a rapid increase before the station was destroyed during the event and stopped recording (Baskota et al.,315

2021; Pandey et al., 2021). Baskota et al. (2021) point out that the Melamchigoan landslide dam could have retained 32,400-

43,200 m3 of water, taking into account the decrease in water level recorded at Nakote station and assuming a discharge of

9-12 m3s−1. This amount is small compared to the 70 million m3 of debris deposited around Melamchi, highlighting that while

the Melamchigaon landslide dam outburst likely added to the disastrous scale of the event, it cannot be the sole cause of the

disaster.320
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While Maharjan et al. (2021) cannot link the Melamchi event to the 2015 Gorkha earthquake with certainty, they suggest that

the earthquake destabilised the hillslopes in the area affected by coseismic landsliding during the earthquake, as corroborated

by Kincey et al. (2021), who show increased landslide activity since the earthquake.

To summarise, the previous studies have demonstrated the compound nature of the Melamchi disaster, but as yet, have

not tackled the question of whether these processes were conditional on sediment released from hillslopes by the Gorkha325

earthquake.

6.2 Sediment source derived from satellite data

Planet Explorer 3.7 m optical satellite imagery was used to explore the likely sources of sediment during the Melamchi disaster.

The satellite data confirm the break-out of the Pemdang Lake, and the accumulation of fresh sediment observed in the Bhe-

mathan valley. But the data also show widespread sediment excavation in a number of neighbouring valleys in the catchment,330

suggesting increased discharge over a broad area rather than a point source (Fig. 10). For example, many of the channels in

the upper Yangri Valley, immediately east of Melamchi, also show evidence of expansion of sediment accumulation, as does

a smaller valley to the west. The location at which the headwaters of these channels were reactivated falls between an eleva-

tion range of approximately 4500-4800 m elevation, and extends along the range for at least 10 km between the valleys in an

WSW-ENE orientation. Critically, the source locations for the initiation of sediment mobility are not locations characterised335

by intense landsliding in response to the Gorkha earthquake.

These observations support the interpretations from previous reports that suggest a single dam failure or outburst event

is insufficient to explain the volumes of discharge and sediment recorded in the Melamchi valley. Instead, the evidence of

sediment mobilisation in multiple catchments along the range implies an intense precipitation event that was too localised to be

picked up by any of the meteorological stations. Overtopping and release of the Pandam Lake accompanied by rapid incision of340

the old landslide that dammed the Bhemathan Valley were a part of the response to this rainfall event that added to its impact. A

similar ’cloudburst’ event caused devastation in the Ladakh Himalaya in 2010 where both the meteorological stations and radar

satellite data missed the rainfall as it was localised over a 6 km wide zone that run between multiple small catchments along

strike at an elevation of approximately 4500 m (Hobley et al., 2012). An additional conclusion is therefore that the Melamchi

disaster appears to have been independent of the Gorkha earthquake, as there is no evidence that the main sources of sediment345

have been pre-conditioned by the Gorkha earthquake, although the river damming and dam outburst at Melamchigaon likely

amplified the impact of the flood.
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Figure 10. Planet Explorer imagery of the headwaters of the Melamchi-Indrawati catchment (Planet Team, 2017), used to identify potential

sources of sediment during the 2021 Melamchi flood event. Comparison between clear day images before and after the event are used to

identify zones of sediment mobilization. Throughout the monsoon period from mid-June to mid-September, most of the region is cloud-

covered. We therefore chose to compare the images from October 2020 to those of October 2021, encompassing the full monsoon season of

2021, including the Melamchi disaster. Valleys characterised by excavation of sediment by active channels are highlighted by bright white

or grey tones.

7 Discussion

7.1 Landslide connectivity following the 2015 Gorkha earthquake

It is possible that large-scale channel aggradation such as that observed following the 1999 Chi-Chi (Taiwan) and 2008350

Wenchuan (China) earthquakes (Chen and Petley, 2005; Whadcoat, 2011; Yanites et al., 2010) did not happen in the after-

math of the Gorkha earthquake because the landslides were not connected to active river channels to the same extent (Collins

and Jibson, 2015; Cook et al., 2016). A landslide connected to the river network will deliver sediment to the channel and

therefore contribute to an increase in sediment load downstream, whereas a landslide isolated on a hillslope and not connected

to the fluvial domain will not immediately contribute to the fluvial sediment budget. Fig. 8 shows that the connectivity in355

both studied catchments is consistent with that found by Roback et al. (2018)’s across a broad area affected by the Gorkha
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earthquake, and it is therefore unlikely that low connectivity is the reason for the lack of coseismic landslide sediment in the

river channels. However, whether a landslide ends up contributing to the sediment budget will also depend on how quickly it

becomes re-stabilized, mostly through re-vegetation, although the landslide mass will likely remain more easily re-mobilised

than an intact hillslope. Re-vegetation of hillslopes can occur rapidly in tropical and/or wet climates. For example, Lin et al.360

(2007) reported 66% of vegetation recovering in four years following the 1999 Chi-Chi earthquake, and Saba et al. (2010)

demonstrated that hillslopes had re-vegetated and stabilised within two years of the 2005 Kashmir earthquake – much earlier

than expected – facilitating a rapid return of landslide activity to pre-earthquake conditions. Fan et al. (2018) and Gan et al.

(2019) showed that hillslopes returned to pre-earthquake conditions between seven and nine years after the 2008 Wenchuan

earthquake, with Fan et al. (2018) citing re-vegetation, grain coarsening and densification of the mass wasting deposits as the365

main processes promoting rapid hillslope stabilisation. Based on these observations, Fan et al. (2018) suggest that long-term

hillslope processes contribute significantly more to mass removal following large earthquakes than short-term mass wasting

processes.

In the area affected by coseismic landsliding during the 2015 Gorkha earthquake, Kincey et al. (2021) compiled a multi-

temporal landslide inventory over eleven mapping epochs, from pre-monsoon 2014 to post-monsoon 2018. For each 1 km2370

grid cell in their mapping area, landslide “birth” was assigned to the first epoch in which the cell was first impacted by a

landslide, and landslide “death” indicated the epoch in which the cell was last impacted by a landslide. Although Kincey

et al. (2021) did not assess hillslope stability or re-vegetation patterns, they showed that in ca. 75% of the cells registering a

coseismic landslide birth, the landslides persist until the final mapping epoch, after the 2018 monsoon. This tentatively suggests

that hillslopes had not yet extensively re-vegetated in the three years following the 2015 Gorkha earthquake. These findings375

therefore suggest that the lack of large-scale aggradation following the Gorkha earthquake cannot be attributed to anomalously

low connectivity or rapid re-vegetation in the studied area. In the following sections, we discuss the importance of alternative

controls on downstream sediment transfer, including major hydrological events and valley morphology.

7.2 Importance of hydro-meteorological events for sediment export

Following the 1999 Chi-Chi earthquake in Taiwan, Typhoon Toraji (2001) resulted in a three-fold increase in landslide area380

compared to pre-earthquake Typhoon Herb even though the latter brought more rainfall (Lin et al., 2004, 2006). Previous studies

following large earthquakes note elevated suspended sediment loads for several years following the event itself, suggesting that

further triggering events beyond the earthquake itself are needed to flush out coseismic landslide sediment (Dadson et al., 2004;

Yanites et al., 2010; Hovius et al., 2011). In their study focusing on the Wenchuan earthquake, Wang et al. (2015) additionally

found that the residence time of coseismic landslide sediment in catchments is reduced by periods of intense rainfall such as385

tropical cyclones.

The volume of coseismic Gorkha landslides connected to a fluvial channel in the Melamchi-Indrawati valley, calculated in

Section 4.2, ranges from 26 to 48 million m3 and from 43 to 77 million m3 based on the landslide inventories of Gnyawali and

Adhikari (2017a) and Roback et al. (2018), respectively, with the lower end of the range indicating landslides within 50 m of a

channel and the upper end including all landslides within 400 m of a channel. Based on these calculations alone, it is therefore390

24

https://doi.org/10.5194/egusphere-2022-1347
Preprint. Discussion started: 12 January 2023
c© Author(s) 2023. CC BY 4.0 License.

dgg0ald
Highlight
I'm not sure what the distinction is here

dgg0ald
Highlight
OK, good - this is a clear summary statement for the reader

dgg0ald
Cross-Out

dgg0ald
Highlight
I would replace this by 'the prevalence of'



possible that Gorkha landslides contributed a significant amount of the 13 million m3 deposited between Nakote and Dolalghat

(Maharjan et al., 2021) during the 2021 Melamchi flood. However, these are likely overestimates since our calculations account

for all landslides connected to channels with a drainage area exceeding 0.48 km2 in the whole Melamchi-Indrawati catchment,

and therefore are not limited to only those landslides that would have been able to supply sediment directly to the reach of the

Melamchi River affected by the June 2021 event. In addition, it is unlikely all sediment produced through landsliding would395

become mobilised during one flood event.

The triggers of the Melamchi event proposed by Baskota et al. (2021) and Maharjan et al. (2021), indicate that the majority

of the sediment involved in the June 2021 event was sourced from an area in the catchment than was located higher than the

area that had been worst affected by Gorkha earthquake-triggered landslides, suggesting that hillslope pre-conditioning by

the earthquake likely played only a minor role in facilitating the Melamchi disaster. Analysis of the Planet Explorer images400

confirms this origin and highlight that sediment mobilisation likely occurred as a result of an extreme hydro-meteorological

event focused on an area across the 4500-4800 m elevation range. The associated glacial lake outburst in the Pemdang Khola,

valley damming by the Melamchigaon landslide, and subsequent dam outburst, likely contributed to the severity of the event.

7.3 Importance of valley morphology for sediment export

Our study focused on the Melamchi-Indrawati and Bhote Koshi catchments in central Nepal, both of which experienced severe405

coseismic landsliding during the 2015 Gorkha earthquake sequence. Additionally, the studied reaches in both catchments flow

predominantly across the rocks of the Higher Himalayan Crystallines (HHC) and Lesser Himalayan Sequence (LHS), and are

crossed by the Main Central Thrust (MCT). However, the evolution of gravel area during our study period from 2012-2021

is dramatically different between the two catchments, with the Melamchi-Indrawati river experiencing a dramatic increase

in gravel area associated with a catastrophic high concentration flow event in June 2021, which persists until the end of410

our mapping period. In this section, we explore the potential influence of valley morphology and geomorphic history on the

occurrence of this event in the Melamchi-Indrawati but not the Bhote Koshi catchment. Baskota et al. (2021), Maharjan et al.

(2021), and Pandey et al. (2021) all agree that Bremthang, a wide, sandy plain in the headwaters of the Melamchi River, was

a key component of the Melamchi disaster. As Baskota et al. (2021) point out, the low gradient of Bremthang allowed water

and debris to accumulate. We therefore hypothesise that the configuration of the Bremthang facilitated the Melamchi disaster,415

with a flat and wide reach upstream acting as a sediment trap connected to a steep, confined channel allowing rapid evacuation

of sediment once the old landslide dam was breached, adding to the catastrophic impact of the event further downstream. As

shown in Fig. 9 and 11, the Bremthang is visible in maps of channel steepness and channel width as a wide and flat section

abruptly followed by a transition to a steep and narrow channel downstream. We also note that the headwaters of the Yangri

River, immediately to the east of the Melamchi River, show a similar configuration, albeit less pronounced than the Bremthang420

along the Melamchi River (Fig. 11). Landslide dams such as the Bremthang are made of heterogeneous material with wide

range of grain sizes, up to very large boulders. They can therefore persist for decades to centuries. By contrast, valley fill

accumulating behind a landslide dam is composed of finer grained alluvium and lake sediment (Weidinger, 2006), meaning it

can be mobilised relatively easily once the landslide dam is incised. As reported by Baskota et al. (2021), the Melamchi River
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is currently incising into the downstream end of the Bremthang valley fill, forming a steep scarp whose collapse led to a second425

debris flow event on 31 July 2021 (Fig. 11d). This further highlights the potential of landslide-dammed valley fill as sediment

stores that can be released during extreme hydrological events, and ties in well with Devrani et al. (2015)’s observation from

the upper Ganga basin that during extreme events, low-gradient reaches aggrade and high-gradient reaches incise. Our insights

from assessing the patterns of valley width and normalised channel steepness in the Melamchi-Indrawati and Bhote Koshi

catchments indicate that topographic analysis can help identify sediment stores that may pose a similar risk to the valley fill in430

the Bremthang, which significantly contributed to the scale of the 2021 Melamchi disaster.
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8 Conclusions

By producing sediment through widespread mass wasting, large earthquakes are expected to influence fluvial and sediment

dynamics for years to centuries. In this study, we have mapped gravel area in the Melamchi-Indrawati and Bhote Koshi catch-

ments in central Nepal from 2012 to late 2021 to assess the impact of the 2015 Gorkha earthquake, which triggered over435

25,000 landslides and was expected to result in channel aggradation, in a similar manner as following the 2008 Wenchuan

27

Figure 11. Morphological anomalies and potential sediment stores in the headwaters of the Melamchi and Yangri rivers. (a-b) © Google Map

images of areas characterized by wide, low gradient valleys with braided channels (L) abruptly transitioning downstream into steep narrow

channels (S) (see boxes in Fig. 9) (©2021 Maxar Technologies). The stars indicate the transition. (a) Bremthang in the Melamchi Valley,

interpreted to be a valley fill behind a landslide dam (represented by fanning arrows); the breach of the landslide dam and re-incision of the

valley fill is believed to have contributed a significant amount of sediment during the Melamchi disaster. (b) A similar configuration in the

Yangri valley immediately east of the Melamchi valley. (c) River profiles showing the location and extent of the low-gradient reaches shownin

(a) and (b), and the abrupt transition to a steep reach downstream (indicated by the stars). (d) Photo looking north (upstream) taken fromthe

approximate original location of the knickpoint at the Bremthang (star in (a)), showing rapid incision into valley fill and remobilizationof

large amounts of sediment during the Melamchi disaster. Approximate location of star in (a) is 28.0930, 85.5461. Approximate locationof

star in (b) is 28.0658, 85.5963.
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(China) earthquake which had a similar moment magnitude. However, our data show only localised and small increases in

gravel area that can be directly linked to landslides triggered by the Gorkha earthquake. The only clear, reach-scale signal in

either catchment is a sharp increase in gravel area from June to July 2021 along a 30 km stretch of the Melamchi-Indrawati

rivers, caused by an extreme high concentration flow event on 15 June 2021. We explore the reasons for the absence of a clear440

signal attributable to the Gorkha earthquake, and assess the influence of the Gorkha earthquake on the 2021 Melamchi disaster,

and the potential control of valley morphology on the occurrence of similar events. From a review of field reports following

the Melamchi disaster, combined with new analysis of optical satellite data, we find that the majority of sediment transported

during the event was sourced from a rainfall event localised in elevation but stretching between neighbouring catchments; the

sediment supplied by this event was further upstream than the coseismic landslides. This indicates that a hydro-meteorological445

trigger played the dominant role in the Melamchi disaster rather than hillslope pre-conditioning by the 2015 Gorkha earth-

quake. We suggest that extreme climatic events and the existence of sediment stores within valleys, rather than the instability

of hillslopes, limit the export of sediment from this part of the Himalaya. We provide guidance to identify such sediment stores

which, we believe, pose greater risk to populations than co-seismic landslides in a region increasingly exposed to extreme

hydro-meteorological events.450

Code and data availability. The mapped shapefiles as well as the code used to process the mapping data are available upon request to the cor-

responding author. The code and documentation for the valley width extraction code is available at: https://github.com/LSDtopotools/LSDTopoTools2.
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Appendix A: Mapping

A1 Imagery dates and sources

Table A1. Imagery dates and sources for Melamchi-Indrawati rivers. Extent refers to distance along the polyline representing the channel

and is consistent with the distances shown in Fig. 6. Asterisk indicates imagery used to constrain mapping uncertainty.

Mapping epoch Date (dd/mm/yy) Imagery source Extent

Post-2012 monsoon
28/10/12 Maxar Technologies 5 - 53.5 km

31/10/12 Maxar Technologies 53.5 - 64.4 km

Post-2013 monsoon 10/11/13 CNES/Airbus 47.2 - 64.4 km

Post-2014 monsoon 03/05/15 CNES/Airbus 5 - 64.6 km

Post-2015 monsoon
30/01/16 Maxar Technologies 53.7 - 64.4 km

01/02/16 Maxar Technologies 4.9 - 53.7 km

Post-2016 monsoon

28/12/16 CNES/Airbus 51 - 64.4 km

17/01/17 CNES/Airbus 31 - 51 km

29/01/17 CNES/Airbus 9 - 31 km

Post-2017 monsoon*
22/04/18 Maxar Technologies 17.2 - 64.4 km

22/04/18 Planetscope 2.5 - 65.8 km

Post-2018 monsoon 06/03/19 Maxar Technologies 7.1 - 64.4 km

Post-2019 monsoon

28/11/19 CNES/Airbus 9.5 - 28.6 km

03/04/20 Maxar Technologies 28.6 - 31.7 km

19/04/20 Maxar Technologies 31.7 - 60.4 km

Post-2020 monsoon

02/06/21 Planetscope 1.6 - 65.8 km

29/07/21 Planetscope 1.6 - 65.8 km

11/08/21 Planetscope 20 - 65.8 km

12/09/21 Planetscope 0.7 - 65.8 km

Post-2021 monsoon

13/10/21 Planetscope 0 - 65.8 km

14/11/21 Planetscope 2.7 - 65.8 km

13/12/21 Planetscope 1.6 - 65.8 km
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Table A2. Imagery dates and sources for the Bhote Koshi. Extent refers to distance along the polyline representing the channel and is

consistent with the distances shown in Fig. 7. Asterisk indicates imagery used to constrain mapping uncertainty.

Mapping epoch Date (dd/mm/yy) Imagery source Extent

Post-2012 monsoon
31/10/12 Maxar Technologies 47.5 - 63.7 km

13/02/13 Maxar Technologies 0 - 47.5 km

Post-2013 monsoon 10/11/13 CNES/Airbus 41.1 - 63.7 km

Post-2014 monsoon

04/12/15 CNES/Airbus 32.1 - 35.1 km

03/05/15 CNES/Airbus 35.1 - 63.7 km

04/05/15 CNES/Airbus 0 - 32.1 km

Post-2015 monsoon
11/01/16 Maxar Technologies

0 - 13.3 km

19.9 - 30.5 km

33.9 - 58.3 km

30/01/16 Maxar Technologies 58.3 - 63.7 km

Post-2016 monsoon 29/10/16 Planetscope 0 - 63.7 km

Post-2017 monsoon*

07/12/17 CNES/Airbus 32 - 33.4 km

09/12/17 CNES/Airbus
2.2 - 32 km

33.4 - 63.7 km

10/12/17 Planetscope 18 - 63.7 km

Post-2018 monsoon 29/10/18 Planetscope 0 - 63.7 km

Post-2019 monsoon 17/10/19 Planetscope 0 - 63.7 km

Post-2020 monsoon

20/10/21 Planetscope 0 - 63.7 km

02/06/21 Planetscope 0 - 63.7 km

12/09/21 Planetscope 0 - 63.7 km

Post-2021 monsoon

13/10/21 Planetscope 0 - 63.7 km

14/11/21 Planetscope 14.4 - 63.7 km

13/12/21 Planetscope 18.5 - 63.7 km

A2 Parameter selection and sensitivity analysis455

We tested the influence of each of the five parameters involved in processing the mapping data on the resulting area values. The

five parameters and their selected ranges are: (i) the resolution of the raster resr, varying from 10-70 m at an interval of 10 m,

(ii), the distance between the points along the channel line ds, varying from 10 - 100 m at an interval of 10 m, (iii) the window

distance along the channel dp, varying from 200 to 1100 m at an interval of 100 m, (iv) the window distance orthogonal to the

channel do, varying from 200 to 2000 m at an interval of 200 m, and (v) the size k of the rolling window to smooth the area for460

plotting, for which we used values of 2, 5, 7, and then ranging from 10 - 70 at an interval of 10.
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We varied each parameter in turn by the ranges given above, while keeping all other parameters constant. We then processed

all areas mapped from Planetscope imagery along the Melamchi-Indrawati rivers and, for each data point along the river,

we plotted the corresponding area calculated for the lowest chosen parameter value against that calculated using the highest

parameter value (Fig. A1). Assuming that a given parameter does not influence the results, the data plotted should lie along the465

1:1 line. Additionally, we show the variation in gravel area along the Melamchi-Indrawati river in one mapping epoch, October

2020, for the full range of each parameter (Fig. A2).

Raster resolution resr has no discernible influence on the results, with the data points in Fig. A1 lying along the 1:1 line, and

we therefore chose 40 m as the final value as this allows for low computational cost while also faithfully reproducing the shape

of the mapped areas. The step distance for resampling the channel line to points, ds follows a roughly linear trend, albeit with470

some scatter. It is interesting that, as opposed to raster resolution, the epochs do not all follow the same trend. However, Fig.

A2b shows that changes in the gravel area along the river channel as a function of ds are negligible and we could freely choose

the value to be used in the processing. We decided on 50 m as it breaks the channel into enough points to accurately sample the

river course while also not taking up too much computing time. Window distance along the river, dp, is not expected to follow

a 1:1 trend since the longer the window, the longer the stretch of river that is being sampled in any given window, and therefore475

the larger the area within this window. However, the data points here closely follow a linear trend which remains consistent

across mapping epochs, and Fig. A2c shows that the overall trend does not change. Window distance orthogonal to the river,

do, is a special case as evidenced by the cut-off seen on the plot, indicating that for do = 200, the area calculated within each

window never exceeds 0.15 km2. This is because the widest parts of the mapped channel will exceed 200 m in width and the

window will therefore not be able to capture the full extent of the combined channel area (Fig. A2d). To choose the best value480

for do, we therefore needed to make sure that it is at least the width of the widest part of the channel in any time period in order

to not lose information. However, setting do too high causes more overlap between sections of the river that are not adjacent,

e.g. at bends in the river course, and would therefore likely overestimate the area within a given window. Fig. A3 shows the

change in total calculated area along the river as a function of do. The “roll-off” apparent in this figure indicates the value of do

beyond which no information is lost due to missing the edges of the active channel, which correlates with the manually derived485

value of the widest channel section, 800 m. In order to have an extra safety margin, we chose a value of do = 1000 m. The

size of the rolling window for smoothing the data, k, also shows a complex impact on the results, as evidenced by the different

trends in each mapping epoch (Fig. A1e). For this case, we again refer to Fig. A2e, which shows that while high values of k

remove local signals and translate peaks in gravel area downstream, this does not happen for k<=10. The final value chosen (k

= 7) was based on visual estimation of the smallest value which would sufficiently reduce noise in the data while not removing490

local signals.

A3 Handling incomplete imagery

For some dates, imagery either did not cover the entire study area or visibility was not good enough to reliably map the rivers

(see Tables A1 and A2). The latter was particularly a problem for Planetscope images in the upper reaches of the study area,

and especially in the Bhote Koshi, since the NE-SW orientation and steep flanks of the valley create shadows. Where imagery495
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Figure A1. For each of the five parameters we varied in the sensitivity analysis, the area calculated at each channel point using the highest

value in the parameter range is plotted against the area calculated using the lowest value in the parameter range. The choice of parameter

value is considered to not influence the results if the data points lie along the grey dashed 1:1 line diagonally crossing the plot, as is the case

with raster resolution in panel (a). Areas in these plots are mapped from Planetscope imagery along the Melamchi-Indrawati rivers. See the

text for a detailed discussion of the results shown here, including the special cases of do and dp.
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Figure A2. Area along profile for one mapping epoch, showing variation between parameter values. Areas are mapped along the Melamchi-

Indrawati rivers from Planetscope imagery of 30/10/2020.
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Figure A3. Total gravel area calculated along the Melamchi-Indrawati river as a function of do. The roll-off on the graph helps to identify

the value of do above which we include the full width of the gravel areas. The more that value is exceeded, the more likely it is to get overlap

between windows at bends in the river. Areas in these plots are mapped from Planetscope imagery of 30/10/2020 along the Melamchi-

Indrawati rivers

was not available or not sufficiently clear, these areas were not included in the data set. Since the figures in the results section

show averaged mapped areas along the profile, it was necessary to ensure that the shorter sections of mapped area did not

produce erroneous spikes. To that end, we removed the mapped area within one dp (i.e. 500 m) of either end of the mapped

reach prior to smoothing the data with a rolling window.
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