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Abstract. Coastal hillslopes often host higher concentrations of earthquake induced landslides than those further inland, but 

few studies have investigated the reasons for this occurrence. As a result, it is unclear if regional earthquake induced landslide 10 

susceptibility models trained primarily on inland hillslopes are effective predictors of coastal susceptibility. The 2016 Mw 7.8 

Kaikōura earthquake on the northeast South Island of New Zealand resulted in c. 1,600 landslides > 50 m2 on slopes > 15° 

within 1 km of the coast, contributing to an order of magnitude greater landslide source area density than inland hillslopes 

within 1 to 3 km of the coast. In this study, logistic regression modelling is used to investigate how landslide susceptibility 

differs between coastal and inland hillslopes and determine the factors that drive the distribution of coastal landslides initiated 15 

by the 2016 Kaikōura earthquake. Strong model performance (Area under the Receiver Operator Characteristic Curve or AUC 

of c. 0.80 to 0.92) was observed across eight models, which adopt four simplified geology types. The same landslide 

susceptibility factors, primarily geology, steep slopes, and ground motion are strong model predictors for both inland and 

coastal landslide susceptibility in the Kaikōura region. In three geology types (which account for more than 90% of landslides 

source areas) a 0.03 or less drop in model AUC is observed when predicting coastal landslides using inland trained models. 20 

This suggests little difference between the features driving inland and coastal landslide susceptibility in the Kaikōura region. 

Geology is similarly distributed between inland and coastal hillslopes and PGA is generally lower in coastal hillslopes. Slope 

angle, however, is significantly higher in coastal hillslopes and provides the best explanation for the high density of coastal 

landslides during the 2016 Kaikōura earthquake. Existing regional earthquake induced landslide susceptibility models trained 

on inland hillslopes using common predictive features are likely to capture this signal absent additional predictive variables. 25 

Interestingly, in the Kaikōura region, most coastal hillslopes are isolated from the ocean by uplifted shore platforms. Enhanced 

coastal landslide susceptibility from this event appears to be a legacy effect of past erosion from wave action, which 

preferentially steepened these coastal hillslopes. 
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1 Introduction 

Steep rocky coastlines, which account for c. 80% of waterfront around the globe (Emery and Kuhn, 1982), are a naturally 

desirable location to live and recreate. A growing global population has resulted in human encroachment on coastlines with 

nearly one quarter of the human population now living in close proximity to the coast (Small and Nichols 2003). At the same 

time, global climate change and rising sea levels threaten to increase the rate of coastal landsliding and cliff retreat, in part, 40 

due to wave action overtopping protective beaches and impacting coastal cliff faces more frequently (e.g., Young et al., 2014; 

Limber et al., 2018). The increasing frequency and intensity of these events will impact people and infrastructure near coastal 

hillslopes (e.g., Jibson, 2006; Dellow et al., 2017; Handwerger et al., 2019). 

 

To help mitigate and manage these hazards, previous studies have attempted to define landslide susceptibility models for steep 45 

coastal regions using a physical understanding of the forcings that contribute to coastal mass wasting and the susceptibility 

factors that make failure more likely (e.g., Keefer, 2000; He and Beighley, 2008; Budetta et al., 2008; Dickson and Perry, 

2016; Francioni et al., 2018; Young, 2018; Limber et al., 2018). Forcings include rainfall, wave and tidal action, and storm 

surge whereas susceptibility factors include steep topography, geology, rock structure, hydrology, urbanization, and soil 

moisture among other factors (Van Jones et al., 2015; Dickson and Perry, 2016; He and Beighley, 2008). In tectonically active 50 

regions, earthquakes also act as a forcing that contribute to coastal landslides susceptibility (Griggs and Plant, 1998; Hancox 

et al., 2002) but few models have considered the influence of strong ground motion. 

 

Similarly, while a number of studies (e.g., Budimir et al., 2015; Parker et al., 2015; Massey et al., 2018) have attempted to 

define factors contributing to regional earthquake induced landslide susceptibility, few have focused specifically on coastlines. 55 

In several cases (e.g., Griggs and Plant, 1998; Collins et al., 2012; Massey et al., 2018) a significantly higher landslide density 

was observed on coastal hillslopes as compared to inland hillslopes, but this has yet to be considered in most probabilistic 

landslide susceptibility assessments. Given the potential influence of increased precipitation, weathering, and soil moisture 

along coastlines (Mottershead, 2013), it is possible that regional earthquake induced landslide susceptibility models, primarily 

trained on inland hillslopes, may not effectively predict coastal landslide distributions. In this study, we explicitly test whether 60 

a landslide susceptibility model trained on landslides from inland hillslopes captures the distribution of coastal landslides. The 

purpose of this test is to determine if existing variables can explain the difference between inland and coastal landslide 

densities, or if future landslide susceptibility models should consider additional coastal specific variables. 

 

Following the 2016 Mw 7.8 Kaikōura earthquake along the northeast coast of the South Island of New Zealand (Hamling et 65 

al., 2017), Massey et al. (2018) observed an order of magnitude greater number of landslides along coastal hillslopes as 

compared to inland hillslopes. No clear physical control on this increased landslide density was identified, although several 

hypotheses were presented including differing slope geometry resulting in ground motion amplification along the Kaikōura 
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coast and reduced rock mass strength. Here, the distribution of coastal landslides from the 2016 Kaikōura earthquake is used 

to: 1) train comparative logistic regression earthquake induced landslide susceptibility models for coastal and inland hillslopes 

in the Kaikōura region; 2) evaluate factors that might contribute to an increased coastal coseismic landslide density during an 85 

earthquake; and 3) explore some of the mechanisms that resulted in increased coseismic landslide susceptibility along the 

Kaikōura coast in 2016. 

2 Background 

2.1 2016 Mw 7.8 Kaikōura Earthquake 

The 2016 Mw 7.8 Kaikōura earthquake initiated on the Humps fault near the township of Waiau c. 40 km inland from the coast 90 

in the northeastern South Island of New Zealand (Hamling et al., 2017). The earthquake triggered a cascade of fault ruptures 

on more than 20 on- and off-shore faults primarily to the northeast of the epicentre (Figure 1, Litchfield et al., 2018). The 

earthquake, which caused complex surface deformation along c. 110 km of coastline (Clark et al., 2017), ruptured faults of 

both the North Canterbury Domain (NCD) and the Marlborough Fault System (MFS) tectonic domains which transfer plate 

motion from the Hikurangi Subduction Zone in the north to the transpresive Alpine Fault in the south (Figure 1, Litchfield et 95 

al., 2018). 

 

The earthquake generated more than 30,000 landslides which were primarily concentrated within the steep slopes of the 

Seaward Kaikōura range, around surface fault ruptures, and in steep sections of coastline (Figure 1 and 2; Massey et al., 2018, 

2020a; Bloom et al., 2022a). Statistical modelling by Massey et al. (2018, 2020a) found that the regional distribution of 100 

landslides from the Kaikōura earthquake was well explained by geology, slope, distance to surface fault traces, peak ground 

velocity (PGV), local slope relief, and elevation. While Massey et al. (2018) acknowledged a higher density of landslides along 

the Kaikōura coast, they did not investigate coastal landslide susceptibility, nor the underlying mechanisms involved in the 

distribution of coastal earthquake induced landslides. Here, we separate out coastal versus non-coastal hillslopes from this 

regional analysis and independently investigate the factors that might have contributed towards increased landslide 105 

susceptibility of coastal hillslopes during the 2016 Kaikōura earthquake. 
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Figure 1: (a) Location of the Kaikōura earthquake within the tectonic setting of New Zealand. Active faults from the 1:250,000 scale 
New Zealand Active Fault Database (Langridge et al., 2016) are in grey and simplified major offshore structures are in blue. Black 
arrows show the relative motion of the Pacific and Australian Plates (Beavan et al., 2002). (b) Area of the Kaikōura earthquake with 
active faults of the New Zealand Active Fault Database in grey and fault ruptures from the 2016 Kaikōura earthquake in red 155 
(Litchfield et al., 2018; Zinke et al., 2019). The shaded blue area is the focus of this study, a 3 km buffer of the coast where modelled 
PGA from the Kaikōura earthquake was greater than 0.2 g. Red points identify locations where Ota et al. (1996) estimated coastal 
uplift rates (noted next to labels). Major faults that cross the coastline in the Kaikōura region are labelled. MFS refers to the 
Marlborough Fault System north of the Hope fault while NCD refers to the North Canterbury Domain south of the Hope fault. The 
base image is a multidirectional hillshade of the Land Information New Zealand 8 m DEM (LINZ, 2021a). 160 
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Figure 2: A multidirectional hillshade of post-earthquake lidar (Massey et al., 2020b) with coastal earthquake induced landslides 
mapped by Massey et al. (2020a). A high density of coastal earthquake induced landslides were observed within the scars of relict 
landslides that are common along the coastline. Shore platforms modified by road and rail corridors buffer the base of the coastal 165 
hillslopes. 

2.2 Coastal and Geologic Setting 

Much of the Northeast coast of New Zealand’s South Island is steep and rocky (Figure 1 and 2). Coastal hillslopes are primarily 

composed of intensely jointed Lower Cretaceous greywacke of the Torlesse Supergroup along with younger Upper Cretaceous 

to Neogene sedimentary units (Rattenbury et al., 2006). These units are, in places, overlain by less consolidated Pleistocene 170 

alluvial, fluvial, and beach deposits. Portions of the region’s steep coastline, primarily south of the Haumuri Bluffs at Conway 

Flat (Figure 1), form steep coastal cliffs c. 50 to 150 m in height, many of which are subject to wave action at high tide (Bloom 

et al., 2022b). North of the Haumuri Bluffs, however, most coastal hillslopes are uplifted and buffered from direct wave action 

by shore platforms that have, in places, been anthropogenically modified to facilitate road and rail corridors (Figure 2; Mason 

et al., 2017; Stringer et al., 2021). 175 
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Long-term coastal uplift in the Kaikōura region is locally variable as a result of major faults, including the Hope, Kekerengu-

Needles, and Hundalee, which cross-cut the coastline (Figure 1, Litchfield et al., 2018; Howell and Clark, 2022). Approximate 

regional estimates of uplift based on Pleistocene marine terraces suggest c. 2.0 mm yr-1 of uplift at the Conway River mouth, 

1.3 mm yr-1 at the Haumuri Bluffs, 1.1 mm yr-1 at Kaikōura township, 1.1 mm yr-1 at the Clarence River mouth, and c. 0.5 mm 180 

yr-1 c. 10 km south of Cape Campbell (Figure 1; Ota et al., 1996). These measurements generally align well with more recent 

measurements of c. 0.9 to 1.3 mm yr-1 at Kaikōura (Nicol et al., 2022). Single event vertical displacement from the 2016 

Kaikōura earthquake ranged from c. −2.5 to 6.5 m along the Kaikōura coast (Clark et al., 2017; Howell and Clark, 2022), but 

the areas that subsided in 2016 have undergone net uplift over the Holocene and Pleistocene (Ota et al., 1996; Howell and 

Clark, 2022). 185 

 

As a result of low coastal population density, little work has been done to estimate long term coastal retreat rates for the South 

Island of New Zealand. The few studies that have estimated retreat (Bloom et al., 2022b; Kirk 1975, 1977) suggest highly 

variable rates modulated by lithology and topography. Average rainfall measured in the township of Kaikōura is c. 721 mm 

yr-1 (Macara, 2014) but is highly spatially variable along the Kaikōura coast ranging from c. 675 to c. 1500 mm yr-1 (NIWA, 190 

2022). Over the historical record, significant landsliding along the Kaikōura coast has been observed following large storms, 

for example Cyclone Alison (March 1975) and ex-Tropical Cyclone Ita (April 2014), which brought high rainfall to the region 

over a short period of time (Massey et al., 2021a). 

3 Data and Methods 

To explore coastal earthquake induced landslide susceptibility in the Kaikōura region, we rely on a combination of predictive 195 

landslide susceptibility features and an earthquake induced landslide inventory produced by Massey et al. (2020a) following 

the 2016 Kaikōura earthquake (Figure 2). These datasets are used to examine the distribution of landslides with distance from 

the Kaikōura coast and provide training data for comparative inland and coastal landslide susceptibility models (Figure 3). For 

the purposes herein, inland hillslopes are defined as hillslopes within >1 to 3 km of the Kaikōura coast and coastal hillslopes 

as hillslopes within 1 km of the coastline (Massey et al., 2018). This distinction was based on three main factors. First, the 200 

observed landslide density is much higher within 1 km of the coast than within 1 to 3 km despite generally similar distributions 

of lithology, elevation, and vegetation. Second, hillslopes greater than 3 km from the coast capture a different proportion of 

lithology and alpine terrain (Figure 1) with a higher landslide density. These hillslopes are more difficult to compare with the 

coastal setting and may be affected by different processes. Third, the area within 1 km of the coast primarily encompass terrain 

up to the first topographic ridgeline (Massey et al., 2018), and is therefore more representative of ‘coastal-facing’ hillslopes 205 

than those at greater distances. The differences between the coastal and inland susceptibility models are investigated to examine 
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the factors contributing to an increased density of landslides on the Kaikōura coast. The following sections provide an overview 

of these datasets and analyses. 

 
Figure 3: Logistic regression model workflow. Gridded landslide data and predictive features are used to train and test binary 210 
logistic regression models. Model results are used to compare inland and coastal landslide susceptibility and assess the importance 
of predictive features. NDMI stands for Normalized Difference Moisture Index while PGA/PGV stands for Peak Ground 
Acceleration/Velocity. 

3.1 2016 Kaikōura Landslide Inventory 

For this analysis, mapped source area polygons from version 2.0 of the 2016 Kaikōura earthquake induced landslide inventory 215 

(Figure 2 and 3; Massey et al., 2020a) were converted into a binary 8 m grid of landslide and non-landslide grid cells. Grid 

cells were assigned a value of 1 if the centre point of the grid cell fell within a landslide source area polygon and a value of 0 

if it did not. Based on the size area distribution of landslides within 3 km of the Kaikōura coastline, landslides smaller than 50 

m2 were excluded from the analysis. This was an effort to eliminate potential bias resulting from preferential mapping of 

smaller failures along the Kaikōura coastal road corridor (Figure A1). Here, distance to the Kaikōura coastline was defined 220 

using the nearest Euclidean distance from the centre point of each 8 m grid cell to the coast as defined by the Land Information 

New Zealand (LINZ) Topo50 New Zealand Coastline (LINZ, 2021b). Investigations were limited to slopes greater than 15° 

which captured c. 91% of cumulative landslide source area while excluding most hillslopes unlikely to produce significant 

landsliding in this region. This threshold is commonly applied (e.g., Meunier et al., 2007; Kritikos et al., 2015) to confine 

investigations to hillslopes capable of producing landslides. Furthermore, analyses were limited to those areas where modelled 225 

PGA (Worden et al., 2020) was greater than 0.2 g (the triggering threshold for New Zealand’s earthquake induced landslide 
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response tools; Massey et al., 2021b). Areas with PGA greater than 0.2 g include c. 99% of mapped coastal landslide source 

areas from the 2016 Kaikōura earthquake. Finally, the c. 452,000 m2 Seafront landslide was excluded from the analysis to 230 

avoid skewing descriptive statistics and modelling. The source area of the Seafront landslide occurs approximately 1 to 3 km 

from the coast but is located directly along a surface-rupturing fault (>9 m vertical displacement; Bloom et al., 2021). The 

failure is almost an order of magnitude larger than the next largest 2016 failure within 3 km of the coastline and is not 

representative of failures within the wider coastal region. 

 235 

To supplement the landslide inventory, we reviewed the high resolution pre- and post-event digital elevation models and 

orthophotographs used to create the Kaikōura earthquake induced landslide inventory (Massey et al., 2020a) and manually 

assigned each landslide source area polygon either a ‘First Movement’ designation or one of three landslide activity 

designations derived from Cruden and Varnes (1996): ‘Reactivated Retrogressive Rock or Debris’, ‘Reactivated Moving 

Debris’, or ‘Reactivated Moving Rock’. These designations represent the landslide activity in relation to past failures. For the 240 

purposes herein, a past failure was defined as any landslide, landslide debris, or landslide scar that was apparent on the hillslope 

before the 2016 earthquake. First movements have no obvious link with a pre-2016 failure. Reactivated Retrogressive Rock 

or Debris exhibited extension of a pre-2016 landslide head scarp opposite to the failure direction. In this case we also include 

coastal cliff-top failures where there was evidence of past landslides. Reactivated Moving Rock exhibited remobilisation of 

the majority of material within an observed pre-2016 landslide. Reactivated Moving Debris exhibited minor deformation 245 

within the body of a past landslide including partial reactivation of landslide debris. 

3.2 Landslide Distribution 

To examine the distribution of landslides in relation to the coast, the landslide source area density, referred to herein as 

landslide density, was calculated at increasing distance from the coast. Landslide density is the sum of gridded landslide source 

area within 24 m bins at distance from the LINZ Topo50 New Zealand Coastline (LINZ, 2021b) divided by the total area 250 

within the bin. Landslide density was further broken down within five geology types (GeolCodes) simplified from the New 

Zealand QMAP (Rattenbury et al., 2006). GeolCode 1 represents Quaternary sands, silts, and gravels that are primarily fluvial 

deposits but also include alluvial fan, marine, and recent beach deposits; GeolCode 2 represents Neogene limestones, 

sandstones, and siltstones; GeolCode 3 represents Upper Cretaceous to Paleogene rocks including limestones, sandstones, and 

siltstones, GeolCode 4 represents minor undifferentiated volcanic rocks; GeolCode 5 represents Lower Cretaceous Torlesse 255 

(Pahau terrane) basement rocks that are predominantly heavily deformed sandstones and argillite, commonly referred to as 

greywacke in New Zealand; and finally GeolCode 6 represents undifferentiated relict landslides and hillslope deposits as 

defined by QMAP. It is important to note that relict landslides and hillslope deposits are not systematically mapped within 

QMAP (Rattenbury et al., 2006). 
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3.3 Landslide Susceptibility Features 

A number of machine learning and statistical modelling techniques, for example logistic regression, random forest, or deep 

neural networks, have been successfully applied to regionally estimate landslide susceptibility (Reichenbach et al., 2018). The 

choice of modelling technique is largely governed by the scale and requirements of the analysis. In this study the binary logistic 265 

regression technique is used because it 1) balances relatively high model performance with low model training times and 2) 

has high ‘explainability’ allowing us to easily identify the importance of individual predictive features in trained models 

(Figure 3; Budimir et al., 2015). The purpose of using machine learning in this study is to better understand predictive features 

not to create a forecast model or susceptibility maps. Other types of models, for example deep neural networks, may result in 

higher model performance more suited to forecasting but sacrifice explainability and require longer training times 270 

(Reichenbach et al., 2018) limiting their application in this case. 

 

The basic requirements for all empirical landslide susceptibility analyses are, typically, a categorical landslide dataset (defining 

the presence or absence of a landslide at any given location) and one or more predictive features that can be used to train the 

model (Figure 3; Budimir et al., 2015). A separate categorical landslide dataset (not used in model training) is used to test the 275 

efficacy of the trained model (Figure 3). Model performance is optimised differently based on the modelling technique but 

usually involves varying model ‘hyperparameters’ or values used to control model process, and refining the predictive features 

used to train the model (Lombardo and Mai, 2018; Reichenbach et al., 2018). Here, we discuss the choice of predictive features 

and further describe the application of the logistic regression modelling technique. 

 280 

For this analysis, 25 common predictive features used in other landslide susceptibility studies (e.g., Budimir et al., 

2015) were developed. These features included a range of lithologic, topographic, and surface conditions, for example, slope 

angle, roughness, and vegetation greenness (NDVI) (Figure A2). Of these features, 13 that produced variance inflation factor 

(VIF) scores greater than 10 were excluded. VIF, defined as: 

𝑉𝐼𝐹 = 	 !
!"#!

"           (1) 285 

is an assessment of the linear relationship between any individual feature and all other potential features (𝑅$%) (Kutner et al., 

2004). Excluding collinear features ensures more representative model weighting, generally improves model performance, and 

maintains model explainability. 

 

The various features used in this analysis (Table 1) were converted to raster format and/or aligned to the spatial resolution of 290 

the LINZ 8 m DEM (LINZ, 2021a) using the GDAL Rasterize and Warp functions with nearest neighbour resampling. The 

LINZ 8 m DEM, primarily derived from the January 2012 LINZ Topo50 20 m contours (LINZ, 2021a), was used to derive the 

curvature, aspect, elevation, and slope features used in the analysis (Table 1). While the LINZ 8 m DEM has known limitations 
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for local terrain analysis, on a regional scale, it captures the majority of terrain characteristics (Appendix A) and is one of the 

few datasets with appropriate coverage and resolution for our analysis. 
Table 1: Landslide susceptibility features. 

Number Features Type Description 

1 Coast Distance Continuous Euclidean distance (GDAL) from the LINZ Topo50 New Zealand Coastline (LINZ, 2021b) 

2 Curvature Continuous Curvature (RichDEM) derived from Land Information New Zealand (LINZ) 8 m DEM (LINZ, 2021a) 

3 Cutslopes Categorical 
Modified cutslopes mapped as polygons and gridded to 8 m. Values of 1 indicate the presence of a cutslope 

at the grid cell centre point. 

4 & 9 
Aspect (Eastness and 

Northness) 
Continuous 

Eastness (Sin) and Northness (Cos) of Aspect (GDAL, Converted to Radians) produced using LINZ 8 m 

DEM (LINZ, 2021a) 

5 Elevation Continuous 
LINZ 8 m DEM (LINZ, 2021a) primarily derived from January 2012 LINZ Topo50 20 m contours (LINZ, 

2021a); Native Resolution: 8 m/pixel 

6 Fault Distance Continuous Euclidean distance (GDAL) from 14 surface ruptured faults from 2016 by Bloom et al. (2021a) 

7 Ground Motion Continuous 

PGA and PGV from USGS ShakeMap v4 (Worden et al., 2020; Kaikōura ShakeMap products accessed at 

https://earthquake.usgs.gov/earthquakes/eventpage/us1000778i/shakemap/intensity on September 7th 

2021); Native Resolution: 336 m/pixel 

8 
NDMI (Normalized 

Difference Moisture Index) 
Continuous 

Derived from October 2016 Landsat 8 Imagery (U.S. Geological Survey 2022): NDMI = (Band 5 – Band 6) 

/ (Band 5 + Band 6); Native Resolution: 30 m/pixel 

10 
OFD (Off Fault 

Deformation) 
Categorical  

OFD zone as defined for 14 faults by Bloom et al. (2022a) as polygons gridded to 8 m. Values of 1 indicate 

the presence of an OFD zone at the grid cell centre point. 

11 Slope Continuous Slope (GDAL) derived from LINZ 8 m DEM (LINZ, 2021a) 

12 Structural Aspect Continuous 
Difference between aspect and dip direction of QMAP bedding measurements (Rattenbury et al., 2006; see 

Appendix A for additional detail) 

13 Geology (GeolCode) Categorical 

Simplified from 1:250k scale New Zealand QMAP (Rattenbury et al., 2006) Classes: 1. Quaternary Sands 

and Gravels, 2. Neogene Sediments, 3. L. Cretaceous–- Paleogene Sediments, 4. Volcanics, 5. Torlesse 

Greywacke (Pahau), 6. Landslide and Hillslope Deposits 

 

Similar to the landslide density analysis, the extent of features (Table 1) was limited to slopes greater than 15° and areas with 305 

PGA (defined by the USGS ShakeMap; Worden et al., 2020) greater than 0.2 g. Continuous landslide susceptibility features 

(Figure 3, Table 1) were scaled using the standard scalar method: 

𝑧 = 	 &"'
(

 ,           (2) 

where the standardised value (z) is the original value (𝑥) minus the mean (𝜇) of all values divided by the standard deviation 

(𝜎) of all values. Using the standard scalar allows us to compare model coefficients, or the weights assigned to each feature 310 

during model training, side-by-side. 
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3.4 Logistic Regression Modelling 

The predictive power of individual landslide susceptibility features during the Kaikōura earthquake was strongly modulated 

by geology type (Massey et al., 2018, 2020a; Singeisen et al., 2022). Separate coastal (0 to 1 km from the coast) and inland (1 

to 3 km from the coast) models were, therefore, trained in four simplified geology types (GeolCodes 1, 2, 3, and 5; Figure 3) 325 

using predictive features and the sci-kit learn python library (Table 1). GeolCode 4 (Volcanics) and GeolCode 6 (Mapped 

Hillslope Deposits) lacked sufficient data to support a robust model and were excluded from the analysis. Additional models 

were trained using the combined data from inland and coastal hillslopes and these results are included in Appendix B (Figures 

B1 and B2).  

 330 

Models were trained on 80% of gridded data leaving 20% of data for independent verification of the model performance 

(Figure 3). Across model training random 10-fold cross validation was used to evaluate model uncertainty. In K-fold cross 

validation, the training dataset is partitioned into K (in this case 10) parts (Hastie et al., 2017) and models are iteratively trained 

using all parts minus one. The remaining portion of data excluded from training in each iteration is used to validate model 

performance. An L1 regularization was used to penalize poor features and improve model prediction by simplifying the model 335 

(Lombardo and Mai, 2018). Using the L1 (also known as the Least Absolute Shrinkage Selection Operator or LASO; 

Tibshirani, 1996) allows the model to assign overly collinear or unsupportive features a coefficient of zero. The SAGA solver 

(Defazio et al., 2014), which supports L1 regularization, was used to weight coefficients. In all cases, models converged prior 

to a maximum 100 iterations. Based on hyperparameter tuning, a C (inverse of regularization strength) of 1 was applied to the 

models. The target datasets have a greater number of non-landslide source area (value of 0) grid cells than landslide (value of 340 

1) grid cells (Table A1). To limit overprediction, no attempt was made to balance or otherwise weight the datasets during 

model training. 

 

The intention of this work was not to systematically evaluate or compare model prediction. However, estimates of area under 

the receiver-operator characteristic curve were used to demonstrate the relatively high performance of all trained models. The 345 

receiver operator characteristic (ROC) curve (e.g., Fawcett 2006; Lombardo and Mai 2018) plots the true positive rate (TPR) 

against the false positive rate (FPR) at different probability thresholds. TPR, also known as ‘sensitivity,’ represents the ratio 

of positive predictions that were correctly classified as positive by the model, i.e. pixels modelled as failures that actually failed 

in 2016. FPR is calculated as (1 – specificity), where specificity is the true negative rate (TNR) or the ratio of negative model 

predictions that were correctly classified as negative. The shape of the ROC curve is used to evaluate the goodness of fit for a 350 

binary classifier – in this case, whether a grid cell represents a landslide source area or not (Y = 1 or Y = 0). The class prediction 

for each instance is determined based on the probability threshold. Area under the ROC curve (AUC) is calculated to quantify 

the shape of the curve in a single reportable value. Values of AUC close to 1 represent better model performance while values 

close to 0.5 represent near random results (Hosmer et al., 2013). As a final test to demonstrate the efficacy of the models, we 
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used the results of models trained on inland data to predict the coastal landslide distribution (Figure 3) and this is also reported 

based on AUC. 

 

Because model features were standardised using the standard scalar method, model coefficients can be directly compared for 

each predictive feature to estimate feature importance (Figure 3). Following the techniques of Lombardo and Mai (2018) and 360 

Williams et al. (2021), jackknife and single variable logistic regression model permutations were also trained for inland and 

coastal hillslopes in GeolCodes 1, 2, 3, and 5 to further assess feature importance (Figure 3). In the jackknife method, a single 

landslide susceptibility feature is iteratively removed during model training (Lombardo and Mai, 2018; Williams et al., 2021). 

Individual model results are then compared to evaluate the influence of removing each feature from the model. A more 

substantial drop in model AUC suggests higher importance for the removed feature. In the single variable method, models are 365 

iteratively trained on each susceptibility feature separately to determine individual feature importance. In these models, a 

higher model AUC suggests that the feature has a greater independent explanatory value. 

4 Results 

4.1 Distribution of Coastal Earthquake Induced Landslides 

Similar to the results of Massey et al. (2018), an order of magnitude greater earthquake induced landslide density was observed 370 

across coastal hillslopes as a result of the 2016 Kaikōura earthquake (Figure 4). Within 1 km of the coast, 1,621 landslides > 

50 m2 were observed on slopes greater than 15° with a mean PGA greater than 0.2 g. Given these filters, on average, coastal 

landslides were slightly larger than inland landslides (c. 870 m2 for coastal hillslopes and c. 780 m2 for inland hillslopes; Table 

B1). Removing landslide size and slope filters results in a similar coastal landslide density. Source area density peaks at c. 7% 

between 0 and 100 m from the coastline and drops to c. 0.5% at 1000 m from the coastline (Figure 4). Between 1000 m from 375 

the coastline and 3000 m from the coastline, landslide source area density remains generally consistent with an average density 

of c. 0.5% (Figure 4). 
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Figure 4: Overall landslide source area density (landslide density) within 24 m bins at increasing distance from the Kaikōura coast 380 
as defined by the LINZ Topo50 Coastline (LINZ, 2021b). Landslide density within GeolCodes 1, 2, 3, and 5 are presented separately 
in the bottom plots. 
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4.2 Distribution of Lithology 

Most landslides from the 2016 Kaikōura earthquake occur within Torlesse greywacke (GeolCode 5), younger sedimentary 385 

units (GeolCode 2 and 3), and unconsolidated Quaternary units (GeolCode 1) (Table 2). Less than 1% of landslides were 

observed within volcanic rocks (GeolCode 4) or mapped pre-existing failures and hillslope deposits (GeolCode 6, which are 

not systematically mapped). Regional landslide density does not mirror the distribution of lithology (Table 2) and landslide 

source areas disproportionately occur within Upper Cretaceous to Paleogene sediments (GeolCode 3) and, along the coast, 

within Lower Cretaceous Torlesse greywacke (GeolCode 5). The general landslide density trends are primarily driven by these 390 

two geology types. Within c. 100 m of the coast, landslide density is as high as c. 6% in both GeolCodes 3 and 5 (Figure 4). 

 
Table 2: Distribution of lithology and landslides  

GeolCode Geology 
Percent of Coastal 

Area (0 to 1 km) 

Percent of Coastal 

Landslides 

Coastal Landslide 

Density 

Percent of Inland 

Area (1 to 3 km) 

Percent of Inland 

Landslides 

Inland Landslide 

Density 

1 Quaternary 7.3% 9.0% 2.5% 3.8% 2.1% 0.3% 

2 Neogene 32.9% 20.1% 1.2% 21.2% 20.1% 0.5% 

3 Paleogene 16.8% 25.3% 3.1% 23.8% 39.6% 0.8% 

5 Torlesse 42.9% 45.6% 2.2% 51.2% 38.1% 0.4% 

4.3 Landslide Activity 

Of the mapped landslides from the 2016 Kaikōura earthquake, c. 13% within 1 km of the coast and c. 34% between 1 and 3 395 

km of the coast were first movements (Table 3). The remaining failures were a combination of reactivation of relict landslides, 

including retrogression of pre-existing landslide head scarps and reactivation of landslide debris. Within Torlesse greywacke 

(GeolCode 5), c. 49% of inland landslides were first movements as compared to c. 17% of coastal failures (Table 3). 

 
Table 3: Earthquake induced landslide activity in relation to past failures 400 

Coast (0 to 1 km) 

GeolCode Geology First Movement Reactivated Retrogressive Movement Reactivated Moving Rock Reactivated Moving Debris 

1 Quaternary 12% 43% 3% 42% 

2 Neogene 8% 54% 4% 35% 

3 Paleogene 13% 33% 4% 50% 

4 Volcanics 0% 0% 0% 0% 

5 Torlesse 17% 28% 4% 51% 

6 
Relict Landslides 

(QMAP) 
0% 39% 1% 60% 

All All 13% 38% 4% 45% 

Inland (1 to 3 km) 
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1 Quaternary 28% 39% 3% 30% 

2 Neogene 21% 53% 4% 23% 

3 Paleogene 24% 40% 4% 32% 

4 Volcanics 31% 46% 8% 15% 

5 Torlesse 49% 19% 2% 29% 

6 
Relict Landslides 

(QMAP) 
28% 40% 4% 28% 

All All 34% 38% 3% 25% 

 

4.4 Coastal vs. Inland Earthquake Induced Landslide Susceptibility Models 

AUC of cross-validated coastal models is generally consistent with similar studies (e.g., Reichenbach et al., 2018; Williams et 

al., 2021) and ranges from c. 0.79 in coastal Neogene sediments (GeolCode 2) to c. 0.92 in coastal Quaternary sediments 

(GeolCode 1) with generally low variability across 10 cross-validations (Figure 5). Additionally, all model AUCs were within 405 

the range of cross-validations when independently testing model performance using 20% of data withheld from model training 

(Figure 5). 

 
Figure 5: Logistic regression model performance from models trained on each geology type (GeolCode) in coastal (left) and inland 
(right) hillslopes. Model performance is measured by area under the receiver operator characteristic curve (AUC). Each boxplot 410 
shows the results of 10-fold cross validation using 80% of the available target dataset. Yellow stars represent model performance 
when applied to the 20% of data withheld from training. Red stars in the Coast results represent the performance of the inland 
model when applied to the coast dataset. The red star with an arrow pointing down in Coast GeolCode 1 represents an AUC beyond 
the extent of the plot at 0.64. 

 415 

The results of inland model training were used to predict the coastal landslide distribution (Figure 5 and 6). Models trained on 

inland landslides and applied to coastal hillslopes generally produced the same or lower AUC values than models trained on 
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coastal hillslopes (Figure 5). There was an c. 0.20 drop in AUC in GeolCode 1, a c. 0.03 drop in GeolCode 3, and almost no 

drop in GeolCodes 2 and 5 (Figure 5). Visual inspection of modelled landslide probability when applying the inland trained 420 

model to coastal hillslopes also suggests relatively strong model performance (Figure 6). We generally observe higher landslide 

probability where coastal landslides (not included in model training) occurred during the Kaikōura earthquake. 

 
Figure 6: Example of an inland (1 to 3 km from the coast) trained landslide susceptibility model applied to both inland and coastal 
hillslopes. The base image is a hillshade of post-earthquake lidar (Massey et al., 2020b) with actual earthquake induced landslides 425 
mapped by Massey et al. (2020a). The location is coincident with Figure 2 (location identified in Figure 1). 
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Below, we compare and contrast model coefficients alongside the results of jackknife and single variable models for each 

geology type (Figure 7 and 8) to further examine the relative importance of the predictive features. 

 
Figure 7: Model coefficients for models trained on each GeolCode. Points with associated error bars represent the mean and 445 
standard deviation (SD) of the coefficient across 10-cross validations. Colour bars indicate which feature the point is associated with 
and the model data used to train the model (either coast or inland). In cases where no error bar is present, the standard deviation is 
less than 0.1. Negative coefficients result in a higher weight for small values while positive coefficients result in a higher weight for 
high values. For example, a negative coefficient for fault distance suggests that there is a higher landslide susceptibility closer to 
faults while a positive coefficient for slope suggests that a greater slope angle has higher landslide susceptibility. All features are 450 
standardised prior to model training allowing for the direct comparison of coefficients within the same model. 
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 455 
 

Figure 8: Results of jackknife (left) and single variable (right) logistic regression models. Model performance is measured by area 
under the receiver operator characteristic curve (AUC). The box plot for each model shows the results of a random 10-fold cross 
validation. In jackknife models, a single model feature is iteratively removed from model training and a bigger drop in AUC 
represents higher feature importance. In single variable models, a separate model is trained using each feature and higher AUC 460 
represents higher explanatory value. AUC close to 0.5 represents near random results while AUC near 1 represents near perfect 
results (Hosmer et al., 2013). 

4.4.1 GeolCode 1- Quaternary 

For inland (1 to 3 km from the coast) unconsolidated Quaternary units (GeolCode 1), distance to fault and slope features had 

the highest model coefficients (Figure 7). For coastal hillslopes (0 to 1 km from the coast), a low model coefficient was 465 

observed for the NDMI (soil moisture) feature suggesting an inverse relationship where lower values of the soil moisture proxy 

predict higher landslide susceptibility. An c. 0.04 drop in AUC was observed for coastal jackknife models trained without the 
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NDMI predictor (Figure 8). In single variable models, NDMI alone produced an AUC of c. 0.79 +/- 0.03 (+/- 1 σ) in coastal 470 

hillslopes, c. 0.07 higher than the slope-only model which yielded the next highest AUC. In jackknife models of inland 

hillslopes, there was not a substantial drop in AUC for any model iteration and in single variable models of inland hillslopes, 

a number of features produced high model performance (Fault distance an AUC of c. 0.88 +/- 0.04, ShakeMap PGV an AUC 

of c. 0.79 +/- 0.03 and slope an AUC of c. 0.74 +/- 0.11; Figure 8). 

4.4.2 GeolCode 2 - Neogene 475 

In Neogene sediments (GeolCode 2), a similar distribution of coefficients for inland and coastal hillslopes were observed with 

the highest model coefficients for the slope feature (Figure 7). Additionally, negative coefficients for NDMI were observed in 

both inland and coastal hillslopes. While observations of model coefficients were largely supported by jackknife models in 

both inland and coastal hillslopes, the most substantial drop in AUC (c. 0.05) was seen with the exclusion of the coastal slope 

feature (Figure 8). Single variable models showed an AUC of c. 0.72 +/- 0.02 for coastal slope and c. 0.75 +/- 0.03 for inland 480 

slope features (Figure 8). 

4.4.3 GeolCode 3 - Paleogene 

In Paleogene sediments (GeolCode 3) a similar distribution of coefficients was again observed in inland and coastal hillslopes 

with the highest model coefficients for the slope and distance to fault features (Figure 7). A strong negative coefficient was 

also observed for mean PGA in inland hillslopes. In jackknife models there was an c. 0.13 drop in both coastal and inland 485 

model AUC with the removal of the slope feature and an c. 0.03 drop in coastal model AUC with the removal of the fault 

distance feature (Figure 8). In single variable models, slope showed the best model performance with an inland model AUC 

of c. 0.77 +/- 0.03 and a coastal model AUC of c. 0.81 +/- 0.03 (Figure 8). 

4.4.4 GeolCode 5 - Lower Cretaceous 

In Lower Cretaceous Torlesse greywacke (GeolCode 5) high model coefficients were observed for the slope and mean PGA 490 

features though these are strongly outweighed by the fault distance feature in inland hillslopes (Figure 7). An c. 0.09 drop in 

coastal model AUC and a c. 0.13 drop in inland model AUC was observed with the removal of the slope feature in jackknife 

models (Figure 8). Interestingly, only an c. 0.01 drop in inland model AUC was observed with the removal of the fault distance 

feature despite a high model coefficient. As a single feature, slope had the highest AUC in both inland (0.85 +/- 0.2) and coastal 

(0.82 +/- 0.02) models (Figure 7) while PGA had an AUC of c. 0.72 +/- 0.02. 495 

4.5 Summary of Results 

Despite an order of magnitude higher landslide density observed within 1 km of the Kaikōura coast (Figure 4), few significant 

differences were observed between modelled coefficients in inland and coastal landslide susceptibility models. Additional 

models trained on both coastal and inland data yielded similar model coefficients (Figure B2). Models trained on data from 1 
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to 3 km inland and applied to coastal hillslopes from 0 to 1 km were still highly predictive and only resulted in a 0.03 or less 

drop in AUC as compared to models trained and tested on coastal hillslopes in GeolCodes 2, 3, and 5 (Figure 5). These three 

geology types account for greater than 90% of coastal landslide density (Table 2).  

 

The larger variation in model performance (c. 0.20) between inland and coastal models of GeolCode 1 could represent a true 515 

difference between inland and coastal landslide susceptibility. Inland GeolCode 1, however, accounts for less than 4% of total 

inland area and c. 2% of inland landslides (Table 2). Given a slightly larger spread in AUC (Figure 5 and 8) and model 

coefficients (Figure 7) across 10 cross-validations, it is also possible that there is simply not enough data to train an effective 

model in inland GeolCode 1. 

 520 

Some minor differences in model coefficients were observed, in particular the higher importance of fault distance in coastal 

GeolCode 3 and inland GeolCode 5, but these do little to explain the overall landslide density trend. Despite a high model 

coefficient for fault distance in inland GeolCode 5, there was only an c. 0.01 drop in AUC in jackknife models suggesting a 

potentially high correlation with other predictive features (likely PGA; Figure A2). Across jackknife and single variable 

models, slope and, in the case of GeolCode 5, PGA appear to be much stronger and more effective features than fault distance 525 

for predicting the regional landslide distribution within both inland and coastal hillslopes of the Kaikōura region. 

5 Discussion 

5.1 Factors controlling increased coastal landslide density 

Modelling of landslide susceptibility successfully captures the coastal distribution of landslides from the Kaikōura earthquake 

but does not provide a clear explanation for the order of magnitude difference in inland and coastal landslide density. To better 530 

explain this occurrence, the distribution of several of the most important landslide susceptibility features from the modelling 

were further examined (Figure 9; additional features are discussed in Appendix B). 
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Figure 9: Landslide density for each GeolCode (black line) within 24 m bins at increasing distance from the Kaikōura coast plotted 570 
alongside the distribution of standardised predictive features (orange, green, purple, and red lines) and landslide (LS) susceptibility 
(blue line) based on a logistic regression model trained on inland data from 1 to 3 km. Standardised features and landslide 
susceptibility are presented as the mean of values within 24 m bins with distance from the coast. 
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 575 

Slope –Model coefficients and jackknife models (Figure 7 and 8) suggest that slope is one of the most important features 

determining the distribution of landslides from the Kaikōura earthquake in both inland and coastal slopes. Massey et al. (2018) 

noted a lower overall distribution of slope near the coast in the Kaikōura region, however, when hillslopes below 15° are 

excluded, we observe a slightly higher average slope (c. 1°) within 1 km of the coast as compared to 1 to 3 km inland (Figure 

B3). While this difference may seem small, the variation in slope with distance from the coast largely mirrors modelled 580 

landslide susceptibility and landslide density trends across geology types (Figure 9). Steeper slopes, predominantly those 

occurring within c. 500 m of the coastline (Figure 9), appear to have a primary control on increased coseismic landslide density 

in proximity to the Kaikōura coastline. 

 

Strong Ground Motion (Mean PGA and Distance to Fault) – Across geology types a decrease in ground motion and increase 585 

in fault distance is observed at c. 500 m from the coast. This is particularly evident in GeolCode 5 (Figure 9) and does little to 

explain the observed landslide density trends. It is important to note, however, that there is a large concentration of landslides 

on the northern Kaikōura coast where modelled ground motion is high and model coefficients suggest that, particularly for 

GeolCode 5, high modelled PGA is a good predictor of coastal landslide density (Figure 7). The steep decrease in modelled 

PGA/PGV observed near the coast (Figure 9) could be a result of increasing distance from the seismic source south of 590 

Kaikōura. Here, coastal landslides concentrate within weaker actively eroded lithologies that fail at lower ground motions 

(Bloom et al., 2022b). 

 

Topographic and site amplification of seismic waves (e.g., Ashford et al., 1997) likely contributed to local variability in strong 

ground motion intensity within individual coastal and inland hillslopes during the Kaikōura earthquake. Ground motion 595 

variability is known to influence landslide susceptibility (e.g., Sepulveda, 2022; Massey et al., 2022) but remains challenging 

to estimate on a regional scale. Outside of applying regional ground motion intensity estimates (PGA/PGV from the USGS 

ShakeMap), this analysis does not investigate the role of site-specific ground motion. Given the coarse native resolution of 

PGA/PGV estimates from the USGS ShakeMap (336 m/pixel; Worden et al., 2020), uncharacterised ground motion variability 

may have an influence on the distribution of landslides from the 2016 Kaikōura earthquake. 600 

 

Lithology and Geologic Structure (Geology and Structural Aspect) – A similar distribution of lithology was observed in both 

inland and coastal hillslopes (Table 2), and it is assumed that, over short distances, geology has a relatively consistent influence 

on landslide susceptibility. As a result, while geology appears to strongly modulate landslide density, it does not readily explain 

the increase in coastal landslide density from the 2016 Kaikōura earthquake. Likewise, the correlation between lithologic 605 

bedding and topographic aspect does not strongly define coastal landslide susceptibility on the Kaikōura coast. There is some 

correlation between bedding and aspect within GeolCode 3 along the coast north of the Clarence River mouth (Figure 1) and 

in coastal GeolCode 5 where landslide densities are higher. However, hillslopes within the heavily deformed GeolCode 5 may 
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be susceptible to failure regardless of the presence of persistent structural discontinuity. In the heavily jointed rock mass, debris 625 

and rock avalanches, the dominant failure mechanism along the Kaikōura coast, can develop along cm- to m-scale 

discontinuities (Singeisen et al., 2022) that are not captured by the estimation of larger scale bedding. Furthermore, field 

investigations along the Kaikōura coast (e.g., Stringer et al., 2021) have shown that many failures from the 2016 earthquake, 

particularly in mapped GeolCode 5, occurred as reactivations of pre-existing landslide debris or within Quaternary hillslope 

deposits that were unlikely to be strongly influenced by bedding orientation. While QMAP (Rattenbury et al., 2006) provides 630 

the highest resolution mapping currently available at the required extent for this regional analysis, the mapping resolution is 

not high enough to sufficiently resolve these materials regionally. 

 

Fault Zones (Distance to Fault and OFD) – Bloom et al. (2022a) observed a higher incidence of landslides within the fault 

zone of ruptured faults from the 2016 Kaikōura earthquake. While there is a slightly higher density of landslides within the 635 

OFD zone, there is a lower proportion of OFD area along the Kaikōura coastline as compared to inland hillslopes. 

Approximately 0.6% of coastal area occurs within the OFD zone of surface fault rupture from the 2016 Kaikōura earthquake 

while c. 2.5% of inland hillslopes occur within a mapped OFD zone. Landslide source areas that occur within the OFD zone, 

account for c. 19% of landslide source area in inland hillslopes but only c. 1% of landslide source area along the coast. 

 640 

OFD may partially explain the distribution of landslide source areas in inland hillslopes but does little to explain widespread 

coastal failures or an order of magnitude greater number of coastal landslides. This being said, there is still some ambiguity as 

to the influence of rock mass deformation from fault zones along the coast that did not rupture significantly in 2016; for 

example, the Hope fault which extends just offshore in parallel to much of the north Kaikōura coast. A history of strong ground 

motion and fault deformation has been shown to progressively decrease rock mass strength and increase landslide susceptibility 645 

over multiple earthquakes (Parker et al., 2015; Gischig et al., 2016; Bloom et al., 2022a; Massey et al., 2022). This may result 

in an increased landslide susceptibility due to amplification of strong ground motion and decreased rock mass strength. While 

it is possible that damaged rock within the fault zone of the Hope fault results in a higher landslide density in the north Kaikōura 

coast, there is also an increase in landslide susceptibility along the coast south of Kaikōura, where faults like the Hundalee are 

present further offshore (Figure 1). This suggests that the relatively continuous zone of increased coastal landslide density is 650 

not solely influenced by fault zones on the Kaikōura coast.   

 

Anthropogenic modification of slopes (Cutslopes) – Uplifted shore platforms and marine terraces both north and south of 

Kaikōura have been anthropogenically modified by cut and fill slopes to support road and rail infrastructure. Most fill slope 

failures are too small and are not steep enough to be resolved in this analysis (which considers failures greater than 50 m2 and 655 

slopes steeper than 15°). Cutslopes only account for c. 1% of hillslopes along the Kaikōura coastline. Approximately 4% of 

coastal landslides (63 of 1,621) were found to be in contact with a cutslope near the coast. Even if we consider all failures 
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associated with cutslopes to be a direct result of hillslope modification, this cannot fully explain the higher density of coastal 

landslides well beyond anthropogenic influence. 

 660 

Precipitation, soil moisture, and enhanced weathering (NDMI) – NDMI, a proxy for soil moisture, is generally similar within 

coastal and inland hillslopes (Figure B3). In Torlesse greywacke (GeolCode 5), NDMI is on average 0.17 for coastal hillslopes 

and 0.13 for inland hillslopes which could indicate increased moisture along greywacke portions of the Kaikōura coast one 

month prior to the earthquake (Figure 9 and Figure B3). A high spatial variability in average rainfall observations (NIWA, 

2022), however, makes it difficult to expand this observation out to longer timescales. It might be expected that increased 665 

rainfall and other moisture on the coast would increase chemical weathering rates leading to a reduction in rock mass strength, 

but it is not currently possible to characterise these influences on a regional scale. On a single-event or seasonal timescale, 

increased NDMI might be a proxy for increased pore water pressure along the Kaikōura coast; however, models suggest that 

higher NDMI, itself, does not fully explain the distribution of earthquake induced landslides. In Quaternary and Neogene units, 

and to a lesser extent Paleogene units, lower NDMI is actually a better predictor of landslide occurrence (Figure 7). NDMI is 670 

strongly correlated with vegetation greenness (Table A2) and less vegetation may help to explain some shallow failures. In 

Lower Cretaceous Torlesse greywacke, NDMI is a comparatively weak predictor of earthquake induced landslides in both 

inland and coastal hillslopes. 

5.2 Conceptual Model Relating Coastal Hillslope Morphology and Landslide Susceptibility to Geomorphic History  

Based on the distribution of landslide susceptibility features and statistical analysis, the slope feature provides much of the 675 

explanation for increased landslide density along the Kaikōura coastline (Figure 9). The distribution of slope within each 

GeolCode (Figure 9) reveals substantially steeper slopes (up to c. 4° higher on average) within c. 250 to 500 m of the coast 

particularly within GeolCodes 2, 3, and 5.  

 

In many regions, coastal oversteepening results from a combination of uplift and wave action that actively undercuts coastal 680 

cliffs (Emery and Kuhn, 1982). In the Kaikōura region, however, most steep coastal slopes, with the exception of those at 

Conway Flat (Bloom et al., 2022b), are currently isolated from direct wave action by recent uplift which forms shore platforms. 

Ages of these uplifted platforms (Howell and Clark, 2022) suggest that this isolation has lasted for several hundred years at 

the least. Only 16 landslides outside of Conway Flat (c. 1% of landslides) have a direct connection with the ocean. As a result, 

while rapid uplift of the Kaikōura coast (Ota et al., 1996) contributes to steeper slopes, the contributions of wave erosion to 685 

long-term coastal evolution are less clear.  

 

Increased landslide susceptibility along the coast can be traced back to physical variables associated with the geomorphic 

evolution of these hillslopes (Fig. 10). The primary observation is that coastal-facing slopes are generally steeper than their 

inland counterparts (Fig. 9). These steepened slopes also tend to coincide with pre-Kaikoura earthquake landslides –  690 
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approximately 83% of coastal landslides in Torlesse greywacke occurred partially to wholly within areas affected by past 

landslides (Table 3), often as reactivations (retrogression) of their head scarps (Figure 2). Similar trends are observed for the 

distribution of landslides within younger sedimentary units (Table 3) and these findings are in line with field observations 710 

along the Kaikōura coast following the 2016 earthquake (e.g., Mason et al., 2017; Stringer et al., 2021). Thus, steeper coastal 

hillslopes are more prone to failure due to larger driving forces (i.e. gravitational component due to slope), and are collocated 

with rock masses at reduced or residual strength, leading to relatively low factors of safety and higher landslide susceptibility.  

 

Relict landslides are a common observation in the hillslopes above uplifted shore platforms along the Kaikōura coast, 715 

particularly within Torlesse greywacke (GeolCode 5; Figure 2). These relict landslides have left steep, potentially destabilised, 

headscarps and, in some cases, debris within the body of failures (Stringer et al., 2021). The provenance and timing of these 

relict failures is largely unclear but a general lack of deposited material at the base of the hillslopes (Figure 2) suggests that 

they may have developed while in contact with an active erosional source, such as rivers or the ocean (Figure 10; Crozier, 

2010). 720 

 

In our conceptual model, wave action leads to cliff collapse and landsliding while the ocean is in direct contact with the 

hillslope (Fig. 10-1 and 10-2). Once uplift or relative sea level fall occurs, hillslopes are buffered from wave action at the toe 

but remain over-steepened, particularly within upper slopes where relict landslide headscarps are present (Figure 10-3 and 10-

4). In the case of the Kaikōura region, uplifted wave cut platforms provide ideal locations for transportation infrastructure (Fig. 725 

10-5). While modification of lower hillslopes may not result in substantially increased landslide susceptibility on a regional 

scale, over-steepened upper hillslopes may remain highly susceptible to coseismic failure over multiple earthquake events 

(Figure 10-6; Rault et al., 2018; Singeisen et al., 2022). Increased susceptibility is likely to persist until the hillslope reaches a 

state of relative equilibrium with the surrounding landscape or until active erosion recurs at the base of the slope (Crozier, 

2010). With coastal uplift rates of c. 2 to 0.5 mm/year (Ota et al., 1996) along the Kaikōura coast, oversteepened slopes could 730 

represent up to thousands of years of increased landslide susceptibility. Without an active erosional source, earthquakes and 

large rainfall events may disproportionately contribute to the geomorphic evolution of these coastal hillslopes (Figure 10).  
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Figure 10: Conceptual model for the evolution of slope stability along the Kaikōura coast. Hillslopes are oversteepened by active 
erosion and debris is cleared from shore platforms by wave action. Following uplift, hillslopes are anthropogenically modified and 770 
earthquakes result in failures within upper hillslopes and the scars of relict landslides. Terrestrial erosion from earthquakes and 
rainfall work to bring the oversteepened hillslope back into equilibrium with the surrounding landscape (Crozier, 2010). 

5.3 Implications for earthquake induced landslide susceptibility in coastal settings 

Most earthquake induced landslide susceptibility models already rely heavily on lithology, strong ground motion, and slope as 

predictive features. As such, the findings here support the efficacy of using regionally trained models to characterise earthquake 775 

induced landslide susceptibility on the Kaikōura coast absent additional predictive features. In the Kaikōura region, a ‘near 

coast’ categorical feature (Figure B1 and B2) does not substantially improve model prediction. In other regions, such a feature 

may serve as a reasonable proxy for other underlying coastal influences but this is subject to additional study.  

 

Findings here may be applied to rocky coastlines elsewhere but consideration should be made for potentially important site-780 

specific conditions that may or may not be incorporated in this investigation. Of particular note, Parker et al. (2015) identified 

the accumulation of rock mass deformation over multiple earthquakes as a source of landscape preconditioning that results in 

higher susceptibility to future landslides. Similarly, the scars of relict landslides that occur within the steep hillslopes of the 

Kaikōura coastline suggest past susceptibility to failure and a potential accumulation of deformation that is largely unresolved 

by this analysis (and likely by most regional studies). 785 
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Previous investigations (e.g., Marc et al., 2015, 2019; Massey et al., 2022) suggest that increased landslide susceptibility decays 

to background levels within several years of an earthquake. It may be possible, however, that the factors discussed in this 

study, including oversteepened hillslopes, fault deformation, coastal weathering, repeated earthquake shaking, and topographic 

amplification, contribute to an accumulation of stress within the hillslope and, in turn, a longer term susceptibility to extreme 

event failure (Parker et al., 2015). Currently, the detailed rock mass characterisation required to fully investigate the influence 800 

of rock mass strength remains largely confined to the site-specific scale. Our understanding of coastal landslide susceptibility 

would benefit from future studies that attempt to decouple the influence of steep slopes from rock mass deformation on a 

regional scale.  

 

As a final note, since the 2016 Kaikōura earthquake, the coastal road and rail corridors north and south of Kaikōura have been 805 

fully re-established. In some cases, realignments have been made to address ongoing rockfall and other slope stability concerns 

(NZTA, 2021). In most cases, however, the road and rail lines have been cleared, repaired, and reopened in their original 

alignments (as in panel 5 of Figure 10). Estimates of long-term network resilience were developed shortly after the Kaikōura 

earthquake and, in part, rely on quantified landslide hazard assessment (Justice et al., 2021). This hazard assessment adopts 

the established assumption that strong ground motion intensity plays a large role in governing the volume of coseismic 810 

landslide debris along the Kaikōura coast (Massey et al., 2019). While our study does not directly address quantified hazard, 

the results suggest that the distribution of slope angle is generally steeper on the Kaikōura coast compared to inland hillslopes. 

These steeper slopes (and attendant history of slope failures) resulted in a high density of coastal landslides during the 2016 

Kaikōura earthquake. In future earthquakes, increased coastal landslide susceptibility – the result of steeper slopes along the 

coast – will expose coastal hillslopes to more landslides than inland hillslopes given the same level of ground motion intensity. 815 

The ongoing likelihood of aftershocks and strong ground motion in the Kaikōura region will test the efficacy of mitigation 

measures installed to reduce risk to people and infrastructure along the coast. 

6 Conclusions 

Distance to the Kaikōura coastline has a substantial influence on the distribution of landslides from the 2016 Kaikōura 

earthquake. An order of magnitude greater landslide density was observed within 500 m of the coastline (as high as c. 6 %) as 820 

compared to 1000 to 3000 m (c. 0.5%). Comparative logistic regression modelling suggests that the same factors, primarily 

geology, strong ground motion, and slope, define the distribution of landslides in both coastal (within 1 km of the coast) and 

inland hillslopes (1 to 3 km from the coast). Regional earthquake induced landslide susceptibility models that rely on geology, 

strong ground motion, and slope as strong predictive features are therefore, likely to account for this increased coastal landslide 

susceptibility in the Kaikōura region without separate treatment. Along the Kaikōura coastline, hillslopes are generally steeper 825 

than those inland, when comparing slopes angles within similar materials. Results suggest that slope angle provides the most 

explanatory power, and the simplest explanation, for increased coseismic landslide density at the coast. On the Kaikōura coast, 

Deleted: and 

Deleted:  along the Kaikōura coast, however, 

Deleted:  likely830 

Deleted: 9



28 
 

most hillslopes are currently buffered from wave action by rapidly uplifted shore platforms; coastal hillslopes host a high 

density of relict landslides that may have resulted from relatively recent (<1,000 years) coastal erosion. Relict landslides and 

proportionally steeper hillslopes maintain lower factors of safety and higher coastal landslide susceptibility as a legacy effect 

within hillslopes out of equilibrium with the surrounding landscape, which may persist for up to 1,000s of years. 835 

Appendix A – Additional Methods and Data 

Minimum Landslide Size 

Prior to the 2016 Kaikōura earthquake, lidar was available for areas in close proximity (< 1 km) to the Kaikōura coastline. 

This pre-earthquake lidar coverage likely allowed for more detailed comparison with post-earthquake data. In order to limit 

any potential bias resulting from differences in the quality of landslide mapping on the Kaikōura coastline in this comparative 840 

analysis, we evaluate the size area distribution of earthquake induced landslides mapped by Massey et al. (2020a) in proximity 

to the Kaikōura coast (Figure A1) using the methods of Malamud et al. (2004). We observed a slightly higher distribution of 

small failures along the Kaikōura coast with the distribution of failures diverging around 50 m2. While this may represent a 

real difference in landslide size along the coast, We chose to exclude failures smaller than 50 m2 from the analysis. Because 

of the small size of failures, this exclusion is unlikely to strongly influence the final results. 845 

 
Figure A1: Size area distribution of landslides (Malamud et al., 2004) from the Kaikōura earthquake induced landslide inventory 
(Massey et al., 2020a) within 0 to 1 km (Coast) and 1 to 3 km (Inland) of the coastline. The distributions diverge from one another 
around 50 m2 and we use this as the minimum landslide size threshold. 
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Gridded Landslide Data 

Landslide polygons from the inventory of Massey et al. (2020a) were gridded to the 8 m resolution of the digital elevation 

model (LINZ, 2021a) used to derive topographic landslide susceptibility features. Table 2 shows the percentage of landslide 

source area in each GeolCode. Table A1 shows the raw number of landslide (1) and non-landslide (0) grid cells used in the 855 

analysis. 

 
Table A1: Landslide (LS) density by GeolCode in all, coast, and inland hillslopes with number of 1 and 0 landslide grid cells. 

 

Landslide Susceptibility Features 860 

We initially evaluated 25 common predictive features for this analysis (Figure A2). Of the 25 features we narrowed the choice 

of features using only those features with a variance inflation factor (VIF) score of 10 or less (Table A2). In comparative model 

training, the best model performance was achieved when using the USGS ShakeMap PGA (Worden et al., 2020) for models 

of GeolCode 5 and the USGS ShakeMap PGV for all other GeolCodes. 

 865 
Table A2: Variance Inflation Factor for features used in this analysis. PGA from the USGS ShakeMap (Worden et al., 2020) is used 
for GeolCode 5 and PGV from the same model for all other GeolCodes. 

A
ll 

 GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total 

0 165176 841438 740592 1668137 3415343 

1 2091 6527 9942 13898 32458 

Total 167267 847965 750534 1682035 3447801 

LS Density 1.25% 0.77% 1.32% 0.83% 0.94% 

C
oa

st
 

 GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total 

0 71377 324791 162780 419017 977965 

1 1838 4106 5180 9315 20439 

Total 73215 328897 167960 428332 998404 

LS Density 2.51% 1.25% 3.08% 2.17% 2.05% 

In
la

nd
 

 GeolCode 1 GeolCode 2 GeolCode 3 GeolCode 5 Total 

0 93799 516647 577812 1249120 2437378 

1 253 2421 4762 4583 12019 

Total 94052 519068 582574 1253703 2449397 

LS Density 0.27% 0.47% 0.82% 0.37% 0.49% 
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Feature VIF–- PGV VIF–- PGA 

Curvature 1.02 1.02 

Cutslopes 1.00 1.00 

Eastness 1.08 1.08 

Elevation 3.22 3.22 

Fault Distance 1.84 1.86 

NDMI 3.63 3.65 

Northness 1.19 1.19 

OFD 1.05 1.05 

Slope 9.86 9.38 

Structural Aspect 3.51 3.48 

USGS ShakeMap 6.67 6.05 
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Figure A2: Pearson R2 correlation for common predictive features considered in this analysis. Red features were not included in the 
final modeling analysis. 

 875 
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Deriving the Structural Aspect Feature 

To derive a correlation between the dip direction of bedding and topographic aspect, we interpolated structural 

bedding measurements from the New Zealand QMAP (Rattenbury et al., 2006). We corrected for the 360° direction of dip 

using the Sin and Cos of dip direction and used the inverse distance weighted (IDW) interpolation method in ArcGIS to 

produce a continuous estimate of dip direction in each geology type (GeolCode). By subtracting interpolated dip direction 880 

from topographic aspect, we get values from -360 to 360° where a value close to -360°, 0°, or 360° represents a close correlation 

between dip direction of bedding and topographic aspect. To make a continuous range for this analysis, we take the absolute 

value of the difference (0 to 360), subtract 180 (-180 to 180), and take the absolute value again to arrive at 0 to 180 where 180 

represents a high correlation between dip direction and topographic aspect and 0 represents a low correlation. 

 885 

Efficacy of the LINZ 8 m DEM for Regional Analysis in the Kaikōura Region 

 The LINZ 8 m DEM (LINZ, 2021a), interpolated from 20 m contours with post-processing and filtering, is primarily 

suitable for cartographic visualisation. While this may not represent the most ideal dataset with which to conduct terrain 

analysis, it is the highest resolution elevation dataset available with consistent coverage of the Kaikōura region prior to the 

2016 Kaikōura earthquake. Given the relatively small size of many coastal landslides, using a coarser DEM would likely result 890 

in underprediction of coastal landslides and limit our ability to make robust claims about differences in landslide susceptibility 

between inland and coastal slopes. 

The regional nature of this assessment should reduce concern about local irregularities in the underlying DEM. To 

examine this assumption, we downsampled a limited 1 m pre-earthquake lidar derived DEM collected along the Kaikōura 

coast in 2012 (LINZ, 2021c) to the 8 m resolution of the LINZ 8 m DEM (LINZ, 2021a) and compared the two datasets. 895 

Limited lidar coverage extends to c. 500 m inland along much of the Kaikōura coastline and accounts for c. 30% of the study 

area included in this analysis. We find a strong one-to-one correlation between the two datasets (Figure A3). While local 

irregularities in the LINZ 8 m DEM (LINZ, 2021a) may limit the usefulness of this dataset on a site-specific scale, on the 

regional scale of this analysis, the LINZ 8 m DEM and its derivations are largely characteristic of actual pre-earthquake terrain 

conditions.  900 
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Figure A3. Relationship between LINZ 8 m DEM (LINZ, 2021a) and a 2012 Lidar DEM (LINZ, 2023). 
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Appendix B – Additional Results 

Full Model 905 

In addition to comparative models of inland and coastal hillslopes, two models were trained using 80% of both inland and 

coastal data. The first model matches the inland and coastal models included in the main text. The second model includes an 

additional binary coast feature where inland hillslopes are assigned a value of 0 and coastal hillslopes a value of 1. Both models 

performed well and were predictive of both inland and coastal landslides in the remaining 20% of data used for testing (Figure 

B1). Model coefficients from the full model were generally similar to inland and coastal models (Figure B2). 910 

 
Figure B1: Logistic regression model performance from models trained on each geology type (GeolCode) in both coastal and inland 
hillslopes. The model on the left includes a binary coast feature where grid cells within 1 km of the coast are assigned a value of 1 
and grid cells within 1 to 3 km of the coast are assigned a value of 0. Model performance is measured by Area Under the Receiver 
Operator Characteristic Curve (AUC). Each boxplot shows the results of 10-fold cross validation using 80% of the available target 915 
dataset. Yellow stars represent model performance when applied to the 20% of data withheld from training. 
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Figure B2: Model coefficients for models trained on each GeolCode. Points with associated error bars represent the mean and 
standard deviation (SD) of the coefficient across 10-cross validations. Colour bars indicate which feature the point is associated with 
and the model data used to train the model.  In cases where no error bar is present, the standard deviation is less than 0.1. Negative 920 
coefficients result in a higher weight for small values while positive coefficients result in a higher weight for high values. For example, 
a negative coefficient for fault distance suggests that there is a higher landslide susceptibility closer to faults while a positive 
coefficient for slope suggests that a greater slope angle has higher landslide susceptibility. All features are standardised prior to 
model training allowing for the direct comparison of coefficients within the same model. 
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Coast vs Inland Features and Landslides 925 

In addition to the analysis presented in the main text we also examined the distribution of predictive features within inland and 

coastal slopes greater than 15° (Figure B3).  

 
Figure B3: Distribution of predictive features in all Kaikōura inland and coastal slopes greater than 15°. Inland slopes are 
represented by orange lines and coastal slopes are represented by blue lines. 930 

 

We supplement this analysis by examining the distribution of predictive features within landslide source areas in inland and 

coastal slopes greater than 15° (Figure B4). 
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 935 
Figure B4: Distribution of predictive features within Kaikōura earthquake induced landslide source areas on inland and coastal 
slopes greater than 15°. Inland slopes are represented by orange lines and coastal slopes are represented by blue lines. 

 

On average, coastal landslides (within 1 km of the coast) are c. 10% larger than inland landslides (between 1 and 3 km from 

the coast) on slopes > 15° with PGA > 0.2 g (when excluding the Seafront landslide and landslides smaller than 50 m2; Table 940 

B1). Given the same filters, there are c. 30% more landslides in coastal hillslopes (Table B1) which make up c. 1/3 of the total 

study area. 

 

Table B1: Mean landslide area in inland and coastal hillslopes where slopes > 15°, PGA > 0.2g. Inland estimates exclude the Seafront 
landslide. 945 

Slopes > 15°  Landslide Count Mean Area (m2) Standard Deviation (m2) 

Inland (1 to 3 km) 1099 783 2279 

Coast (0 to 1 km) 1621 866 2517 

 



38 
 

Additional Observations 

Curvature – Curvature was well distributed and few differences between inland and coastal hillslopes were observed (Figure 

B3 and B4). 

 950 

Aspect (Northness and Eastness) – Ridgelines and valleys generally trend north-east to south-west in the Kaikōura region 

(Figure B3) and landslide source areas on both inland and coastal hillslopes occur disproportionately on south to south-east 

facing hillslopes (Figure B4). Within 1 km of the coastline, a larger proportion of south-east facing hillslopes were observed 

that generally correlated well with landslide density trends across geology types. 

 955 

Elevation – A steady rise in elevation is observed with distance from the Kaikōura coastline. This rise in elevation, however, 

does not appear to directly correlate with the landslide density trend that is observed with distance from the coastline. 
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