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Abstract 15 

Extreme weather events, such as tropical cyclones, often trigger population displacement. The 16 
frequency and intensity of tropical cyclones is affected by anthropogenic climate change. 17 
However, the effect of historical climate change on displacement risk has so far not been 18 
quantified. Here, we show how displacement can be partially attributed to climate change, 19 
using the example of the 2019 tropical cyclone Idai in Mozambique. We estimate the 20 
population exposed to high water levels following Idai’s landfall, using a combination of a 2D 21 
hydrodynamical storm surge model and a flood depth estimation algorithm to determine inland 22 
flood depths from remote sensing images, for factual (climate change) and counterfactual (no 23 
climate change) mean sea level and maximum wind speed conditions. Our main estimates 24 
indicate that climate change has increased displacement risk from this event by approximately 25 
12,600 - 14,900 additional displaced persons, corresponding to about 2.7 to 3.2% of the 26 
observed displacements. The isolated effect of wind speed intensification is double that of sea 27 
level rise. These results are subject to important uncertainties related to both data and 28 
modeling assumptions, and we perform multiple sensitivity experiments to assess the range 29 
of uncertainty where possible. Besides highlighting the significant effects on humanitarian 30 
conditions already imparted by climate change, our study provides a blueprint for event-based 31 
displacement attribution.   32 

1 Introduction 33 

Between 1980 and 2021, an average of 45 tropical cyclones (TCs) globally have been 34 
recorded per year (Guha-Sapir et al., 2022). TCs pose a set of societal  risks to coastal 35 
communities around the world. While related monetary losses are high, with an average of 36 
US$ 57.2 billion every year since 2008  (Guha-Sapir et al., 2022), TCs also displace an 37 
average of 9.3 million people every year, with this hazard being responsible for 43% of all 38 
weather-related displacements (IDMC, 2022). Such forced displacements are associated with 39 
human suffering, as well as substantial financial costs (e.g., for providing shelter or from loss 40 
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of economic production) and often require international assistance for disaster relief funds and 44 
humanitarian response (Desai et al., 2021).  45 
 46 
At the same time, global climate change is expected to alter TC characteristics, resulting in an 47 
increase in overall TC intensity (maximum wind speed and precipitation) and hence in the 48 
frequency of very intense TCs (category 4-5 on the Saffir-Simpson scale) (Knutson et al., 49 
2020). Primarily, this is the result  of an increase in potential intensity due to warmer sea 50 
surface temperatures (SST) (Emanuel, 2005, 2013, 1987). Sea level rise (SLR), also driven 51 
by global warming, additionally compound coastal flood risk associated with TCs (e.g., Garner 52 
Andra J. et al., 2017; Lin et al., 2012; Resio and Irish, 2016). Historic TC data records are 53 
short and partially inconsistent, making it difficult to determine the degree of intensification 54 
over time, despite observed changes in some basins, such as the South Indian Ocean 55 
(Knutson et al., 2019; Kossin et al., 2013, 2007; Webster et al., 2005). Moreover, existing TC 56 
datasets often focus on maximum wind speed, neglecting coastal and inland flooding which 57 
may be the dominant hazards, e.g., as for Hurricane Katrina or Hurricane Harvey 58 
(Bloemendaal et al., 2021). Paleo climate records (Lin et al., 2014; Nott and Hayne, 2001) and 59 
synthetic TC tracks (Bloemendaal et al., 2022, 2020; Emanuel et al., 2006) can be used to 60 
extend TC records.However, sediment availability is limited to a few coastal stretches and the 61 
statistical resampling process incorporates only the average observed climatic conditions, 62 
respectively, hampering the assessment of global climate change impacts over longer time 63 
periods (Bloemendaal et al., 2020). Nonetheless, given that global mean surface air 64 
temperature and sea level have already risen above pre-industrial conditions by about 1.1°C 65 
and 0.20 m, respectively (Gulev et al., 2021), it is likely that recent TC landfalls have caused 66 
more severe societal impacts than would be expected without climate change. A probabilistic 67 
attribution addressing this topic is limited by the shortness of TC records (Trenberth et al., 68 
2015), and may be additionally affected by multi-decadal variability (e.g., the Atlantic 69 
Multidecadal Oscillation) or interannual climate variability (e.g., the El Niño–Southern 70 
Oscillation) (Patricola and Wehner, 2018). As a consequence, the portion of TC-induced 71 
human displacements attributable to climate change has so far not been quantified.  72 
 73 
In this study, we address this research gap for the particular case of displacement triggered 74 
by TC Idai in 2019. We examine the floods in central Mozambique associated with TC Idai, 75 
considered to be “one of the Southern Hemisphere’s most devastating storms on record” 76 
(Warren, 2019). On the 14th of March, Idai made landfall near the densely populated port city 77 
of Beira, inhabited by more than 530,000 people (Figure 1). Alongside strong winds (maximum 78 
1-min sustained winds of 180 km/h) and extensive inland flooding caused by heavy rainfall, 79 
the cyclone also created a storm surge of up to 4.4 m, leading to coastal flooding centered at 80 
the port city of Beira (Probst and Annunziato, 2019). In Mozambique alone, TC Idai claimed 81 
the lives of more than 600 people, and caused 478,000 internal displacements, as well as 82 
widespread structural damage totaling more than US$ 2.1 billion (Guha-Sapir et al., 2022; 83 
IDMC, 2022).  84 
 85 
Here, we investigate how the coastal flooding would have manifested in a counterfactual world 86 
without climate change, and consequently, how many of the observed human displacements 87 
from TC Idai can be linked to climate change. For the attribution of the impacts we follow the 88 
storyline approach introduced by Shepherd (Shepherd, 2016). To this end, we account for two 89 
known mechanisms through which global climate change could have affected coastal flood 90 
hazard: SLR and amplification of storm intensity. Storm track and size are not changed, even 91 
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though both parameters are subject to the effects of climate change (Knutson et al., 2020, 94 
2019). We first estimate the influence of climate change on sea level and TC intensity in the 95 
South Indian Ocean. We employ a high-resolution hydrodynamic flood model to simulate TC 96 
Idai’s peak coastal flood extent and depth, both under historical conditions and under 97 
counterfactual conditions with lower sea levels and lower maximum wind speed, 98 
corresponding to a world without climate change. We additionally use satellite imagery to 99 
account for inland (fluvial and pluvial) flooding, and estimate the total number of people 100 
affected by flooding. We then model the number of displacements based on flood depth-101 
specific vulnerability factors, and estimate the fraction of displacements that can be attributed 102 
to climate change by comparing results under factual vs. counterfactual conditions.  103 
 104 
We use an estimate of SLR that attempts to separate natural variability in ice sheet and glacier 105 
mass balance and retain only the long-term trend induced by global warming (Strauss et al., 106 
2021). Beyond this, however, our analysis is indifferent to whether the trends in sea level and 107 
TC intensity are anthropogenic or not. This is in line with the definition of impact attribution put 108 
forward by the Intergovernmental Panel on Climate Change (IPCC), where “changes in 109 
natural, human, or managed systems are attributed to [a] change in [a] climate-related system” 110 
(O’Neill et al., 2022). Such a question can be separated from the climate attribution question 111 
of whether the change in the climate-related system - here, sea level and TCs - is due to 112 
anthropogenic forcing. This separation allows us to focus on the link between climate change 113 
and displacement despite remaining uncertainty about the exact anthropogenic contribution. 114 
We will return to this issue in the discussion.  115 
 116 
This study aims to attribute coastal-flood induced human displacements from TC Idai to 117 
historic climate change, using a quantitative modeling approach. It addresses the need for 118 
insights on the human impacts of climate change globally, and in particular in countries like 119 
Mozambique that suffer from a combination of high exposure to climate-related hazards - in 120 
this case, TCs - and high socio-economic vulnerability. Moreover, Mozambique, like many 121 
other countries, is characterized by limited availability of in-situ observational data and a lack 122 
of calibrated, local-scale inundation models. We use remote-sensing data and a globally 123 
applicable modeling framework to characterize flood exposure during TC Idai; reported 124 
displacement data is retrieved from the Global Internal Displacement Database (GIDD). Our 125 
approach is thus transferable to other cases in virtually all relevant countries. 126 
 127 
 128 
 129 
 130 
 131 
 132 
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 134 
 135 
Figure 1: Trajectory of tropical cyclone Idai over the South Indian Ocean. Trajectory data 136 
is based on the IBTrACS database (Knapp et al., 2010). Mozambican administrative 137 
boundaries (GADM, 2018) in white; satellite image background by © Google Maps (Google 138 
Maps (a), 2022). Dates and tropical cyclone status adopted from ReliefWeb (ReliefWeb, 139 
2019a). 140 

2 Methods 141 

2.1 Counterfactuals  142 

Constructing counterfactuals for sea level and TC intensity requires estimating the effect of 143 
historical climate change on these quantities. Total global mean sea level has risen by 144 
approximately 230 mm since the turn of the 20th century (Church and White, 2011); at a rate 145 
that has increased over time (Dangendorf Sönke et al., 2017). According to the IPCC, it is very 146 
likely that the rate of global mean SLR was 1.5 (1.1 to 1.9) mm yr⁻¹ between 1902 and 2010, 147 
and 3.6 (3.1 to 4.1) mm yr⁻¹ between 2006 and 2015 (Gulev et al., 2021). Nonetheless, 148 
regional changes in sea level may differ substantially from the global average due to shifting 149 
surface winds, the differential expansion of warming ocean water, and the addition of melting 150 
ice, which can alter the ocean circulation (Fox-Kemper et al., 2021). Additionally, increases in 151 
the amount of water stored on land (due to construction of dams and reservoirs), as well as 152 
land subsidence, have also affected total sea level, with their relative effects varying 153 
geographically (Church et al., 2004; Strauss et al., 2021).  154 
 155 
Long-term in-situ observational records of SLR are scarce in the Indian Ocean (Han et al., 156 
2010), hampering a precise detection of changes in sea level. For example, no active tide 157 
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gauge stations can be found on the coast of Beira (Beal et al., 2019), with the nearest station 159 
located in Inhambane, Mozambique, 448 km south of Beira. However, regional historical SLR 160 
rates for Mozambique, derived from satellite imagery or models, are close to global mean 161 
estimates. IPCC rates of change in sea surface height (geocentric sea level) derived from 162 
satellite altimetry show regional SLR off the coast of Mozambique at around 4.0 mm yr⁻¹ for 163 
the period 1993–2012 (Church et al., 2013). Climate-induced SLR at the South-Eastern 164 
African coastline (1993 - 2015) is estimated at ~3.5 mm yr⁻¹ using a coastal-length weighted 165 
approach (Nicholls et al., 2021). Reconstructed sea level fields using global tide gauge data 166 
suggests global-averaged SLR at 1.8 ± 0.3 mm yr⁻¹ over the 1950-2000 period, with regional 167 
SLR off the coast of Mozambique at around 1.5 mm yr⁻¹ (Church et al., 2004).  Han and 168 
colleagues  (Han et al., 2010) estimate regional Mozambican SLR at approximately 1.2 mm 169 
yr⁻¹ between 1961-2008.  170 
 171 
Given that these regional estimates are close to the global mean estimate by the IPCC, we 172 
assume that total SLR near Beira is the same as the global mean, a comparable approach as 173 
by Irish and colleagues (Irish et al., 2014). In order to exclude trends induced by natural 174 
variability, particularly in sea level contributions from glaciers and ice sheets, we use estimates 175 
of global mean sea level rise attributable to anthropogenic climate change for 1900–2012 from 176 
Strauss and colleagues (Strauss et al., 2021). Their ensemble estimate is 6.6 to 17.1 cm, 177 
which we use to define counterfactual sea level parameters for the coastal flood model. This 178 
also implies assuming no substantial local effects of land subsidence and human-induced 179 
changes in land water storage through reservoir construction and groundwater extraction that 180 
would confound comparison with the global estimates. This is hard to verify, but can be 181 
motivated by findings that city subsidence occurs only in a small fraction of the world’s coasts 182 
(Nicholls et al., 2021). 183 
 184 
Tropical cyclones are projected to become more intense with rising temperatures (Knutson et 185 
al., 2015), which is in line with the theoretical understanding of the potential intensity theory 186 
(Emanuel, 1987). Observed TC wind speed data in the South Indian Ocean basin shows that 187 
the maximum 10-minute sustained wind speed has been increasing by about 0.3 kn (0.15 m 188 
s⁻¹) per year on average, over the period 1973-2019 (Figure 2). Prior to 1973, the rate of 189 
increase was likely smaller, though observational data is lacking. We make a conservative 190 
assumption corresponding to 50 years of increase at a rate of 0.2 kn (0.1 m s⁻¹) per year, 191 
resulting in a total difference in maximum wind speed of approximately 10 kn (5.1 m s⁻¹). For 192 
the case of TC Idai with maximum observed 10-minute sustained wind speeds of 105 kn (54 193 
m s⁻¹), this corresponds to a 10% reduction in maximum wind speed by removing climate 194 
change, which we adopt as a plausible assumption for counterfactual TC intensity. 195 
 196 
This value is in line with the remote sensing-based estimates provided in Kossin et al. (2013), 197 
who find that lifetime maximum TC intensities in the SIO have increased by about 4.6 m/s over 198 
the period 1982-2009 (1.7 m/s per decade), which corresponds to 8.5% of TC Idai’s maximum 199 
intensity. If this rate of increase is linearly extrapolated to 2019, it results in an increase of 200 
about 6.3 m/s (11.6%). Since the rate of increase has likely risen along with surface warming, 201 
and since our period of reference extends back to 1973 rather than 1982, a value of 12% might 202 
be a safer assumption for comparing the results of Kossin et al. (2013) with our own estimate. 203 
To quantify the effect of uncertainty in the estimate of TC intensity change, we conduct two 204 
sensitivity experiments, with counterfactual intensity lower than factual by 8.5% and 12%, 205 
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respectively, reflecting the SOI estimate of Kossin et al (2013) both directly and when 208 
extrapolated for comparability with our own estimate.  209 
 210 
We note that lower rates of change have been found in climate model-based studies. Knutson 211 
et al. (2020) find a 6% increase in maximum intensity of SIO TCs per 2°C global mean surface 212 
warming. When applied to the historical increase in global mean surface temperatures of 213 
1.1°C, this would yield an increase of 3.3%. While these climate model estimates are important 214 
both for assessing future changes and for understanding the underlying mechanisms of 215 
observed trends, the remote-sensing based trend estimates are more relevant for informing 216 
the construction of the counterfactual in our study. 217 
 218 

 219 

Figure 2: Annual means of maximum TC wind speeds in the South Indian Ocean 220 
(maximum 10-minute sustained wind speeds). Linear trend over the period 1973-2020; 221 
data from IBTrACS database (Knapp et al., 2010). 222 

2.2 Coastal Flood Modeling 223 

The storm surge flood simulations are generated using the open-source geophysical flow 224 
solver GeoClaw (Mandli and Dawson, 2014). GeoClaw uses an efficient adaptive mesh 225 
refinement to model wind- and pressure-induced wave dynamics in the 2-dimensional depth-226 
averaged shallow water equations. The input data includes TC tracks, astronomical tides, and 227 
topographical raster data (see below) and GeoClaw provides outputs in the form of gridded 228 
maps of maximum flood heights as well as the temporal dynamics of storm surge at virtual 229 
tide gauge locations. We configure GeoClaw to limit the automatic mesh refinement to a 230 
spatial resolution of between 1 and 8 arc-seconds (approximately 30 and 240 m) inside of 231 
Idai’s landfall area and to between 100 and 900 arc-seconds (approximately 3 and 27 km) in 232 
the open ocean.  233 
 234 
As the factual input for GeoClaw, the TC track data from IBTrACS (Knapp et al., 2010) 235 
provided by the WMO Regional Specialised Meteorological Center at La Reunion (operated 236 
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by MeteoFrance) is used. For the counterfactual scenarios with modified TC intensity, we 237 
multiply all wind speed values along the track by a scalar factor of 0.9 (for a decrease of 10% 238 
in intensity). The central pressure at each track position is increased by 0.1 times the 239 
difference between central pressure and environmental pressure. 240 
 241 
From the wind speed, pressure, and radius information provided along the TC track, GeoClaw 242 
derives surface wind speeds and air pressure at arbitrary locations in space and time using a 243 
radially symmetric wind profile (Holland, 1980) combined with the influence from the storm’s 244 
translational speed. 245 
 246 
GeoClaw does not incorporate any tidal dynamics, nor meteorological forcings apart from the 247 
TC wind and pressure fields mentioned above. To account for the influence of astronomical 248 
tides, we configure GeoClaw to use an initial sea level according to gridded satellite altimetry 249 
for 2019 (CMEMS, 2021), optionally enhanced by the minimum, mean, or maximum simulated 250 
astronomical tides in the region of landfall according to the FES2014 global ocean tide atlas 251 
(Lyard et al., 2021). For the counterfactual sea level scenarios, the amount of sea level rise 252 
specified in the scenario description (between 6.5 and 17.0 cm) is subtracted from the initial 253 
sea level. 254 
 255 
The topographical input for GeoClaw is taken from digital elevation models (DEMs). We use 256 
a combination of CoastalDEM 2.1 (Kulp and Strauss, 2021, 2018) in coastal areas, SRTM 15+ 257 
V2.3 (Tozer et al., 2019) over the open ocean and Multi-Error-Removed Improved-Terrain 258 
(MERIT) DEM) (Yamazaki et al., 2019) everywhere else. All datasets are converted to the 259 
same geoidal vertical datum (EGM96) at a spatial resolution of 9 arc-seconds (approximately 260 
300 m). This resolution is the highest resolution where we were able to obtain numerically 261 
stable results from GeoClaw. We note that no harmonization has been applied to make up for 262 
disagreements between the different DEM products so that the transition from CoastalDEM 263 
topography to SRTM 15+ bathymetry can be steep. 264 
 265 
Due to a lack of tide gauges or suitable observed flood extent in Mozambique, it is not possible 266 
to validate the performance of GeoClaw for TC Idai in the factual model runs. However, we 267 
compare the water levels at a virtual tide gauge station off the coast of Beira, where the highest 268 
impacts from TC Idai have been reported, with simulated water levels from the Global Tide 269 
and Surge Model (GTSM) (Dullaart et al., 2021; Muis et al., 2020), and find the best agreement 270 
of maximum surge heights for the GeoClaw run with the maximum astronomical tide 271 
assumption, closely followed by the run assuming the monthly mean sea level (no tidal 272 
adjustment) (Supplementary Figure S1). 273 

2.3 Inland Flood Depth Estimation  274 

Gridded depth maximums for the flood event  (Supplementary Figure S2) is calculated using 275 
the Rolling HAND Inundation Corrected Depth Estimator (RICorDE) tool(Bryant et al., 2022) 276 
supplied with terrain data from the MERIT DEM project, permanent surface water data from 277 
the Joint Research Centre (JRC) Global Surface Water project (Pekel et al., 2016), and flood 278 
extents from the FloodScan product (Atmospheric and Environmental Research & African Risk 279 
Capacity, 2022). MERIT DEM provides a roughly 90 m resolution global layer derived from 280 
multiple space-based sensors to minimize elevation errors. The maximum water extent layer 281 
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from JRC’s Global Surface Water project provides a roughly 30 m resolution global layer of 282 
locations detected as inundated on Landsat imagery (Wulder et al., 2016) from 1984-2019 283 
(Pekel et al., 2016). Observed flood extents for TC Idai are obtained from Atmospheric and 284 
Environmental Research & African Risk Capacity’s accumulated 2-tier standard flood extent 285 
depiction FloodScan product from 2019-03-01 to 2019-03-31 using the MERIT DEM 286 
resolution. Originally developed for applications in Africa, this FloodScan algorithm relies on 287 
satellite based low-resolution passive microwave data and was designed to capture national-288 
scale events. To accomplish this, the algorithm minimizes false-positives, making the 289 
algorithm more prone to false-negatives and less sensitive to events with smaller spatial extent 290 
and urban floods (Galantowicz and Picton, 2021). All data layers are re-projected to 90 m 291 
resolution geodetic coordinates prior to the RICorDE computation.  292 
 293 
RICorDE is a tool developed in pyQGIS for post-event analysis of fluvial flood events using 294 
inundation masks derived from space-based observations. RICorDE first generates a Height 295 
Above Nearest Drainage (HAND) grid followed by an inundation correction phase and a water 296 
surface level (WSL) calculation phase. As part of pre-processing, the HAND grid is obtained 297 
using WhiteboxTools’ ElevationAboveStream (Lindsay, 2014) from the permanent surface 298 
water layer and the DEM. In the first phase of RICorDE, the observed flood extents are 299 
hydraulically corrected to account for under-predictions using the permanent surface water 300 
layer and over-predictions using a HAND-derived inundation representing the upper quartile 301 
of possible flooding extents. In the second phase, HAND values sampled from the inundation 302 
shoreline are used to produce an interpolated WSL grid using WhiteboxTools’ CostAllocation 303 
algorithm (Lindsay, 2014). Finally, gridded water depths are obtained from this WSL grid 304 
through subtraction with the DEM. RICorDE is explained in detail in the tool publication (Bryant 305 
et al., 2022) and the source code can be accessed online 306 
(https://github.com/NRCan/RICorDE/tree/main). 307 
 308 
The slower, more complex RICorDE algorithm has been shown to produce more accurate 309 
depths maps for two fluvial flood events in Canada when compared to faster, more disaster 310 
response-focused solutions like the Floodwater Depth Estimation Tool (FwDET) (Bryant et al., 311 
2022; Cohen et al., 2018). While no data is available to validate the performance of the depths 312 
estimate for TC Idai, visual inspection suggests results are less accurate in areas with higher 313 
elevation (>20 m), especially where drainageways are of comparable width to the resolution 314 
of the JRC water extent layer. These false negatives in the JRC layer propagate as positive 315 
bias in the HAND routine, which leads to higher elevation water surface predictions and similar 316 
positive bias in the depth values (see white arrow in Figure S3a).  317 

2.4 Combined Flood Depth Product 318 

The inland flood depth estimates from RICorDE are resampled from 3 arcsec to 9 arcsec, 319 
using the average resampling method (Rasterio library for Python), to match the resolution of 320 
the GeoClaw output. All flood depths are rounded to the nearest decimeter, their outline is 321 
cropped to the area of interest, and the final factual flood depth in each grid cell (shown in 322 
Figure 3a) is determined as the maximum of both products. This accounts for both potentially 323 
partly obscured satellite imagery by clouds and potential underestimation by the numerical 324 
model. 325 

 326 
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"! = $%&	(	"",!	, "$ 	)    (1) 328 
 329 

with d0 referring to the factual flood depth, and indices c and r referring to the coastal flood 330 
model (GeoClaw) and to the remote sensing data translated into flood depth using RICorDE, 331 
respectively. To derive the counterfactual flood depth dcf, we subtract the difference between 332 
modeled factual and counterfactual coastal flood depths from the combined factual flood 333 
depth: 334 
 335 

""% = "! 	− 	(	"",! 	− 	"","%	)   (2) 336 
 337 

2.5 Displacement  338 

We use displacement data from the publicly accessible GIDD, maintained by the Internal 339 
Displacement Monitoring Centre (IDMC, 2022). IDMC follows the definition of displacement 340 
provided in the Guiding Principles on Internal Displacement (OCHA, 2004), which states that 341 
“[i]nternally displaced persons are persons or groups of persons who have been forced or 342 
obliged to flee or to leave their homes or places of habitual residence, ... and who have not 343 
crossed an internationally recognized State border”. This definition covers permanent 344 
displacement, temporary displacement, and pre-emptive evacuations (Gemenne, 2011), all 345 
summarized as “displacements” within our study. No granular information is available in GIDD 346 
on the type of displacement. Displacement numbers are based on multiple secondary sources, 347 
such as IOM, OCHA, or - in the case of TC Idai - the Mozambique National Institute of Disaster 348 
Management. The TC Idai event is categorized as a “storm” event, however, no information is 349 
given on how many of the displacements were caused respectively by flooding, strong winds, 350 
or a combination of both. Because of the extensive flooding observed in the wake of Idai’s 351 
landfall and humanitarian reports often focused on flooding (ReliefWeb, 2019a), we assume 352 
in our main analysis that all displacements are caused by flooding (either coastal or inland). 353 
We assume that people exposed to flood levels greater or equal than 100 cm are affected by 354 
the flooding and thus prone to displacement, following previous studies (Custer and Nishijima, 355 
2015; Kam et al., 2021). However, we also test the sensitivity of our results to this threshold 356 
choice by evaluating alternative water level thresholds of 10 cm and 50 cm. Our modeling 357 
approach assumes an artificially deterministic link between the TC hazard and displacement, 358 
which is adequate in the context of the factual-counterfactual approach where only one 359 
parameter - storm surge hazard - is modified while everything else, including vulnerability, is 360 
held constant. In general, the relationship between climatic events, pre-existing socio-361 
economic conditions, and displacement is complex and only partially understood (Cattaneo et 362 
al., 2019; UK Government Office for Science, 2011). In other words, our study addresses the 363 
question of how many displacements might have occurred in a different climate but with the 364 
same vulnerability as observed; it does not address the question of how this vulnerability came 365 
about.   366 
 367 
We first determine the flood extent with depths greater than the selected water level threshold 368 
and overlay it with population data to estimate the number of people affected. We use gridded 369 
population data from GHS-POP (Schiavina et al., 2019) for the year 2015, on 9 arcsec 370 
resolution. Population growth in Mozambique was 1.12 % between 2015 and 2019 (The World 371 
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Bank, 2022); we hence multiply all population grid cells with this factor, assuming a spatially 372 
equal population growth.  373 
 374 
We then calculate the ratio between the number of observed displacements, and the number 375 
of affected people from the factual flood estimate. This ratio, which may be thought of as an 376 
event-specific displacement vulnerability factor, is different for every tide assumption, 377 
reflecting the uncertainty about the actual flood extent and depth. We compute for every 378 
impact level threshold i and tide assumption h a displacement vulnerability factor vi,h by 379 
dividing the number of observed displacements Do by the total number of affected people of 380 
the factual scenario Ai,h,o: 381 
 382 

,',( =	 )!
*",$,!

		  (3) 383 

 384 
Multiplying the specific displacement vulnerabilities with the counterfactual numbers of 385 
affected people, we derive the number of people at risk of displacement in a world without 386 
climate change. This means that the difference between factual and counterfactual 387 
displacement estimates comes only from differences in the flood hazard, while exposure and 388 
vulnerability factors are held fixed. We achieve this by multiplying vi,t with the number of 389 
affected people of the counterfactuals Ai,h,cf, and estimate the expected number of 390 
displacements for each counterfactual scenario Di,h,cf: 391 
 392 

-',(,"% = ,',( ∗ /',(,"%		 (4) 393 
 394 
We point out that the use of predefined flood thresholds implies the assumption that at a given 395 
flood depth, the risk of severe damages to, or even destruction of, residential buildings and 396 
other infrastructure typically becomes so large that people may be forced to flee. The number 397 
of people that actually become displaced then depends on additional physical, political and 398 
socio-economic factors, which may vary between local contexts and are not generally known. 399 
Their aggregate effect is reflected in the specific vulnerability factor vi,h. In other words, the link 400 
between flood hazard and displacement is “soft” in the sense that it is mediated by the local 401 
vulnerability. An alternative assumption would be that there is an (event-specific) flood-depth 402 
threshold below which there is no displacement, and above which people become displaced 403 
regardless; that is, a “hard” link between flood hazard and displacement. In this case, the 404 
flood-depth threshold could be derived directly from the data, as the depth level at which the 405 
calculated number of affected people equals the reported number of displacements. When we 406 
sum up the affected people per 10 cm flood depth increment for TC Idai, we obtain a threshold 407 
of about 400 cm (similar for all tide assumptions; Supplementary Table S1), for which the 408 
modeled number of affected people approximately equals the number of observed 409 
displacements. This value is very high in comparison with the thresholds cited further above, 410 
and we believe it is implausible for displacement to occur only in locations inundated by 4 411 
meters or more. This exercise therefore lends further justification for the “soft link” approach.  412 
 413 
Even though disaster reports for TC Idai suggest flooding to be the main driver of 414 
displacement, high wind speeds may have locally intensified the impact of TC Idai (Figure S4) 415 
and be partially responsible for the observed displacements. We conduct an additional 416 
analysis where we assume that people affected by either flooding or wind (or both) were at 417 
risk of displacement with an equal vulnerability factor. We use a wind speed threshold of 96 418 
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kn (50 m s⁻¹) for population exposure (Geiger et al., 2018), corresponding to the Saffir–420 
Simpson scale classification 3 (major hurricane). The resulting wind field is overlaid with 421 
gridded population data to compute the number of affected people, excluding those who are 422 
already affected by flooding.  423 

3 Results 424 

3.1 Simulated flooding 425 

We calculate storm surge flood extent and depth for the factual (driven with observed wind 426 
speeds and sea levels) and counterfactual (reduced wind speeds and sea level) scenarios.  427 
The difference between factual and counterfactual flooding (maximum tide, 10.5 cm SLR, 10% 428 
TC intensification) is illustrated in the densely populated area of Beira (Figure 3b), the city 429 
where TC Idai made landfall and destroyed 90% of all houses according to some disaster 430 
reports (ReliefWeb, 2019b). Beira consists of two major population centers, of which the 431 
southern one is close to the seaside and exhibits a higher population count. 432 
 433 
Both factual and counterfactual flood extent covers the southern, highly populated part of Beira 434 
(Figure 3c and 3d). The northern parts of the city are only marginally affected. Flood extents 435 
are also similar between factual and counterfactual simulations in the areas east of Beira and 436 
around the inflow of the Buzi River, located on the opposite side of the bay. Only a few isolated 437 
locations no longer experience flooding after removing the effects of climate change. 438 
 439 
In contrast, differences in simulated flood depth are more pronounced (Figure 3e). 440 
Counterfactual flood depths are up to 80 cm lower than factual flood depth in some parts of 441 
the southern city center. The highest difference in flood depth, of up to 140 cm, is found 442 
between the northern and southern population centers of Beira. Flood depth differences 443 
outside of Beira are rather low, however, Figure 3c and 3d show that absolute flood depths 444 
drop below the critical flood depth of 100 cm over great parts around the west bank of the 445 
Pungwe River inflow. Overall, it is observable that depth differences (between factual and 446 
counterfactual simulations) are higher in less populated parts, especially in Beira. This could 447 
partly result from the fact that digital elevation models tend to overestimate elevation in dense 448 
urban settings (Shen et al., 2019), thereby underestimating flood depth and potentially also 449 
differences in flood depth between different scenarios, however, this is hard to ascertain given 450 
the available data. Nonetheless, local variations in simulated flood depth should be interpreted 451 
with care. 452 
 453 
 454 
 455 
 456 
 457 
 458 
 459 
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Figure 3: Simulated flood extent for Mozambique; population distribution and 461 
inundation levels for the greater area of Beira. (a) Combined factual estimate of inland and 462 
coastal flooding (binary; flood/no-flood). White dashed box shows the area of interest in which 463 
flood exposure is computed. Red rectangle shows the extent of the section displayed in panel 464 
(b) - (e). (b) Population distribution for the greater area of Beira. Flood extent and levels for (c) 465 
the factual scenario (max. tide), and (d) the “counterfactual TC intensity + sea level rise (10.5 466 
cm) - max. tide” scenario. Flood depth difference between (c) and (d) is displayed in (e). City 467 
neighborhoods of Beira (HDX, 2019) are indicated by orange lines and shoreline (Wessel and 468 
Smith, 1996) is represented by dashed white lines in (b) - (e); satellite image background by 469 
© Google Maps (Google Maps (b), 2022) in (a) and (b).  470 
 471 

3.2 Displacement 472 

In the next step, we investigate how the factual and counterfactual flood estimates translate 473 
into population at risk of displacement for the whole of Mozambique. We compare factual and 474 
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counterfactual affected people/displacements and compute the absolute relative change 477 
based on the counterfactual results, representing the increase in impact due to climate 478 
change. Our analysis shows that the intensification of TC wind speeds leads to an increase in 479 
flood affected people and, consequently, in displacements by up to 2.7%, while 480 
counterfactuals regarding the sea level lead to only small changes by up to 1.3 % (Figure 4, 481 
Table 1 and Table S2). A combination of both counterfactuals only slightly exceeds the range 482 
(increase by up to 3.2% for the maximum tide assumption) as in contrast when considering 483 
the TC intensification alone. Despite the large uncertainty regarding SLR since 1900, the 484 
difference in the number of people affected (or displaced) is rather marginal; being less than 485 
1% increase between the largest and the smallest SLR estimate for the “cf SLR” simulations. 486 
Our results highlight that the tide assumption plays a major role. The minimum and mean tide 487 
lead to marginal changes in affected/displaced people, in contrast to the maximum 488 
astronomical tide and monthly mean sea level from satellite altimetry (no tide), which show for 489 
the “cf SLR + wind” simulations a median change in 3.0% (maximum change in 3.2%) and 490 
2.7% (3.2%), respectively. Given the high number of affected people, already small changes 491 
in the counterfactual scenarios lead to high changes in absolute numbers. The coupled effect 492 
of higher wind speeds and higher sea level increases the number of affected people and 493 
displacements by up to 39,300 and 14,900 (maximum tide) and 38,100 and 14,600 (monthly 494 
mean), respectively. Results regarding impact flood levels of 10 cm and 50 cm are displayed 495 
in Table 1 and the supplementary material (Figure S5 and S6), showing even higher changes 496 
for the counterfactual scenarios of up to 56,500 displacements (13.4% increase).  497 
 498 
Besides our central TC intensification assumption of 10%, we also examine two alternative 499 
assumptions of 8.5% and 12% intensification, respectively, for the “max” tide (Figure 5). The 500 
spread among the intensification scenarios is rather small, with median relative changes 501 
varying between 2.9% and 3.7%. This translates to median estimates of 35,300 and 44,600 502 
affected people, or 13,400 and 16,900 displacements, respectively (Table 1 and Table S2). In 503 
contrast, the difference between the highest (4.0%) and lowest values (2.2%) is larger. In 504 
absolute terms, this means a range of between approximately 27,400 and 48,200 affected 505 
people, or 10,400 and 18,200 displacements. 506 
 507 
We assume that high wind speed caused only a marginal fraction of displacements, following 508 
disaster reports, media coverage and experience from other events; as an extreme example, 509 
wind by Hurricane Sandy caused less than 0.01% of the overall damage (Strauss et al., 2021). 510 
Nonetheless, in an additional sensitivity analysis, we also account for the number of people 511 
affected by high TC wind speeds of 50 m s⁻¹ or above (Sect. Methods). Our analysis reveals 512 
that the number of people affected not by flooding (maximum tide assumption, 100 cm impact 513 
threshold) but by high wind speeds ranges between 340,900 to 360,600 in the factual 514 
simulation. In the counterfactual, even the maximum wind speed attained in any grid cell 515 
outside the flooded area drops from 51.5 m s⁻¹ to 46.3 m s⁻¹, i.e. below the above-mentioned 516 
threshold; thus, no people are counted as affected. Assuming  the same vulnerability factor 517 
for displacement due to high wind speed as due to flooding yields i 103,700 to 112,100 518 
displacements, or 21.7 to 23.4% of the total displacement, attributable to climate change.   519 
 520 
 521 
 522 
 523 
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 526 
Figure 4: Simulated affected people (top), displacements (middle) and percentage 527 
change (bottom) for the 100 cm impact threshold.  The percentage change compares 528 
factual and counterfactual displacements, and represents the absolute relative change based 529 
on the counterfactual results. Three counterfactual scenarios are shown: lower sea level (“cf 530 
SLR”)), intensification (“cf wind”), and a combination of both (“cf SLR + wind”). Additionally, a 531 
variety of counterfactual sea levels as well as a set of astronomical tides is presented, covering 532 
minimum (“min”), mean (“mean”), and maximum (“max”) as well as monthly mean sea level 533 
from satellite altimetry (“no”). Bold dashed line in the middle panel shows the number of 534 
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observed displacements. Percentile changes in affected people and displacements are the 535 
same. The second quartile Q2 (median) of the box plot is shown in orange, “whiskers” are 536 
placed at ±1.5 * interquartile range (Q3-Q1). 537 
 538 
Table 1: Overview main results for modeled displacement impact. Min./Median/Max. are 539 
related to the SLR scenarios. Orange background of the first results row indicates the primary 540 
parameter estimate. Cells with gray background indicate the altered parameter in comparison 541 
with the primary estimate. 542 
 543 
Counterfactual 

Flood-Depth 
Threshold 

[cm] 

Intensification 
[%] 

Tide 
Displacements

Dif. Min.  
Displacements

Dif. Median 
Displacements

Dif. Max 
Displacements 

Dif. Min. [%] 

Displacements 
Dif. Median 

[%] 

Displacements 
Dif. Max [%] 

SLR + wind 100 10 max 13331 13958 14875 2.9 3.0 3.2 

SLR + wind 100 10 no 12620 12740 14629 2.7 2.7 3.2 

SLR + wind 100 10 min 8822 8822 9183 1.9 1.9 2.0 

SLR + wind 100 10 mean 10235 10543 11353 2.2 2.3 2.4 

SLR + wind 50 10 max 46695 49336 52275 10.8 11.5 12.3 

SLR + wind 10 10 max 28557 32218 34456 6.4 7.2 7.8 

SLR 100 10 max 2407 5584 5981 0.5 1.2 1.3 

wind 100 10 max - 12033 - - 2.6 - 

SLR + wind 100 8.5 max 10384 13354 14321 2.2 2.9 3.1 

SLR + wind 100 12 max 14297 16870 18232 3.1 3.7 4.0 

 544 

 545 

Figure 5: Percentage change in displacements between factual and counterfactual, for 546 
three different TC intensification assumptions. The percentage change compares factual 547 
and counterfactual displacements, and represents the absolute relative change based on the 548 
counterfactual results. The combined counterfactual scenario (“cf SLR + wind”) with 100 cm 549 
impact threshold and the maximum astronomical tide (“max”) is displayed. The central 550 
assumption of 10% intensification is highlighted with a cyan-colored median in the box plots. 551 
The second quartile Q2 (median) of the box plot is shown in orange/cyan, whiskers are placed 552 
at ±1.5 * interquartile range (Q3-Q1). 553 

4 Discussion and conclusions 554 

With more than one degree of global warming, most, if not all, extreme weather events now 555 
can be assumed to bear some imprint of climate change. By extension, this is also true for the 556 
humanitarian crises induced by catastrophic storms, floods, or droughts. However, while 557 
economic damages from climate change have been attributed both in case studies and global 558 
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studies (Frame et al., 2020b, 2020a; Sauer et al., 2021; Strauss et al., 2021), little is known 560 
about the extent to which climate change has already exacerbated human displacement. Our 561 
modeling study of TC Idai suggests that climate change may have induced between 12,600 562 
(2.7%; lowest estimate under the no tide assumption) and 14,900 (3.2%; highest estimate 563 
under the maximum tide assumption) additional displacements from this one event. This is 564 
primarily due to the intensification of TC wind speed inducing a more powerful storm surge; 565 
and to a lesser extent due to sea level rise providing a higher baseline for the storm surge. 566 
We also show that the sensitivity of the results to the choice of TC intensification is 567 
approximately in the same range as for the tide assumption. We note that our attribution 568 
statements are, as commonly in the climate (impacts) attribution literature, purely statistical; 569 
that is, we do not make any claims about whether or to what extent any individual person may 570 
have been displaced because of climate change.  Our methodology and results are subject to 571 
a variety of limitations and uncertainties, primarily related to the models (coastal, fluvial, DEM) 572 
and underlying datasets (population, displacement). Additional sources of uncertainty are the 573 
counterfactual input quantities (SLR, wind speed intensification), impact flood levels, and tide 574 
assumption, for which we perform sensitivity analyses. 575 
 576 
Our results likely underestimate the full contribution of climate change to displacement 577 
associated with TC Idai, because we solely addressed the effect of climate change on coastal 578 
flooding, neglecting changes in inland flooding. Between March 3 and 17, heavy precipitation 579 
between 200-400 mm was registered for Beira City and the region, with upstream sections of 580 
the Pungwe River basin exposed to more than 600 mm (Probst and Annunziato, 2019). With 581 
growing evidence that climate change not only affects precipitation intensity (Fowler et al., 582 
2021; Guerreiro et al., 2018; Scherrer et al., 2016) but also continental-scale changes in fluvial 583 
flood discharge (Blöschl et al., 2019; Gudmundsson et al., 2021), it is likely that in a world 584 
without climate change, the river flood magnitude would have been smaller, and even less 585 
people would have been exposed than in our coastal-only counterfactual. Quantifying this 586 
additional effect would require a river flood model capable of reproducing the observed flood 587 
extent and associated inundation depths, and ideally coupled with a coastal flood model to 588 
capture the interaction between river flood and storm surge. Even though globally-applicable 589 
frameworks for compound flood hazard modeling are under construction, and have recently 590 
been tested for TC Idai (Eilander et al., 2022), evaluations of fluvial flood models reveal 591 
important shortcomings in data-scarce regions such as Mozambique (Bernhofen et al., 2018; 592 
Mester et al., 2021). Quantifying the role of river flooding in TC-induced displacement thus is 593 
a timely challenge.  594 
 595 
The inland river flood estimates based on satellite imagery exhibit several limitations and 596 
uncertainties. In the absence of validation data, it is difficult to quantify the uncertainty arising 597 
from the inland flood depths estimation. These gridded values are highly sensitive to the input 598 
layers, namely the DEM (MERIT), permanent surface water (JRC), and the satellite-based 599 
observation of inundation extents (FloodScan) (Atmospheric and Environmental Research & 600 
African Risk Capacity, 2022). Especially uncertainties regarding the choice of DEM, used for 601 
both the inland flood depth estimation and the coastal flood model, should not be neglected 602 
(Hawker et al., 2018). Qualitatively, the performance seems poor in areas with higher 603 
elevations (>20m). This could be attributable to challenges in representing the topography at 604 
90 m resolution and dense obstructions that scatter returning signals (Shen et al., 2019).  605 
 606 

Deleted:  607 



 

17 

Similarly, no suitable validation data for the coastal flood simulations is available. According 608 
to the FloodScan description (Atmospheric and Environmental Research & African Risk 609 
Capacity, 2022), the used products “depict large scale, inland river flooding well but are less 610 
likely to depict flooding in smaller floodplains and near coastlines”. We have hence opted to 611 
not choose the FloodScan product as the sole coastal flood hazard estimate nor as validation 612 
dataset for the flood extent from our coastal flood model. A flood risk screening for Beira (van 613 
Berchum et al., 2020) showed that simulated flood extent for a 10-year rainfall event plus a 614 
10-year coastal surge event covers most parts of the Central and Munhava city districts of 615 
Beira (South-Eastern city districts). In contrast, the FloodScan product shows only little 616 
flooding in this area, while it is assumed that flooding by TC Idai exceeded an average 617 
recurrence interval of 10 years. For example, Emerton et al. (2020) show that GloFAS flood 618 
forecasts indicated a 100% probability of exceeding the severe flood alert threshold (20-year 619 
return period) for TC Idai at the Pungwe River (Emerton et al., 2020). Furthermore, newspaper 620 
photographs (Bergensia, 2019) show flooding in the Area de Baixa part of Beira (Western 621 
district of Beira), which was only partially flooded according to the satellite imagery. The AER 622 
product thus likely underestimates flood extent, which  may be explained by cloud 623 
obscurement or failure in automatic flood detection due to, for example, flooding in densely 624 
populated areas, or the satellite passing over some time after the peak flooding when water 625 
levels have already receded.  626 
 627 
Furthermore, the coastal flood modeling framework does not incorporate any astronomical 628 
tidal dynamics. Because there are no tide gauge records available in the region, we were only 629 
able to compare the model’s surge heights to the state-of-the-art Global Tide and Surge Model 630 
(GTSM). For the derived flood maps, there were no observational benchmarks available for 631 
validation. Moreover, the model is not able to take the interaction of the coastal surge with 632 
increased river discharge at the estuaries into account. In some cases, this interaction has 633 
been shown to influence water levels in a nonlinear way, for example for the 2016 Louisiana 634 
flood (Bilskie and Hagen, 2018). Another source of uncertainty is again the DEM, in particular 635 
the transition from topographic to bathymetric data at the coast lines.  636 
 637 
Additionally, our analysis may be sensitive to the choice of population dataset (Archila Bustos 638 
et al., 2020; Leyk et al., 2019), which may lead to uncertainties regarding our estimated 639 
exposure. One of the main error sources for population datasets is related to the areal 640 
interpolation methods to disaggregate the population data (Archila Bustos et al., 2020). GHS-641 
POP distributes population only within built-up areas, which has the downside that non-642 
residential areas are simulated as populated as well (Freire et al., 2016). In fact, a comparison 643 
with satellite imagery reveals that some areas in Beira are populated which are most likely 644 
only commercial or industrial sites. On the other hand, not all settlements are captured by 645 
GHS-POP, most likely due to their building type. Nonetheless, GHS-POP is still one of most 646 
accurate datasets in estimating and modeling the known population (Archila Bustos et al., 647 
2020), especially in urban contexts (Leyk et al., 2019) as in the case for Beira.  648 
 649 
No information is available regarding the spatial distribution of displacements within GIDD; we 650 
assume that vulnerability to displacement is uniform across the affected area. The total 651 
number of displacements is furthermore not specifically categorized by hazard type, which 652 
reflects the multivariate (wind, rain and flood) compound characteristic of TCs hazards 653 
(Zscheischler et al., 2020). However, this impedes the attribution of coastal flood-induced 654 
displacements. Furthermore, the GIDD estimates include different forms of displacement, 655 
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such as forced displacement or pre-emptive evacuations, with the latter potentially accounting 660 
for a substantial proportion (McAdam, 2022). This poses far-reaching implications for 661 
displacement risk modeling, as evacuations may already be triggered by lower flood depths, 662 
or by early warnings of an impending hazard, which may not materialize in the expected 663 
manner, or may not cause the level of destruction that would lead to a corresponding 664 
magnitude of forced displacement. 665 
 666 
Our main analysis also assumed no direct effect of high wind speeds on displacement, lacking 667 
clear evidence for substantial displacement due to high winds alone. Our additional sensitivity 668 
analysis suggests that changing this assumption could increase the number of displacements 669 
attributable to climate change considerably. Given this potentially large effect, and our limited 670 
understanding of the relative roles of different drivers of displacement in general, the specific 671 
vulnerability to displacement from different types of hazard should be the subject of future 672 
studies. Moreover, assuming that displacement can occur already at inundation depths of less 673 
than 100 cm also leads to higher estimates of climate change-attributable displacement, 674 
according to our sensitivity analysis. We also tested if the flood-depth threshold can be 675 
estimated from the data by summing up the affected people per 10 cm flood depth increment 676 
until equaling the number of observed displacements. This analysis yields an alternative flood-677 
depth threshold of 400 cm, which we assess to be physically not reasonable in the context of 678 
building structure in Mozambique. Again, a better understanding of vulnerability beyond hard 679 
physical flood-depth thresholds and empirically derived vulnerability factors will be critical to 680 
refine risk assessments. Future work may produce a functional relationship between 681 
displacement risk, contextual drivers, and physical flood properties, covering, for example, 682 
depth, velocity, and duration.  683 
 684 
We did not change storm track or size in our counterfactual simulations. While storm tracks 685 
may be affected by climate change (Knutson et al., 2019), we assume that Beira has not 686 
become more or less likely as a landfall site. Mean storm size is found to increase 687 
systematically with the relative sea surface temperature (Chavas et al., 2016), although 688 
numerical simulations suggest that projected median sizes remain nearly constant globally 689 
(Knutson et al., 2015). Assuming increases in storm size due to climate change would again 690 
result in higher estimates of attributable displacements in our analysis. By design, in our 691 
attribution study, we assumed a fixed population distribution in both factual and counterfactual 692 
simulations, as well as a fixed, empirically determined displacement vulnerability factor, and 693 
only investigated changes in displacement risk following from changes in the physical 694 
characteristics of TC Idai and its impacts. Assessments of future risks - or of past impacts - 695 
should not only take into account the intensification of physical hazards, but also changes in 696 
exposure (Kam et al., 2021); as well as potential changes in vulnerability due to social, 697 
economic, or technological developments. For instance, TC-related displacements depend not 698 
only on the damage to housing, but also on other factors such as government responsiveness 699 
or poverty levels (Cissé et al., 2022). Here, we have chosen a storyline approach for the impact 700 
attribution instead of a more traditional probabilistic attribution approach (Philip et al., 2020; 701 
Titley et al., 2016), as for instance previously employed to attribute heavy precipitation of 702 
Hurricane Harvey (Oldenborgh et al., 2017) to climate change. One reason is that for 703 
Mozambique neither the complete time series of rainfall nor the high station density required 704 
by a probabilistic approach (van Oldenborgh et al., 2021) are available. Reanalysis products 705 
for precipitation could be used as an alternative, however, their quality depends on geographic 706 
location, so the use of multiple reanalysis and/or observation products is recommended 707 
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(Angélil et al., 2016). Nonetheless, a climate attribution approach focusing on changes in the 714 
probability or intensity of TCs in the South Indian Ocean due to anthropogenic forcing (O’Neill 715 
et al., 2022) could guide the construction of counterfactual scenarios of the storyline approach. 716 
Further, in contrast to the probabilistic approach, the storyline approach allows us to 717 
investigate the driving factors involved, as well as their plausibility (Shepherd et al., 2018).  718 
 719 
Framing the risk of tropical cyclones in the context of climate change in an event-specific rather 720 
than a probabilistic manner also allows us to assign absolute numbers of attributable 721 
displacements, which raises risk awareness in a more tangible way. Even though these 722 
numbers include substantial and important uncertainties related to the models, datasets and 723 
counterfactual assumptions, as discussed above, they provide an informative quantitative 724 
indication of the additional risk posed by climate change to communities affected by one of 725 
the worst natural disasters in recent history. The responsibility for managing and reducing 726 
displacement risk lies primarily at the national and provincial level, but often local authorities, 727 
organizations, and communities respond to displacement disasters (Hollinger and 728 
Sienkevych, 2019). Demonstrating quantitatively how climate change affects the societal risks 729 
associated with natural hazards may play an important role in raising awareness, with different 730 
types of stakeholders, to the changing nature of such risks. It may also incentivize 731 
governments to step up their efforts both in terms of planning and investing into adaptation 732 
measures, and rapidly mitigating greenhouse gas emissions. The storyline approach is 733 
particularly suited for highlighting the risk-amplifying effects of climate change in a tangible 734 
and accessible way, based on a well-known event in the recent past (van den Hurk et al., 735 
2023). Estimates of the costs of displacement additionally highlight the adverse economic 736 
aspects of climate change (Desai et al., 2021); average costs have been put at $310 per 737 
displaced person per year, though actual costs are heavily dependent on the country and 738 
duration (days/weeks to years) (IDMC, 2019). Only 50.7% of the required Mozambique 739 
Humanitarian Response Plan 2019 of US$m 620.5 was funded, demonstrating that climate 740 
change poses an additional burden to insufficiently equipped financial aid resources. 741 
Anticipating the intensification of tropical cyclones under future global warming (Knutson et 742 
al., 2020) calls for enhancing adaptation measures as well as disaster relief and humanitarian 743 
aid. The IPCC AR6 projects an additional global increase in mean sea level and surface 744 
temperature of 0.44 m / 1.2°C (SSP1-2.6) and 0.77 m / 4.0°C (SSP5-8.5), relative to a baseline 745 
of 1995-2014, by the end of the 21st century (Fox-Kemper et al., 2021; Lee et al., 2021). Even 746 
though these increases may vary between basins, an enhanced displacement risk due to Idai-747 
like TCs needs to be accounted for in the next decades, especially if future changes in 748 
exposure due to population growth and urbanization are considered. Under both SSPs 1 and 749 
5, the population of Mozambique is projected to increase by approximately 8 million, and its 750 
urbanization level from about 40% to over 70%, just over the next 30 years (Riahi et al., 2017). 751 
 752 
Our study expands the scope of extreme event impact attribution to include displacement as 753 
a societal impact dimension. In general, due to the lack of calibrated regional models and 754 
gauge stations, only few attribution studies (Luu et al., 2021; Takayabu et al., 2015) focus on 755 
storms - or any extreme weather events, for that matter - in low-income countries. This not 756 
only limits our understanding of climate change effects on extreme events from a global 757 
perspective, but also biases geographically the amount of knowledge and information 758 
available to inform risk management and adaptation strategies (Otto et al., 2020). Our impact 759 
attribution is built on global-scale datasets and models, which could be employed in other 760 
relevant locations. Despite the discussed limitations and uncertainties inherent to this 761 
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approach, displacements could be similarly attributed to climate change for other major TCs 762 
that occurred in data- and model-scarce regions, such as Typhoon Haiyan (Philippines; 4.1 763 
million displacements) or Cyclone Amphan (India and Bangladesh; combined 4.95 million 764 
displacements) (IDMC, 2022). The continuing increase in spatial resolution of global-scale 765 
products will eventually allow for more granular displacement risk assessments, which 766 
regional authorities could incorporate in urban development plans, zoning regulations or 767 
required building codes (IDMC, 2019). Mozambique, like many countries, is exposed not only 768 
to TCs but also other climate-related hazards, such as droughts, and at the same time facing 769 
socio-economic challenges, making it all the more important to understand and anticipate risks 770 
in a changing climate. Our approach may hence be extended to large-n impact attribution, 771 
using, for example, global counterfactual climate datasets (Mengel et al., 2021).  772 

Code availability 773 
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https://github.com/BenediktMester/TC_Idai_attribution. 775 
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Satellite imagery is used with the permission of Atmospheric and Environmental Research & 778 
African Risk Capacity. Output of the flood depth algorithm, GeoClaw results, and TC Idai wind 779 
speed files can be accessed at https://zenodo.org/record/6907855 (Mester et al., 2022). GHS 780 
gridded population data is available at https://data.jrc.ec.europa.eu/dataset/jrc-ghsl-781 
ghs_pop_gpw4_globe_r2015a#dataaccess. 782 
National borders of Mozambique were obtained from https://gadm.org/data.html. For the 783 
trendline analysis of annual means of maximum wind speeds we use IBTraCS Version 4 784 
database, accessible at https://www.ncei.noaa.gov/data/international-best-track-archive-for-785 
climate-stewardship-ibtracs/v04r00/access/netcdf/IBTrACS.ALL.v04r00.nc. 786 
 787 
All data used for the figures are publicly available. Maps were generated with QGIS, which 788 
can be downloaded at https://www.qgis.org/. Satellite imagery background by © Google Maps 789 
can be accessed via http://mt0.google.com/vt/lyrs=s&hl=en&x={x}&y={y}&z={z}. We used 790 
IBTrACS Version 4 to extract the trajectory data of tropical cyclone Idai, availabe at 791 
https://www.ncei.noaa.gov/products/international-best-track-archive?name=ib-v4-access. 792 
Mozambique admin level 4 shapefiles for Beira are available at 793 
https://data.humdata.org/dataset/mozambique-admin-level-4-beira-and-dondo-794 
neighbourhood-boundaries. GSHHG shoreline data can be accessed via 795 
https://www.ngdc.noaa.gov/mgg/shorelines/data/gshhg/latest/. 796 
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