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Abstract. Analytic modeling of ice shelf flow began when Weertman derived an expression for the strain rates within an

unconfined shelf, of uniform thickness, extending only in one direction. Nearly two decades later, Thomas generalized Weertman’s

analysis to ice shelvesof nonuniform thickness, deriving one of the most well-known analytic models in glaciology: τxx = 1
4ρgh::::::

Vertical

::::
shear

::
is

:::::::::
recognized

:::::
today

::
as

:
a
::::
key

:::::::::
component

::
of

:::
the

:::::
stress

::::::
balance

::
of

:::
ice

::::::
shelves. However, despite the prevalence of this model

in both historical and contemporary texts, there remain persistent miscommunications regarding the role of vertical shear in its5

construction. In Thomas’ original approach, vertical shear stress was considered negligible in the stress balance; in a significant

contrast, the same model is typically derived in contemporary texts by the neglect of basal resistance. These two approaches are

not equivalent, and yet,
:::
the

:::
first

:::
ice

::::
shelf

:::::::
models

::::
were

::::
built

:::
on

:::
the

:::::::::
assumption

::
of

::::
zero

:::::::
vertical

:::::
shear.

:::::
Partly

:::
due

::
to
:::
its

::::::::
historical

::::::::
treatment,

:
it remains common to misinterpret vertical shear stress as typically neglected in current ice shelf modeling studies.

This manuscript provides clarification on this pervasive misconception. We emphasize that vertical shear stress should not be10

interpreted as negligible in the construction of general shallow shelf models. However, we also demonstrate that the vertical

shear stress inherent in Thomas’ expression does not give rise to a well-defined vertical shear strain rate. For situations in which

vertical shear stress in shallow ice shelf models is of interest, we provide guidance on how to best calculate it.
::::::
discuss

:::::::
vertical

::::
shear

::
as

:::::::
though

:
it
:::::
were

:::
still

:::::::::
considered

:::::::::
negligible

::
in

:::
ice

::::
shelf

:::::::
models.

:::::
Here,

:::
we

::::
offer

::
a
::::::::
historical

:::::::::
perspective

:::
on

:::
the

::::::::
changing

::::::::
treatment

::
of

::::::
vertical

:::::
shear

::::
over

::::
time,

::::
and

::
we

:::::::::
emphasize

:::
the

::::::
term’s

:::::::::::::
non-negligibility

::
in
:::::::
current

::
ice

:::::
shelf

::::::::
modeling.

:::
We

::::::::
illustrate15

:::
our

::::::::
discussion

:::
in

::
the

::::::::
simplest

::::::
context

::
of

:::
an

:::::::
analytic,

:::::::::
isothermal,

:::::::
shallow

:::
ice

::::
shelf

::::::
model.

:

1 Introduction

In modern glaciological models, the equations governing the flow of ice are typically solved using numerical methods.

However, much of the field’s history is based on analytic models – equations describing the behaviour of ice under constraints

simplistic enough to permit solution by hand (Nye, 1951; Weertman, 1957; Reeh, 1968; Thomas, 1973a). While necessarily20

much more restricted in their application than general numerical methods of solution, the construction of analytic models

permits quick back-of-the-envelope calculations, builds physical intuition, and, ultimately, guides the understanding upon

which we build our more sophisticated numerical solvers. As such, analytic models remain strongly endorsed as a first object

of serious study for modern ice sheet modelers (Oerlemans, 2021).
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In an analyticmodeling context, floating ice shelves are of particular interest. Floating glaciers represent a unique opportunity25

to study ice dynamical processes under uncommonly simple constraints. Beneath grounded glaciers, for instance, conditions at

the bed exert significant control on the flow of overlying ice . However, only sparse observations of the subglacial environment

have been made, and our understanding of basal processes remains fundamentally limited (Stearns and van der Veen, 2019)

. Underneath ice shelves, much of this ambiguity is removed: the ice floats over effectively inviscid seawater, so that the

“bed” provides no resistance to flow, vastly simplifying the force balance and internal velocity structure. Moreover, with30

an ice shelf in isostatic equilibrium with seawater, the thickness of a shelf can be reasonably well estimated by surface

measurements alone. This is not the case for more general glacier settings, which require additional datasets for estimating

thickness (Farinotti et al., 2009; Morlighem, 2017).

In large part due to the simplifications possible at ice shelves, these locations have been the preferred setting of many

pioneering analytic modeling studies exploring ice dynamics and rheology (Weertman, 1957; Thomas, 1973a, b; Reeh, 1968; Sanderson, 1979)35

. Analytic models taking advantage of these convenient ice shelf properties

:::::::
Analytic

::::::
models

:::
of

::::::
floating

:::
ice

:::::::
shelves date back to at least 1957, when Weertman derived an expression

::::::::::
expressions for

the tension and velocity gradients within a uniform-thickness ice shelfin uniaxial extension (that is, extension only in the

longitudinal, or downstream, direction). Weertman found that, for a shelf with uniform surface elevation h= hT (and, therefore,

uniform thickness),
:
,
:::::::
uniform

::::::
density

::
ρ,

::::
and

::
no

::::::
lateral

::::
flow,

:
the depth-averaged longitudinal deviatoric tension, τxx, could be40

calculated via

τxx =
1

4
ρighT . (1)

Further assuming that strain rates did not vary with depth, Weertman then used a depth-averaged constitutive relation to obtain

an analytic solution for the velocity field within a shelf of uniform thickness.

Nearly two decades later, Thomas (1973a) set out to generalize Weertman’s expression to shelves of nonuniform thickness.45

Using the same underlying assumptions as Weertman, but imposing no restrictions on the surface elevation h
:::::::
h= h(x), Thomas

obtained an expression nearly identical to Weertman’s, wherein the depth-averaged deviatoric tension is

τxx =
1

4
ρigh. (2)

By Thomas’ analysis, Weertman’s solution is valid regardless of how h varies along a shelf. Thomas’ expression remains the

generally-accepted description of a nonuniform-thickness shelf in uniaxial
::::::::::
longitudinal extension, and it is routinely cited or in-50

dependently derived in the literature (van der Veen, 1985; Sanderson, 1979; Cuffey and Paterson, 2010; Gudmundsson, 2013; Hughes, 2003; Oerlemans, 2021; Millstein et al., 2022)

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Sanderson, 1979; Cuffey and Paterson, 2010; Gudmundsson, 2013; Oerlemans, 2021; Millstein et al., 2022). However, though

Equation 2 has persisted, the formulation of this model has quietly undergone a conceptual shift over the decades. This

conceptual shift relates to the role of vertical shear in ice shelves – a topic which , we argue, is associated with persistent

miscommunications
:
is
::::::::::
sometimes

::::::::::
incompletely

:::::::::::::
communicated

:::::
today, and on which we seek to provide clarification.55
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2
:::
The

::::::::::
conceptual

::::::::
evolution

:::
of

::::::::
Thomas’

:::::
model

In originally deriving his
::
the

:
nonuniform-thickness model

::
of

::::::::
Equation

::
2, Thomas’ primary assumption was that vertical

shear stress (the stress orientation associated with vertical gradients in horizontal velocity) was negligible
:::
zero

:
in the stress

balance. The neglect of vertical shear stress was universal in the formulation of ice shelf models at the time (Weertman,

1957; Thomas, 1973a; Robin, 1975; Sanderson, 1979). However, it was understood by some authors to be theoretically60

suspect. Sanderson and Doake (1979), for example,
:
In

::
a
:::::::
seminal

:::::
paper

:::::
titled

::
Is

:::::::
Vertical

:::::
Shear

:::
in

::
an

::::
Ice

::::
Shelf

::::::::::
Negligible?

:
,

::::::::::::::::::::::::
Sanderson and Doake (1979) argued that vertical shear was fundamentally linked with the thickness gradient of an ice shelf,

and that, strictly speaking, vertical shear could not be zero except in the case of uniform thickness. This observation did not

challenge the practical utility of Equation 2 (Sanderson and Doake (1979)
::::::::
Sanderson

::::
and

::::::
Doake

:
found vertical shear to be

small enough that its neglect wasusually justified
:
,
::
in

::::
fact,

:::::::
justified,

:::::::::
answering

::::
their

::::
own

:::::
titular

:::::::
question

::
in
:::
the

::::::::::
affirmative), but65

it highlighted a relationship that had been missed in Thomas’ analysis.

The formulation of Thomas’ model evolved with the development of the Shallow Shelf Approximation (SSA) (Morland, 1987; MacAyeal, 1989)

:::::::::::::::::::::::::::::
(Morland, 1987; MacAyeal, 1989; ?). The SSA, besides representing

::::::::::
empowering

:
a leap forward in computational glaciology,

was accompanied by a subtle shift in the way ice shelf mechanics was conceptualized. Instead of neglecting vertical shear

outright, the SSA omits basal resistance – a condition which, as we demonstrate in the main text, is consistent with nonzero70

vertical shear in the stress balance (Weis et al., 1999)
:::
two

::::
key

:::::::::
theoretical

::::::::
advances

::
in

:::
ice

::::
shelf

:::::::::
modeling:

::::
how

::
the

::::::
neglect

:::
of

::::
terms

::
is
::::::::
justified,

:::
and

:::::
which

::::
terms

:::
are

:::::::::
neglected.

:::
The

::::
SSA

::
is

::::
built

::
on

:::
the

:::::::::::
fundamental

:::::::::
assumption

::::
that

:::
the

:::::::::::::::
thickness-to-length

::::::
aspect

::::
ratio,

::
ϵ,

::
of

:::
an

::
ice

:::::
shelf

:
is
:::::
small

::::
(this

::
is

:::
the

:::::::::::
“shallowness”

:::
of

:::
the

:::::
SSA).

::::
With

::::::
ϵ≪ 1,

:::::
larger

::::::
powers

:::
of

:::
the

:::::
aspect

::::
ratio

::::::
obtain

::::::
smaller

::::::
values.

::
In

::::::::::::
contemporary

:::::::::::
terminology,

::
an

::::
“nth

::::
order

:::::::::::::
approximation”

::
is

:::::::
obtained

:::
by

::::::::
neglecting

::::
any

::::
term

::::::::
appearing

::
as

:
a
:::::::::
coefficient

::
of

:::::
ϵn+1

::::
after

:::::::::::::::::::
nondimensionalization.75

::::
This

::::::::::
dimensional

:::::::
analysis

:::::::
approach

::
to

:::::::::
excluding

::::
terms

:::::
adds

:::::::::
quantitative

::::::
rigour

::
to

:::::::
approach

::
of

:::::::::
Sanderson

:::
and

:::::::
Doake,

::
for

::::::
whom

::::::::::
negligibility

:::
was

:::::
more

:::::::::::
qualitatively

::::::::
assessed.

::
As

:::
we

::::::
sketch

::
in

:::
the

::::
next

:::::::
section,

::::
and

:::::::
contrary

::
to

:::
the

:::::::::
postulates

::
of

:::
the

::::
first

:::
ice

::::
shelf

::::::::
modelers,

::::::::::
dimensional

:::::::
analysis

::::
does

::::
not

:::
lead

::
to

:::
the

:::::::::
wholesale

::::::
neglect

::
of

::::::
vertical

:::::
shear

:::::
from

:::::::::::
shallow-shelf

::::::
models. Using

the SSA as a starting point to derive an analytic model for an
:
a
::::::::::::
longitudinally extending ice shelf, Thomas’ Equation 2 results,

but , this time, without the assumption of vanishing vertical shear. This is the modern approach to deriving Equation 2.80

However, the presence
:::::::
inclusion

:
of vertical shear in the Thomas solution can be somewhat counterintuitive, resulting in

persistent mischaracterizations of common practice, wherein many authors still interpret vertical shear as absent in contemporary
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ice shelf analysis,1 while others explain that, although vertical shear is not explicitly retained in leading-order models, the term

is, nonetheless, present at higher order (Christian Schoof, pers. comm., 2022).

With this manuscript, we provide conceptual guidance on the role of vertical shear in ice shelves, with a particular interest85

in the analytic model of Equation 2, both in its historical and modern formulations. By taking an analytic approach, we are

able to explore the relationships between small quantities (i.e., vertical shear and thickness gradients). We clarify that vertical

shear stress is not neglected from the stress balance in the modern construction of Equation 2. However, we also demonstrate

that the vertical shear stress is fully decoupled from the velocity field, and, in that sense, cannot be used to calculate a vertical

shear strain rate. This is possible because typical numerical use of
:::::
stress

::
in

:::
the

::::::::::
present-day

:::::::::::
interpretation

::
of

:
Thomas’ model90

does not require strict internal consistency between the flow field and the stress field. Such inconsistency commonly results

from any approximate solution to the Stokes equations. We show that the vertical shear stress consistent with Equation 2 can

only be incorporated into a velocity solution by eschewing the plug flow assumption. Strict internal consistency between the

flow field and the stress field, which is typically not a goal of approximate, numerical solutions, requires that the base of a

nonuniform-thickness ice shelf move more slowly than the surface.95

This paper is laid out as follows. We begin by deriving, from first principles, the historical models of Weertman (1957) and

Thomas (1973a). We demonstrate that Thomas’ model, under the historical assumption of vanishing vertical shear , implicitly

assumes Weertman’s uniform-thickness property. This illustrates the necessary relationship, first discussed by Sanderson and Doake (1979)

, between vertical shear and thickness gradients in ice shelves. We then derive Equation 2in its modern interpretation, via the

SSA. While this approach does indeed produce Equation 2 as a solution to the stress balance permitting vertical shear, we100

demonstrate that, due to the SSA’s assumption of plug flow, no analytic velocity field can be strictly consistent with this stress

solution. As stated earlier, this is expected from approximate solutions; howewer, we find it worthwhile to demonstrate what an

internally consistent velocity field looks like in a nonuniform-thickness ice shelf. To this end, we construct an analytic model

for an isothermal ice ramp with linear rheology, and we compare our velocity solution with that whichwould arise from the

Thomas model. The two agree exactly at the waterline, and diverge the most noticeably at the base.105

Our clarifications provide a cautionary note against the construction of shear-free ice shelf models. As we demonstrate

in the discussion, the neglect of vertical shear stress can result in
:::
may

:::::::::
somewhat

:::::
clash

::::
with

::::::::
intuition,

:::
not

:::::
least

:::::::
because

:::
the

::::::
vertical

:::::
shear

::::
term

::::::
doesn’t

:::::::
actually

::::::
appear

::::::::
anywhere

::
in

::::::::
Equation

::
2.

:::::
Even

::
in

:::::::
literature

:::::::::
postdating

:::
the

:::::::::::
development

::
of

:::
the

:::::
SSA,

:
it
::
is

::::::::
common

::
to

::::::::
encounter

::::::::
language

::::::
which,

::
to

::
a

:::::
novice

:::::::::::
glaciologist,

:::::
might

:::::
seem

::
to

:::::
imply

::::
that

::::::
vertical

:::::
shear

::
is

:::
still

:::::::::
discarded

::::::
entirely

:::::
from

:::::::
shallow ice shelf modelswhich are both physically and numerically implausible.Secondarily, for situations in110

which the magnitude of the vertical shear stress is of interest, we provide guidance on how best to calculate it.

1For example, in constructing the ice shelf model of Pattyn and Decleir (1995), “the verticalshear stress term in the x-momentum equationis

omitted.” Bueler and Brown (2009) state that “D(v)13,D(v)31,D(v)23,D(v)32 i.e., the vertical shear strain ratesare all negligible in the SSA.”

Cuffey and Paterson (2010) specify that, to construct a nonuniform-thickness ice shelf model, the “assumption must be made that the slope at the bottom

surface of the shelf is small so that the stress τxz will be negligible.” Larour et al. (2012) introduce the SSA as obtained by “assuming that vertical shear is

negligible,” and then specify that ε̇xz = ε̇yz = 0. In an ice shelf model intercomparison, Pattyn et al. (2013) write, “A further approximation, known as the

shallow-shelf approximation (SSA), is obtained by neglecting vertical shear.” Bondzio et al. (2016) describe the SSA as an approximation which “neglects all

vertical shearing but includes membrane stresses,” and Rückamp et al. (2019) affirm that “the SSA neglects vertical shearing.”
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3 Conventions, preliminary derivations, and ice shelf assumptions

We adopt the coordinate system of both Weertman (1957) and Thomas (1973a), taking z to be the true vertical, with x the

horizontal direction closest corresponding to flow. Since our primary interest is in uniaxially extending ice shelf models, we

consider only the two-dimensional (2D) domain depicted in Figure 1, neglecting any lateral shear stresses or lateral flow (this115

is a significant simplification; due to the large stress-coupling lengths typical of floating ice, the dynamics of shelves are easily

impacted by distant lateral obstructions, such as sidewalls and ice rises).

2.1 Fundamental governing equations

The ice shelf models discussed here are built on the x and z momentum equations, from which we neglect all lateral shear

terms. These equations are expressed120

∂

∂x
σxx +

∂

∂z
σxz = 0

∂

∂x
σzx +

∂

∂z
σzz = ρig,

where g is the gravitational constant and ρi is the density of ice. The terms σij denote the net stress acting on the i face in the j

direction; since the momentum equations describe abody in equilibrium, there can be no net torque, and so the stress tensor is

symmetric and σij = σji. Each net stress can be partitioned into the sum of the mean normal stress σM = 1
3 (σxx +σyy +σzz)125

and a deviatoric component τij , with

σij = τij + δijσM ,

where δij is the Kronecker delta, which takes the value 1 when i= j and 0 otherwise. By this definition, for shear stresses i ̸= j,

σij = τij . It follows from Equation ?? that , neglecting lateral extension, τzz =−τxx. Meanwhile, the horizontal gradient in

vertical shear stress, ∂
∂xσzx, gives rise to what is often called the “bridging term” or “T-term,” and this term is typically130

neglected from analyses of glacier flow (van der Veen and Whillans, 1989; Greve and Blatter, 2009; Cuffey and Paterson, 2010)

even when the vertical shear itself is non-negligible. Integrating Equation ?? from arbitrary z to the surface elevation h, under

the neglect of the bridging term, provides the following description of the mean normal stress , σM .

σM = ρig(z−h)+ τxx

Here, we have neglected atmospheric pressure so that σzz|z=h = 0. We now partition the full stresses in Equation ?? via135

Equation ??, under the present expression for σM , to produce the fundamental governing equation
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2
∂

∂x
τxx +

∂

∂z
τxz = ρig

∂

∂x
h.

Although this governing equation contains components from both Equations ?? and ??, for brevity, we refer to it as the

x-momentum equation. It is this equation from which both the Weertman and Thomas models arise, given the simplifying ice

shelf assumptions discussed below.140

2.1 Simplifying ice shelf assumptions

The ice shelf models discussed in this manuscript are built on the following typical assumptions. First, we assume shelf

ice to have spatially uniform density, so that ρi is a constant (as is the density of the underlying seawater, ρw). While the

uniform-density assumption likely overestimates the total mass of an ice column, it is possible to compensate for this by

decreasing the effective thickness of a shelf to account for less-dense snow or firn. We also assume the shelf to be in perfect145

isostatic equilibrium with seawater. With z = 0 the waterline, this condition allows both the surface elevation h and the basal

elevation b to be expressed in terms of the full thickness H , with

h=

(
1− ρi

ρw

)
H

b=− ρi
ρw

H.

An ice shelf cross-section alongside a visual description of the geometric parameters relevant to this manuscript. H , h, and150

b represent the thickness, surface elevation, and basal elevation of the shelf. z = 0 is the waterline and x= xT is the terminus.

People on terminus for scale.

Our next assumption is that horizontal velocities are independent of depth (this is the plug flow condition mentioned earlier)

. In our 2D setup, the only horizontal velocity component is ux, the velocity in the x-direction, and this assumption can be

succinctly expressed as the requirement that ∂
∂zux = 0. This depth-invariant condition is universal in analytic ice shelf models,155

and it is a key simplifying assumption in the SSA (MacAyeal, 1989).

For the sake of reconstructing the original workflow of Weertman (1957) and Thomas (1973a), we temporarily introduce the

historical condition that vertical shear stress τxz , within a floating shelf, is zero. We will show that this assumption results in 1

1
::
For

:::::::
example,

::
in

::::::::
constructing

:::
the

::
ice

::::
shelf

:::::
model

::
of

:::::::::::::::::
Pattyn and Decleir (1995)

:
,
:::
“the

:
[
:::::
vertical]

::::
shear

::::
stress

::::
term

::
in [

::
the

:::::::::
x-momentum

::::::
equation]

:
is

::::::
omitted.”

:::::::::::::::::
Bueler and Brown (2009)

:::
state

:::
that

::::::::::::::::::::::::::
“D(v)13,D(v)31,D(v)23,D(v)32 [

::
i.e.,

:::
the

:::::
vertical

:::::
shear

::::
strain

::::
rates]

::
are

::
all

:::::::
negligible

::
in
:::

the
:::::
SSA.”

::::::::::::::::::
Cuffey and Paterson (2010)

:::::
specify

:::
that,

::
to

::::::
construct

::
a
::::::::::::::
nonuniform-thickness

:::
ice

:::
shelf

:::::
model,

:::
the

::::::::
“assumption

::::
must

::
be

::::
made

:::
that

::
the

::::
slope

::
at
:::
the

:::::
bottom

:::::
surface

:
of
:::

the
:::
shelf

::
is
::::
small

::
so

:::
that

::
the

::::
stress

:::
τxz:::

will
::
be

::::::::
negligible.”

:::::::::::::
Larour et al. (2012)

::::::
introduce

:::
the

:::
SSA

::
as

::::::
obtained

::
by

:::::::
“assuming

:::
that

:::::
vertical

::::
shear

::
is

:::::::
negligible,”

:::
and

:::
then

:::::
specify

:::
that

:::::::::::
ε̇xz = ε̇yz = 0.

::
In

::
an

::
ice

::::
shelf

::::
model

::::::::::::
intercomparison,

:::::::::::::
Pattyn et al. (2013)

:::
write,

:::
“A

::::
further

:::::::::::
approximation,

::::
known

::
as
:::
the

:::::::::
shallow-shelf

:::::::::
approximation

:::::
(SSA),

::
is

:::::
obtained

::
by
:::::::

neglecting
::::::

vertical
::::
shear.”

:::::::::::::::
Bondzio et al. (2016)

:::::
describe

::
the

::::
SSA

:
as
::

an
::::::::::
approximation

::::
which

:::::::
“neglects

::
all

:::::
vertical

::::::
shearing

::
but

::::::
includes

:::::::
membrane

::::::
stresses,”

:::
and

:::::::::::::::
Rückamp et al. (2019)

::::
affirm

:::
that

:::
“the

:::
SSA

::::::
neglects

:::::
vertical

:::::::
shearing.”
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::::
This

:::::::
potential

::::::
misstep

::
is
:
the uniform-thickness property when it is used to derive

::::::
primary

:::::::::
motivation

:::
for

:::
the

::::::
present

::::::::::
manuscript.

::
In

::
the

:::::::
sections

::::::
below,

:::
we

:::::
briefly

::::::::
illustrate

::
a)

:::
that

::::::::::
dimensional

:::::::
analysis

::::
does

:::
not

:::::
entail

:::
the

::::::
neglect

::
of

::::::
vertical

:::::
shear

::::
from

:::
the

:::::
stress160

::::::
balance

::
of

:::::
even

:
a
:::::::::
zero-order

:::::::
shallow

:::
ice

::::
shelf

::::::
model,

::::
and

::
b)

::::
that,

::::::
despite

:::
the

::::::
term’s

:::::::
absence

::
in

:
Equation 2, emphasizing the

necessary relationship between
:::
the vertical shear stress and thickness gradients in

::
of an ice shelf (Sanderson and Doake, 1979).

Later, in the context of outlining the modern approach to the Thomas solution, via construction of the SSA, we will replace this

assumption with the requirement that basal resistance at the bottom of the shelf is zero. In Weertman’s study, which dealt only

with uniform-thickness shelves (likely guided by the observation that surface elevation gradients in ice shelves are typically165

very small), the basal plane is horizontal, and the distinction above is unimportant. However, the isostatic property of Equation

?? results in basal elevation gradients an order of magnitude larger than surface elevation gradients, and so the basal plane of

an ice shelf may noticeably diverge from the horizontal in natural settings.
::
can

:::
be

:::::::
directly

:::::::::
calculated.

:::
For

::::::::::::
compactness,

:::
we

::::::
present

:::
this

:::::::::
discussion

::
in

:::
the

:::::::
simplest

:::::::
context

::
of

::
an

::::::::::
isothermal,

:::::::::
unconfined

:::
ice

:::::
shelf

::
in

:::
one

:::::::::
horizontal

:::::::::
dimension

::
(as

::::::::
depicted

::
in

:::::
Figure

:::
1).170

3 The uniform-thickness Weertman ice shelf

3
:::::::::::::::
Pre-construction:

::::::
which

:::::
terms

:::
are

:::::::::
neglected

::::
from

:::::::
shallow

:::
ice

:::::
shelf

::::::
models

:::
by

:::::::::::
dimensional

::::::::
analysis?

We construct the Weertman solution for a uniform-thickness shelf by applying the historical shear-free condition to Equation

??, while also restricting the surface elevation h to uniformly equal its value at the terminus, hT (by isostacy, the basal profile is

also level, resulting in a uniform-thickness shelf). For a uniform-thickness shelf, ∂
∂xh= 0, and the result is the highly simplified175

governing equation ∂
∂xτxx = 0.

In this case, τxx is a function of z alone, and its depth-averaged value τxx must everywhere be equal to the depth-averaged

deviatoric stress due to the far-field effect of the terminal cliff. For any point of interest more than one or two ice thicknesses

upstream of the terminus, a vertical cliff at terminal location x= xT induces a depth-averaged deviatoric stress τxx(xT ) which

emerges from the imbalance between the weight of the ice and the opposing weight of the seawater (Cuffey and Paterson, 2010)180

. With the cliff at flotation, so that the terminal values of the surface elevation, basal elevation, and thickness (hT , bT , and HT )

relate to each other via Equation ??, it must hold that

hT∫
bT

2τxx(xT )dz =

hT∫
bT

ρigzdz−
0∫

bT

ρwgzdz,

where the first integral on the right represents the integrated ice overburden, and the second, the integrated seawater overburden

(Cuffey and Paterson, 2010). The left-hand side is the depth-integrated longitudinal “resistive stress,” which represents the185

difference between the full longitudinal stress and the ice overburden (van der Veen, 2013), and it can can be rewritten as

2HT τxx(xT ). Evaluating the integrals on the right-hand side results in

7



2HT τxx(xT ) =
1

2
ρigHThT .

Generalizations of Equation ?? are commonly applied as boundary conditions in ice sheet models terminating in floating

cliffs (MacAyeal, 1989; Muszynski and Birchfield, 1987; Schoof, 2007; Goldberg et al., 2009). In constructing the Weertman190

model for a uniform-thickness ice shelf , the surface profile h= hT is uniform
:::
The

::::::
typical

:::::::
balance

::
of

::::::::::
momentum

:::
for

:
a
:::
2D

:::
ice

::::
shelf

:::::::::::
cross-section,

:
in x , and the depth-averaged value τxx must uniformly be equal to τxx(xT ) as induced by the distant ice

cliff. Equation 1 emerges as an immediate result.

Equation 1, therefore, is Weertman’s (1957) solution for the depth-averaged deviatoric stress within an unconfined shelf,

with uniform thickness, under uniaxial extension. Under the previously-stated assumption that the horizontal velocity ux (and,195

therefore, the gradient ∂
∂xux) does not vary with depth, Equation 1 can be used alongside a depth-averaged constitutive relation

to determine the velocity field of a uniform-thickness shelf.

4 The historical Thomas ice shelf

Thomas (1973a) set out to generalize Equation 1 by requiring only that τxz = 0, while imposing no restrictions on the shelf’s

thickness distribution. Although we will show this to be a contradiction, we outline his method below.200

Partitioning the full stress σxx into its deviatoric and mean normal components via Equations ?? and ??, the deviatoric stress

τxx can be expressed

τxx =
1

2

(
σxx − ρig(z−h)

)
.

:::
and

::
z,

:::
can

:::
be

::::::::
expressed

∂

∂x
τxx +

∂

∂z
τxz =

∂

∂x
P

:::::::::::::::::::

(3a)205

∂

∂x
τxz +

∂

∂z
τzz =

∂

∂z
P,

::::::::::::::::::::

(3b)

Depth-integrating Equation ?? over the full thickness of the shelf, we obtain

Hτxx =
1

2

(
1

2
gH2 −F

)
,

where F is defined as F :=−Hσxx. Thomas’ solution emerges from finding the appropriate value for F , which is interpreted

as the total force pushing backward against a vertical section of shelf. This value is taken to be the force, per unit width, exerted210

horizontally against the shelf by the weight of the seawater. With this assumption, Thomas finds the value of F to be

8



F =−
0∫

b

ρwgzdz =
1

2
ρig

(
ρi
ρw

)
H2,

where the isostatic condition of Equation ?? has been invoked to write b in terms of H . Substituting Equation ?? into Equation

??, Thomas’s unconfined ice shelf is governed by
:::::
where

::::
each

:::
τij :

is
::
a
::::::::
deviatoric

:::::
stress,

::
P

::
is

::::::::
pressure.

::::
Both

:::::::::
historically

::::
and

:::::
today,

:::::::::::
simplification

::
of

:::::
these

::::::::
equations

:::
has

:::::::
typically

::::
been

:::::
done

::
by

:::::::::
neglecting

:::
the

::::::::
“bridging

:::::
term,”

::::::
( ∂
∂xτxz::

of
::::::::
Equation

::::
3b).

:::::::
Possibly

::
in215

::
an

:::::
effort

::
to

:::::::
maintain

:::::::
internal

::::::::::
consistency,

:
the Equation 2. Thus,Thomas’ result provides consistency with Weertman’s solution

– if h is uniform, Equation 1 results.
:::::::::
pioneering

::::::
authors

::::::::
discussed

::::::
above

::::::
tended

::
to

::::::::::
additionally

::::::
neglect

:::
all

::::
other

:::::::::::
appearances

::
of

:::
τxz ,

::::::::
including

:::
the

::::::
second

:::::
term

::
of

:::::::
Equation

:::
3a.

:

However, there is an odd detail regarding the Thomas model that emerges when we insert the stress solution of Equation 2

into the x-momentum equation. Thomas is forthright about his neglect of vertical shear (for example, refer to the abstract of220

Thomas (1973a)). In this case, as shown by Robin (1975), the governing equation, Equation ??, must reduce to

2
∂

∂x
τxx = ρig

∂

∂x
h.

::
In

::::::
contrast

::
to

::::
their

:::::::::
approach,

:::
and

::::
with

:::::::
asterisks

:::::::
denoting

:::::::::::
appropriately

::::::
scaled

:::::::::
parameters,

:::::::::
Equations

::
3a

:::
and

:::
3b

:::
can

::
be

:::::::::::::::::
nondimensionalized

::
as

::
in

:::::::::::::::
Weis et al. (1999)

:::
(see

::::
also

:::::::::::::::
MacAyeal (1989)

:
or
::
?
:
)
::
to

::::::
become

:

∂

∂x∗ τ
∗
xx +

∂

∂z∗
τ∗xz =

∂

∂x∗P
∗

:::::::::::::::::::::::

(4a)225

ϵ2
∂

∂x∗ τ
∗
xz +

∂

∂z∗
τ∗zz =

∂

∂z∗
P ∗.

:::::::::::::::::::::::::

(4b)

Since no assumptions were made about the ice thermal structure in deriving Equation 2, there is no reason the model shouldn’t

hold for isothermal ice. In an isothermal shelf, τxx is equal to its depth-averaged value, with τxx = τxx = 1
4ρigh. Inserting

Thomas’ isothermal description of τxx into Equation ?? demonstrates that the governing equation is apparently not satisfied

by Thomas’ own solution: the left-hand side evaluates to 1
2ρig

∂
∂xh, rather than ρig

∂
∂xh. More specifically, for equality to hold,230

∂
∂xh would have to be zero: despite setting out to construct a nonuniform-thickness shelf model, Thomas’ isothermal solution

satisfies his governing equation only with the uniform-thickness property. Below, we show that this result is not particular to

the isothermal case.

3.1 Inconsistencies with Thomas’ analysis

Here, we illustrate that, due to the neglect of vertical shear, Thomas’ model is subject to the uniform-thickness property235

in the general, non-isothermal case. Let τThomas
xx denote Thomas’ solution for τxx, in its non-depth-averaged sense, so that

τThomas
xx is given by Equation 2. Regardless of whether it is assumed equal to its depth-averaged value, τThomas

xx must satisfy the

9



x-momentum equation. Under Thomas’ condition that τxz = 0, this is Equation ??. Integrating Equation ?? with respect to

x
::
By

::::
this

::::::::
approach,

::
in

:::
the

::::::
zeroth

:::
and

::::
first

::::
order

::::::::::::::
approximations,

:::
the

:::::::
bridging

::::
term

::
in

::
4b

::::
will

::
be

:::::::::
neglected

::
as

:
a
:::::::::
coefficient

::
of

:::
ϵ2,

::
in

::::::::
agreement

::::
with

::::::::::
Weertman,

:::::::
Thomas, τThomas

xx satisfies240

τThomas
xx =

1

2
ρigh+C(z),

for some “constant” of integration C(z). Depth-averaging both sides then provides an alternative description of Thomas’

depth-averaged solution, with

τThomas
xx =

1

2
ρigh+C(z).

C(z) is now a true constant. Using Equation 2 to rewrite the left-hand side, we find that245

−1

4
ρigh= C(z).

That is, − 1
4ρigh is equal to a constant, which requires that h be uniform. Thomas’ approach, though undertaken with the

intention of generalizing the Weertman solution, is equivalent to the Weertman solution.

By pointing out Thomas’ unintentional use of the uniform-thickness property, we in no way imply that Thomas’ model

is incapable of approximating the velocity fields of nonuniform-thickness ice shelves. It is typical to apply mathematical250

models to situations in which they do not apply exactly (Weertman (1957) himself applies his uniform-thickness model to a

real-life setting at Maudheim, for example, despite the understanding that no real-life setting has perfectly uniform thickness).

Rather, by drawing attention to the equivalence between the approaches of Thomas and Weertman, we emphasize the necessary

relationship between vertical shear and thickness gradients in an ice shelf – to neglect one is to neglect the other.

4 The modern approach to the Thomas solution255

In this section, we obtain Equation 2 by the modern approach, which neglects basal resistance without assuming vertical shear

to be zero in the stress balance. Whereas Thomas’ original approach began by depth-integrating an expression for the full stress

σxx, the modern approach to constructing the Thomas solution requires, instead, the depth-integration of the x-momentum

equation (MacAyeal, 1989; Morland, 1987; Weis et al., 1999). We outline this procedure below.

3.1 Depth-averaging the x-momentum equation260

The following workflow closely follows van der Veen and Whillans (1989), although we continue to express the equations in

terms of deviatoric stresses (Greve and Blatter, 2009; Cuffey and Paterson, 2010) rather than using the exact expressions of

van der Veen and Whillans (1989).
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After depth integrating the x-momentum equation (Equation ??) from the glacier base b to surface h and applying the

Leibniz Rule to move derivatives outside integrals, we obtain265

(
2
∂

∂x

(
Hτxx

)
− 2τxx|z=h

∂

∂x
h+2τxx|z=b

∂

∂x
b

)
+

(
τxz|z=h − τxz|z=b

)
= ρigH

∂

∂x
h.

We reduce this expression by regrouping terms into naturally-arising definitions. For example, basal resistance results from

shears at the bottom of a glacier acting parallel to the basal plane, which is generally not parallel to the horizontal z plane. A

coordinate transformation (Greve and Blatter, 2009) characterizes the x component of the basal resistance, τbx, as

τbx =−2τxx|z=b
∂

∂x
b+ τxz|z=b.270

A similar definition holds for the x component of any surface resistance, τsx, with

τsx =−2τxx|z=h
∂

∂x
h+ τxz|z=h.

Any natural glacier setting has τsx = 0 (van der Veen and Whillans, 1989). Substituting the definitions from Equations ?? and

?? into Equation ??, we find that

−2
∂

∂x
(Hτxx)+ τbx − τsx =−ρigH

∂

∂x
h,275

where the term on the right is the x component of the driving stress, often symbolized τdx. Equation ?? is the depth-integrated

x-momentum equation, and it is equivalent to Equation ??, as no additional assumptions have been invoked in derivation.

3.1 Obtaining the Thomas solution via the SSA

Here, we demonstrate the standard construction of an analytic, uniaxial ice shelf model from Equation ??. As an ice shelf

extends, its base and surface are opposed only by seawater and air. Neglecting the effects of ocean currents and wind on280

glacier flow, there should be no resistance at either the surface or the base of a freely-floating ice shelf. Mathematically, these

conditions are satisfied by setting τbx and τsx to zero in Equations ?? and ??. The resulting differential equation is

−2
∂

∂x

(
Hτxx

)
=−ρigH

∂

∂x
h.

Equation ?? is the governing equation of the SSA, in its simplest-case scenario of uniaxial extension. It can be verified, by

direct substitution, that the solution to Equation ?? is the Thomasmodel, Equation 2.285
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Importantly, this construction of the Thomas model did not invoke the shear-free condition. To the contrary, setting τsx = τbx = 0

explicitly required τxz to be nonzero for nonuniform-thickness shelves: if τxz were zero in Equations ?? and ??, thickness

would automatically be uniform. This provides a concise mathematical description of the relationship, emphasized in the

previous section, regarding the connection between thickness gradients and vertical shear stress in ice shelves. By this method

of construction, therefore, Equation 2 represents a stress field in which the thickness gradient is appropriately balanced by290

vertical shear, even though that vertical shear term has symbolically disappeared in
::::::
others.

::::::::
However,

:
the depth-integration

process.

A natural supposition, then, is that a vertical shear strain rate should be meaningfully present in the velocity solution

corresponding to Equation 2. However, as we show in the next section, this is not the case. We illustrate that, under the

conventional plug-flow condition, the vertical shear strain rate accompanying Thomas’ model is, in fact, ill-defined: two distinct295

methods of calculation yield two distinct results. By pointing this out, we emphasize that, while the vertical shear stress is not

neglected in constructing the Thomas model, the actual calculation of the vertical shear stress must be done with care. In

general, it cannot be calculated via the velocity field. As we later show, this is because the plug-flow condition is not strictly

compatible with nonuniform-thickness shelf geometry.

4 Exploring the vertical shear strain rate of the Thomas solution300

3.1 Two characterizations of strain rates

One of the key motivations for the construction of models like Equation 2 is the description of velocity fields and strain rates

within flowing ice, and one of the key challenges of solving the equations of glacier flow is ensuring compatibility between

two distinct descriptions of these strain rates. First, and by definition, a stain rate ε̇ij is given by

ε̇ij =
1

2

∂

∂i
uj +

1

2

∂

∂j
ui,305

where i and j may take any values in {x,y,z}. For example, if ux and uz represent the horizontal and vertical velocity

components, ε̇xx = ∂
∂xux, while ε̇xz =

1
2

∂
∂zux +

1
2

∂
∂xuz .

Second, the strain rate ε̇ij relates to the deviatoric stress τij via an empirical constitutive relation. Thus, a complementary

characterization of strain rates is given by an equation of the form

ε̇ij =Aτn−1
E τij .310

Equation ?? is a typical formulation of the constitutive relation for flowing ice, where A is a function of temperature and other

physical parameters (Goldsby and Kohlstedt, 2001), and the flow exponent n is typically taken to be three (Cuffey and Paterson, 2010)

. The term τE is the effective stress, which relates to the second invariant of the deviatoric stress tensor.
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There is no a priori connection between these two characterizations: the first relates strain rates to velocities but makes

no mention of stresses; the second relates strain rates to stresses without any mention of velocities. The two characterizations,315

taken together, induce a complex constraint on the relationship between orthogonal velocity components: to permit an internally

consistent velocity field, any pair of orthogonal velocity components must relate to one another in a way that produces the same

shear strain rate by definition (via Equation ??) as emerges from the constitutive relation (Equation ??). To appropriately model

fluid flow, it is necessary to ensure that Equations ?? and ?? are simultaneously satisfied.

We show, below, that the analytic model of Equation 2, as derived via the SSA, produces a velocity field which cannot320

simultaneously satisfy Equations ?? and ?? for ε̇xz , except under the additional constraint of a uniform-thickness
::::::
vertical

:::::
shear

::::
term

::
in

::::::::
Equation

::
4a

::
is
::::::::

retained,
::
as

::
it
:::::::::
represents

::
a

:::::::::
coefficient

::
of

:::
ϵ0.

:::::
Thus, shear-free shelf. This inconsistency is a result of

the approximate nature of the SSA.
::::::::::
dimensional

:::::::
analysis

::::::::
provides

::
an

::::::::
internally

:::::::::
consistent

::::::
means

::
of

:::::::::
neglecting

::::::

∂
∂xτxz :::::

while

:::::::
retaining

::::::

∂
∂z τxz .

:

3.1 The ill-defined vertical shear strain rate of the Thomas solution325

4
:::::::::::
Constructing

:::
the

::::::::
simplest

:::::::::::
shallow-shelf

::::::
model

In this section, we demonstrate that, in order to permit agreement between the two strain rate characterizations discussed above,

the basal value τxz|z=b is zero under a plug flow regime. This can only be the case when the basal elevation gradient is zero,

so that thickness is uniform, and vertical shear is uniformly zero. In other words, the vertical shear strain rate is ill-defined for

nonuniform-thickness geometry.330

In our 2D setup, incompressibility requires that ε̇zz =−ε̇xx, and so we have that

∂

∂z
uz =−ε̇xx,

::::::::
Following

:::
the

::::::::
workflow

:::::::::
presented

::
in

::::::
Section

:::
5.2

:::
of

::::::::::::::::::::
Greve and Blatter (2009)

:
,
:::
the

::::::
neglect

::
of

::::::

∂
∂xτxz ::

in
::::::::
Equation

::
4b

::::::
yields

:::
the

:::::::
modified

::::::::::::
x-momentum

:::::::
equation

::::::
shown

::::::
below

:
(where we have expressed the vertical compression via its velocity gradient

definition. Integrating both sides from z = 0 to arbitrary elevation z, and noting that ε̇xx = ∂
∂xux cannot vary with depth under335

the plug-flow condition,

uz −uz|z=0 =−zε̇xx.

By isostacy (and leaving mass balance processes out of our analysis), ice above and below the waterline move in vertically

opposite directions. Therefore, no vertical motion is permitted at the waterline,2 and so uz|z=0 = 0. Next, because the horizontal
2The claim that uz |z=0 = 0 can be defended more rigorously by pointing out the equivalence between ice shelves and ice streams under the SSA. It can

be shown that the SSA-type solution for an ice stream of surface elevation h, with a slippery bed at z = 0, is τxx = 1
4
ρigh (Cuffey and Paterson, 2010). An

ice shelf with surface elevation h is governed by the same equation under the SSA. The subaerial portion of the shelf can, therefore, be equivalently modeled

as an ice stream flowing over a level, shear-free, impenetrable bed.
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velocity is depth-invariant, the vertical shear strain rate reduces, by definition via Equation ??, to ε̇xz =
1
2

∂
∂xuz . In particular,340

the basal value of the vertical shear strain rate must satisfy ε̇xz|z=b =
1
2

∂
∂xuz|z=b. It then follows from Equation ?? that

::::::
omitted

:::::::
asterisks

:::
for

:::::::::::
readability).

2
∂

∂x
τxx +

∂

∂z
τ

::::::::::::

xz|z=b =−1

2
bρg
::

∂

∂x
xx.h: (5)

This is the basal value of the vertical shear strain rate obtained by definition, via Equation ??, under the typical SSA simplifying

assumptions.345

We now construct an alternative description of ε̇xz|z=b by invoking the empirical relationship of Equation ??. The basal

boundary condition is satisfied by setting τbx = 0 in Equation ??. Regardless of how the effective stress is defined, multiplying

Equation ?? by the basal value Aτn−1
E |z=b expresses the basal boundary condition in terms of strain rates, and, noting that

ε̇xx|z=b = ε̇xx is depth-invariant, this produces

ε̇xz|z=b = 2ε̇xx
∂

∂x
b.350

To permit a well-defined vertical shear strain rate, the descriptions of ε̇xz|z=b provided by Equations ?? and ?? must agree,

requiring that

2ε̇xx
∂

∂x
b=−1

2
b
∂

∂x
ε̇xx.

Next, we consider the signs of each term in Equation ??. By our choice of coordinate system, b≤ 0, as the shelf’s base

lies beneath the waterline. In a natural unconfined ice shelf setting, thickness decreases in the downstream direction,2 so355

that the basal elevation rises with x, and ∂
∂xb≥ 0. Additionally, an unconfined shelf should not be in compression, and so

ε̇xx ≥ 0. Finally, with the shelf thinning in the downstream direction, the rate of extension should not be increasing with x;

that is, ∂
∂x ε̇xx ≤ 0. (These constraints are typical of natural unconfined ice shelf settings (Cuffey and Paterson, 2010), and they

emerge from the conventional SSA solution discussed inthis section.) Inserting these constraints, we find that the left-hand side

of Equation ?? is bounded below by zero, while the right-hand side is bounded above by zero, with360

0≤ 2ε̇xx
∂

∂x
b=−1

2
b
∂

∂x
ε̇xx ≤ 0.

Both sides of Equation ?? are equal to the basal value ε̇xz|z=b, and, therefore, it follows that ε̇xz|z=b must be zero to permit

a well-defined vertical shear strain rate. As ε̇xz should attain its largest magnitude at the shelf base, it would follow that ε̇xz = 0

uniformly. That is, under the assumption of plug-flow, the vertical shear strain rate is only well-defined for uniform-thickness

shelves.365
2If thickness increases downstream, ∂

∂x
b≤ 0 while ∂

∂x
ε̇xx ≥ 0, and the bounds in Equation ?? are simply reversed.
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Stated another way, if the we interpret the thickness gradient as nonzero, then Equations ?? and ?? represent two distinct

values of vertical shear calculable from the Thomas solution’s velocity field. Moreover, the values are not numerically similar

to one another: they have opposite signs. Therefore, even though τxz is not neglected in the construction of Equation 2, it

should not be assumed that this value relates, via the associated strain rate ε̇xz , to the flow field.

5 Discussion370

4.1 The Budd ice shelf

A key point of this manuscript has been to emphasize that vertical shear should not be interpreted as absent from the stress

balance of a nonuniform-thickness ice shelf – even when that vertical shear stress is not strictly consistent with the velocity

field. In this section, we emphasize the importance of the vertical shear stress by constructing the problematic ice shelf model

which would arise from its neglect.375

As shown earlier, the neglect of vertical shear from the stress balance results in the governing equation of Equation ??

(Robin, 1975). Following the workflow of Section ??, the depth-integrated deviatoric tension arising from this governing

equation is

τxx =
1

2
ρigh+C(z),

where C(z), as a depth-averaged value, is constant. This expression for the depth-averaged stress is the one Thomas (1973a)380

associates with Budd (1969); consequently, we refer to Equation ?? as the Budd ice shelf. Using the conventional ice cliff

boundary condition of Equation ??, the Budd ice shelf can be further simplified to

τxx =
1

2
ρigh−

1

4
ρighT .

It is almost trivial to construct the ice shelf model of Equation ?? if we (incorrectly) interpret vertical shear stress as

negligible. To see the error with this interpretation, notice that 1
4ρighT ≥ 0, and so the second term acts to decrease τxx385

by a value proportional to the height of the terminus, hT . This means that the terminal cliff exerts a nonlocal compressive force

– the higher the cliff, the stronger the compression. There is, of course, no physical basis for this compressive force, rendering

the Budd ice shelfirreparably problematic.

Perhaps even more problematically, from a pragmatic perspective, the deviatoric tension associated with Equation ?? is quite

a bit higher than that associated with the Thomas model. This is due to the factor of 1
2 , as opposed to the factor of 1

4 in Equation390

2. This can result in velocities substantially higher than those predicted by the Thomas model when thickness gradients are

steep (see Figure ?? for a concrete illustration of this, wherein the Budd model overestimates terminus velocities by about

40%). The inclusion of vertical shear in the stress balance, therefore, is not just a technical point: failing to recognize the role

of τxz can easily result in the construction of a bad ice shelf model.
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4.1 An exact analytic ice shelf model395

A comparison of three distinct ice shelf models, each of which treats vertical shear differently. Solid (approximately vertical)

lines are contours for ux, and dashed (approximately horizontal) lines are contours for uz . Velocities are in m yr−1 and are

relative to the velocity at (0,0) (i.e., the upstream boundary at the waterline). The thickness of each shelf varies linearly

from H = 1 km at the upstream boundary to H = 500 m at the terminal cliff, which is 5 km downstream. a) The conventional

Thomas shelf, which includes vertical shear in the stress balance but requires plug flow. b) The exact velocity solution provided400

by Equation ??, in which vertical shear is both included in the stress balance and supported by the velocity field. c) The

problematic Budd shelf of Equation ??, in which vertical shear is neglected from the stress balance. In each of the panels, we

have used ρi = 917 kg m−3, ρw = 1018 kg m−3, and we have chosen the flow parameter A to be consistent with the viscosity

value of Jarosch (2008) under linear rheology.

While we have shown that vertical shear stress must be included in a nonuniform-thickness ice shelf model, we have405

also shown that the plug flow assumption precludes any well-defined vertical shear strain rate associated with that stress. To

demonstrate what such a vertical shear strain rate would look like, we now provide an alternative formulation of the Thomas

model, which does permit vertical differences in horizontal velocity.

In our construction, we alter the typical ice shelf assumptions ever-so-slightly, considering τxx, rather that ux, to be invariant

with depth . This leaves open the possibility that ux and ε̇xx vary with z. We begin by considering what description of τxz410

would permit a solution to
:::::::
Although

:::
the

:::::
most

::::::
general

:::::::::::
shallow-shelf

:::::::
models

:::
are

:::::::::
constructed

:::
by

::::::::::::::
depth-integrating

:::::::::
equations

::
of

the x-momentum equation under this setup. For convenience, we rewrite the x-momentum equation below.

2
∂

∂x
τxx +

∂

∂z
τxz = ρigh

To satisfy Equation ??, τxz cannot be uniform in z. This follows from the use of the basal and surface boundary conditions

given by setting τsx = τbx = 0 in Equations ?? and ??: the same valueof τxz cannot satisfy both unless the shelf is of uniform415

thickness, and, in that case, the appropriate value of τxz is zero. Therefore, τxz must depend on z. Moreover, this dependence

must be linear: by our own stated assumptions, neither 2 ∂
∂xτxx nor ρigh depend on z, and so a solution to this system precludes

∂
∂z τxz depending on z. The unique linear description of τxz preserving both the surface and basal boundary conditions is

τxz =
2z

h
τxx

∂

∂x
h.

This is our analytic description of the vertical shear stress in an ice shelf. To verify that this is a reasonable description, we420

insert it into the x-momentum equation, obtaining the governing equation

2
∂

∂x
τxx +

2

h
τxx

∂

∂x
h= ρig

∂

∂x
h.
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Equation ?? is a first order linear ordinary differential equation in
::::
above

:::::
form

::::::::
(resulting

::
in,

:::
for

::::::::
example,

:::::
Greve

:::
and

::::::::
Blatter’s

:::::::
Equation

:::::
6.55),

:::
we

::::
can

:::::::
provide

::
an

::::
even

:::::::
simpler

:::::::
solution

:::
for

::
an

:::::::::
isothermal

:::::
shelf,

:::
for

::::::
which

::::::::
viscosity

::
is

:::::
depth

::::::::
invariant,

::::
and,

:::::::::::
consequently, τxx , and a general solution exists for equations of this form.

:
is
:::::
depth

::::::::
invariant

:::
and

:::::
equal

::
to
:::

its
:::::::::::::
depth-averaged425

:::::
value,

::::
τxx. It can be verified,

:
by direct substitution that this solution is

τxx =
1

4
ρigh.

Equation ??, though not depth-averaged, is of the same form as the familiar Thomas solution, and we argue that its emergence

here supports the plausibility of Equation ?? as a description of vertical shear.

Next, we derive an exact, analytic velocity solution for the specific case of an isothermal ice ramp (that is , an ice shelf430

with linearly decreasing thickness) with linear rheology (i.e., with n= 1 in the constitutive relation, so that strain rates are

independent of the effective stress). Notice that the conflicts identified in Section ?? were independent of rheology, and so

these simplifications makes the mathematics more tractable while still leaving all previous discussion fully relevant.

With the flow parameter A uniform, and some constant boundary value u0, it can be directly verified that the velocity

description435

:::
(see

::::
also

:
?
::
),

:::
that

::::::::
Equation

:
5
::
is
::::::
solved

::
by

:::
the

::::::
system

:

uxτxx
::

=
1

4
Aρig

x∫
0

hdx+
5

8
Agh

::
(6a)

τxz =
1

2
::::::

ρigz
2 ∂

∂x
h+u0uz =−1

4
ρighz, (6b)

is consistent with the stress field given by Equations ?? and ??. For example, evaluating ε̇xz =
1
2

∂
∂xuz +

1
2

∂
∂zux and then

applying the constitutive relation of Equation ?? with n= 1, the resulting value of τxz is exactly Equation ?? (notice that,440

since h is a linear in x, the integral term can be evaluated analytically, and ∂
∂xh is a constant). In comparison, in an identical

setting, the isothermal , linear Thomassolution would yield

ux =
1

4
Aρig

x∫
0

hdx+u0

uz =−1

4
ρighz.

These solutions differ only in the inclusion z2 term in Equation ??, and , therefore, they exactly agree at the waterline, where445

z = 0 (or, in a uniform-thickness shelf, the z2 term would vanish, and the two expressions would become equivalent). Because
∂
∂xh≤ 0, the exact solution for ux is less than the Thomas solution whenever z ̸= 0. The largest disagreement between the two
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will occur at the base of the shelf, where z attains its largest magnitude (see Figure ??) , and the magnitude of the discrepancy

scales with the surface elevation gradient. At any depth, the discrepancy between the Thomas solution and the exact solution

(i.e., the solution under which the base moves more slowly than the surface) is likely to be too small to measure directly450

(Sanderson and Doake, 1979).

4.1 A note on the correct calculation of vertical shear stress in the SSA

In most applications of the SSA, the calculation of the
:::::
where

::::::::
Equation

::
6a

::
is
::::::
simply

:::
the

:::::::::
isothermal

::::
case

::
of

::::::::
Thomas’

::::::::
Equation

::
2,

:::
and

::::::::
Equation

:::
6b

::
is

:::
the

:::::::::
(nonzero!)

:
vertical shear stress is not a priority (by construction, the primary aim of the SSA is

to approximate the leading-order terms, which are normally interpreted to be horizontal velocities and membrane stresses).455

However, in some applications, it may be necessary to evaluate the vertical shear stress. For example, one area in which

vertical shear may be of interest is the topic of iceberg calving, wherein glacier ice experiences brittle failure. In ice shelf

settings, such failure often results in massive, rifted icebergs which can be tens of kilometers in length. Although tensile failure

is typically treated as the primary mechanism of brittle fracture in glaciers (Colgan et al., 2016), a more complete description

of iceberg calving would include the possibility of shear failure as well (for example, see Bassis and Walker (2012)). Given an460

appropriate calculation of the vertical shear stress, a shear failure mechanism might be meaningfully discussed by even shallow

approximations.

A natural approach to calculating the vertical shear stress would be to obtain a solution for the vertical velocity, use the plug

flow property to obtain ε̇xz =
1
2 (0)+

1
2

∂
∂xuz , and then apply the constitutive relation to obtain τxz . However, this procedure is

guaranteed to yield a physically unrealistic value for the vertical shear stress. By the workflow in Section ??, this approach will465

provide a description of ε̇xz which is negative below the waterline (see Equation ??). Therefore, the corresponding expression

for τxz will be negative below the waterline. As indicated by our analytic description of the vertical shear stress (Equation

??), the vertical shear stress should be
:::::
which

::::
must

::::::::::
accompany

::::
that

:::::::
solution.

::
In

::::
fact,

::
if

:::
we

:::
had

:::
set

:::::::
τxz = 0,

::::::::
Equation

::
6a

::::::
would

:::
not

:::::::
actually

::::
solve

::::::::
Equation

::
5,

:
positivebeneath the waterline. Consequently, this approach to estimating τxz is inappropriate

in shallow shelf settings.
:::::
unless

::
we

::::::::::
additionally

::::::::
assumed

::::
that

::::::::

∂
∂xh= 0.

::::
This

::::::::::
observation

:::::::::
succinctly

::::::::
illustrates

::::
the

::::
work

:::
of470

:::::::::::::::::::::::
Sanderson and Doake (1979)

:
:
::::::
τxz = 0

:::::
only

::
to

:::
the

:::::
extent

:::
that

::
a
::::
shelf

:::
has

:::::::
uniform

:::::::::
thickness.

An alternative approach is to vertically integrate the x-momentum equation. If this is done from the waterline to arbitrary

elevation z, integration of Equation ?? yields

τxz = ρigz
∂

∂x
h− 2

z∫
0

∂

∂x
τxxdz,

where we have used the condition that τxz|z=0 = 0 (see the footnote in the discussion preceding Equation ??). In the simplifying475

isothermal case, for example, and using the conventional description τxx = τxx = 1
4ρigh, this is satisfied by τxz as written in

our analytic expression, Equation ??. This approach, therefore, provides values in line with expectations.
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Figure 1.
::
An

:::
ice

::::
shelf

::::::::::
cross-section

:::::::
alongside

::
a

::::
visual

:::::::::
description

::
of

::::::
several

::::::::
geometric

::::::::
parameters

::::::::
commonly

::::
used

::
to
:::::::

describe
:::
ice

::::
shelf

:::::::
dynamics.

:::
H ,

::
h,

:::
and

:
b
::::::::

represent
::
the

::::::::
thickness,

::::::
surface

:::::::
elevation,

:::
and

:::::
basal

:::::::
elevation

::
of

::
the

:::::
shelf.

::::
z = 0

::
is
:::
the

:::::::
waterline

:::
and

::::::
x= xT::

is
:::
the

:::::::
terminus.

:::::
People

::
on

:::::::
terminus

:::
for

::::
scale.

For situations in which the magnitude of τxz is of interest, we recommend that vertical shear from the SSA be calculated via

integration of the momentum equations, and we advise against calculating the term directly, via the velocity gradients emerging

as SSA solutions. For back-of-the-envelope calculations, our analytic description of vertical shear stress, Equation ??, may be480

used.

5 Concluding remarks

In discussions of shallow ice shelf models, it is fairly common to hear vertical shear spoken of as “zero,” “neglected,” or other-

wise unimportant. However, except in the simplest, uniform-thickness analytic models, this cannot be the case. Fundamentally,

thickness gradients in ice shelves need to be balanced by vertical shear stress (Sanderson and Doake, 1979), and vertical shear485

stress should be neglected only to the extent that it is desirable to neglect a thickness gradient. While this is known, it is often

forgotten, or, at least, discussed with potentially misleading imprecision. Failing to note the relationship between vertical shear
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and thickness gradients puts us at risk of constructing ice shelf models with exaggerated rates of extension and implausible

ice front dynamics (see Figure ?? in Section ??). However, because shallow shelf models typically approximate horizontal

velocities as depth-invariant, the velocity fields predicted by these models are not strictly consistent with
:::::
While

:::
this

::::::::
certainly490

:::
was

:::
an

::::::::::::
approximation

:::::
made

::
by

:::::
early

:::
ice

:::::
shelf

::::::::
modelers,

::::
this

:::::::
language

::
is
::
at
:::::
odds

::::
with

::::::
current

::::::::
modeling

::::::::
practice.

::::::
Indeed,

:::
as

:::
first

::::::
shown

::
by

:::::::::
Sanderson

::::
and

:::::::
Doake’s

::
Is

:::::::
Vertical

:::::
Shear

::
in

::
an

:::
Ice

:::::
Shelf

::::::::::
Negligible?,

:
nonzero vertical shear stress . Evaluation

of vertical shear in ice shelves, when necessary, must be done via integration of the momentum equations, rather than via

the velocity field directly.
:
is
::
a

::::::::::
fundamental

:::::::::::
requirement

::
of

:
a
:::::::::::::::::::

nonuniform-thickness
:::
ice

:::::
shelf.

::::
With

:::::::::::
dimensional

:::::::
analysis

::::
now

:::::::
enabling

::::::::
modelers

::
to

::::
more

:::::::::
rigorously

:::::
define

:::::::::::
negligibility,

:::
the

::::::::::
present-day

::::::
answer

::
to

::::
their

::::::::
question

:
is
::
a
:::::::::
resounding

:::::
“no.”495
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