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notequivalent-and-yet-the first ice shelf models were built on the assumption of zero vertical shear. Partly due to its historical

treatment, it remains common to misinterpret-vertical-shea ess-as-typically-neelected-incurrentice-shelf- modeline studie

shear as though it were still considered negligible in ice shelf models. Here, we offer a historical perspective on the changin
treatment of vertical shear over time, and we emphasize the term’s non-negligibility in current ice shelf modeling. We illustrate
our discussion in the simplest context of an analytic, isothermal, shallow ice shelf model.

1 Introduction
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Analytic models of floating ice shelves date back to at least 1957, when Weertman derived an-expression-expressions for
the tension and velocity gradients within a uniform-thickness ice shelfin—uniaxial-extenston—(that-is;—extension—only—in-the
longitudinal-ordownstream;-direetion). Weertman found that, for a shelf with uniform surface elevation i = hp(and;therefore;
uniform-thickness);, uniform density p, and no lateral flow, the depth-averaged longitudinal deviatoric tension, 7, could be

calculated via

1
o = ~pigh. 1
T, 1Pighr (D

Nearly two decades later, Thomas (1973a) set out to generalize Weertman’s expression to shelves of nonuniform thickness.

Using the same underlying assumptions as Weertman, but imposing no restrictions on the surface elevation #h = h(z), Thomas
obtained an expression nearly identical to Weertman’s, wherein the depth-averaged deviatoric tension is

1
Toa = Zpggh (2)

By Thomas’ analysis, Weertman’s solution is valid regardless of how & varies along a shelf. Thomas’ expression remains the
generally-accepted description of a nonuniform-thickness shelf in uniaxial-longitudinal extension, and it is routinely cited or in-
dependently derived in the literature v

Sanderson, 1979; Cuffey and Paterson, 2010; Gudmundsson, 2013; Oerlemans, 2021; Millstein et al., 2022). However, though

Equation 2 has persisted, the formulation of this model has quietly undergone a conceptual shift over the decades. This

conceptual shift relates to the role of vertical shear in ice shelves — a topic which ;—we-argue-is-assoctated-with-persistent
miscommunicationsis sometimes incompletely communicated today, and on which we seek to provide clarification.
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2 The conceptual evolution of Thomas’ model

In originally deriving his—the nonuniform-thickness model of Equation 2, Thomas’ primary assumption was that vertical
shear stress (the stress orientation associated with vertical gradients in horizontal velocity) was negligiblezero in the stress
balance. The neglect of vertical shear stress was universal in the formulation of ice shelf models at the time (Weertman,
1957; Thomas, 1973a; Robin, 1975; Sanderson, 1979). However, it was understood by some authors to be theoretically
suspect. Sanderson-and-Doake (1979)for-example-In a seminal paper titled Is Vertical Shear in_an Ice Shelf Negligible?,
Sanderson and Doake (1979) argued that vertical shear was fundamentally linked with the thickness gradient of an ice shelf,
and that, strictly speaking, vertical shear could not be zero except in the case of uniform thickness. This observation did not
challenge the practical utility of Equation 2 (Sandersor-andBoake(+979)-Sanderson and Doake found vertical shear to be

small enough that its neglect wasusuallyjustified, in fact, justified, answering their own titular question in the affirmative), but
it highlighted a relationship that had been missed in Thomas’ analysis.

The formulation of Thomas’ model evolved with the development of the Shallow Shelf Approximation (SSA) (Merland; 1987 MaeAyeal

Morland, 1987; MacAyeal, 1989; ?). The SSA, besides representing-empowering a leap forward in computational glaciology,

was accompanied by a

vertical shear in-the stress-balanee (Weis-etals1999)two key theoretical advances in ice shelf modeling: how the neglect of
terms is justified, and which terms are neglected.

The SSA is built on the fundamental assumption that the thickness-to-length aspect ratio, ¢, of an ice shelf is small (this is the
“shallowness” of the SSA). With ¢ <1, larger powers of the aspect ratio obtain smaller values. In contemporary terminology,
an “nth order approximation” is obtained by neglecting any term appearing as a coefficient of ¢"** after nondimensionalization.
This dimensional analysis approach to excluding terms adds quantitative rigour to approach of Sanderson and Doake, for whom
negligibility was more qualitatively assessed. As we sketch in the next section, and contrary to the postulates of the first ice

shelf modelers, dimensional analysis does not lead to the wholesale neglect of vertical shear from shallow-shelf models. Using
the SSA as a starting point to derive an analytic model for an-a longitudinally extending ice shelf, Thomas’ Equation 2 results,

but ;-this-time;-without the assumption of vanishing vertical shear. This is the modern approach to deriving Equation 2.

However, the presenee-inclusion of vertical shear i
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90 shearstrainrate—This-is-possible-because-typical-numerieal-use-of-stress in the present-day interpretation of Thomas’ model
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in-the-diseussion;-the-negleet-ofvertical shear-stress—ean—result—in-may somewhat clash with intuition, not least because the
vertical shear term doesn’t actually appear anywhere in Equation 2. Even in literature postdating the development of the SSA

it is common to encounter language which, to a novice glaciologist, might seem to imply that vertical shear is still discarded
110 entirely from shallow ice shelf modelswhi
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IFor example, in constructing the ice shelf model of Pattyn and Decleir (1995), “the [vertical] shear stress term in [the z-momentum equation] is

omitted.” Bueler and Brown (2009) state that “D(v)j3, D(v)31,D(v)23, D(v [ie., the vertical shear strain rates] are all negligible in the SSA.”

Cuffey and Paterson (2010) specify that, to construct a nonuniform-thickness ice shelf model, the “assumption must be made that the slope at the bottom

surface of the shelf is small so that the stress 7., will be negligible.” Larour et al. (2012) introduce the SSA as obtained by “assuming that vertical shear is

negligible,” and then specify that £, = €,. = 0. In an ice shelf model intercomparison, Pattyn et al. (2013) write, “A further approximation, known as the

roximation (SSA), is obtained by neglecting vertical shear.” Bondzio et al. (2016) describe the SSA as an a

shallow-shelf aj

vertical shearing but includes membrane stresses,” and Riickamp et al. (2019) affirm that “the SSA neglects vertical shearing.”




balance of even a zero-order shallow ice shelf model, and b) that, despite the term’s absence in Equation 2, emphasizing the
ﬂeeessafyfelaﬁeﬂshipleefwee&the vertical shear stress aﬂd—%hiekﬂess—gfadieﬂ%s—tﬂ—of an ice shelf (—Saﬂdefseiﬁﬂd—Beake%@}
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ss—can be directly calculated. For compactness, we
resent this discussion in the simplest context of an isothermal, unconfined ice shelf in one horizontal dimension (as depicted
170 in Figure 1).

3 T i hiel W, iceshelf

3 Pre-construction: which terms are neglected from shallow ice shelf models by dimensional analysis?
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and z, can be expressed

ax azﬁP (3a)
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215
an effort to maintain internal consistency, the
—if-h-isuniferm; Equation—t-—results—pioneering authors discussed above tended to additionally neglect all other appearances
of 7,.., including the second term of Equation 3a.
220
0 0
In contrast to their approach, and with asterisks denoting appropriately scaled parameters, Equations 3a and 3b can be nondimensionalized
as in Weis et al. (1999) (see also MacAyeal (1989) or ?) to become
o ., 0 ., 09 .,
225 Ee Tew T pye Tpr = pye P (4a)
2 8 * a * 8 *

€ T.,+—=—7.. = .
Oz T 0z T2 0z
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#By this approach, in the zeroth and first order approximations, the bridging term in 4b will be neglected as a coefficient of €2
240 in agreement with Weertman, Thomas, #2003 gaticfies

> Txx

T

s 1
s = 2 pigh-+ C(z),
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255 4 Themodern-approach-to-the Themasselution

260 3.1 Depth-averaging-the-z-momentum-—equation
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305 ¢ Lo +1 0

i = 5 AU o A

AT 207

310 5” = A’T’g_l’rij.




320

325

330

335

term in Equation 4a is retained, as it represents a coefficient of €. Thus, shear-free-shelf—This-ineonsisteney-is—a—result-of
. . . . . . . . 8 .
the-approximatenature-ofthe-SSA—dimensional analysis provides an internally consistent means of neglecting <=7, while

1%}

retaining <=7,

3.1 Theill-defined-vertical shear-strainrate-of-the Thomas-seolutien

4 Constructing the simplest shallow-shelf model

B i ibili .zz = .mzs
0 .
%uz = —E&za,

Following the workflow presented in Section 5.2 of Greve and Blatter (2009), the neglect of -2-7,.. in Equation 4b yields the
modified x-momentum equation shown below (where we have expressed-the-vertical-compression—via-its—veloeity—gradient

O toarh 2 alavation A notine th — 9, ot varowith ’
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Equation-22-is-afirstorderlinearordinary-differential-equationin-above form (resulting in, for example, Greve and Blatter’s

Equation 6.55), we can provide an even simpler solution for an isothermal shelf, for which viscosity is depth invariant, and

425 consequently, 7., ;and-a-general-solution-existsfor-equations-of-thisform—is depth invariant and equal to its depth-averaged
value, 7. It can be verified, by direct substitution that-this-setutionis-

435 deseription
see also ?), that Equation 5 is solved by the system
1 [ 5
Uy Tyg = ZAJig/hdﬂﬂ‘f' gAgﬁ (6a)
0
1 1
Eﬁpigzz%wruouz = *imghz, (6b)
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In-mest-applications-of-the-SSA-the-ealenlation-efthe-where Equation 6a is simply the isothermal case of Thomas’ Equation
2, and Equation 6b is the (nonzero!) vertical shear stress is—not-a—priority(by-construction,—the-primary-aim-of-the-SSA-s

B

22y -the-vertical shearstress-should-be-which must accompany that solution. In fact, if we had set 7. = 0, Equation 6a would
not actually solve Equation 5, positivebeneath-the-waterline—Consequently—this-approach-to-estimatingro——is-inappropricte

in—shallow—shelf-settings—unless we additionally assumed that 9.1 = 0. This observation succinctly illustrates the work of
Sanderson and Doake (1979): 7,.. = 0 only to the extent that a shelf has uniform thickness.

18
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Figure 1. An ice shelf cross-section alongside a visual description of several geometric parameters commonly used to describe ice shelf

dynamics. H, h, and b represent the thickness, surface elevation, and basal elevation of the shelf. z = 0 is the waterline and x = x 7 is the

terminus. People on terminus for scale.

5 Concluding remarks

99

neglected,” or other-

In discussions of shallow ice shelf models, it is fairly common to hear vertical shear spoken of as “zero,

wise unimportant. H
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h-While this certainl
was an approximation made by early ice shelf modelers, this language is at odds with current modeling practice. Indeed, as
first shown by Sanderson and Doake’s Is Vertical Shear in an Ice Shelf Negligible?, nonzero vertical shear stress —Evaluation

B arys B

the-veloeityfield-direetly-is a fundamental requirement of a nonuniform-thickness ice shelf. With dimensional analysis now

EL)

enabling modelers to more rigorously define negligibility, the present-day answer to their question is a resounding “no.
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