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Abstract.  

Soil degradation is a critical threat to agriculture and food security around the world. Understanding the processes that drive 

soil erosion is necessary to support sustainable management practices and to reduce eutrophication of water systems from 10 

fertilizer runoff. The erosivity of precipitation is a primary control on the rate of soil erosion, but to calculate erosivity high 

frequency precipitation data is required. Prior global scale analysis has almost exclusively used ground-based rainfall gauges 

to calculate erosivity, but the advent of high frequency satellite rainfall data provides an opportunity to estimate erosivity using 

globally consistent gridded satellite rainfall. In this study, I have tested the use of GPM IMERG rainfall data to calculate global 

rainfall erosivity. I have tested three different approaches to assess whether simplification of IMERG data allows for robust 15 

calculation of erosivity, finding that the highest frequency 30-minute data is needed to best replicate gauge-based estimates. I 

also find that in areas where ground-based gauges are sparse, there is more disparity between the IMERG derived estimates 

and the ground-based results, suggesting that IMERG may allow for improved erosivity estimates in data-poor areas. The 

global extent and accessibility of IMERG data allows for regular calculation of erosivity on a month-to-month timeframe, 

permitting improved dynamic characterisation of rainfall erosivity across the world in near-real time. These results demonstrate 20 

the value of satellite data to assess the impact of rainfall on soil erosion and may benefit practitioners of sustainable land 

management planning. 

1 Introduction 

Topsoil is a key component of the Earth’s critical zone, acting to sequester carbon, filter pollutants from water, and supporting 

growth of plants. Agricultural topsoil in particular is the fundamental basis upon which food security relies, and sustainable 25 

management of topsoil is one of the defined UN sustainable development goals [UN, 2015]. However, land management 

practices around the world have led to significant degradation of topsoils, with global analyses suggesting that the “majority 

of soils are in only fair, poor, or very poor condition” [FAO, 2015]. Soil degradation threatens communities around the world 

with food insecurity in the next decades, alongside limits to water supply for irrigation [Hanjra & Qureshi, 2010]. Across large 

parts of global agricultural zones, the rate of topsoil loss far exceeds the replenishment rate [FAO, 2015]. Soil loss costs 30 
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hundreds of billions of dollars each year [GSP, 2017] and given that it may lead to significant declines in productive agricultural 

land area by 2050, preservation of topsoil is essential to ensure a sustainable future [Steffen et al. 2015]. 

Degradation of soil is driven by many factors including cover by impermeable materials, physical compaction, wind and rain-

driven erosion, salinization and chemical degradation (Ferreria et al. 2018). Of these, liquid precipitation is a major driver of 

soil erosion. Rainfall washes off loose soil and determining the erosivity of rainfall is a major component of soil loss 35 

calculations. The widely used Revised Universal Soil Loss equation [Renard, 1997, USDA, 2013] incorporates rainfall 

erosivity as the main dynamic factor determining soil loss. Calculating and measuring rainfall erosivity is therefore imperative 

to support models and observations of soil degradation. Some global scale analyses have relied upon ground-based rainfall 

gauges to provide observations of rainfall intensity and duration [Panagos 2015, Borelli et al. 2016, Yin et al. 2017], including 

the widely used Global Rainfall Erosivity Database (GloREDa, Panagos et al. 2017), but there is major geographic variability 40 

in the availability of rainfall gauge data around the world [Panagos et al. 2017], and gauge sparsity is particularly pronounced 

for gauges that record at sufficient temporal frequency to characterise erosivity.  

Gridded rainfall data represents an alternative to interpolating gauge data, with several recent studies employing national or 

global scale gridded precipitation data. Padulano and coauthors [2021] use ERA-5 reanalysis rainfall data and European 

Gridded rainfall data (E-OBS) to calculate erosivity over Italy, Matthews et al. [2022] tested other datasets including EMO-5 45 

and UERRA MESCAN-SURFEX data across Europe, and Raj and coauthors [2021] used the Indian IMDAA data to estimate 

erosivity across India. Reanalysis data was also employed globally by Bezak and coauthors [2020], and on the Tibetan plateau 

by Chen et al. [2022]. These studies have demonstrated the value of a more consistent gridded dataset, which can help limit 

errors from interpolation of widely spaced gauges. However, many of the global-scale reanalysis datasets are only available at 

hourly (e.g. ERA-5) or lower frequency, creating potential issues for erosivity estimation which is benefits from high-50 

frequency rainfall data. 

Recent studies have utilized gridded satellite rainfall data to provide global spatially consistent estimates of erosivity, offering 

an alternative to other gridded data to help with filling in gaps in areas that are sparse in terms of ground-based gauges. Bezak 

and coauthors [2022] have used data from the National Oceanic and Atmospheric Administration (NOAA) Climate Data 

Record (CDR) Climate Prediction Center MORPHing (CMORPH) dataset, which offers global scale data at a 30-minute 55 

resolution. Li et al. [2017] utilized the Tropical Rainfall Measurement Mission (TRMM) data to estimate erosion, but this data 

is only available at 3-hour resolution, which is not widely considered to be sufficiently high frequency to reliably estimate 

erosivity.  

In this study, I use the 30-minute data from the NASA IMERG (Integrated Multi-satellitE Retrievals for GPM (Global 

Precipitation Mission)) dataset, which covers the time period from 2000 until present, to estimate rainfall erosivity at a global 60 

scale. I have also tested several approaches to calculate erosivity from rainfall-time series, and the comparison with the ground 

based GloREDa dataset [Panagos et al. 2017] provide insight into the value of high temporal frequency rainfall data for 

erosivity estimation. This application of IMERG data provides an additional method for calculating erosivity at a global scale 

and allows for dynamic estimates of erosivity at various time intervals, depending on the calculation method chosen.  
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2 Methods 

2.1 Rainfall Data 

In this study, three methods employed in previous studies are employed to calculate rainfall erosivity using the IMERG rainfall 

dataset. IMERG version 6B is the latest version of the long-running IMERG rainfall dataset [Huffman et al. 2019]. IMERG 

utilizes observations from several different satellites to estimate precipitation across most of the surface of Earth. The IMERG 70 

algorithm uses microwave observations from the Global Precipitation Monitoring (GPM) satellite (2014-present) and also the 

earlier Tropical Rainfall Measuring Mission (TRMM) satellite (2000-2015). Microwave observations are included from a 

range of other satellites, and a series of merging methods are used to interpolate between these observations [Joyce et al. 2011, 

Huffman et al. 2011, Hong et al. 2004], including the CMORPH-KF algorithm [Joyce et al. 2011]. Infra-red observations are 

also used to support the interpolation of results [Huffman et al. 2019]. While a near-real time product is available, the research 75 

grade IMERG ‘final’ uses data from the Global Precipitation Climatology Center (GPCC) ground-based gauges to correct the 

initial ‘IMERG-Late’ results. In this study, I use the ‘final’ IMERG v06B product, at three different temporal resolutions: 

monthly, 3-hourly, and the highest frequency 30-minute product. All three of these are available from 2000-present, but since 

the algorithm processing starts after January 1st, 2000, I have started the analysis from January 1st, 2001-December 31st, 2021. 

IMERG has a grid cell of 0.1 decimal degrees (approximately 9km at the equator) and so all erosivity outputs maintain this 80 

grid cell size. 

IMERG v06B does distinguish between liquid and non-liquid precipitation (rain and snow), and I use the estimate of liquid 

precipitation proportion to calculate only the liquid precipitation. IMERG-Final data includes a specific field that estimates the 

fraction of liquid precipitation in each grid cell for each data point. The liquid precipitation was therefore calculated by 

multiplying the total precipitation field by the fraction of liquid precipitation field. Although across most the latitude range 85 

studied here (60 degrees N – 60 degrees S) rainfall, rather than snow, is the dominant precipitation type, but since rainfall is 

the key type of precipitation that determines erosion of surface material I suggest it is important to perform this correction to 

exclude non-liquid precipitation when calculating rainfall totals.  

 

2.2 Calculating Rainfall Erosivity 90 

Rainfall erosivity depends on both the intensity and duration of rainfall in a given location. The United States Department of 

Agriculture (USDA) has developed the Revised Universal Soil Loss Equation (RUSLE) which utilizes rainfall erosivity as a 

key factor [USDA, 2013]. The relationships developed for RUSLE have been widely tested and are considered the standard 

set of equations to determine erosivity from ground-based data. The most recently revised version of the RUSLE model 

[USDA, 2013] converts rainfall into erosivity using the following series of steps. First, the rainfall time-series is divided into 95 

specific storm events, each separated by periods of 6 hours or greater where rainfall was less than 1.27mm. Rainfall events 

with less total rainfall than 12.7mm (0.5 in) are excluded from calculations [Brown and Foster 1987]; this was initially to 
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reduce computational load, but studies have shown that rainfall events with lower totals than this do not significantly contribute 

to overall erosivity.  

Once the rainfall events have been isolated, the specific kinetic energy 𝑒𝑘 (units of MJ ha-1 mm-1) is calculated. Different 100 

studies have used a variety of coefficients for this equation; in this study, I have used the current USDA RUSLE 2 model 

coefficients [USDA, 2013]. I have also tested the older RUSLE 1 coefficients for comparison with older studies for one of the 

rainfall erosivity calculation approaches, with limited differences observed. The RUSLE 2 equation is as follows: 

𝑒𝑘 = 0.29. [1 − 0.72 . 𝑒(−0.082 .  𝐼)]   (Equation 1) 

Where 𝐼 is rainfall intensity in mm.h-1. To calculate erosivity, first the total kinetic energy of the rainfall event is calculated: 105 

𝐸 =  𝑒𝑘 . 𝐼. ∆𝑡     (Equation 2) 

Where 𝐸 is the total kinetic energy and ∆𝑡 is the time interval in hours. The erosivity is then calculated: 

𝑅 =  
∑ 𝐸.𝐼30𝑛

𝑁
     (Equation 3) 

Where 𝐼30 is the maximum 30-minute rainfall intensity of rainfall event n, which occurred over a time span of N years. R 

therefore has units of MJ.mm ha-1 h-1 yr-1. 110 

Using these equations, and the separation of the rainfall record into storms as described above, I have calculated R from the 

30-minute IMERG rainfall record from January 2001 until December 2021. This provides a single value for R in the 3600x1800 

cells of the IMERG record, which I have then reduced to only global land areas between 60 degrees N and 60 degrees S, to 

exclude areas where the IMERG record is incomplete. Additionally, I have calculated the monthly values for R for the year 

2020, to demonstrate the applicability of this method to estimate erosivity dynamically. 115 

This approach has been successfully and widely used with ground-based gauge analysis of erosivity using the RUSLE model 

since 1987, but alternative approaches have also been developed. Earlier iterations of satellite rainfall products from the TRMM 

satellite constellation were available only at a 3-hour time interval, which precluded calculation of 30-minute intensity. Prior 

studies utilizing TRMM products to calculate erosivity have used two other methods; the Modified Fournier Index (MFI), and 

by considering each 3-hourly rainfall window as an individual storm [Vrieling et al. 2010]. Because analysing 20 years of 30-120 

minute IMERG data is computationally intensive (over 9TB of data are analysed in total), I have also tested these two methods 

using global IMERG data to assess compare their performance would warrant the use of these simplified approaches. I have 

also used the 30-minute IMERG data to calculate R according to equations 1-3 above. The details for the MFI and 3-hour 

storm approaches are described next.  

The Fournier Index [Fournier, 1960] was an early model to describe rainfall erosivity that relied on only low-frequency 125 

recording of rainfall. It is defined as: 

𝐹𝐼 =  
𝑝2

𝑃
      (Equation 4) 

Where p is the average rainfall of the month with the highest rainfall, and P is the average annual rainfall. Arnoldus [1977] 

revised this index to create the Modified Fournier Index (MFI), defined as follows: 

𝑀𝐹𝐼 =  
1

𝑃
 ∑ 𝑝𝑖

212
𝑖=1     (Equation 5) 130 
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Where 𝑝𝑖  is the average rainfall in month i. Arnoldus [1977] demonstrated significantly better agreement between short-term 

rainfall observations of erosivity and the MFI values than FI values, and it has been used by other authors since [Renard and 

Freimund, 1994], including with satellite rainfall data [Vrieling et al. 2010]. The units for both of these indices are mm 

(mm2/mm), and prior studies have demonstrated it is most effective when applied to homogenous climatic regions [Arnoldus 

1977, Renard and Freimund, 1994]. To convert between MFI and R values, various strategies have been applied, with different 135 

coefficients derived for various climatic zones. Disagreement remains in the literature surrounding the appropriate equations 

to use, and which exact units were used by Arnoldus [1977] (see Majhi et al. [2022], Chen & Bezak [2022], Mahji et al. [2021], 

Renard and Freimund [1994]). In this study I have not converted the raw MFI values, since the intention is to contrast the 

relative correlations with the R factor estimates from higher frequency rainfall data and ground-based analyses. Given the 

relative limitations to the MFI calculation (see below), the alternative methods presented here may offer more promising 140 

solutions for future studies. Nevertheless, MFI values are widely used and still maintain some advantages, in particular given 

their relatively low computational level and applicability to more temporally sparse data. I have calculated MFI values both 

for the entire IMERG record, as well as the interannual variability.  

Vrieling and coauthors [2010] tested an alternative method to calculate R using 3-hour satellite rainfall data, prior to the advent 

of the 30-minute IMERG rainfall data. The specific kinetic energy of rainfall is defined as in equation 1 (although Vrieling et 145 

al. [2010] use different coefficients). Because of the lower temporal resolution of the 3-hour data, under this approach it is not 

considered justified to define the start and end of a storm event in the rainfall records. As such, each 3-hour window is 

considered as a storm event, and the kinetic energy for each 3-hour window is calculated as such: 

𝐸3ℎ =  𝑒𝑘  × 3𝐼    (Equation 6) 

With I meaning the rainfall intensity, in mm.h-1. To calculate R according to equation 3, the maximum 30-minute intensity of 150 

the storm is required, but since that information is unavailable with the 3-hourly data, Vrieling et al. [2010] used the average 

intensity of the 3-hour rainfall period as a multiplier. However, with the 30-minute IMERG data, I am able to calculate the 

maximum in each 3-hour window, so in this estimate, R is defined as: 

𝑅 =  ∑ 𝐸3ℎ𝑗 × 𝐼30𝑗
𝑁
𝑗=1    (Equation 7) 

In equation 7, j represents the jth storm, from 1-N. As with the 30-minute version, the units are: MJ.mm ha-1 h-1 yr-1, and as 155 

such these estimates are directly comparable with those of the 30-minute estimates, as well as ground-based estimates. Since 

several published estimates for the coefficients for specific kinetic energy are available, I have tested the RUSLE 2, RUSLE 

1, and Vrieling et al [2010] coefficients for this estimate of R. This is because the lower computational requirement of this 

estimate allows for testing of multiple coefficients. These are discussed below. 

 160 

2.3 Ground-based comparison 

Rainfall erosivity analysis has typically been conducted at a local or regional scale, but fortunately recent work by Panagos 

and coauthors [2017] derived the first global scale erosivity estimate, the Global Erosivity Database (GloREDa). This model 

uses 3625 ground-based stations, with rainfall records averaging 17 years, to calculate a global estimate of erosivity based on 
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the equations described above (equations 1, 2 and 3) and using a Gaussian regression model to interpolate between stations. 165 

The density of stations significantly varies, with 48% in Europe, and only 5% in South America and Africa. I have used the 

GloREDa data as an independent comparison for the IMERG-derived erosivity estimates for this study. The GloREDa 

estimates are available at a higher spatial resolution (30 arc-seconds) than the IMERG derived estimates, so I have 

downsampled the GloREDa data to the native IMERG resolution (0.1 degrees) using a bilinear interpolation method. This 

avoids creating additional data from the IMERG-based approaches. I compare the results of the IMERG and GloREDa 170 

estimates both at a cell-by-cell scale but also in terms of overall statistics, including mean, median and standard deviation 

values. 

 

3 Results 

3.1 30 Minute Erosivity 175 

The 20-year average erosivity values estimated using IMERG 30-minute rainfall data are shown in Figure 1, part A. The global 

map highlights critical hotspots for rainfall erosivity, as well as areas where low rainfall levels lead to very low erosivity. 

Significant areas where erosivity is elevated include the areas of Central America and the Northern part of South America, the 

Himalayas (with particularly high rates in the Indus-Yarlung Suture Zone at the Eastern Himalayan Syntaxis), the Indonesian 

Archipelago and Papua New Guinea, and Bangladesh. Low erosivity values are estimated for much of the global desert regions, 180 

with a broad belt of low erosivity spreading from the Western Sahara, across the Arabian Peninsula, through into Southern 

Siberia. An interesting emergent trend is for very high erosivity values in some coastal areas, including the Sub-Andean coast 

of Colombia; the Pacific North-West of the United States and Canada; the coasts of Guinea-Bissau, Guinea and Sierra Leone; 

the Western Ghats of India; and much of the Bangladeshi-Myanmar coast. Many of these coastal zones are impacted by 

infrequent but extreme tropical storm rainfall events, and it is possible that these contribute to the high erosivity values 185 

calculated in these areas. 

 

 

3.2 Alternative Erosivity Estimates from IMERG 

The IMERG-derived erosivity estimates calculated for the 3-hour and MFI storm approaches are shown in parts B and C of 190 

Figure 1. While the overall global patterns are broadly similar to those produced by the 30-minute version (Figure 1A), 

including the trend of high erosivity values observed in many coastal areas, the absolute values differ quite significantly. While 

the MFI values (Figure 1C) are not directly comparable to the R values calculated via the other metrics, prior studies have 

suggested a non-linear scaling relationship with exponents of ~1.5 [Arnoldus, 1977], the large spread of values observed when 

comparing cell-by-cell values for the MFI and 30-minute R values (Figure 2A) do not support a single, consistent scaling 195 

relation. Instead, this likely supports a scaling relationship dependent on local climatic conditions, as has been emphasized by 

other authors [Smithen and Schulze 1982, Renard and Freimund 1994].  
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The values obtained with the 3-hour storm model (Figure 1B) are directly comparable to the 30-minute version since they have 

the same units. As with the MFI values, the overall patterns that emerge globally are similar, but once again there are 

differences in absolute values. The Pearson correlation coefficient of the cell-by-cell values of the 30-minute and 3-hour 200 

estimates is high (R2 = 0.923), but this is not a perfect correlation, nor an exactly linear relationship (Figure 2B). Particularly 

at high erosivity values, the estimates diverge to a greater degree, with the 30-minute model generally producing higher values. 

The linear estimate of the best-fit line between the two models is has a scaling relationship (slope) of 1.8, implying the 30-min 

versions are markedly higher. Although the 3-hour rainfall approach includes all 3-hour windows, rather than excluding smaller 

rainfall events (as described in the methodology above), the 30-minute approach captures rainfall events with larger short-term 205 

rainfall intensity, which will result in larger erosivity estimates since the scaling between rainfall intensity and erosivity is non-

linear.    

 

3.3 Comparison with Ground-Based Data 

I have compared the results from the three different IMERG-based estimates of erosivity with the ground-based observation 210 

estimates from GloREDa [Panagos et al. 2017]. Since the IMERG analyses are not applied above 60 degrees N, the 

intercomparison is only for the IMERG region, although GloREDa covers the entirety of the Northern Hemisphere. Maps of 

the ratio of erosivity estimates derived from the 30-minute IMERG data, the 3-hour IMERG data, and the MFI estimate are 

shown in Figure 3 (section A, B, and C respectively). Note that the values shown for the 30-minute and 3-hour data are directly 

comparable to the GloREDa data (identical units), but the MFI estimate represents a different unit, and so Figure 3C is only 215 

appropriate to assess spatial patterns in the ratios, rather than absolute values.  

Across all three IMERG methods, similar patterns emerge. There is a strong degree of agreement between GloREDa and the 

30-minute and 3-hour IMERG estimates across much of Europe and Northern Asia, but much more marked differences 

elsewhere. In particular, GloREDa shows higher values across the Sahara, Central Asian Deserts, and the North American 

West. IMERG-estimates do however show clearly higher estimates in the immediate vicinity of extremely dry areas where no 220 

rainfall is recorded, in parts of the Northern Sahara and Arabian Desert. In wetter areas, differences between IMERG and 

GloREDa also emerge; significantly greater values in erosivity from IMERG are observed in the several coastal areas, 

including the Western Ghats of India, the coast of Bangladesh, Myanmar, and Thailand, and the Pacific coasts of Colombia 

and British Columbia in Canada.  

 225 

To simplify the comparison between each of the datasets, I have plotted the probability density functions of the cell values for 

each in Figure 4. Of the IMERG-based assessments, the 30-minute estimate most closely matches that of GloREDa. Even if 

the MFI values are normalized by the maximum values (Supplementary Figure 1), they still do not provide a close 

approximation of the GloREDa values, with a much lower variability in the values. In Figure 4, both the 30-minute and 3-hour 

estimates both show a similar peak around the modal values as the GloREDa, but the second peak in values is somewhat lower 230 

in both IMERG-based estimates than GloREDa. The 30-minute output also shows a longer tailed distribution, with a greater 
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proportion of values at very low erosivity and some at higher erosivity than GloREDa. In essence, the 30-minute model 

produces more low-erosivity estimates than GloREDa, and while the most commonly-observed erosivity values (between 200-

600 MJ.mm ha-1 h-1 yr-1) are broadly similar to GloREDa, there is a larger degree of disagreement at higher erosivity values. I 

discuss the possible reasons for discrepancy in section 4, below. It is notable also that there is a large degree of difference in 235 

the cell-by-cell values even within different continents (Supplementary Figure 2), when they are compared against one another; 

there is significant dispersion between all of the IMERG-derived estimates and the GloREDa values. The Pearson R-squared 

values for each are shown in Table 1, while continent-by-continent values for mean, median and standard deviation for the 30-

minute IMERG data and GloREDa values are shown in Table 2.  

Comparison pair Pearson R-

squared value 

Slope 

GloREDa – 30-minute IMERG 0.498 0.56 

GloREDa – 3hr IMERG 0.633 0.34 

GloREDa - MFI 0.656 0.02 

Table 1: Pearson R-squared values for the comparison between GloREDa and IMERG-based estimates for erosivity.  240 

 

Continent 30-min 

IMERG mean 

30-min 

IMERG 

median 

30-min 

IMERG 

Standard 

deviation 

GloREDa 

mean 

GloREDa 

median 

GloREDa 

Standard 

deviation 

N. America 839.2 361.9 1358.9 1676.3 744.8 2072.3 

S. America 3367.1 2656.4 3138.4 5895.4 6266.3 3361.5 

Europe 484.1 350.8 525.6 550.5 402.9 414.4 

Asia 1313.6 153.5 2978.1 1856.7 398.6 2927.3 

Africa 1231.5 708.3 1487.2 3356.8 2619.3 2977.6 

Australia 659.5 215.7 1099.4 1533.9 950.7 1596.2 

Oceania 4802.1 2375.7 5127.0 4100.8 2254.1 4539.9 

Table 2: Statistics of the erosivity estimates for each continent for the GloREDa and 30-minute IMERG data. Units for all 

values are MJ.mm ha-1 h-1 yr-1 

 

Since GloREDa is an interpolated dataset based on gauge-derived estimates of erosivity, the specific values in a given grid 245 

cell will not always represent the exact gauge-derived value for a given pixel. To account for this, and to compare the IMERG-

derived values with those of ground-based gauges used to calibrate GloREDa. The Rainfall Erosivity Database on the European 

Scale (REDES, Panagos et al. 2015) is an openly available dataset of gauge-derived estimates of erosivity. In Figure 5, the 

values from the IMERG-based estimates for Europe are shown in comparison with the values from the REDES dataset. 

Spatially, the IMERG based analysis performs well in several European countries, including Greece, the Iberian Peninsula, 250 
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East Germany, France, Switzerland and parts of Italy. IMERG overestimates in comparison with gauges in the Western parts 

of the United Kingdom and Ireland, and to some extent in Western Germany and the low Countries, while underestimating in 

Hungary and parts of Bulgaria and Romania. Given that the gauges that make up REDES are not uniformly distributed, a 

statistical comparison of the two datasets will be dominated by countries with higher gauge density (like Belgium, Italy, and 

Slovakia). The slope of the relationship between the two datasets is 0.26, while the slope of the relationship with GloREDa is 255 

0.5 – although given that this dataset is used to calibrate GloREDa, this is not unexpected. Although the spatial patterns in 

Italy are reproduced by the IMERG data, the values obtained are in some cases an underestimation across much of Italy, which 

has a very high number of gauges represented in the REDES dataset. IMERG and other satellite rainfall datasets have lower 

accuracy in topographically complex settings, and worse performance of IMERG in capturing intense rainfall in the 

mountainous parts of Italy and the Carpathians may be one of the reasons for the underestimation of the IMERG-based erosivity 260 

estimates, although further research and comparison with ground-based gauges is certainly warranted. Recent research has 

shown that satellite rainfall datasets, including IMERG, may consistently underestimate the total amounts of heavy and storm 

rainfall [Marc et al. 2022, Chen et al. 2023] 

 

 265 

3.4 Monthly Estimates 

The month-by-month estimates for erosivity for the year 2020 using the 30-minute data are shown in Figure 6, separated by 

continent. The violin plots in Figure 6A show the range of the data, as well as the mean (red bars) and median (black bars). 

Given the large size of each continent, there is a significant degree of variability across all continents; in Europe and Australia 

show lower mean and median values across the year than the other continents, but across the entire dataset there is enormous 270 

variability in each month, and only limited variability is observed from month-to-month as a result of seasonal rainfall 

variability.  

 

Since the scale of each continent is so large that interannual variability may be difficult to observe, I have subset the monthly 

data to areas where cropland is present. Using the cropland data of Ramankutty et al. [2008], I have selected only the cells 275 

from each continent where the cropland proportion exceeds 80% (Figure 7). Much more significant variability is observed on 

a month-to-month basis, with larger peaks in erosivity observed in Africa and Asia in June-July-August, in South America 

from January to March, and smaller peaks in erosivity in North America and Europe. Note that there is insufficient data in 

Oceania with cropland higher than 80% to show statistics. By subsetting to areas with significant cropland, I highlight the 

impact of erosivity on agricultural areas and the months of the year where erosivity is of greater concern for farmers and 280 

planners across those continents.  

 

4 Discussion 

4.1 Divergence from Ground-Based Data 
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It is clear that although there are some areas, particularly in Northern Europe, where the 30-minute IMERG-based estimates 285 

and those of GloREDa broadly agree, there are large areas of the world where the ratio of the two estimates remains well under 

1:1. Moreover, there are a range of other areas – in particular several coastal areas, where the IMERG-based estimates are 

much larger than those of GloREDa. It is likely that multiple systematic effects lead to these differences, and it is informative 

to examine the divergence between the two estimates in more detail to assess the robustness of the IMERG-derived estimates 

of erosivity.  290 

While the IMERG-based estimates use the coefficients for erosivity defined by the USDA [2013] for the updated version of 

RUSLE, GloREDa uses the earlier coefficients. I have calculated the 3-hour erosivity estimate for both equations to test 

whether this would lead to major systematic differences. The difference in coefficients does not lead to large divergences, and 

the two estimates are extremely highly correlated (Supplementary Figure 3). The updated RUSLE equation gives values that 

are slightly larger than the earlier equation (approximately 1.1x larger). With all else being equal, this would suggest the 30-295 

minute IMERG data should give a value of approximately 1.1 times larger than GloREDa; however, the IMERG results are in 

fact systematically lower (global slope: 0.56). As such, although this might explain some of the dissimilarity between GloREDa 

and the 30-minute IMERG values, it does not explain the overall lower values of the IMERG estimates. Since research has 

demonstrated that the coefficients in RUSLE version 2 better match independent observations of erosivity in contrast to the 

RUSLE version 1 equations [McGregor et al. 1995], I consider it a justified approach to calculate erosivity in this study.  300 

 

There are large regional differences in the ratio of the 30-minute IMERG estimates and the GloREDa values. In Figure 8, I 

have plotted the spread of values for each continent for the two estimates, with the red line indicating the line-of-best fit, and 

the black line indicating the 1:1 line. It is notable that continent where the values most closely fit the 1:1 line is in Europe, 

followed by Asia. Elsewhere, the IMERG estimates are significantly lower. The GloREDa estimates are derived from a global 305 

set of rainfall gauges, but the highest density of gauges by a significant degree is in Europe [Panagos et al. 2017]. The higher 

degree of agreement between the IMERG and GloREDa estimates for erosivity are found in the areas with the highest density 

of gauges – in other words, where the ground-based estimates have the highest degree of calibration and validation. IMERG 

does use the Global Precipitation Climatology Center Gauges to calibrate the satellite-derived estimates [Huffman et al. 2019], 

which has a higher density of gauges in North and South America, Africa, and Southeast Asia, than the gauges used in the 310 

GloREDa analysis [Panagos et al. 2017]. While both IMERG and GloREDa use spatial interpolation techniques, IMERG 

weighs the satellite inputs more heavily in areas where gauge density is lower (like Africa and South America) whereas 

GloREDa does not. Given that the two estimates have better agreement in terms of absolute values where GloREDa has the 

highest gauge density, I suggest that the disagreement elsewhere may be due to the lower amount of available data from 

ground-based sources, whereas the satellite data provides a globally consistent estimate, which may be more robust for 315 

calculating erosivity.  

In several desert areas around the world, including the Atacama and Namib deserts, GloREDa values exceed 100 MJ.mm ha-1 

h-1 yr-1, but given in some of these areas annual rainfall is lower than 10mm, the high values in GloREDa are physically 
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implausible. While some studies have shown IMERG v06 can over-predict rainfall in the Arabian desert (Alsumaiti et al. 

2020), the exclusion of storm events with less than 12.5mm of rainfall in total would also exclude the small systematic error 320 

from satellite overprediction of very low rainfall totals in desert zones from influencing erosivity estimates. This further 

supports the use of IMERG over sparse-gauge based estimates for erosivity. Conversely, IMERG may miss highly local peaks 

in orographic precipitation – one example is the island of Maui in the Hawai’ian island chain, where local maxima in rainfall 

can exceed 5000mm of annual rainfall; however, this is not captured by the coarse IMERG data. As such, the satellite-derived 

estimates may be out-performed by gauge-based estimates where gauge density is very high or able to capture localised 325 

maxima.  

It is important to note that GloREDa is also an interpolated dataset, and as such may have inaccuracies if gauge density is low. 

When directly compared with the REDES gauge-based dataset, the IMERG data reproduces some of the spatial patterns but 

clearly has other limitations. The significant overestimation of erosivity in the coastal Atlantic areas of the UK, Ireland and 

Portugal (Figure 5) supports the analysis of prior work (e.g. Tian and Peters-Lidard 2010) that shows that satellite rainfall 330 

products have larger uncertainties in coastal regions, and as such the use of IMERG-derived results in such areas may not 

provide accurate estimates in these areas.  

As well as continent-by-continent differences, there are other clear zones of divergence between the IMERG and GloREDa 

estimates. As mentioned above, these include several coastal areas in India, Southeast Asia, and the Pacific coastlines of 

Colombia and Canada, where the IMERG estimates exceed those of GloREDa by a significant degree [Figure 3]. Although 335 

these areas may be subject to the coastal biases associated with all satellite rainfall products, these areas are all areas where 

both IMERG (Supplementary Figure 4) and GPCC-gauged rainfall is extremely high [Schneider et al. 2014], and the IMERG-

derived erosivity estimates broadly mirror the spatial patterns observed in the annual gauged rainfall totals. Further research is 

needed to determine the erosivity of rainfall in these areas with lower gauge density to determine whether satellite-based 

estimates can be relied upon.   340 

 

4.2 Limitations of IMERG-based erosivity estimates 

Although IMERG provides a globally consistent estimate of rainfall, limitations remain both with the rainfall data and the 

calculation of erosivity. Since satellite observations of intense rainfall depend upon the satellite overpasses coinciding with the 

time of the local rainfall, it is possible that large, and particularly intense short peaks in rainfall (particularly when associated 345 

with infrequent tropical storms) may be missed by satellite rainfall products [Marc et al. 2022]. Although erosivity of rainfall 

does not scale in a strongly non-linear manner with rainfall intensity, these extreme storms may contribute a large proportion 

of overall annual rainfall in some settings [Khouakhi et al. 2017, Marc et al. 2022], so if these rainfall peaks are missed by the 

satellite observations, then rainfall erosivity may still be underestimated. It is notable that the IMERG-derived results are lower 

than the gauge-derived results in a number of locations and are lower on average in all continents except Oceania (Table 2), 350 

and so underestimation of rainfall events driving erosivity may be a reason for this. Bezak et al. (2022) highlighted that the 

largest 11% of rainfall events contribute 50% of the erosivity, so it is particularly relevant not to miss these very large events. 
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Since IMERG may miss very short-lived rainfall events, it is especially important if rainfall driving erosion is from extremely 

short-lived rainfall events, rather than longer storms. To explore this, I have analysed storm histories from four locations 

around the world; two in areas of concern for soil erosion (Near Wichita, USA, and Lucknow, North India) one in a critical 355 

region of degradation where the IMERG estimate exceeds GloREDa (Central Sierra Leone) and near San Pedro de Atacama, 

in the dry desert of Northern Chile. In Chile, only 3 rainfall events are observed over the entire 2000-2021 interval. In the other 

locations, I tested what proportion of the storm events in each location is formed by the 30-minute period of rainfall and 

compared that to the total storm rainfall. Storms where the most intense short bursts of rainfall make up most of the total 

rainfall are likely to be more underestimated by IMERG in comparison with storms where more consistent rainfall is observed. 360 

In Supplementary Figures 5A-D, I show the fraction of total rainfall in each storm from the 30-minute peak rainfall vs the 

cumulative kinetic energy from rainfall. In Sierra Leone and Lucknow, more than 80% of rainfall kinetic energy is derived 

from storms where the 30-minute interval of peak intensity is less than 50% of total rainfall. In Wichita, the storms are more 

dominated by the short term intense rainfall – 80% of kinetic energy is derived from storms where the maximum 30-minute 

rainfall forms up to 80% of total storm rainfall. I suggest that in locations like Wichita, IMERG may be more subject to missing 365 

short-term bursts of rainfall. This may explain why IMERG is lower than GloREDa in Wichita and the US South East. 

 

 In addition, the spatial resolution of IMERG data is large (0.1 decimal degrees), and so observations of local variability in 

rainfall totals as a result of orographic boundaries or other microclimatic differences will be limited by resolution. However, 

agricultural zones with relatively low topographic variability are more likely to be represented fairly, and these zones may be 370 

more critical for the socio-economic impacts of soil degradation by rainfall erosion. I have compared the 30-minute IMERG-

derived erosivity estimates with the ground-based estimates from GloREDa and plotted the ratio of the two estimates in 

comparison with the maximum topographic slope calculated in each grid cell (Supplementary Figure 6). The maximum slope 

is calculated from the NASA SRTM data [Farr et al. 2007]. There is not a significant change in the difference between IMERG 

and GloREDa as slope increases, which suggests that slope does not significantly control the differences between satellite and 375 

ground-based estimates. 

As noted above, there are limitations with the simplifications used to generate the MFI and 3-hour erosivity estimates. The 

MFI value is only appropriately applied to climatically homogenous zones, which suggests a global MFI value is unlikely to 

be appropriate; moreover, the conversion from MFI to R-factor is neither consistent nor agreed upon in the published literature. 

Despite the lower computational requirements to calculate MFI, I suggest that the limitations associated with it mean that the 380 

30-minute version should be considered superior and used wherever data and computational capacity is available. While there 

is a good degree of agreement between the 3-hour estimate and GloREDa, prior research has shown that the 3-hour 

simplification of TRMM-era satellite rainfall data may reduce the accuracy of the results [Vrieling et al. 2010], and the 30-

minute data is the only data source that can provide the appropriate temporal resolution [Bezak et al. 2022]. 

Other satellite-derived rainfall products are available, including GSMaP [Kubota et al. 2007, 2020] and the hybrid MSWEP 385 

[Beck et al. 2017], but since GSMaP is available only at a 1hr temporal resolution and MSWEP at 3hr maximum temporal 
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resolution, neither of these products are appropriate to calculate rainfall erosivity. Bezak and coauthors [2022] have used 

CMORPH to calculate rainfall erosivity globally, since it is available at 30-minute temporal resolution. Both IMERG and 

CMORPH use passive microwave observations which is spatially propagated before infra-red precipitation observations are 

incorporated. Both algorithms use a variety of methods to interpolate observations, and in fact IMERG uses the CMORPH 390 

Kalman filter Lagrangian time interpolation scheme [Joyce et al. 2004, 2011]. The two products perform comparably when 

compared with observations [Alsumaiti et al. 2020, Llauca et al. 2021, Mekonnen et al. 2021, Montes et al. 2021, Nwachukwu 

et al. 2020], although several studies have suggested the version 6 of IMERG performs better than CMORPH across a diverse 

set of climatological regimes [Llauca et al. 2021, Mekonnen et al. 2021, Montes et al. 2021, Tang et al. 2020]. It is not my 

intention in this study to adjudicate which of the two satellite products performs better, but instead to demonstrate the use of 395 

IMERG data to estimate erosivity in the same manner as Bezak and coauthors [2022] did with CMORPH.  

 

4.3 Erosivity in Arable Zones 

The implications of these erosivity estimates for geomorphological processes vary depending on the location. In steep, 

mountainous regions, the dominant process of erosion is bedrock landsliding [e.g., Hovius et al. 1997, Marc et al. 2019], while 400 

the impact of overland flow and rain-splash on erosion of surficial materials contributes a smaller proportion of overall 

erosional fluxes. RUSLE-based approaches do not consider bedrock landsliding, and as a result these erosivity estimates are 

not as relevant in steep, upland areas. The extremely high erosivity values observed in, for example, Papua New Guinea and 

the Eastern Himalayan Syntaxis may therefore not be directly correlated with overall erosional fluxes from these regions where 

bedrock landsliding is more dominant [Hovius and Stark, 2006].  405 

Soil loss by purely rain-driven processes is highly relevant in areas of agricultural cultivation, in part due to broadly lower 

topographic steepness but also because of the potential impact of soil degradation on agricultural productivity. As such, I have 

compared the 30-minute IMERG erosivity estimates with datasets on the location of cropland and pastures around the world 

[Ramankutty et al. 2008] to assess whether highly agriculturally productive areas experience high erosivity values, or not.  

 410 

At low crop densities, there is a somewhat higher variability in erosivity values than at higher crop densities (Figure 9). This 

is especially pronounced in Asia and North America. At higher crop densities, erosivity values are more consistent. The mean 

value of erosivity remains relatively consistent across all crop densities, with the exception of Europe where at moderate-to-

high crop density, erosivity declines. This suggests that the location of cropland is subject to lower rainfall erosivity in Europe, 

but not elsewhere. Ramankutty et al. [2008] also generated estimates of pastureland, which is also a critical area for soil loss 415 

as a result of erosion. I have compared pasture area with the 30-minute IMERG estimate of erosivity (Supplementary Figure 

7). Unlike cropland, in both North America and Asia as the proportion of pastureland increases, the erosivity decreases. This 

suggests that pastureland may be less vulnerable to highly erosive rainfall than cropland across these two continents. Although 

these are very spatially coarse assessments, by cross-comparing where highly erosive rain falls with agricultural zones it is 

possible to highlight areas of concern for soil degradation. It is notable that the variability in erosivity is significantly greater 420 
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across continents when agricultural zones are subset (compare Figure 6 and Figure 7 for South America and Africa, for 

example) which likely reflects the seasonality of rainfall in agricultural areas. Highly seasonal rainfall patterns would naturally 

drive variability in agricultural productivity, but also erosivity; planning for growing season and erosion season must therefore 

be considered side-by-side. However, it is also critical to note that soil erosion is not entirely dependent on rainfall erosivity, 

and to fully contrast areas of concern for erosion and agricultural areas, further research will need to incorporate the other 425 

parameters in the RUSLE equation including topography, land cover, and land management practices.  

While the probability density function of the 30-minute IMERG erosivity and GloREDa erosivity estimates (Figure 4) show a 

broadly similar 2-peak distribution (albeit with the higher erosivity peak somewhat in the GloREDa estimates offset to higher 

values), when I limit the data to only the areas with cropland greater than 80% (Supplementary Figure 8) or pasture greater 

than 80% (Supplementary Figure 9), there is a significantly larger proportion of values in the GloREDa estimates at higher 430 

erosivity values. For areas with 80% or more cropland, the lower peak in erosivity values overlaps for the IMERG and 

GloREDa data (although mean values are higher for GloREDa, and the modal value is found in the second peak, rather than 

the first as in the IMERG results), but for areas with 80% or more pastureland, the entire density function of GloREDa results 

is significantly higher than that of the IMERG-derived erosivity. This comparison shows that the satellite estimates of erosivity 

suggest that global cropland and pasture areas are subject to lower rainfall erosivity than the ground-based estimates previously 435 

indicated. 

 

5 Conclusions 

In this study, I have used the IMERG satellite-derived precipitation product to generate a global estimate of rainfall erosivity. 

I have tested three methods, including two simplifications of high-temporal frequency data, and while these do produce similar 440 

global patterns of erosivity to the 30-minute data I suggest that the estimate derived from the 30-minute data is the most 

appropriate global model, not only because it provides a closer approximation of ground-based values in areas where the 

density of ground-based gauges used by GloREDa [Panagos et al. 2017] is greatest, but also since it allows for the equations 

used in the standard formulation of the widely-used RUSLE equation to be fully applied without simplification. A further 

benefit of this approach is that it allows for rapid calculation of monthly erosivity estimates, allowing researchers and 445 

practitioners to assess the peaks and troughs in erosivity across each year, rather than a single static value.  

When contrasted with ground-based estimates, the IMERG-derived erosivity estimates are more similar in Europe, where the 

density of gauges used to calculate the ground-based estimate is higher, but in many other areas – and in particular areas of 

high cropland and pasture density – the IMERG estimates show lower erosivity values. Further research is necessary to ground-

truth the IMERG-based estimates of erosivity in these data-poor areas, to test whether satellite-derived erosivity can be used 450 

in place of gauges, and thus maximising the use this globally-consistent dataset for erosivity. 

 

Code and Data availability 
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The IMERG data were provided by the NASA/Goddard Space Flight Center's GPM Team and PPS, which develop and 

compute IMERG version 06B as a contribution to the Global Precipitation Monitoring mission, and archived at the NASA 455 

GES DISC. All methods necessary to replicate these results can be found in the text. Datasets on global crop production and 

yield are available at http://www.earthstat.org/, accessed November 2nd, 2022. The 20-year estimates of erosivity derived from 

IMERG are available in the supplementary material. All monthly data for erosivity will be released through the NASA GES 

DISC and code through the NASA Github upon completion of the NASA data release process, and are available upon request 

from the author until that date.  460 
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Figure 1: Global map of erosivity estimates derived from the three different approaches. (A) erosivity calculated using 30-

minute IMERG data. (B) erosivity calculated using the 3-hour IMERG data and storm simplification. (C) Modified Fournier 605 

Index of erosivity. Note that the colour scheme for (A) and (B) are the same, while the MFI colour scheme has been selected 

to highlight the similarity in spatial patterns, rather than absolute values with the other two estimates. The overall colour 

scheme is selected to ensure readability to colour-blind readers. 
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 610 

 

Figure 2: Comparison between cell-by-cell values of the 30-minute IMERG estimate of erosivity (y-axis) and the two other 

methods; (A) shows comparison between 30-minute IMERG estimate and MFI, while (B) shows the comparison between 30-

minute IMERG estimate and the 3-hour IMERG data estimate. Note that the red lines in both figures show the 1:1 line, with 

values above that line indicating higher erosivity estimates in the 30-minute version. The 1:1 line in figure (A) does not have 615 

any physical meaning since MFI has different units, but is shown for illustrative purposes. 
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Figure 3: Global maps of the ratio between the IMERG-derived estimates of erosivity and the ground-based gauge estimates 

from GloREDa [Panagos et al. 2017]. The three panels show the comparison between GloREDa and (A) erosivity calculated 620 

using 30-minute IMERG data. (B) erosivity calculated using the 3-hour IMERG data and storm simplification. (C) Modified 

Fournier Index of erosivity. Note that the scale for (A) and (B) are identical, since they have the same units; however, the 

values in C are lower since the MFI has not been scaled to the other values. The scale is thus lowered to allow for comparison 

of spatial patterns with (A) and (B). 

 625 
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Figure 4: Probability density function for the cell-by-cell values for each of the IMERG erosivity estimates and the GloREDa 

estimate. MFI values are not shown since they are not the same units as the other erosivity estimates. In figure S1, the 

normalised values are shown, which allows comparison of the MFI values. 630 
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Figure 5: Comparison of gauge-derived erosivity estimates. Sub-figure A: R-values from the gauge-based REDES database 

(Panagos et al. 2015). Sub-figure B: R-values from the 30-minute IMERG derived estimates. The colour scheme for both 

datasets is the same, allowing for comparison of spatial results.   635 
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Figure 6: Monthly variability in erosivity calculated using IMERG 30-minute data, for each continent for the year 2020-2021. 

Median values are shown in black, and mean values with a red bar. Note that the despite the data being shown at a monthly 640 

interval, the units remain the same as for the annual erosivity, since the erosivity values are calculated for a standard annual 

time period, even though the data is drawn from monthly data only; this allows for consistent comparison across months of 

different lengths as well as with annual data.  
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Figure 7: Monthly variability in erosivity calculated using IMERG 30-minute data, for each continent for the year 2020-2021. 

In this figure, only grid cells where the proportion of cropland exceeds 80% are shown. Median values are shown in black, 

and mean values with a red bar. Note that the despite the data being shown at a monthly interval, the units remain the same as 

for the annual erosivity, since the erosivity values are calculated for a standard annual time period, even though the data is 650 

drawn from monthly data only; this allows for consistent comparison across months of different lengths as well as with annual 

data. 
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 655 

Figure 8: Comparison of cell-by-cell values for GloREDa (x-axis) and the 30-minute IMERG-derived erosivity estimate (y-

axis) for each continent. The black line in each figure shows the 1:1 relationship, while the red line is the linear regression 

estimate of the best fit line for the data. Below each figure, the slope and intercept of the best-fit line are shown. All values 

have units of MJ.mm ha-1 h-1 yr-1. 
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Figure 9: 2-dimensional histogram of the cell-by-cell values of the 30-minute IMERG estimate (y-axis, note logarithmic scale) 

and the fraction of cropland in that cell [Ramankutty et al. 2008]. The colour scale indicates the number of cells with those 

values. The figure shows the values distributed across each continent; continent labels are shown in the legend. The red line 

in each figure indicates the moving mean for different crop fractions. 665 

 


