
1 
 

Coastal earthquake induced landslide susceptibility during the 2016 
Mw 7.8 Kaikōura earthquake, New Zealand 
Colin K. Bloom1, Corinne Singeisen1, Timothy Stahl1, Andrew Howell1,2, Chris Massey2, Dougal 
Mason1,3 
1School of Earth and Environment, University of Canterbury, Christchurch, 8014, New Zealand 5 
2GNS Science, Lower Hutt, 5011, New Zealand 
3WSP, Wellington, 6011, New Zealand 

Correspondence to: Colin K. Bloom (colinkbloom@gmail.com) 

Abstract. Coastal hillslopes often host higher concentrations of earthquake induced landslides than those further inland, but 

few studies have investigated the reasons for this occurrence. As a result, it remains largely unclear if regional earthquake 10 

induced landslide susceptibility models trained primarily on inland hillslopes are effective predictors of coastal susceptibility. 

The 2016 Mw 7.8 Kaikōura earthquake on the northeast South Island of New Zealand resulted in c. 1,600 landslides > 50 m2 

on slopes > 15° within 1 km of the coast. This forms an order of magnitude greater landslide source area density than inland 

hillslopes within 1 to 3 km of the coast. In this study, the distribution of regionally predictive landslide susceptibility variables, 

or features, and logistic regression modelling are used to investigate how landslide susceptibility differs between coastal and 15 

inland hillslopes and determine the factors that drive the distribution of coastal landslides initiated by the 2016 Kaikōura 

earthquake. Strong model performance (Area under the Receiver Operator Characteristic Curve or AUC of c. 0.80 to 0.92) 

was observed across eight models, which adopt four simplified geology types. The same landslide susceptibility factors, 

primarily geology, steep slopes, and ground motion are strong model predictors for both inland and coastal landslide 

susceptibility in the Kaikōura region. In three geology types (which account for more than 90% of landslides source areas) a 20 

0.03 or less drop in model AUC is observed when predicting coastal landslides using inland trained models. This suggests 

little difference between the features driving inland and coastal landslide susceptibility in the Kaikōura region. Geology is 

similarly distributed between inland and coastal hillslopes and PGA is generally lower in coastal hillslopes. Slope angle, 

however, is significantly higher in coastal hillslopes and provides the best explanation for the high density of coastal landslides 

during the 2016 Kaikōura earthquake. Existing regional earthquake induced landslide susceptibility models trained on inland 25 

hillslopes using common predictive features are likely to capture this signal. Interestingly, in the Kaikōura region, most coastal 

hillslopes are isolated from the ocean by uplifted shore platforms. Enhanced coastal landslide susceptibility from this event 

appears to be a legacy effect of past active erosion, which preferentially steepened these coastal hillslopes. 
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1 Introduction 

Steep rocky coastlines, which account for c. 80% of waterfront around the globe (Emery and Kuhn, 1982), are a naturally 30 

desirable location to live and recreate. A growing global population has resulted in human encroachment on coastlines with 

nearly one quarter of the human population now living in close proximity to the coast (Small and Nichols 2003). At the same 

time, global climate change and a rising sea level threaten to increase the rate of coastal landsliding and cliff retreat, in part, 

due to wave action overtopping protective beaches and impacting coastal cliff faces more frequently (e.g., Young et al., 2014; 

Limber et al., 2018). This may have devastating consequences for people and infrastructure near coastal hillslopes (e.g., Jibson, 35 

2006; Dellow et al., 2017; Handwerger et al., 2019). 

 

To help mitigate and manage these hazards, previous studies have attempted to define landslide susceptibility models for steep 

coastal regions using a physical understanding of the forcings that contribute to coastal mass wasting and the susceptibility 

factors that make failure more likely (e.g., Keefer, 2000; He and Beighley, 2008; Budetta et al., 2008; Dickson and Perry, 40 

2016; Francioni et al., 2018; Young, 2018; Limber et al., 2018). Forcings include rainfall, wave and tidal action, and storm 

surge whereas susceptibility factors include steep topography, geology, rock structure, hydrology, urbanization, and soil 

moisture among other factors (Van Jones et al., 2015; Dickson and Perry, 2016; He and Beighley, 2008). In tectonically active 

regions, earthquakes also act as a forcing contributing to the distribution of coastal landslides (Griggs and Plant, 1998; Hancox 

et al., 2002) but few coastal models have considered the influence of strong ground motion. 45 

 

Similarly, while a number of studies (e.g., Budimir et al., 2015; Parker et al., 2015; Massey et al., 2018) have attempted to 

define factors contributing to regional earthquake induced landslide susceptibility, few have focused specifically on coastlines. 

In several cases (e.g., Griggs and Plant, 1998; Collins et al., 2012; Massey et al., 2018) a significantly higher landslide density 

was observed on coastal hillslopes as compared to inland hillslopes. Given the influence of increased precipitation, weathering, 50 

and soil moisture along coastlines, it is possible that regional earthquake induced landslide susceptibility models, which are 

trained primarily on inland hillslopes, may not effectively predict coastal landslide distributions. 

 

Following the 2016 Mw 7.8 Kaikōura earthquake along the northeast coast of the South Island of New Zealand (Hamling et 

al., 2017), Massey et al. (2018) observed an order of magnitude greater number of landslides along coastal hillslopes as 55 

compared to inland hillslopes. No clear physical control on landslide density was identified although several hypotheses were 

explored. Here the distribution of coastal landslides from the 2016 Kaikōura earthquake is used to: 1) compare and contrast 

the results from earthquake induced landslide susceptibility models developed for coastal and inland hillslopes in the Kaikōura 

region; 2) evaluate the factors that might contribute to an increased coastal coseismic landslide density during the earthquake; 

and 3) explore some of the mechanisms that result in increased coseismic landslide susceptibility along the Kaikōura coast. 60 
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2 Background 

2.1 2016 Mw 7.8 Kaikōura Earthquake 

The 2016 Mw 7.8 Kaikōura earthquake initiated on the Humps fault near the township of Waiau c. 40 km inland from the coast 

in the northeastern South Island of New Zealand (Hamling et al., 2017). The earthquake triggered a cascade of fault ruptures 

on more than 20 on- and off-shore faults primarily to the northeast of the epicentre (Figure 1, Litchfield et al., 2018). The 65 

earthquake ruptured faults of both the North Canterbury and the Marlborough Fault System tectonic domains (Figure 1, 

Litchfield et al., 2018) and caused complex surface deformation along c. 110 km of coastline (Clark et al., 2017). 

 
Figure 1: (a) Location of the Kaikōura earthquake within the tectonic setting of New Zealand. Active faults from the 1:250,000 scale 
New Zealand Active Fault Database (Langridge et al., 2016) are in grey and simplified major offshore structures are in blue. Black 70 
arrows show the relative motion of the Pacific and Australian Plates (Beavan et al., 2002). (b) Area of the Kaikōura earthquake with 
active faults of the New Zealand Active Fault Database in grey and fault ruptures from the 2016 Kaikōura earthquake in red 
(Litchfield et al., 2018; Zinke et al., 2019). The shaded blue area is the focus of this study, a 3 km buffer of the coast where modelled 
PGA from the Kaikōura earthquake was greater than 0.2 g. Red points identify locations where Ota et al. (1996) estimated coastal 
uplift rates (noted next to labels). Major faults that cross the coastline in the Kaikōura region are labelled. The labelled MFS or 75 
Marlborough Fault System is north of the Hope fault and the NCD or North Canterbury Domain is south of the Hope fault. The 
base image is a multidirectional hillshade of the Land Information New Zealand 8 m DEM (LINZ, 2022). 
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The earthquake generated more than 30,000 landslides which were primarily concentrated within the steep slopes of the 

Seaward Kaikōura range, around surface fault ruptures, and in steep sections of coastline (Figure 1 and 2; Massey et al., 2018, 80 

2020a; Bloom et al., 2022a). Statistical modelling by Massey et al. (2018, 2020a) found that the regional distribution of 

landslides from the Kaikōura earthquake was well explained by geology, slope, distance to surface fault traces, peak ground 

velocity (PGV), local slope relief, and elevation. While Massey et al. (2018) acknowledged a higher density of landslides along 

the Kaikōura coast, they did not investigate coastal landslide susceptibility, nor the underlying mechanisms involved in the 

distribution of coastal earthquake induced landslides. Here, we separate out coastal versus non-coastal hillslopes from this 85 

regional analysis and independently investigate the factors that might have contributed towards increased landslide 

susceptibility of coastal hillslopes during the 2016 Kaikōura earthquake. 

 
Figure 2: A multidirectional hillshade of post-earthquake lidar (Massey et al., 2020b) with coastal earthquake induced landslides 
mapped by Massey et al. (2020a). A high density of coastal earthquake induced landslides were observed within the scars of relict 90 
landslides that are common along the coastline. Shore platforms modified by road and rail corridors buffer the base of the coastal 
hillslopes. 
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2.2 Coastal and Geologic Setting 

Much of the Northeast coast of New Zealand’s South Island is steep and rocky (Figure 1 and 2). Coastal hillslopes are primarily 

composed of intensely jointed Lower Cretaceous greywacke of the Torlesse Supergroup along with younger Upper Cretaceous 95 

to Neogene sedimentary units (Rattenbury et al., 2006). These units are, in places, overlain by less consolidated Pleistocene 

alluvial, fluvial, and beach deposits. Portions of the region’s steep coastline, primarily south of the Haumuri Bluffs at Conway 

Flat (Figure 1), form steep coastal cliffs c. 50 to 150 m in height, many of which are subject to wave action at high tide (Bloom 

et al., 2022b). North of the Haumuri Bluffs, however, most coastal hillslopes are uplifted and buffered from direct wave action 

by shore platforms that have, in places, been anthropogenically modified to facilitate road and rail corridors (Figure 2; Mason 100 

et al., 2017; Stringer et al., 2021). 

 

Long-term coastal uplift in the Kaikōura region is locally variable as a result of major faults, including the Hope, Kekerengu-

Needles, and Hundalee, which cross-cut the coastline (Figure 1, Litchfield et al., 2018; Howell and Clark, 2022). Approximate 

regional estimates of uplift based on Pleistocene marine terraces suggest c. 2.0 mm y-1 of uplift at the Conway River mouth, 105 

1.3 mm y-1 at the Haumuri Bluffs, 1.1 mm y-1 at Kaikōura township, 1.1 mm y-1 at the Clarence River mouth, and c. 0.5 mm 

y-1 c. 10 km south of Cape Campbell (Figure 1; Ota et al., 1996). These measurements generally align well with more recent 

measurements of c. 0.9 to 1.3 mm y-1 at Kaikōura (Nicol et al., 2022). Single event vertical displacement from the 2016 

Kaikōura earthquake ranged from c. −2.5 to 6.5 m along the Kaikōura coast (Clark et al., 2017; Howell and Clark, 2022), but 

the areas that subsided in 2016 have undergone net uplift over the Holocene and Pleistocene (Ota et al., 1996; Howell and 110 

Clark, 2022). 

 

As a result of low coastal population density, little work has been done to estimate long term coastal retreat rates for the South 

Island of New Zealand. The few studies that have estimated retreat (Bloom et al., 2022b; Kirk 1975, 1977) suggest highly 

variable rates modulated by lithology and topography. Average rainfall measured in the township of Kaikōura is c. 721 mm 115 

yr-1 (Macara, 2014) but is highly spatially variable along the Kaikōura coast ranging from c. 675 to c. 1500 mm yr-1 (NIWA, 

2022). Over the historical record, significant landsliding along the Kaikōura coast has been observed following large storms, 

for example Cyclone Alison (March 1975) and ex-Tropical Cyclone Ita (April 2014), which brought high rainfall to the region 

over a short period of time (Massey et al., 2021a). 

3 Data and Methods 120 

To explore coastal earthquake induced landslide susceptibility in the Kaikōura region, we rely on a combination of predictive 

landslide susceptibility features and an earthquake induced landslide inventory produced by Massey et al. (2020a) following 

the 2016 Kaikōura earthquake (Figure 2). These datasets are used to examine the distribution of landslides with distance from 

the Kaikōura coast and provide training data for comparative inland and coastal landslide susceptibility models (Figure 3). For 
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the purposes herein, inland hillslopes are defined as hillslopes within >1 to 3 km of the Kaikōura coast and coastal hillslopes 125 

as hillslopes within 1 km of the coastline (Massey et al., 2018). This distinction was based on three main factors. First, the 

observed landslide density is much higher within 1 km of the coast than within 1 to 3 km despite generally similar distributions 

of lithology, elevation, and vegetation. Second, hillslopes greater than 3 km from the coast capture a different proportion of 

lithology and alpine terrain (Figure 1) with a higher landslide density. These hillslopes are more difficult to compare with the 

coastal setting and may be affected by different processes. Third, the area within 1 km of the coast primarily encompass terrain 130 

up to the first topographic ridgeline (Massey et al., 2018), and is therefore more representative of ‘coastal-facing’ hillslopes 

than those at greater distances. The differences between the coastal and inland susceptibility models are investigated to examine 

the factors contributing to an increased density of landslides on the Kaikōura coast. The following sections provide an overview 

of these datasets and analyses. 

 135 
Figure 3: Logistic regression model workflow. Gridded landslide data and predictive features are used to train and test binary 
logistic regression models. Model results are used to compare inland and coastal landslide susceptibility and assess the importance 
of predictive features. NDMI stands for Normalized Difference Moisture Index while PGA/PGV stands for Peak Ground 
Acceleration/Velocity. 

3.1 2016 Kaikōura Landslide Inventory 140 

For this analysis, mapped source area polygons from version 2.0 of the 2016 Kaikōura earthquake induced landslide inventory 

(Figure 2 and 3; Massey et al., 2020a) were converted into a binary 8 m grid of landslide and non-landslide grid cells. Grid 

cells were assigned a value of 1 if the centre point of the grid cell fell within a landslide source area polygon and a value of 0 

if it did not. Based on the size area distribution of landslides within 3 km of the Kaikōura coastline, landslides smaller than 50 
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m2 were excluded from the analysis. This was an effort to eliminate potential bias resulting from preferential mapping of 145 

smaller failures along the Kaikōura coastal road corridor (Figure A1). Here, distance to the Kaikōura coastline was defined 

using the nearest Euclidean distance from the centre point of each 8 m grid cell to the coast as defined by the Land Information 

New Zealand Topo50 coastline (LINZ, 2022). Investigations were limited to slopes greater than 15° which captured c. 91% of 

cumulative landslide source area while excluding most hillslopes unlikely to produce significant landsliding in this region. 

This threshold is commonly applied (e.g., Meunier et al., 2007; Kritikos et al., 2015) to confine investigations to hillslopes 150 

capable of producing landslides. Furthermore, analyses were limited to those areas where modelled PGA (Worden et al., 2020) 

was greater than 0.2 g (the triggering threshold for New Zealand’s earthquake induced landslide response tools; Massey et al., 

2021b). Areas with PGA greater than 0.2 g include c. 99% of mapped coastal landslide source areas from the 2016 Kaikōura 

earthquake. Finally, the c. 452,000 m2 Seafront landslide was excluded from the analysis to avoid skewing descriptive statistics 

and modelling. The source area of the Seafront landslide occurs approximately 1 to 3 km from the coast but is located directly 155 

along a surface-rupturing fault (>9 m vertical displacement; Bloom et al., 2021). The failure is almost an order of magnitude 

larger than the next largest 2016 failure within 3 km of the coastline and is not representative of failures within the wider 

coastal region. 

 

To supplement the landslide inventory, we reviewed the high resolution pre- and post-event digital elevation models and 160 

orthophotographs used to create the Kaikōura earthquake induced landslide inventory (Massey et al., 2020a) and manually 

assigned each landslide source area polygon either a ‘First Movement’ designation or one of three landslide activity 

designations derived from Cruden and Varnes (1996): ‘Reactivated Retrogressive Rock or Debris’, ‘Reactivated Moving 

Debris’, or ‘Reactivated Moving Rock’. These designations represent the landslide activity in relation to past failures. For the 

purposes herein, a past failure was defined as any landslide, landslide debris, or landslide scar that was apparent on the hillslope 165 

before the 2016 earthquake. First movements have no obvious link with a pre-2016 failure. Reactivated Retrogressive Rock 

or Debris exhibited extension of a pre-2016 landslide head scarp opposite to the failure direction. In this case we also include 

coastal cliff-top failures where there was evidence of past landslides. Reactivated Moving Rock exhibited remobilisation of 

the majority of material within an observed pre-2016 landslide. Reactivated Moving Debris exhibited minor deformation 

within the body of a past landslide including partial reactivation of landslide debris. 170 

3.2 Landslide Distribution 

To examine the distribution of landslides in relation to the coast, the landslide source area density, referred to herein as 

landslide density, was calculated at increasing distance from the coast. Landslide density is the sum of gridded landslide source 

area within 24 m bins at distance from the 1:50k Topo50 New Zealand Coastline (LINZ, 2022) divided by the total area within 

the bin. Landslide density was further broken down within five geology types (GeolCodes) simplified from the New Zealand 175 

QMAP (Rattenbury et al., 2006). GeolCode 1 represents Quaternary sands, silts, and gravels that are primarily fluvial deposits 

but also include alluvial fan, marine, and recent beach deposits; GeolCode 2 represents Neogene limestones, sandstones, and 
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siltstones; GeolCode 3 represents Upper Cretaceous to Paleogene rocks including limestones, sandstones, and siltstones, 

GeolCode 4 represents minor undifferentiated volcanic rocks; GeolCode 5 represents Lower Cretaceous Torlesse (Pahau 

terrane) basement rocks that are predominantly heavily deformed sandstones and argillite, commonly referred to as greywacke 180 

in New Zealand; and finally GeolCode 6 represents undifferentiated relict landslides and hillslope deposits as defined by 

QMAP. It is important to note that relict landslides and hillslope deposits are not systematically mapped within QMAP 

(Rattenbury et al., 2006). 

3.3 Landslide Susceptibility Features 

A number of machine learning and statistical modelling techniques, for example logistic regression, random forest, or deep 185 

neural networks, have been successfully applied to regionally estimate landslide susceptibility (Reichenbach et al., 2018). The 

choice of modelling technique is largely governed by the scale and requirements of the analysis. In this study the binary logistic 

regression technique is used because it 1) balances relatively high model performance with low model training times and 2) 

has high ‘explainability’ allowing us to easily identify the importance of individual predictive features in trained models 

(Figure 3; Budimir et al., 2015). The purpose of using machine learning in this study is to better understand predictive features 190 

not to create a forecast model or susceptibility maps. Other types of models, for example deep neural networks, may result in 

higher model performance more suited to forecasting but sacrifice explainability and require longer training times 

(Reichenbach et al., 2018) limiting their application in this case. 

 

The basic requirements for all empirical landslide susceptibility analyses are, typically, a categorical landslide dataset (defining 195 

the presence or absence of a landslide at any given location) and one or more predictive features that can be used to train the 

model (Figure 3; Budimir et al., 2015). A separate categorical landslide dataset (not used in model training) is used to test the 

efficacy of the trained model (Figure 3). Model performance is optimised differently based on the modelling technique but 

usually involves varying model ‘hyperparameters’ or values used to control model process, and refining the predictive features 

used to train the model (Lombardo and Mai, 2018; Reichenbach et al., 2018). Here, we discuss the choice of predictive features 200 

and further describe the application of the logistic regression modelling technique. 

 

For this analysis, 25 common predictive features used in other landslide susceptibility studies (e.g., Budimir et al., 2015) were 

developed. These features included a range of lithologic, topographic, and surface conditions, for example, slope angle, 

roughness, and vegetation greenness (NDVI) (Figure A2). Of these features, 13 that produced variable inflation factor (VIF) 205 

scores greater than 10 were excluded. Removal limits the influence of collinear features, generally improving model 

performance, and maintaining model explainability (Lombardo and Mai, 2018). 

 

The various features used in this analysis (Table 1) were converted to raster format and/or aligned to the spatial resolution of 

the LINZ 8 m DEM (LINZ, 2022) using the GDAL Rasterize and Warp functions with nearest neighbour resampling. The 210 
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LINZ 8m DEM, primarily derived from the January 2012 LINZ Topo50 20m contours (LINZ, 2022), was used to derive the 

curvature, aspect, elevation, and slope features used in the analysis (Table 1). 

 
Table 1: Landslide susceptibility features. 

Number Features Type Description 

1 Coast Distance Continuous Euclidean distance (GDAL) from the 1:50k Topo50 New Zealand Coastline (LINZ, 2022) 

2 Curvature Continuous Curvature (RichDEM) derived from Land Information New Zealand (LINZ) 8 m DEM (LINZ, 2022) 

3 Cutslopes Categorical 
Modified cutslopes mapped as polygons and gridded to 8 m. Values of 1 indicate the presence of a cutslope 

at the grid cell centre point. 

4 & 9 
Aspect (Eastness and 

Northness) 
Continuous 

Eastness (Sin) and Northness (Cos) of Aspect (GDAL, Converted to Radians) produced using LINZ 8 m 

DEM (LINZ, 2022) 

5 Elevation Continuous 
LINZ 8m DEM (LINZ, 2022) primarily derived from January 2012 LINZ Topo50 20m contours (LINZ, 

2022); Native Resolution: 8 m/pixel 

6 Fault Distance Continuous Euclidean distance (GDAL) from 14 surface ruptured faults from 2016 by Bloom et al. (2022a) 

7 Ground Motion Continuous PGA and PGV from USGS ShakeMap v4 (Worden et al., 2020); Native Resolution: 336 m/pixel 

8 
NDMI (Normalized 

Difference Moisture Index) 
Continuous 

Derived from October 2016 Landsat 8 Imagery (U.S. Geological Survey 2022): NDMI = (Band 5 – Band 6) 

/ (Band 5 + Band 6); Native Resolution: 30 m/pixel 

10 
OFD (Off Fault 

Deformation) 
Categorical  

OFD zone as defined for 14 faults by Bloom et al. (2022a) as polygons gridded to 8 m. Values of 1 indicate 

the presence of an OFD zone at the grid cell centre point. 

11 Slope Continuous Slope (GDAL) derived from LINZ 8 m DEM (LINZ, 2022) 

12 Structural Aspect Continuous 
Difference between aspect and dip direction of QMAP bedding measurements (Rattenbury et al., 2006; see 

Appendix A for additional detail) 

13 Geology (GeolCode) Categorical 

Simplified from 1:250k scale New Zealand QMAP (Rattenbury et al., 2006) Classes: 1. Quaternary Sands 

and Gravels, 2. Neogene Sediments, 3. L. Cretaceous–- Paleogene Sediments, 4. Volcanics, 5. Torlesse 

Greywacke (Pahau), 6. Landslide and Hillslope Deposits 

 215 

Similar to the landslide density analysis, the extent of features (Table 1) was limited to slopes greater than 15° and areas with 

PGA (defined by the USGS ShakeMap; Worden et al., 2020) greater than 0.2 g. Continuous landslide susceptibility features 

(Figure 3, Table 1) were scaled using the standard scalar method: 

𝑧 = 	 !"#
$

 ,           (1) 

where the standardised value (z) is the original value (𝑥) minus the mean (𝜇) of all values divided by the standard deviation 220 

(𝜎) of all values. Using the standard scalar allows us to compare model coefficients, or the weights assigned to each feature 

during model training, side-by-side. 
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3.4 Logistic Regression Modelling 

The predictive power of individual landslide susceptibility features during the Kaikōura earthquake was strongly modulated 

by geology type (Massey et al., 2018, 2020a; Singeisen et al., 2022). Separate coastal (0 to 1 km from the coast) and inland (1 225 

to 3 km from the coast) models were, therefore, trained in four simplified geology types (GeolCodes 1, 2, 3, and 5; Figure 3) 

using predictive features and the sci-kit learn python library (Table 1). GeolCode 4 (Volcanics) and GeolCode 6 (Mapped 

Hillslope Deposits) lacked sufficient data to support a robust model and were excluded from the analysis. Additional models 

were trained using the combined data from inland and coastal hillslopes and these results are included in Appendix B (Figures 

B1 and B2).  230 

 

Models were trained on 80% of gridded data leaving 20% of data for independent verification of the model performance 

(Figure 3). Across model training random 10-fold cross validation was used to evaluate model uncertainty. In K-fold cross 

validation, the training dataset is partitioned into K (in this case 10) parts (Hastie et al., 2017) and models are iteratively trained 

using all parts minus one. The remaining portion of data excluded from training in each iteration is used to validate model 235 

performance. An L1 regularization was used to penalize poor features and improve model prediction by simplifying the model 

(Lombardo and Mai, 2018). Using the L1 (also known as the Least Absolute Shrinkage Selection Operator or LASO; 

Tibshirani, 1996) allows the model to assign overly collinear or unsupportive features a coefficient of zero. The SAGA solver 

(Defazio et al., 2014), which supports L1 regularization, was used to weight coefficients. In all cases, models converged prior 

to a maximum 100 iterations. Based on hyperparameter tuning, a C (inverse of regularization strength) of 1 was applied to the 240 

models. The target datasets have a greater number of non-landslide source area (value of 0) grid cells than landslide (value of 

1) grid cells (Table A1). To limit overprediction, no attempt was made to balance or otherwise weight the datasets during 

model training. 

 

The intention of this work was not to systematically evaluate or compare model prediction. However, estimates of area under 245 

the receiver-operator characteristic curve were used to demonstrate the relatively high performance of all trained models. The 

receiver operator characteristic (ROC) curve (e.g., Fawcett 2006; Lombardo and Mai 2018) plots the true positive rate (TPR) 

against the false positive rate (FPR) at different probability thresholds. TPR, also known as ‘sensitivity,’ represents the ratio 

of positive predictions that were correctly classified as positive by the model, i.e. pixels modelled as failures that actually failed 

in 2016. FPR is calculated as (1 – specificity), where specificity is the true negative rate (TNR) or the ratio of negative model 250 

predictions that were correctly classified as negative. The shape of the ROC curve is used to evaluate the goodness of fit for a 

binary classifier – in this case, whether a grid cell represents a landslide source area or not (Y = 1 or Y = 0). The class prediction 

for each instance is determined based on the probability threshold. Area under the ROC curve (AUC) is calculated to quantify 

the shape of the curve in a single reportable value. Values of AUC close to 1 represent better model performance while values 

close to 0.5 represent near random results (Hosmer et al., 2013). As a final test to demonstrate the efficacy of the models, we 255 
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used the results of models trained on inland data to predict the coastal landslide distribution (Figure 3) and this is also reported 

based on AUC. 

 

Because model features were standardised using the standard scalar method, model coefficients can be directly compared for 

each predictive feature to estimate feature importance (Figure 3). Following the techniques of Lombardo and Mai (2018) and 260 

Williams et al. (2021), jackknife and single variable logistic regression model permutations were also trained for inland and 

coastal hillslopes in GeolCodes 1, 2, 3, and 5 to further assess feature importance (Figure 3). In the jackknife method, a single 

landslide susceptibility feature is iteratively removed during model training (Lombardo and Mai, 2018; Williams et al., 2021). 

Individual model results are then compared to evaluate the influence of removing each feature from the model. A more 

substantial drop in model AUC suggests higher importance for the removed feature. In the single variable method, models are 265 

iteratively trained on each susceptibility feature separately to determine individual feature importance. In these models, a 

higher model AUC suggests that the feature has a greater independent explanatory value. 

4 Results 

4.1 Distribution of Coastal Earthquake Induced Landslides 

Similar to the results of Massey et al. (2018), an order of magnitude greater earthquake induced landslide density was observed 270 

across coastal hillslopes as a result of the 2016 Kaikōura earthquake (Figure 4). Within 1 km of the coast, 1,621 landslides > 

50 m2 were observed on slopes greater than 15° with a mean PGA greater than 0.2 g. Given these filters, on average, coastal 

landslides were slightly larger than inland landslides (c. 870 m2 for coastal hillslopes and c. 780 m2 for inland hillslopes; Table 

B1). Removing landslide size and slope filters results in a slightly higher coastal landslide density. Source area density peaks 

at c. 7% between 0 and 100 m from the coastline and drops to c. 0.5% at 1000 m from the coastline (Figure 4). Between 1000 275 

m from the coastline and 3000 m from the coastline, landslide source area density remains generally consistent with an average 

density of c. 0.5% (Figure 4). 
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Figure 4: Overall landslide source area density (landslide density) within 24 m bins at increasing distance from the Kaikōura coast 
as defined by the LINZ Topo50 Coastline (LINZ, 2022). Landslide density within GeolCodes 1, 2, 3, and 5 are presented separately 280 
in the bottom plots. 

https://doi.org/10.5194/egusphere-2022-1320
Preprint. Discussion started: 3 January 2023
c© Author(s) 2023. CC BY 4.0 License.



13 
 

4.2 Distribution of Lithology 

Most landslides from the 2016 Kaikōura earthquake occur within Torlesse greywacke (GeolCode 5), younger sedimentary 

units (GeolCode 2 and 3), and unconsolidated Quaternary units (GeolCode 1) (Table 2). Less than 1% of landslides were 

observed within volcanic rocks (GeolCode 4) or mapped pre-existing failures and hillslope deposits (GeolCode 6, which are 285 

not systematically mapped). Regional landslide density does not mirror the distribution of lithology (Table 2) and landslide 

source areas disproportionately occur within Upper Cretaceous to Paleogene sediments (GeolCode 3) and, along the coast, 

within Lower Cretaceous Torlesse greywacke (GeolCode 5). The general landslide density trends are primarily driven by these 

two geology types. Within c. 100 m of the coast, landslide density is as high as c. 6% in both GeolCodes 3 and 5 (Figure 4). 

 290 
Table 2: Distribution of lithology and landslides  

GeolCode Geology 
Percent of Coastal 

Area (0 to 1 km) 

Percent of Coastal 

Landslides 

Coastal Landslide 

Density 

Percent of Inland 

Area (1 to 3 km) 

Percent of Inland 

Landslides 

Inland Landslide 

Density 

1 Quaternary 7.3% 9.0% 2.5% 3.8% 2.1% 0.3% 

2 Neogene 32.9% 20.1% 1.2% 21.2% 20.1% 0.5% 

3 Paleogene 16.8% 25.3% 3.1% 23.8% 39.6% 0.8% 

5 Torlesse 42.9% 45.6% 2.2% 51.2% 38.1% 0.4% 

4.3 Landslide Activity 

Of the mapped landslides from the 2016 Kaikōura earthquake, c. 13% within 1 km of the coast and c. 34% between 1 and 3 

km of the coast were first movements (Table 3). The remaining failures were a combination of reactivation of relict landslides, 

including retrogression of pre-existing landslide head scarps and reactivation of landslide debris. Within Torlesse greywacke 295 

(GeolCode 5), c. 49% of inland landslides were first movements as compared to c. 17% of coastal failures (Table 3). 

 
Table 3: Earthquake induced landslide activity 

Coast (0 to 1 km) 

GeolCode Geology First Movement Reactivated Retrogressive Movement Reactivated Moving Rock Reactivated Moving Debris 

1 Quaternary 12% 43% 3% 42% 

2 Neogene 8% 54% 4% 35% 

3 Paleogene 13% 33% 4% 50% 

4 Volcanics 0% 0% 0% 0% 

5 Torlesse 17% 28% 4% 51% 

6 
Relict Landslides 

(QMAP) 
0% 39% 1% 60% 

All All 13% 38% 4% 45% 

Inland (1 to 3 km) 
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1 Quaternary 28% 39% 3% 30% 

2 Neogene 21% 53% 4% 23% 

3 Paleogene 24% 40% 4% 32% 

4 Volcanics 31% 46% 8% 15% 

5 Torlesse 49% 19% 2% 29% 

6 
Relict Landslides 

(QMAP) 
28% 40% 4% 28% 

All All 34% 38% 3% 25% 

 

4.4 Coastal vs. Inland Earthquake Induced Landslide Susceptibility Models 300 

AUC of cross-validated coastal models is generally consistent with similar studies (e.g., Reichenbach et al., 2018; Williams et 

al., 2021) and ranges from c. 0.79 in coastal Neogene sediments (GeolCode 2) to c. 0.92 in coastal Quaternary sediments 

(GeolCode 1) with generally low variability across 10 cross-validations (Figure 5). Additionally, all model AUCs were within 

the range of cross-validations when independently testing model performance using 20% of data withheld from model training 

(Figure 5). 305 

 
Figure 5: Logistic regression model performance from models trained on each geology type (GeolCode) in coastal (left) and inland 
(right) hillslopes. Model performance is measured by area under the receiver operator characteristic curve (AUC). Each boxplot 
shows the results of 10-fold cross validation using 80% of the available target dataset. Yellow stars represent model performance 
when applied to the 20% of data withheld from training. Red stars in the Coast results represent the performance of the inland 310 
model when applied to the coast dataset. The red star with an arrow pointing down in Coast GeolCode 1 represents an AUC beyond 
the extent of the plot at 0.64. 

 

The results of inland model training (Figure 5) were used to predict the coastal landslide distribution. Models trained on inland 

landslides and applied to coastal hillslopes generally produced the same or lower AUC values than models trained on coastal 315 
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hillslopes (Figure 5). There was an c. 0.20 drop in AUC in GeolCode 1, a c. 0.03 drop in GeolCode 3, and almost no drop in 

GeolCodes 2 and 5 (Figure 5). 

 

Below, we compare and contrast model coefficients alongside the results of jackknife and single variable models for each 

geology type (Figure 6 and 7) to further examine the relative importance of the predictive features. 320 

 
Figure 6: Model coefficients for models trained on each GeolCode. Points with associated error bars represent the mean and 
standard deviation (SD) of the coefficient across 10-cross validations. Colour bars indicate which feature the point is associated with 
and the model data used to train the model (either coast or inland). In cases where no error bar is present, the standard deviation is 
less than 0.1. Negative coefficients result in a higher weight for small values while positive coefficients result in a higher weight for 325 
high values. For example, a negative coefficient for fault distance suggests that there is a higher landslide susceptibility closer to 
faults while a positive coefficient for slope suggests that a greater slope angle has higher landslide susceptibility. All features are 
standardised prior to model training allowing for the direct comparison of coefficients within the same model. 
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 330 

Figure 7: Results of jackknife (left) and single variable (right) logistic regression models. Model performance is measured by area 
under the receiver operator characteristic curve (AUC). The box plot for each model shows the results of a random 10-fold cross 
validation. In jackknife models, a single model feature is iteratively removed from model training and a bigger drop in AUC 
represents higher feature importance. In single variable models, a separate model is trained using each feature and higher AUC 
represents higher explanatory value. AUC close to 0.5 represents near random results while AUC near 1 represents near perfect 335 
results (Hosmer et al., 2013). 

4.4.1 GeolCode 1- Quaternary 

For inland (1 to 3 km from the coast) unconsolidated Quaternary units (GeolCode 1), distance to fault and slope features had 

the highest model coefficients (Figure 6). For coastal hillslopes (0 to 1 km from the coast), a low model coefficient was 

observed for the NDMI (soil moisture) feature suggesting an inverse relationship where lower values of the soil moisture proxy 340 

predict higher landslide susceptibility. An c. 0.04 drop in AUC was observed for coastal jackknife models trained without the 
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NDMI predictor (Figure 7). In single variable models, NDMI alone produced an AUC of c. 0.79 +/- 0.03 (+/- 1 σ) in coastal 

hillslopes, c. 0.07 higher than the slope-only model which yielded the next highest AUC. In jackknife models of inland 

hillslopes, there was not a substantial drop in AUC for any model iteration and in single variable models of inland hillslopes, 

a number of features produced high model performance (Fault distance an AUC of c. 0.88 +/- 0.04, ShakeMap PGV an AUC 345 

of c. 0.79 +/- 0.03 and slope an AUC of c. 0.74 +/- 0.11; Figure 7). 

4.4.2 GeolCode 2 - Neogene 

In Neogene sediments (GeolCode 2), a similar distribution of coefficients for inland and coastal hillslopes were observed with 

the highest model coefficients for the slope feature (Figure 6). Additionally, negative coefficients for NDMI were observed in 

both inland and coastal hillslopes. While observations of model coefficients were largely supported by jackknife models in 350 

both inland and coastal hillslopes, the most substantial drop in AUC (c. 0.05) was seen with the exclusion of the coastal slope 

feature (Figure 7). Single variable models showed an AUC of c. 0.72 +/- 0.02 for coastal slope and c. 0.75 +/- 0.03 for inland 

slope features (Figure 7). 

4.4.3 GeolCode 3 - Paleogene 

In Paleogene sediments (GeolCode 3) a similar distribution of coefficients was again observed in inland and coastal hillslopes 355 

with the highest model coefficients for the slope and distance to fault features (Figure 6). A strong negative coefficient was 

also observed for mean PGA in inland hillslopes. In jackknife models there was an c. 0.13 drop in both coastal and inland 

model AUC with the removal of the slope feature and an c. 0.03 drop in coastal model AUC with the removal of the fault 

distance feature (Figure 7). In single variable models, slope showed the best model performance with an inland model AUC 

of c. 0.77 +/- 0.03 and a coastal model AUC of c. 0.81 +/- 0.03 (Figure 7). 360 

4.4.4 GeolCode 5 - Lower Cretaceous 

In Lower Cretaceous Torlesse greywacke (GeolCode 5) high model coefficients were observed for the slope and mean PGA 

features though these are strongly outweighed by the fault distance feature in inland hillslopes (Figure 6). An c. 0.09 drop in 

coastal model AUC and a c. 0.13 drop in inland model AUC was observed with the removal of the slope feature in jackknife 

models (Figure 7). Interestingly, only an c. 0.01 drop in inland model AUC was observed with the removal of the fault distance 365 

feature despite a high model coefficient. As a single feature, slope had the highest AUC in both inland (0.85 +/- 0.2) and coastal 

(0.82 +/- 0.02) models (Figure 6) while PGA had an AUC of c. 0.72 +/- 0.02. 
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5 Discussion 

5.1 Logistic Regression Models 

Despite an order of magnitude higher landslide density observed within 1 km of the Kaikōura coast (Figure 4), few significant 370 

differences were observed between modelled coefficients in inland and coastal landslide susceptibility models. Additional 

models trained on both coastal and inland data yielded similar model coefficients (Figure B2). Models trained on data from 1 

to 3 km inland and applied to coastal hillslopes from 0 to 1 km were still highly predictive and only resulted in a 0.03 or less 

drop in AUC as compared to models trained and tested on coastal hillslopes in GeolCodes 2, 3, and 5 (Figure 5). These three 

geology types account for greater than 90% of coastal landslide density (Table 2).  375 

 

The larger variation in model performance (c. 0.20) between inland and coastal models of GeolCode 1 could represent a true 

difference between inland and coastal landslide susceptibility. Inland GeolCode 1, however, accounts for less than 4% of total 

inland area and c. 2% of inland landslides (Table 2). Given a slightly larger spread in AUC (Figure 5 and 7) and model 

coefficients (Figure 6) across 10 cross-validations, it is also possible that there is simply not enough data to train an effective 380 

model in inland GeolCode 1. 

 

Some minor differences in model coefficients were observed, in particular the higher importance of fault distance in coastal 

GeolCode 3 and inland GeolCode 5, but these do little to explain the overall landslide density trend. Despite a high model 

coefficient for fault distance in inland GeolCode 5, these was only an c. 0.01 drop in AUC in jackknife models suggesting a 385 

potentially high correlation with other predictive features (likely PGA; Figure A2). Across jackknife and single variable 

models, slope and, in the case of GeolCode 5, PGA appear to be much stronger and more effective features than fault distance 

for predicting the regional landslide distribution within both inland and coastal hillslopes of the Kaikōura region. 

5.2 Factors controlling increased coastal landslide density 

Modelling of landslide susceptibility successfully captures the coastal distribution of landslides from the Kaikōura earthquake 390 

but does not provide a clear explanation for the order of magnitude difference in inland and coastal landslide density. To better 

explain this occurrence, the distribution of several of the most important landslide susceptibility features from the modelling 

were further examined (Figure 8; additional features are discussed in Appendix B). 
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Figure 8: Landslide density for each GeolCode (black line) within 24 m bins at increasing distance from the Kaikōura coast plotted 395 
alongside the distribution of standardised predictive features (orange, green, and red lines) and landslide (LS) susceptibility (blue 
line) based on a logistic regression model trained on inland data from 1 to 3 km. Standardised features and landslide susceptibility 
are presented as the mean of values within 24 m bins with distance from the coast. 
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Slope – Massey et al. (2018) noted a lower overall distribution of slope near the coast in the Kaikōura region. When slopes 400 

below 15° are excluded, however, there is a steep rise in slope within c. 500 m of the coastline (Figure 8) that correlates well 

with the distribution of landslide density across geology types (Figure 4 and 6). Model coefficients and jackknife models 

(Figure 6 and 7) suggest that slope is one of the most important features determining the distribution of landslides from the 

Kaikōura earthquake. As such, it is likely that the higher density of landslides observed along the Kaikōura coast is, to a large 

extent, a product of this feature. 405 

 

Strong Ground Motion (Mean PGA and Distance to Fault) – Across geology types a decrease in ground motion and increase 

in fault distance is observed at c. 500 m from the coast. This is particularly evident in GeolCode 5 (Figure 8) and does little to 

explain the observed landslide density trends. It is important to note, however, that there is a large concentration of landslides 

on the northern Kaikōura coast where modelled ground motion is high and model coefficients suggest that, particularly for 410 

GeolCode 5, high modelled PGA is a good predictor of coastal landslide density (Figure 6). The steep decrease in modelled 

PGA/PGV observed near the coast (Figure 8) could be a result of increasing distance from the seismic source south of 

Kaikōura. Here, coastal landslides concentrate within weaker actively eroded lithologies that fail at lower ground motions 

(Bloom et al., 2022b). 

 415 

Topographic and site amplification of seismic waves (e.g., Ashford et al., 1997) likely contributed to local variability in strong 

ground motion intensity within individual coastal and inland hillslopes during the Kaikōura earthquake. Ground motion 

variability is known to influence landslide susceptibility (e.g., Massey et al., 2022) but remains challenging to estimate on a 

regional scale. Outside of applying regional ground motion intensity estimates (PGA/PGV from the USGS ShakeMap), this 

analysis does not investigate the role of site-specific ground motion. Given the coarse native resolution of PGA/PGV estimates 420 

from the USGS ShakeMap (336 m/pixel; Worden et al., 2020), uncharacterised ground motion variability may have an 

influence on the distribution of landslides from the 2016 Kaikōura earthquake. 

 

Lithology and Geologic Structure (Geology and Structural Aspect) – A similar distribution of lithology was observed in both 

inland and coastal hillslopes (Table 2), and it is assumed that, over short distances, geology has a relatively consistent influence 425 

on landslide susceptibility. As a result, while geology appears to strongly modulate landslide density, it does not readily explain 

the increase in coastal landslide density from the 2016 Kaikōura earthquake. Likewise, the correlation between lithologic 

bedding and topographic aspect does not strongly define coastal landslide susceptibility on the Kaikōura coast. There is some 

correlation between bedding and aspect within GeolCode 3 along the coast north of the Clarence River mouth (Figure 1) and 

in coastal GeolCode 5 where landslide densities are higher. However, hillslopes within the heavily deformed GeolCode 5 may 430 

be susceptible to failure regardless of the presence of persistent structural discontinuity. In the heavily jointed rock mass, debris 

and rock avalanches, the dominant failure mechanism along the Kaikōura coast, can develop along cm- to m-scale 
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discontinuities (Singeisen et al., 2022) that are not captured by the estimation of larger scale bedding. Furthermore, field 

investigations along the Kaikōura coast (e.g., Stringer et al., 2021) have shown that many failures from the 2016 earthquake, 

particularly in mapped GeolCode 5, occurred as reactivations of pre-existing landslide debris or within Quaternary hillslope 435 

deposits that were unlikely to be strongly influenced by bedding orientation. While QMAP (Rattenbury et al., 2006) provides 

the highest resolution mapping currently available at the required extent for this regional analysis, the mapping resolution is 

not high enough to sufficiently resolve these materials regionally. 

 

Fault Zones (Distance to Fault and OFD) – Bloom et al. (2022a) observed a higher incidence of landslides within the fault 440 

zone of ruptured faults from the 2016 Kaikōura earthquake. While there is a slightly higher density of landslides within the 

OFD zone, there is a lower proportion of OFD area along the Kaikōura coastline as compared to inland hillslopes. 

Approximately 0.6% of coastal area occurs within the OFD zone of surface fault rupture from the 2016 Kaikōura earthquake 

while c. 2.5% of inland hillslopes occur within a mapped OFD zone. Landslide source areas that occur within the OFD zone, 

account for c. 19% of landslide source area in inland hillslopes but only c. 1% of landslide source area along the coast. 445 

 

OFD may partially explain the distribution of landslide source areas in inland hillslopes but does little to explain widespread 

coastal failures or an order of magnitude greater number of coastal landslides. This being said, there is still some ambiguity as 

to the influence of rock mass deformation from fault zones along the coast that did not rupture significantly in 2016; for 

example, the Hope fault which extends just offshore in parallel to much of the north Kaikōura coast. A history of strong ground 450 

motion and fault deformation has been shown to progressively decrease rock mass strength and increase landslide susceptibility 

over multiple earthquakes (Parker et al., 2015; Gischig et al., 2016; Bloom et al., 2022a; Massey et al., 2022). This may result 

in an increased landslide susceptibility due to amplification of strong ground motion and decreased rock mass strength. While 

it is possible that damaged rock within the fault zone of the Hope fault results in a higher landslide density in the north Kaikōura 

coast, there is also an increase in landslide susceptibility along the coast south of Kaikōura, where faults like the Hundalee are 455 

present further offshore (Figure 1). This suggests that the relatively continuous zone of increased coastal landslide density is 

not solely influenced by fault zones on the Kaikōura coast.   

 

Anthropogenic modification of slopes (Cutslopes) – Uplifted shore platforms and marine terraces both north and south of 

Kaikōura have been anthropogenically modified by cut and fill slopes to support road and rail infrastructure. Most fill slope 460 

failures are too small and are not steep enough to be resolved in this analysis (which considers failures greater than 50 m2 and 

slopes steeper than 15°). Cutslopes only account for c. 1% of hillslopes along the Kaikōura coastline. Approximately 4% of 

coastal landslides (63 of 1,621) were found to be in contact with a cutslope near the coast. Even if we consider all failures 

associated with cutslopes to be a direct result of hillslope modification, this cannot fully explain the higher density of coastal 

landslides well beyond anthropogenic influence. 465 
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Precipitation, soil moisture, and enhanced weathering (NDMI) – NDMI, a proxy for soil moisture, is very slightly higher 

within coastal hillslopes, particularly in Torlesse greywacke (GeolCode 5), which could indicate increased moisture along the 

Kaikōura coast one month prior to the earthquake (Figure 7). A high variability in average rainfall observations (NIWA, 2022), 

however, makes it difficult to expand this observation out to longer timescales. For instance, it might be expected that increased 470 

moisture on the coast would increase chemical weathering rates leading to a reduction in rock mass strength.  On a single-

event or seasonal timescale, increased NDMI might be a proxy for increased pore water pressure along the Kaikōura coast; 

however, models suggest that higher NDMI, itself, does not fully explain the distribution of earthquake induced landslides. In 

Quaternary and Neogene units, and to a lesser extent Paleogene units, lower NDMI is actually a better predictor of landslide 

occurrence (Figure 6). NDMI is strongly correlated with vegetation greenness (Table A2) and less vegetation may help to 475 

explain some shallow failures. In Lower Cretaceous Torlesse greywacke, NDMI is a comparatively weak predictor of 

earthquake induced landslides in both inland and coastal hillslopes. 

5.3 Steep Slopes along the Kaikōura Coast 

Based on the distribution of landslide susceptibility features and statistical analysis, the slope feature provides much of the 

explanation for increased landslide density along the Kaikōura coastline (Figure 8). Results indicate that average slope (greater 480 

than 15°) is slightly (c. 1°) steeper on the coast as compared to inland (Figure B3). While this difference seems small, 

normalised slope within each GeolCode (Figure 8) reveals substantially steeper slopes within c. 250 to 500 m of the coast 

particularly within GeolCodes 2, 3, and 5. In many regions, oversteepening results from a combination of uplift and wave 

action that actively undercuts coastal cliffs (Emery and Kuhn, 1982). In the Kaikōura region, however, most steep coastal 

slopes, with the exception of those at Conway Flat (Bloom et al., 2022b), are currently isolated from direct wave action by 485 

recent uplift which forms shore platforms. Ages of these uplifted platforms (Howell and Clark, 2022) suggest that this isolation 

has lasted for several hundred years at the least. Only 16 landslides outside of Conway Flat (c. 1% of landslides) have a direct 

connection with the ocean. As a result, while rapid uplift of the Kaikōura coast (Ota et al., 1996) contributes to steeper slopes, 

the contributions of wave erosion to long-term coastal evolution remain somewhat less clear.  

 490 

During the Kaikōura earthquake, most coastal landslides in GeolCode 5 (c. 83%) occurred partially to wholly within areas 

affected by past landslides (Table 3), often as reactivations (retrogression) of their head scarps (Figure 2). Similar trends are 

observed for the distribution of landslides within younger sedimentary units (Table 3). These findings are in line with field 

observations along the Kaikōura coast following the 2016 earthquake (e.g., Mason et al., 2017; Stringer et al., 2021). 

 495 

Relict landslides are a common observation in the hillslopes above uplifted shore platforms along the Kaikōura coast, 

particularly within Torlesse greywacke (GeolCode 5; Figure 2). These relict landslides have left steep, potentially destabilised, 

headscarps and, in some cases, debris within the body of failures (Stringer et al., 2021). The provenance and timing of these 
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relict failures is largely unclear but a general lack of deposited material at the base of the hillslopes (Figure 2) suggests that 

they may have developed while in contact with an active erosional source, such as rivers or the ocean (Figure 9; Crozier, 2010). 500 

 

It is possible that uplift is currently out competing active erosion along the Kaikōura coastline resulting in abandoned steep 

hillslopes (Figure 9). Hillslope oversteepening can linger following the removal of an active erosional source and increased 

landslide susceptibility may remain until hillslopes reach a state of equilibrium with the surrounding landscape (Figure 9; 

Crozier, 2010). With coastal uplift rates of c. 2 to 0.5 mm/year (Ota et al., 1996), this could represent up to thousands of years 505 

of increased landslide susceptibility. Without an active erosional source, earthquakes and large rainfall events may 

disproportionately contribute to the evolution of these coastal hillslopes (Figure 9). Further investigation would be necessary 

to determine the relative contribution of these processes. 

 
Figure 9: Conceptual model for the evolution of slope stability along the Kaikōura coast. Hillslopes are oversteepened by active 510 
erosion and debris is cleared from shore platforms by wave action. Following uplift, hillslopes are anthropogenically modified and 
earthquakes result in failures within the scars of relict landslides. Terrestrial erosion from earthquakes and rainfall work to bring 
the oversteepened hillslope back into equilibrium with the surrounding landscape (Crozier, 2010). 

5.4 Implications for earthquake induced landslide susceptibility in coastal settings 

Most earthquake induced landslide susceptibility models already rely heavily on geology, strong ground motion, and slope as 515 

predictive features. As such, the findings here support the efficacy of using regionally trained models to characterise earthquake 

induced landslide susceptibility on the Kaikōura coast. In other regions, a ‘near coast’ categorical feature (Figure B1 and B2) 
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may be a reasonable proxy for other underlying coastal influences. The extent to which such a feature improves larger scale 

regional models, however, is subject to additional study.  

 520 

Findings here may be applied to rocky coastlines elsewhere but consideration should be made for other potentially important 

site-specific conditions that may or may not be incorporated in this investigation. Of particular note, Parker et al. (2015) 

identified the accumulation of rock mass deformation over multiple earthquakes as a source of landscape preconditioning that 

results in higher susceptibility to future landslides. Similarly, the scars of relict landslides that occur within the steep hillslopes 

of the Kaikōura coastline suggest past susceptibility to failure and a potential accumulation of deformation that is largely 525 

unresolved by this analysis (and likely by most regional studies).  

 

Previous investigations (e.g., Marc et al., 2015, 2019; Massey et al., 2022) suggest that increased landslide susceptibility decays 

to background levels within several years of an earthquake. It may be possible, however, that the factors discussed in this 

study, including oversteepened hillslopes, fault deformation, coastal weathering, and repeated earthquake shaking, contribute 530 

to an accumulation of stress within the hillslope and, in turn, longer term susceptibility to extreme event failure (Parker et al., 

2015). Currently, the detailed rock mass characterisation required to fully investigate the influence of rock mass strength 

remains largely confined to the site-specific scale. Our understanding of landslide susceptibility along the Kaikōura coast, 

however, would likely benefit from future studies that attempt to decouple the influence of steep slopes from rock mass 

deformation on a regional scale. 535 

 

As a final note, since the 2016 Kaikōura earthquake, the coastal road and rail corridors north and south of Kaikōura have been 

fully re-established. In some cases, realignments have been made to address ongoing rockfall and other slope stability concerns 

(NZTA, 2021). In most cases, however, the road and rail lines have been cleared, repaired, and reopened in their original 

alignments (as in panel 5 of Figure 9). Estimates of long-term network resilience were developed shortly after the Kaikōura 540 

earthquake and, in part, rely on quantified landslide hazard assessment (Justice et al., 2021). This hazard assessment adopts 

the established assumption that strong ground motion intensity plays a large role in governing the volume of coseismic 

landslide debris along the Kaikōura coast (Massey et al., 2019). While our study does not directly address quantified hazard, 

the results suggest that the distribution of slope angle is generally steeper on the Kaikōura coast compared to inland hillslopes. 

These steeper slopes resulted in a high density of coastal landslides during the 2016 Kaikōura earthquake. In future 545 

earthquakes, increased coastal landslide susceptibility – the result of steeper slopes along the coast – will expose coastal 

hillslopes to more landslides than inland hillslopes given the same level of ground motion intensity. The ongoing likelihood 

of aftershocks and strong ground motion in the Kaikōura region will test the efficacy of mitigation measures installed to reduce 

risk to people and infrastructure along the coast. 
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6 Conclusions 550 

Distance to the Kaikōura coastline has a substantial influence on the distribution of landslides from the 2016 Kaikōura 

earthquake. An order of magnitude greater landslide density was observed within 500 m of the coastline (as high as c. 6 %) as 

compared to 1000 to 3000 m (c. 0.5%). Comparative logistic regression modelling suggests that the same factors, primarily 

geology, strong ground motion, and slope, define the distribution of landslides in both coastal (within 1 km of the coast) and 

inland hillslopes (1 to 3 km from the coast). Regional earthquake induced landslide susceptibility models that rely on geology, 555 

strong ground motion, and slope as strong predictive features are therefore, likely to account for this increased coastal landslide 

susceptibility in the Kaikōura region without separate treatment. Along the Kaikōura coastline, hillslopes are generally steeper 

than those inland, when comparing slopes angles within similar materials. Results suggest that slope angle provides the most 

explanatory power, and the simplest explanation, for increased coseismic landslide density at the coast. On the Kaikōura coast, 

most hillslopes are currently buffered from wave action by rapidly uplifted shore platforms; coastal hillslopes host a high 560 

density of relict landslides that may have resulted from relatively recent (<1,000 years) coastal erosion. Relict landslides and 

proportionally steeper hillslopes may maintain a higher coastal landslide susceptibility as a legacy effect within hillslopes out 

of equilibrium with the surrounding landscape, which may persist for up to 1,000s of years. 

Appendix A – Additional Methods and Data 

Minimum Landslide Size 565 

Prior to the 2016 Kaikōura earthquake, lidar was available for areas in close proximity (< 1 km) to the Kaikōura coastline. 

This pre-earthquake lidar coverage likely allowed for more detailed comparison with post-earthquake data. In order to limit 

any potential bias resulting from differences in the quality of landslide mapping on the Kaikōura coastline in this comparative 

analysis, we evaluate the size area distribution of earthquake induced landslides mapped by Massey et al. (2020a) in proximity 

to the Kaikōura coast (Figure A1) using the methods of Malamud et al. (2004). We observed a slightly higher distribution of 570 

small failures along the Kaikōura coast with the distribution of failures diverging around 50 m2. While this may represent a 

real difference in landslide size along the coast, We chose to exclude failures smaller than 50 m2 from the analysis. Because 

of the small size of failures, this exclusion is unlikely to strongly influence the final results. 
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Figure A1: Size area distribution of landslides (Malamud et al., 2004) from the Kaikōura earthquake induced landslide inventory 575 
(Massey et al., 2020a) within 0 to 1 km (Coast) and 1 to 3 km (Inland) of the coastline. The distributions diverge from one another 
around 50 m2 and we use this as the minimum landslide size threshold. 

Gridded Landslide Data 

Landslide polygons from the inventory of Massey et al. (2020a) were gridded to the 8 m resolution of the digital elevation 

model (LINZ, 2022) used to derive topographic landslide susceptibility features. Table 2 shows the percentage of landslide 580 

source area in each GeolCode. Table A1 shows the raw number of landslide (1) and non-landslide (0) grid cells used in the 

analysis. 

 
Table A1: Landslide (LS) density by GeolCode in all, coast, and inland hillslopes with number of 1 and 0 landslide grid cells. 

A
ll 

 GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total 

0 165176 841438 740592 1668137 3415343 

1 2091 6527 9942 13898 32458 

Total 167267 847965 750534 1682035 3447801 

LS Density 1.25% 0.77% 1.32% 0.83% 0.94% 

C
oa

st
 

 GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total 

0 71377 324791 162780 419017 977965 

1 1838 4106 5180 9315 20439 

Total 73215 328897 167960 428332 998404 
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 585 

Landslide Susceptibility Features 

We initially evaluated 25 common predictive features for this analysis (Figure A2). Of the 25 features we narrowed the choice 

of features using only those features with a variable inflation factor (VIF) score of 10 or less (Table A2). In comparative model 

training, the best model performance was achieved when using the USGS ShakeMap PGA (Worden et al., 2020) for models 

of GeolCode 5 and the USGS ShakeMap PGV for all other GeolCodes. 590 

 
Table A2: Variable Inflation Factor for features used in this analysis. PGA from the USGS ShakeMap (Worden et al., 2020) is used 
for GeolCode 5 and PGV from the same model for all other GeolCodes. 

Feature VIF–- PGV VIF–- PGA 

Curvature 1.02 1.02 

Cutslopes 1.00 1.00 

Eastness 1.08 1.08 

Elevation 3.22 3.22 

Fault Distance 1.84 1.86 

NDMI 3.63 3.65 

Northness 1.19 1.19 

OFD 1.05 1.05 

Slope 9.86 9.38 

Structural Aspect 3.51 3.48 

USGS ShakeMap 6.67 6.05 

 

LS Density 2.51% 1.25% 3.08% 2.17% 2.05% 

In
la

nd
 

 GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total 

0 93799 516647 577812 1249120 2437378 

1 253 2421 4762 4583 12019 

Total 94052 519068 582574 1253703 2449397 

LS Density 0.27% 0.47% 0.82% 0.37% 0.49% 
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 595 
Figure A2: Pearson R2 correlation for common predictive features considered in this analysis. Red features were not included in the 
final modeling analysis. 
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Deriving the Structural Aspect Feature 

To derive a correlation between the dip direction of bedding and topographic aspect, we interpolated structural 600 

bedding measurements from the New Zealand QMAP (Rattenbury et al., 2006). We corrected for the 360° direction of dip 

using the Sin and Cos of dip direction and used the inverse distance weighted (IDW) interpolation method in ArcGIS to 

produce a continuous estimate of dip direction in each geology type (GeolCode). By subtracting interpolated dip direction 

from topographic aspect, we get values from -360 to 360° where a value close to -360°, 0°, or 360° represents a close correlation 

between dip direction of bedding and topographic aspect. To make a continuous range for this analysis, we take the absolute 605 

value of the difference (0 to 360), subtract 180 (-180 to 180), and take the absolute value again to arrive at 0 to 180 where 180 

represents a high correlation between dip direction and topographic aspect and 0 represents a low correlation. 

Appendix B – Additional Results 

Full Model 

In addition to comparative models of inland and coastal hillslopes, two models were trained using 80% of both inland and 610 

coastal data. The first model matches the inland and coastal models included in the main text. The second model includes an 

additional binary coast feature where inland hillslopes are assigned a value of 0 and coastal hillslopes a value of 1. Both models 

performed well and were predictive of both inland and coastal landslides in the remaining 20% of data used for testing (Figure 

B1). Model coefficients from the full model were generally similar to inland and coastal models (Figure B2). 

 615 
Figure B1: Logistic regression model performance from models trained on each geology type (GeolCode) in both coastal and inland 
hillslopes. The model on the left includes a binary coast feature where grid cells within 1 km of the coast are assigned a value of 1 
and grid cells within 1 to 3 km of the coast are assigned a value of 0. Model performance is measured by Area Under the Receiver 
Operator Characteristic Curve (AUC). Each boxplot shows the results of 10-fold cross validation using 80% of the available target 
dataset. Yellow stars represent model performance when applied to the 20% of data withheld from training. 620 
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Figure B2: Model coefficients for models trained on each GeolCode. Points with associated error bars represent the mean and 
standard deviation (SD) of the coefficient across 10-cross validations. Colour bars indicate which feature the point is associated with 
and the model data used to train the model.  In cases where no error bar is present, the standard deviation is less than 0.1. Negative 
coefficients result in a higher weight for small values while positive coefficients result in a higher weight for high values. For example, 625 
a negative coefficient for fault distance suggests that there is a higher landslide susceptibility closer to faults while a positive 
coefficient for slope suggests that a greater slope angle has higher landslide susceptibility. All features are standardised prior to 
model training allowing for the direct comparison of coefficients within the same model. 
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Coast vs Inland Features and Landslides 

In addition to the analysis presented in the main text we also examined the distribution of predictive features within inland and 630 

coastal slopes greater than 15° (Figure B3).  

 
Figure B3: Distribution of predictive features in all Kaikōura inland and coastal slopes greater than 15°. Inland slopes are 
represented by orange lines and coastal slopes are represented by blue lines. 

 635 

We supplement this analysis by examining the distribution of predictive features within landslide source areas in inland and 

coastal slopes greater than 15° (Figure B4). 
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Figure B4: Distribution of predictive features within Kaikōura earthquake induced landslide source areas on inland and coastal 640 
slopes greater than 15°. Inland slopes are represented by orange lines and coastal slopes are represented by blue lines. 

 

On average, coastal landslides (within 1 km of the coast) are c. 10% larger than inland landslides (between 1 and 3 km from 

the coast) on slopes > 15° with PGA > 0.2 g (when excluding the Seafront landslide and landslides smaller than 50 m2; Table 

B1). Given the same filters, there are c. 30% more landslides in coastal hillslopes (Table B1) which make up c. 1/3 of the total 645 

study area. 

 

Table B1: Mean landslide area in inland and coastal hillslopes where slopes > 15°, PGA > 0.2g. Inland estimates exclude the Seafront 
landslide. 

Slopes > 15°  Landslide Count Mean Area (m2) Standard Deviation (m2) 

Inland (1 to 3 km) 1099 783 2279 

Coast (0 to 1 km) 1621 866 2517 

 650 
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Additional Observations 

Curvature – Curvature was well distributed and few differences between inland and coastal hillslopes were observed (Figure 

B3 and B4). 

 

Aspect (Northness and Eastness) – Ridgelines and valleys generally trend north-east to south-west in the Kaikōura region 655 

(Figure B3) and landslide source areas on both inland and coastal hillslopes occur disproportionately on south to south-east 

facing hillslopes (Figure B4). Within 1 km of the coastline, a larger proportion of south-east facing hillslopes were observed 

that generally correlated well with landslide density trends across geology types. 

 

Elevation – A steady rise in elevation is observed with distance from the Kaikōura coastline. This rise in elevation, however, 660 

does not appear to directly correlate with the landslide density trend that is observed with distance from the coastline. 

 

Landslide Susceptibility Map 

The models in this study were trained on 80% of available data. In order to make a landslide susceptibility map for this area 

we have to partially apply the model to data on which it was trained. It should be noted that this significantly limits the 665 

applicability of such a map. Figure B5 presents an example of an inland trained landslide susceptibility model in GeolCode 5 

applied to both coastal and inland hillslopes. While this model is applied to trained data in inland slopes, coastal data is unseen. 

In general, the inland trained model captures the extent of coastal landslide susceptibility. 
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Figure B5: Results of an inland (1 to 3 km from the coast) trained landslide susceptibility model applied to both inland and coastal 670 
hillslopes. The base image is a hillshade of post-earthquake lidar (Massey et al., 2020b) with actual earthquake induced landslides 
mapped by Massey et al. (2020a). The location is coincident with Figure 2 (location identified in Figure 1). 
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