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Abstract  17 

Tropical forest dynamics play a crucial role in the global carbon, water, and energy cycles. 18 

However, realistically simulating the dynamics of competition and coexistence between different 19 

plant functional types (PFTs) in tropical forests remains a significant challenge. This study aims 20 

to improve the modeling of PFT coexistence in the Functionally Assembled Terrestrial Ecosystem 21 

Simulator (FATES), a vegetation demography model implemented in the Energy Exascale Earth 22 

System Model (E3SM) land model (ELM), ELM-FATES. Specifically, we explore (1) whether 23 

plant trait relationships established from field measurements can constrain ELM-FATES 24 

simulations; and (2) whether machine learning (ML) based surrogate models can emulate the 25 

complex ELM-FATES model and optimize parameter selections to improve PFT coexistence 26 

modeling. We conducted three ensembles of ELM-FATES experiments at a tropical forest site 27 

near Manaus, Brazil. By comparing the ensemble experiments without (Exp-CTR) and with (Exp-28 

OBS) consideration of observed trait relationships, we found that accounting for these 29 

relationships slightly improves the simulations of water, energy, and carbon variables when 30 

compared to observations, but degrades the simulation of PFT coexistence. Using ML based 31 

surrogate models trained on Exp-CTR, we optimized the trait parameters in ELM-FATES, and 32 

conducted another ensemble of experiments (Exp-ML) with these optimized parameters. The 33 

proportion of PFT coexistence experiments significantly increased from 21% in Exp-CTR to 73% 34 

in Exp-ML. After filtering the experiments that allow for PFT coexistence to agree with 35 

observations (within 15% tolerance), 33% of the Exp-ML experiments were retained, which is a 36 

significant improvement compared to the 1.4% in Exp-CTR. Exp-ML also well reproduces the 37 

annual means and seasonal variations of water, energy and carbon fluxes, and the field inventory 38 

of above ground biomass. This study represents a reproducible method, which utilizes machine 39 

learning to identify parameter values that improve model fidelity against observations and PFT 40 

coexistence in vegetation demography models for diverse ecosystems. Our study also suggests the 41 

need for new mechanisms to enhance the robust simulation of coexisting plants in ELM-FATES, 42 

and has significant implications for modeling the response and feedbacks of ecosystem dynamics 43 

to climate change. 44 

  45 
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1. Introduction 46 

Tropical ecosystems feature the highest biodiversity on Earth, maintaining more than 75% of all 47 

known species (Mora et al., 2011; Mitchard, 2018). The dynamics of tropical forests are closely 48 

related to the regional and global carbon, energy and water cycles (Bonan, 2008; Piao et al., 2020). 49 

Vegetation is expected to face more water stress from vapor pressure deficit increase and soil 50 

moisture reduction with global warming (McDowell et al., 2020). Tree mortality rates are 51 

accelerating in some tropical regions due to rising atmospheric water stress (Bauman et al., 2022; 52 

Hubau et al., 2020; Zuleta et al., 2017). Tropical forests currently make an approximately neutral 53 

contribution to the global carbon cycle as a result of a large land-use source balanced by sinks in 54 

recovering and undisturbed forests, but they may become a carbon source in the future under the 55 

threat of climate change and human-induced disturbance (Mitchard, 2018; Gatti et al., 2021). 56 

Therefore, understanding and modeling tropical forest dynamics and related feedbacks have 57 

crucial implications for projecting future changes in the global climate system. 58 

 59 

Dynamic global vegetation models (DGVMs) are the primary tools to simulate terrestrial 60 

ecosystem dynamics of plant functional type distribution, ecosystem composition and functioning, 61 

and ecosystem response to and recovery from disturbance (e.g., fire and wind damage) (Longo et 62 

al., 2019; Fisher et al., 2018; Foley et al., 1996; Sitch et al., 2003; Cao and Woodward, 1998; 63 

Berzaghi et al., 2019; McMahon et al., 2011). Conventional DGVMs represent plant communities 64 

using an area-averaged representation of plant functional types (PFTs) in each grid cell. Their 65 

relatively simple structures have the advantage of high computational efficiency for use in Earth 66 

system models (Fisher et al., 2018; Snell et al., 2014). However, these models do not capture many 67 

demographic processes. For example, plants of each represented PFT typically have identical 68 



 4 

properties (e.g., tree size), which limits the capability of modeling ecosystem dynamics and 69 

functioning of canopy gap formation, PFT competition, and disturbance reactions (Feeley et al., 70 

2007; Stark et al., 2012; Hurtt et al., 1998; Moorcroft, 2003; Brister et al., 2020). To address these 71 

limitations, researchers have developed new generation DGVMs called vegetation demographic 72 

models (VDMs), commonly including individual-based models and cohort-based models (Fisher 73 

et al., 2018). The individual-based models, also known as forest gap models, explicitly represent 74 

vegetation as individual plants and simulate their birth, growth, and death (Fyllas et al., 2014; 75 

Christoffersen et al., 2016; Sato et al., 2007; Jonard et al., 2020; Maréchaux and Chave, 2017). 76 

These models incorporate the stochasticity and heterogeneity of the plant light environment 77 

mechanistically and thereby can typically represent PFT competitive exclusion, succession, and 78 

coexistence. However, explicit simulations of individual plants with stochastic processes suffer a 79 

substantial computational penalty and limit applicability over large or global scales (Fisher et al., 80 

2018). To capture sufficient ecosystem dynamics and maintain relatively high computational 81 

efficiency, "cohort-based" models have been proposed (Haverd et al., 2013; Medvigy et al., 2009; 82 

Ma et al., 2021; Moorcroft et al., 2001; Weng et al., 2015; Longo et al., 2019; Belda et al., 2022). 83 

In cohort-based approaches, individual plants are grouped together as "cohorts" based on their 84 

similar properties, including size, age, and PFT (Fisher et al., 2018). Many cohort-based models 85 

have been developed and widely used across regional to global scales. Examples of cohort-based 86 

models include the Ecosystem Demography model (ED) (Moorcroft et al., 2001), the Functionally 87 

Assembled Terrestrial Ecosystem Simulator (FATES) (Fisher et al., 2018, 2015), and the 88 

Geophysical Fluid Dynamics Laboratory (GFDL) Land Model 3 with the Perfect Plasticity 89 

Approximation (LM3-PPA) (Weng et al., 2015). In this study, we employ the FATES model, a 90 

widely used tool for modeling ecosystem dynamics in multiple ecosystems, including tropical 91 
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(Holm et al., 2020; Koven et al., 2020; Chitra-Tarak et al., 2021; Cheng et al., 2021), boreal 92 

(Lambert et al. 2022) and mixed-conifer forests (Buotte et al., 2021), and forest disturbance 93 

(Huang et al., 2020).  94 

 95 

Despite ongoing applications, robust simulations of competition and coexistence in cohort-based 96 

VDMs remain a major challenge. In niche-based coexistence theory, coexisting species require 97 

both convergence in strategy to adapt to the surrounding environment ("environmental filtering") 98 

and divergence in strategy to ensure differentiation in resource requirements ("niche partitioning") 99 

(Kraft et al., 2008; Adler et al., 2013). These same constraints apply to coexisting PFTs as modeled 100 

by VDMs. Thus, on the one hand, VDMs need to include mechanisms that capture critical niche 101 

dimensions (e.g., spatial and temporal variation in light, water, and nutrients). For example, the 102 

multi-layer canopy structure in FATES provides vertical light resource differentiation. Another 103 

essential aspect is to assign reasonable plant functional traits (i.e., the parameters that define a 104 

given plant functional type) to satisfy environmental filtering, ensure niche partitioning, and 105 

consequently preserve PFT coexistence. Considering the relatively high computational cost of 106 

VDMs and the host land surface models, it is not feasible to directly apply global optimization 107 

methods such as Shuffled Complex Evolution (Duan et al., 1992) to calibrate trait-related 108 

parameters, because this could be time-consuming and computationally intensive (Rouholahnejad 109 

et al., 2012). Therefore, most previous studies use the filtered ensemble approach to select trait-110 

related parameters involving several steps: 1) generate a parameter ensemble based on reference 111 

trait ranges or correlations, 2) conduct ensemble model simulations, and 3) filter the parameter 112 

ensemble by coexistence and other criteria (e.g., observation constraints). For example, Huang et 113 

al. (2020) applied FATES implemented in the Community Land Model (CLM; herein CLM-114 
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FATES) with two tropical PFTs to study forest dynamics at tropical sites. They performed 70 one-115 

at-a-time experiments before obtaining one reasonable parameter set. Buottte et al. (2021) used 116 

CLM-FATES to simulate forest dynamics of pine and incense cedar over the Sierra Nevada of 117 

California, and their two stages of experiments (360 plus 72 runs) only yielded four sets of 118 

parameters that met the given criteria. The filtered ensemble approach has low efficiency, which 119 

hinders VDMs' application to modeling ecosystem dynamics under the changing climate. In 120 

addition, trait relationships derived from field measurements are often used to infer parameter 121 

selections when simulating coexistence. For example, Longo et al. (2020) used multiple trait 122 

relationships derived from various datasets to guide parameter selection for different PFTs in the 123 

ED-2.2 model simulations. However, whether the observed trait relationships can efficiently 124 

improve PFT coexistence simulation in current VDMs is still unclear. Earlier studies using FATES 125 

have also highlighted the importance of reproductive feedbacks in maintaining or prohibiting 126 

coexistence (Fisher et al. 2010; Maréchaux and Chave 2017). But fundamentally, if PFTs have 127 

highly contrasting reproductive output, the model tends towards competitive exclusion, so 128 

discerning areas with at least approximately equal fitness is necessary. While representing a large 129 

number of plant functional types may improve the likelihood of coexistence (Koven et al., 2020), 130 

this comes at a considerable computational expense. 131 

 132 

Machine learning (ML) has facilitated Earth science studies (Shen, 2018; Nearing et al., 2021; Zhu 133 

et al., 2022; Pal et al., 2019; Jung et al., 2019), possibly providing a promising approach to improve 134 

PFT coexistence modeling in VDMs. ML algorithms have been broadly and successfully 135 

employed in recent decades. They can be used as standalone models to predict variables of interest 136 

or integrated with process-based models to improve simulations (Xu and Liang, 2021; He et al., 137 
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2022; Peatier et al., 2022). Among these applications, ML has shown advantages as a surrogate 138 

model for parameter optimization and sensitivity quantification, including its effectiveness and 139 

easy application, its ability to implicitly deal with complex nonlinear correlations and high 140 

dimensional data, and handle interactions between variables (Sit et al., 2020; Antoniadis et al., 141 

2020; Tsai et al., 2021). One promising approach is to construct ML-based surrogate models using 142 

data from initial model simulations to emulate the relationship between inputs (i.e., model 143 

parameters) and model outputs (Wang et al., 2014). Then the computationally inexpensive 144 

surrogate model can be efficiently used for parameter optimization and sensitivity analysis. For 145 

example, Dagon et al. (2020) implemented artificial neural networks to emulate the satellite leaf 146 

area constrained version of CLM5 (Lawrence et al., 2019) and estimated optimal parameters to 147 

improve the global simulation of gross primary production and latent heat flux. Sawada (2020) 148 

developed an ML surrogate model to optimize the land surface model parameters and improve soil 149 

moisture and vegetation dynamics simulations. Watson-Parris et al. (2021) built a general tool to 150 

efficiently emulate Earth system models for uncertainty quantification and model calibration. 151 

Although employing ML based surrogate models to optimize the trait parameters and hence 152 

improve the vegetation dynamics modeling in VDMs is promising, this area of research remains 153 

under-explored. 154 

 155 

This study aims to improve PFT coexistence modeling in VDMs. The cohort-based FATES 156 

implemented in the Energy Exascale Earth System Model (E3SM) land model (ELM; Golaz et al., 157 

2019), i.e., ELM-FATES, is taken as our testbed. The ELM land model simulates surface energy 158 

fluxes, soil and canopy biophysics, hydrology, and soil biogeochemistry, whereas FATES 159 

simulates live vegetation processes, litter dynamics, and fire. We first examine whether trait 160 
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relationships constructed from field measurements can help improve ELM-FATES simulations. 161 

Second, we explore whether ML based surrogate models can help optimize key trait parameters in 162 

ELM-FATES to improve the simulation of PFTs coexistence. Our model experiments are 163 

conducted for a tropical rainforest site located in Manaus, Brazil. This paper is organized as 164 

follows. Section 2 describes ELM-FATES, summarizes the key functional trait-related parameters, 165 

introduces the machine learning algorithms, and explains the overall experimental design. Results 166 

are presented in Section 3, followed by Discussions and Conclusions in Section 4 and Section 5, 167 

respectively.  168 
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2. Methodology 169 

2.1 Study site and data  170 

Our study site is located at kilometer 34 (K34) of the ZF2 road, Manaus, Brazil (latitude: -2.6091 171 

S; longitude: -60.2093 W). The K34 site is an old-growth primary forest with minimal human 172 

disturbances (Holm et al., 2020). The annual precipitation is about 2252 mm, and the mean 173 

temperature is about 26.68 °C (https://ameriflux.lbl.gov/sites/siteinfo/BR-Ma2). The wet season is 174 

from November to May, and the dry season is from June to October (Fang et al., 2017). Hourly 175 

meteorological forcing (i.e., precipitation, air temperature, relative humidity, wind speed, surface 176 

pressure) at the K34 eddy covariance flux tower from 2002–2005 was obtained from the LBA-177 

ECO CD-32 Flux Tower Network Data Compilation (Restrepo-Coupe et al., 2021). Observational 178 

reference datasets obtained from Holm et al. (2020) include gross primary production (GPP), 179 

evapotranspiration (ET), sensible heat flux (SH), Bowen ratio (BW, the ratio between sensible heat 180 

and latent heat), and inventory data-based aboveground biomass (AGB). The GPP, ET, SH, and 181 

BW observations are monthly climatological averages from 2000 to 2008 (Table S1). The AGB at 182 

this site is about 303 ± 2.3 Mg/ha. These observational data were used to evaluate the ELM-183 

FATES simulations and constrain the ML surrogate models. 184 

 185 

2.2 ELM-FATES and parameters 186 

ELM-FATES is used as the model testbed. ELM is the land model of E3SM, which is the host 187 

land model of FATES (Golaz et al., 2019; Leung et al., 2020; Holm et al., 2020). FATES is a size- 188 

and age-structured vegetation model developed from the Community Land Model with ecosystem 189 

demography (CLM-ED) (Fisher et al., 2015; Koven et al., 2020). FATES includes two key 190 

structural components: ecosystem demography (ED; Moorcroft et al., 2001) and a modified 191 
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version of perfect plasticity approximation (PPA, Purves et al., 2008). FATES discretizes the 192 

simulated landscape into spatially implicit "patches" representing different disturbance histories 193 

of the ecosystem since the last disturbance. Within each patch, the hypothetical population of 194 

plants is grouped into "cohorts": a cohort consists of a population density of trees with similar size 195 

and the same plant functional type. Cohorts are organized, via the PPA concept, into canopy layers, 196 

and compete for light based on their canopy vertical positions (e.g., canopy layer vs. understory 197 

layer). The understory layer is formed when the canopy area becomes greater than the total ground 198 

area, and some fraction of each cohort is ‘demoted’ to the understory as a function of its height. 199 

The number of patches and cohorts varies depending on processes, including recruitment, growth, 200 

mortality, competition, and disturbance. The modified PPA probabilistically splits cohorts into 201 

discrete canopy and understory layers based on a function of their height (Strigul et al., 2008; 202 

Fisher et al., 2010). A detailed description of the FATES model can be found in its technical note 203 

(Zenodo, https://doi.org/10.5281/zenodo.3517272). 204 

 205 

In this study, we configured two PFTs in ELM-FATES, i.e., early successional and late 206 

successional broadleaf evergreen tropical trees, which can represent a primary axis of variability 207 

in tropical forests (Huang et al., 2020; Reich, 2014; Díaz et al., 2016). There are tradeoffs between 208 

the plant traits of these two PFTs. Compared with the late successional PFT, the early successional 209 

PFT is more light-demanding and fast-growing, but with lower woody density, shorter leaf and 210 

root lifespans, and higher background mortality. To represent the drought impacts on forest 211 

dynamics, the early successional PFT is further assumed to be less drought resistant with shallower 212 

rooting depth and hence more easily affected by drought conditions (Oliveira et al., 2021). The 213 

corresponding tradeoffs and parameters between these two PFTs are shown in Figure 1 and Table 214 
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1. 215 

 216 

Figure 1. Schematic representation of tradeoffs between early and late successional PFTs. Dark 217 

red denotes a higher parameter value. The tradeoffs of the top five traits are used to constrain the 218 

parameter sampling. 219 

Table 1 Summary of ELM-FATES trait parameters for two PFTs 220 

Parameter 
type Parameter name Symbol Unit Early PFT Late PFT Range 

Optimized 
parameter 

Maximum carboxylation rate of Rub. at 25 
ºC, canopy top 𝑉!"#$ µmol 

CO2/m2/s 
𝑉!"#$,&#'() > 𝑉!"#$,(#*& 40–105 

Specific leaf area, canopy top SLA m2/gC 𝑆𝐿𝐴&#'() > 𝑆𝐿𝐴(#*& 0.005–0.04 

Background mortality rate 𝑀+, 1/yr 𝑀+,,&#'() > 𝑀+,,(#*& 0.005–0.05 

Wood density WD g/cm3 𝑊𝐷&#'() < 𝑊𝐷(#*& 0.2–1.0 

Leaf longevity 𝐿(&#- year 𝐿(&#-,&#'() < 𝐿(&#-,(#*& 0.2–3.0 

Maximum size of storage C pool, relative to 
the maximum size of leaf C pool 𝐶𝑅./( –– same 0.8–1.5 

Fixed 
parameter 

Root longevity 𝐿'00* year 0.9 2.6 –– 

Fine rooting distribution profile parameter a 𝑅# –– 7 7 –– 

Fine rooting distribution profile parameter b 𝑅+ –– 2 0.4 –– 

BTRAN threshold below which drought 
mortality begins. 𝑀+*'#1 –– 0.4 1.0E-06 –– 

Soil water potential at full stomatal closure 𝜓!(0.2'& mm –113000 –242000 –– 
*Parameter references (Huang et al., 2020; Koven et al., 2020; Longo et al., 2020; Holm et al., 2020; Cheng et al., 2021; Domingues et al., 221 
2005; Chitra‐Tarak et al., 2021; Buotte et al., 2021) 222 
*𝑅# and 𝑅+ are parameters that determine the rooting depth and vertical distribution of fine roots. 223 
*BTRAN is the plant water stress factor. BTRAN ∈ [0,1], 0 representing full water stress, 1 representing no water stress. 224 

 225 
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2.3 Machine learning algorithm 226 

We built ML-based surrogate models to emulate ELM-FATES simulations. To represent the 227 

relationships between ELM-FATES parameters and simulations (e.g., AGB), we used eXtreme 228 

Gradient Boosting (XGBoost; Chen and Guestrin, 2016), a decision-tree-based ensemble machine 229 

learning algorithm. Ensemble learning techniques combine the predictions of multiple independent 230 

base models (e.g., decision trees) to produce more accurate predictions, with popular algorithms 231 

such as Random Forest (Breiman, 2001) and XGBoost. While Random Forest builds an ensemble 232 

of parallel trees using bagging and produces the final prediction by averaging the outputs of all 233 

individual trees, XGBoost sequentially trains a set of decision trees using boosting (Friedman, 234 

2001), where each successive tree corrects the mistakes of its predecessors, and the final prediction 235 

is obtained by combining the predictions of all trees using a weighted sum. XGBoost not only 236 

handles complex nonlinear interactions and collinearity between different features, but also 237 

provides a parallel implementation that effectively solves a range of data science problems. It has 238 

been successfully applied in a variety of fields within Earth and Environmental Sciences, such as 239 

urban temperature emulation (Zheng et al., 2021b), wildfire burned area (Wang et al., 2021), and 240 

emissions prediction (Wang et al., 2022), flash flood risk assessment (Ma et al., 2021), and aerosol 241 

property estimation (Zheng et al., 2021a, c).  242 

 243 

2.4 Experimental design 244 

The experimental design flowchart is shown in Figure 2. Overall, we generated three ensembles 245 

of parameter values, i.e., Par-CTR, Par-OBS, and Par-ML, and conducted three ensembles of 246 

corresponding ELM-FATES experiments, i.e., Exp-CTR, Exp-OBS, and Exp-ML. Exp-CTR is the 247 

control experiment without being constrained by the observed trait relationships. Exp-OBS 248 
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considered the constraint of the observed trait relationships. The Par-ML was generated by 249 

machine learning surrogate models, which were trained based on Exp-CTR, and then used to 250 

conduct Exp-ML. The detailed experiment procedures are described below.  251 

 252 

Figure 2. Overall flowchart of experimental design and associated analysis. 253 

  254 
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2.4.1 Procedure 1: Parameter sampling 255 

The procedure "P1" in Fig. 2 is used to generate an ensemble of parameter values for each 256 

experiment ensemble, i.e., Exp-CTR, Exp-OBS, and Exp-ML. First, a number of initial parameter 257 

sets (e.g., 5000 sets) were generated using Latin Hypercube Sampling (LHS; Mckay et al., 2000). 258 

Second, the initial parameter sets were filtered by the trait tradeoffs between early and late 259 

successional PFTs (Figure 1). We repeatedly increased the number of initial parameter sets in the 260 

first step until 1500 parameter sets were obtained in the second step. Each ELM-FATES 261 

experiment starts from bare ground and runs for 350 years to reach an equilibrium state, by cycling 262 

the meteorological forcing during 2002–2005, and the last four years of the simulations were 263 

analyzed. 264 

 265 

2.4.2 Procedure 2: Initial ELM-FATES experiments of Exp-CTR and Exp-OBS 266 

To test whether plant trait relationships established from field measurements can improve the 267 

ELM-FATES simulations, we derived three trait relationships based on the tropical studies of 268 

Koven et al. (2020) and Longo et al. (2020). Using the digitized data from Figure 3 in Koven et al. 269 

(2020), the background mortality 𝑀!" (see table 1 for parameter definitions) can be empirically 270 

computed from the maximum carboxylation rate 𝑉#$%&, 271 

𝑀!" = 0.0082 × 𝑒((.(*+,×.!"#$)                                                    (1) 272 

Based on the equations in Figure S18 of Longo et al. (2020), the leaf longevity 𝐿01%2 and wood 273 

density WD can be calculated via the specific leaf area SLA,  274 

𝐿01%2 = 0.0001 × 𝑆𝐿𝐴(34.,4)                                                    (2) 275 

𝑊𝐷 = −0.583 × ln(𝑆𝐿𝐴) − 1.6754                                               (3) 276 

These trait relationships were used to generate parameters for Par-OBS. 277 
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Two initial sets of experiment ensembles, i.e., Exp-CTR and Exp-OBS (procedure "P2" in Figure 278 

2), were conducted based on Par-CTR and Par-OBS, respectively. For Par-CTR, 1500 parameter 279 

sets were generated from the procedure "P1" based on the entire eleven parameters' space, i.e., 280 

𝑉#$%&,1%607 , 𝑉#$%&,0%81 , 𝑆𝐿𝐴1%607 , 𝑆𝐿𝐴0%81 , 𝑀!",1%607 , 𝑀!",0%81 , 𝑊𝐷1%607 , 𝑊𝐷0%81 , 𝐿01%2,1%607 , 281 

𝐿01%2,0%81, 𝐶𝑅940 (maximum size of storage C pool relative to the maximum size of leaf C pool, 282 

Table 1). For Par-OBS, 1500 parameter sets were generated from the procedure "P1" but only 283 

based on five parameters' space (i.e., 𝑉#$%&,1%607, 𝑉#$%&,0%81, 𝑆𝐿𝐴1%607, 𝑆𝐿𝐴0%81, 𝐶𝑅940). The other 284 

six parameters (𝑀!",1%607 , 𝑀!",0%81 , 𝑊𝐷1%607 , 𝑊𝐷0%81 , 𝐿01%2,1%607 , 𝐿01%2,0%81 ,) in Par-OBS were 285 

calculated based on the traits relationships defined by Equations (1) ~ (3). Therefore, compared to 286 

Par-CTR, the parameters in Par-OBS are constrained by the observed trait relationships. The 287 

distributions of these two parameter sets are shown in Figure S1. 𝑉#$%& , SLA, and 𝐶𝑅940  have 288 

similar distributions between Par-CTR and Par-OBS. Compared with Par-CTR, Par-OBS has a 289 

narrower distribution of 𝑀!" but broader distributions of 𝑊𝐷 and 𝐿01%2. 290 

 291 

Exp-CTR and Exp-OBS each include 1500 350-year ELM-FATES simulations. We averaged the 292 

last four years of these simulations for analysis, i.e., simulation outputs: Out-CTR and Out-OBS, 293 

respectively. To quantify the PFT coexistence, we computed the biomass ratio between early 294 

successional PFT and the total biomass, denoted as 𝐵𝑅148 . For brevity, we denote the ELM-295 

FATES experiments with 𝐵𝑅148 ∈ [0.1, 0.9]  as “coexistence”, 𝐵𝑅148 ∈ [0.0, 0.1)  as “late”, 296 

𝐵𝑅148 ∈ (0.9, 1.0] as “early”. We calculated 𝐵𝑅148 based on Out-CTR and Out-OBS, and then 297 

computed the fraction of coexistence experiments in each ensemble. As we will show in section 298 

3.1, considering the observed trait relationships, Exp-OBS has a lower fraction of coexistence 299 

experiments. Therefore, only Exp-CTR was used for further ML-related analysis. We also 300 
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performed some analysis of Exp-CTR to explore whether the parameters of the coexistence 301 

experiments have correlations with each other (Section 3.2). 302 

2.4.3 Procedure 3: ML surrogate models & sensitivity analysis 303 

Based on Exp-CTR, we trained XGBoost models to emulate the ELM-FATES model behavior and 304 

analyzed the parameter sensitivity (procedure "P3" in Figure 2). Sixteen variables were used as 305 

XGBoost model features, including 11 parameters in Par-CTR and 5 parameter differences 306 

between early and late successional PFTs. The corresponding ELM-FATES annual average 307 

outputs were used as XGBoost model targets. Specifically, six models were built, i.e., XGB_ET, 308 

XGB_SH, XGB_BW, XGB_GPP, XGB_AGB, XGB_BR for predicting ET, SH, BW, GPP, AGB, 309 

and 𝐵𝑅148, respectively. The ML models were trained, tested, and subsequently utilized to perform 310 

the parameter sensitivity analysis, as described in Section 2.5. 311 

2.4.4 Procedure 4: ML surrogate models application & validation 312 

The trained XGBoost models were then used to help select ELM-FATES parameters (procedure 313 

"P4" in Figure 2). First, initial parameter sets were generated from procedure "P1" based on the 314 

entire eleven parameters' space (Table 1, identical to the parameters' space used for the generation 315 

of Par-CTR). Second, these parameter sets and parameter differences were sent to six XGBoost 316 

surrogate models to predict ET, SH, BW, GPP, AGB, and 𝐵𝑅148 . Third, the predictions were 317 

further filtered by two criteria: (1) compared to observations, the relative biases of the predicted 318 

ET, SH, BW, GPP, and AGB should be less than 15%; (2) the XGBoost model predicted 𝐵𝑅148 319 

should be within [0.3, 0.7], which corresponds to the range where the XGB-BR model exhibited 320 

relatively better performance (Figure 5). We repeated these three steps until we obtained 1500 sets 321 

of XGBoost model predictions that matched the criteria. Finally, we obtained 1500 sets of 322 

XGBoost model predictions and their corresponding 1500 sets of parameters (Par-ML). We also 323 
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checked whether the selected Par-ML could match the empirical relationships derived from the 324 

empirical analysis in procedure "P2" (see Sections 3.2 and 3.5 for details). Then, the 1500 sets of 325 

parameters in Par-ML were sent to ELM-FATES to conduct 350-year runs (i.e., Exp-ML). The 326 

last four years of the simulations were averaged (i.e., Out-ML) for further analysis. We then 327 

filtered Out-ML based on a relative bias of 15% or less compared to observations and PFT 328 

coexistence to identify the optimal experiments and corresponding parameters. 329 

 330 

2.5 ML model development and SHAP analysis 331 

The process of building each of the six ML surrogate models is described. Taking 𝐵𝑅148as an 332 

example, the 1500 pairs of sixteen features and the corresponding simulated 𝐵𝑅148 were randomly 333 

split into two groups, 90% used for training and the remaining 10% used for testing. Given that 334 

the coexistence experiments only account for 20.6% in the simulations of Exp-CTR (Section 3.1), 335 

we used 90% of the data for training to ensure sufficient coexisting samples were included in the 336 

training process. Optimizing the hyperparameters of the XGBoost model is crucial for its 337 

performance. To achieve this, we employed the Bayesian optimization method during the training 338 

process (Snoek et al., 2012). In addition, to avoid overfitting during hyperparameter optimization, 339 

we utilized a five-fold cross-validation method (Feigl et al., 2021). The mean squared error was 340 

used as the objective function to achieve the optimal hyperparameters. The root mean squared 341 

error (RMSE) and R-squared (R2) are used to quantify the overall model performance for the 342 

training and testing data prediction. 343 

Based on the trained XGBoost models, we subsequently employed a game theoretic approach 344 

called SHapley Additive exPlanations (SHAP; Lundberg and Lee, 2017; Lundberg et al., 2018, 345 

2020) to gain insights into the parameter sensitivity of ELM-FATES. SHAP assumes that features 346 
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(predictive variables) interact and collaborate in a prediction game, with each feature receiving a 347 

payout for its contributions. This approach provides a unified measure of feature importance to 348 

explain both individual samples and the entire dataset, which is distinct from intrinsic feature 349 

importance methods such as the feature importance in XGBoost (Lundberg and Lee, 2017). This 350 

approach has been widely used in various fields, including interpreting a digital soil mapping 351 

model (Padarian et al., 2020) and identifying the critical drivers of wildfires (Wang et al., 2021). 352 

In this study, we performed SHAP analysis for each XGBoost model and used the SHAP values 353 

as a proxy to quantify the relative importance of ELM-FATES parameters.  354 

  355 
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3. Results 356 

3.1 Comparison between Exp-CTR and Exp-OBS 357 

Constraining the input traits using the observed trait relationships yields slightly better ELM-358 

FATES simulations of water, energy, and carbon variables (Figures 3a~3e). The distributions of 359 

the relative biases of ET, SH, BW, and GPP have similar ranges between the two sets of 360 

experiments (Figures 3a~3d). Compared with Exp-CTR, the 50th percentiles of relative biases of 361 

ET, SH, BW, and GPP for Exp-OBS (with constrained traits) are closer to zero, indicating Exp-362 

OBS is slightly better than Exp-CTR. The distribution of simulated AGB for Exp-OBS is much 363 

narrower than Exp-CTR (Figure 3e), which could be due to the narrower distribution of 𝑀!" 364 

(Figure S1). 365 

Exp-CTR has a much higher fraction of PFT coexisting simulations than Exp-OBS (Figure 3f and 366 

Table S2). Overall, 70.6 % of experiments in Exp-CTR, and 94.5% of experiments in EXP-OBS 367 

have high simulated 𝐵𝑅148 that is greater than 0.9. This indicates that both Par-CTR and especially 368 

Par-OBS favor the early successional PFT. As for the coexisting experiments with 𝐵𝑅148 ∈369 

[0.1, 0.9], Exp-CTR has about five times more coexisting experiments (20.6%) than Exp-OBS 370 

(4.1%). Further filtering the coexisting cases by observations (Table S1), only 21 experiments 371 

remain in Exp-CTR, and 6 experiments in Exp-OBS (Table S2). Even though Exp-OBS considered 372 

the observed trait relationships, it has fewer coexisting cases within the reasonable observation 373 

ranges than Exp-CTR. Therefore, Exp-OBS is not used in our remaining analysis. 374 
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 375 

Figure 3. Distribution of ELM-FATES simulations for Exp-CTR and Exp-OBS. The y-axis in (f) 376 

is logarithmic. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝑏𝑖𝑎𝑠 = 9:$;0%8:<=3<!916>%8:<=	
<!916>%8:<=

× 100	(%). In (a)~(e), the top horizontal 377 

bars with three vertical lines denote the relative bias at the 25th, 50th, and 75th percentiles, 378 

respectively. The grey shaded area in (f) represents the coexistence biomass ratio between 0.1 379 

and 0.9. 380 

3.2 Parameter analysis of Exp-CTR 381 

We also tested whether simple parameter correlations can be constructed to guide the simulation 382 

of PFTs coexistence. No simple parameter correlations can be built to distinguish the coexisting 383 

cases from the early and late cases in Exp-CTR (Figures 4, S2, and S3). Most parameter (or 384 

parameter difference) spaces show large overlaps between early, late, and coexisting cases 385 

(Figures S2 and S3). Notably, we empirically built three linear equations based on the boundaries 386 

in the parameter spaces for the coexisting cases (Figure 4). Coexisting cases are primarily located 387 

in spaces with 𝑆𝐿𝐴0%81 > 0.35 × 𝑆𝐿𝐴1%607 + 0.003 (Figures 4a and 4d), 𝑉#$%&,@:22 < −4800 ×388 

𝑆𝐿𝐴@:22 + 	100  (Figures 4b and 4e), and 𝑊𝐷@:22 > 55 × 𝑆𝐿𝐴@:22 − 1.3  (Figures 4c and 4f), 389 
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where 𝑉#$%&,@:22 = 𝑉#$%&,1%607 − 𝑉#$%&,0%81 , and 𝑆𝐿𝐴@:22  and 𝑊𝐷@:22  are defined likewise. 390 

Within these constrained parameter spaces, the percentage of coexisting cases increases from the 391 

original 20.6% (i.e., 309 out of 1500) to 32.6% (i.e., 304 out of 932). Therefore, these empirical 392 

correlations could help guide ELM-FATES parameter selection for coexisting PFTs. On the other 393 

hand, a dominant proportion (i.e., 67.4% (1–32.6%)) of experiments are still either early or late 394 

cases within the constrained parameter spaces and cannot robustly predict PFT coexistence. 395 

Moreover, despite further considering the observational constraints (black scatters in Figure 4; 396 

Table S2), the 21 experiments (2.3%, 21 out of 932) are still sparsely distributed in the parameters' 397 

space of the coexisting cases, so no simple correlations can be developed based on these 398 

simulations. Therefore, simple empirically built relationships between plant traits provide limited 399 

benefit to guiding ELM-FATES parameter selection for modeling PFTs coexistence while 400 

matching the observations. This finding provides additional motivation for the ML-based 401 

approaches. 402 
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 403 

Figure 4. Relationships between selected parameters of Par-CTR. These parameters are presented 404 

in three groups, i.e., green color for the late cases with 𝐵𝑅148 ∈ [0.0,0.1), orange color for the 405 

coexisting cases with 𝐵𝑅148 ∈ [0.1,0.9], and blue color for the early cases with 𝐵𝑅148 ∈ (0.9,1.0]. 406 

Black star represents coexistence cases further filtered by observational constraints. (d)~(f) are the 407 

corresponding kernel density estimate plots of the scatter plots (a)~(c). 𝑉#$%&,@:22 = 𝑉#$%&,1%607 −408 

𝑉#$%&,0%81. 𝑆𝐿𝐴@:22 and 𝑊𝐷@:22 are defined likewise. 409 

 410 

3.3 XGBoost model performance 411 

Overall, the XGBoost surrogate models show good performance in predicting ELM-FATES 412 

simulations (Figure 5). Based on Exp-CTR (i.e., Par-CTR and Out-CTR), six XGBoost models 413 

were trained. In training, the RMSEs for the six models are zero or nearly zero, and 𝑅4s are close 414 

to one. In the testing, four XGBoost models (i.e., XGB_ET, XGB_SH, XGB_BW, XGB_GPP) 415 
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still show good performance with small RMSE and large 𝑅4 (>0.95). XGB_AGB shows a little 416 

degradation with 𝑅4  of 0.88. The performance of XGB_BR also shows degradation with 𝑅4 417 

decreasing from 1.0 in training to 0.75 in testing. XGB_BR cannot well predict the ELM-FATES 418 

simulated 𝐵𝑅148  of 0 or 1 when only one PFT survives. This indicates that PFT competition 419 

processes in ELM-FATES, which determine 𝐵𝑅148 and AGB, are highly nonlinear and difficult to 420 

emulate even using a state-of-the-art machine learning algorithm. 421 

 422 

Figure 5. The performance of XGBoost surrogate models in the training and testing for 423 

predicting (a) ET, (b) SH, (c) BW, (d) GPP, (e) AGB, and (f) 𝐵𝑅148. 424 

 425 

3.4 SHAP parameter importance analysis 426 

Figure 6 shows the feature importance, including parameters and parameter differences, for 427 

different XGBoost models. Features (on the y-axis) with a higher mean absolute SHAP value (on 428 

the x-axis) denote a larger contribution to the XGBoost model prediction. The number of most 429 
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important features is different for predicting ET, SH, BW, and GPP compared with predicting 430 

AGB and 𝐵𝑅148. 431 

For the XGBoost models that predict ET, SH, BW, and GPP, the top three features have the largest 432 

SHAP values compared to the rest (Figures 6a~5d). Notably, these top three features are the same 433 

and correspond to the early successional PFT, i.e., 𝑉#$%&,1%607, 𝑆𝐿𝐴1%607, and 𝐿01%2,1%607. Most 434 

ELM-FATES experiments in Exp-CTR used as the training samples for the XGBoost models are 435 

early cases. Therefore, the parameters of early successional PFT have dominant contributions in 436 

the XGBoost model predictions of overall grid-level fluxes. These three parameters are positively 437 

correlated with ET and GPP and negatively correlated with SH and BW (red vs. blue bars in 438 

Figures 6a~d; Figure S4 for more details), reflecting the fundamental carbon metabolism of the 439 

typically dominant early successional plant. 440 

For the XGBoost surrogate models of AGB and 𝐵𝑅148, more than eight features have large SHAP 441 

values (Figures 6e and 6f). Both early and late successional PFT parameters contribute to 442 

predicting the two variables. Compared with the predictions of ET, SH, BW, and GPP with only 443 

three major features, predicting AGB and 𝐵𝑅148 is relatively more complex. This is because AGB 444 

and particularly 𝐵𝑅148 are closely related to the PFT competition process in which both the early 445 

and late PFT traits are crucial. Especially for 𝐵𝑅148, the most important features are the parameter 446 

difference between the early and late successional PFTs. For example, 𝑆𝐿𝐴@:22  is positively 447 

correlated to 𝐵𝑅148. Therefore, to have coexisting PFTs with 𝐵𝑅148 ∈ [0.1,0.9], the SLA of two 448 

PFTs should neither be too large nor too small. 449 
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 450 

Figure 6. Mean absolute SHAP values for different XGBoost surrogate models for the top ten most 451 

important features. Absolute SHAP values are sorted in decreasing order from top to bottom. For 452 

each feature (y-axis) in each XGBoost model, the Spearman correlation coefficient is calculated 453 

between the feature values and the corresponding SHAP values (Figure S4). The red color means 454 

that a given feature is positively correlated with the predicting variable, whereas blue denotes a 455 

negative correlation.  456 
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3.5 XGBoost model parameter selection 457 

Using the XGBoost surrogate models, the Par-ML was selected, including 1500 sets of parameters 458 

and the corresponding parameter differences between the early and late successional PFTs (Section 459 

2.4, procedure "P4" in Figure 2). We examined whether Par-ML matches the empirical 460 

relationships shown in Figure 4 (Section 3.2), i.e., 𝑆𝐿𝐴0%81 > 0.35 × 𝑆𝐿𝐴1%607 + 0.003 , 461 

𝑉#$%&,@:22 < −4800 × 𝑆𝐿𝐴@:22 + 	100 , and 𝑊𝐷@:22 > 55 × 𝑆𝐿𝐴@:22 − 1.3 . In total, 99.1% 462 

(1486 out of 1500) of parameter sets are consistent with the empirical relationships, indicating the 463 

XGBoost models implicitly learned these simple relationships. 464 

The parameter distributions of Par-ML show different patterns from the early/late parameters of 465 

Par-CTR (green vs. blue regions in Figure 7), but there are large overlaps between the coexistence 466 

parameters of Par-CTR and Par-ML (orange vs. green regions, e.g., the third column in Figure 7). 467 

This indicates that the XGBoost surrogate models learned to select parameters around the 468 

parameters' space of the coexisting cases. Par-ML also tends to have a smaller parameter difference 469 

between the early and late successional PFTs in terms of 𝑆𝐿𝐴@:22 and 𝑉#$%&,@:22. However, Par-470 

ML also shows different patterns from the coexisting parameters of Par-CTR, probably because 471 

the XGBoost selected parameters were also constrained by multiple observations and implicitly 472 

considered parameter tradeoffs. For example, the 𝑉#$%&,1%607 and 𝑉#$%&,0%81 of Par-ML are located 473 

in narrower ranges than the coexisting parameters of Par-CTR (first two columns in Figure 7). 474 
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 475 

Figure 7. Comparison of parameter or parameter difference in Par-CTR vs. Par-ML for eleven 476 

features. The diagonal plots represent each parameter's distribution, and the rest of the subplots are 477 

kernel density estimate plots. There are three groups, i.e., blue for the early/late cases of Par-CTR, 478 

orange for the coexisting cases of Par-CTR, and green for Par-ML selected by XGBoost models. 479 

  480 
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3.6 Validation of ML selected parameters 481 

ELM-FATES simulations of Exp-ML based on the ensemble parameters of Par-ML selected by 482 

the XGBoost surrogate models can better capture the observations and have more coexisting cases 483 

than Exp-CTR (Figure 8). The median values of simulated variables for Exp-ML are closer to 484 

observations with relative biases closer to zero than Exp-CTR (Figure 8a, blue vs. green boxes). 485 

The Exp-ML simulated variables also have more concentrated distributions than Exp-CTR. 486 

Compared to the skewed distribution of 𝐵𝑅148 in Exp-CTR with a large proportion of early cases, 487 

Exp-ML has a more normally distributed 𝐵𝑅148 (Figure 8b). Specifically, Exp-ML has about 3.6 488 

times more coexisting cases than Exp-CTR, i.e., 73.1% (1097 out of 1500) in Exp-ML vs. 20.6% 489 

(309 out of 1500) in Exp-CTR (Table S3). After being further constrained by observation (Table 490 

S3), one-third of the experiments (i.e., 495 out of 1500) in Exp-ML remain, and this ratio is 23.6 491 

times more than 1.4% (21 out of 1500) in Exp-CTR.  492 

The XGBoost surrogate model predicted variables also match well with those simulated using 493 

ELM-FATES in Exp-ML (Figure 8, orange vs. green boxes), indicating the overall reasonable 494 

accuracy for the XGBoost model predictions. Compared to the ELM-FATES results using Par-495 

ML, the XGBoost models show better performance for ET, SH, BW, and GPP, but relatively 496 

degraded performance for AGB and 𝐵𝑅148 (Figure S5). It is consistent with the performance of 497 

the XGBoost models' training and testing results (in Section 3.3). 498 
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 499 

Figure 8. Comparison between the ELM-FATES simulations for Exp-CTR and Exp-ML. (a) 500 

Relative bias for simulated ET, SH, BW, GPP, and AGB. (b) Simulated 𝐵𝑅148. ML prediction 501 

represents the selected XGBoost model predictions after filtering with observation and biomass 502 

ratio (i.e., the XGB_prds, procedure "P4" in Figure 2). 503 

 504 

3.7 Parameter tradeoff for coexistence experiments 505 

Parameters of the early and late successional PFTs show tradeoffs for the coexisting experiments. 506 

Large relative differences in 𝑆𝐿𝐴, 𝑉#$%&, and 𝑊𝐷	(more negative) favor the early successional 507 

PFT, while large relative differences in 𝑀!" and 𝐿01%2 favor the late successional PFT. Therefore, 508 

in Exp-CTR, compared to the early and late cases, the coexisting cases have intermediate relative 509 

differences in 𝑆𝐿𝐴, 𝑉#$%&, 𝑊𝐷, 𝑀!", and 𝐿01%2 (dashed boxes in Figure 9). The coexisting cases 510 

in Exp-ML have similar patterns with intermediate relative differences in 𝑆𝐿𝐴, 𝑉#$%& and 𝐿01%2 511 

compared to the early and late cases (solid boxes in Figure 9). However, 𝑀!" and especially 𝑊𝐷 512 

show the largest relative difference for the coexisting cases compared to the early and late cases 513 
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in Exp-ML. These two parameters still show a tradeoff in determining coexisting PFTs, because 514 

larger 𝑊𝐷 favors the early PFT while larger 𝑀!" favors the late PFT. 515 

 516 

In Exp-ML, the parameter spaces of the coexisting cases show large overlaps with the early/late 517 

cases (Figure S6). There are no simple correlations between these parameters to distinguish the 518 

coexisting cases from the early and late cases (also see Section 3.2). Although 𝑊𝐷@:22  of the 519 

coexisting cases still overlap with the early/late cases, when 𝑊𝐷@:22  is less than roughly –0.4 520 

(g/cm3), only coexisting cases exist (Figure S6). Nevertheless, this rule (i.e., 𝑊𝐷@:22 <–0.4) alone 521 

cannot ensure PFT coexistence (see Figure 7). 522 

 523 

Figure 9. Parameter relative difference (%) between early successional PFT and late successional 524 

PFT for Exp-CTR (box with dash line) and Exp-ML (box with solid line). Parameter relative 525 

difference is calculated as, taking SLA as an example, ABC%#&'(3ABC'#)%
(ABC%#&'(DABC'#)%)/4

× 100	(%).  526 
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3.8 Seasonal variation comparison 527 

Figure 10 shows the seasonal variations of ET, SH, BW, and GPP for observations and simulations 528 

of the finally selected 495 experiments in Exp-ML with good model performance (Table S3). 529 

Overall, the simulated ET shows a similar seasonal variation to ET observation (Figure 10a), with 530 

relatively small ET in the wet season (November–May), high ET in the dry season (June–October), 531 

and ET peaks in August. However, compared to the observations, ELM-FATES overestimates ET, 532 

especially during the wet season. The simulated SH also shows a similar seasonal variation with 533 

the SH observation except in March. ELM-FATES overestimated SH from January to May but 534 

underestimated SH from September to December (Figure 10b). Due to the discrepancy between 535 

simulated ET and SH, the model underestimates BW from September to December (Figure 10c). 536 

The simulated GPP has minor seasonal variability compared to the observed GPP. ELM-FATES 537 

overestimates GPP from June–August in the dry season, but underestimates GPP over October–538 

December. The lower GPP over June–August indicates that plants may be relatively water-stressed 539 

or energy limited during these months. However, the large ET observation over the same period 540 

implies that this site is unlikely water limited or strongly energy limited. The ELM-FATES 541 

simulations also display little water stress year-round (Figure S7). Therefore, there are likely 542 

elements of the seasonal cycle (e.g., phenological responses of photosynthetic capacity) that are 543 

not yet captured here. Additionally, tower estimates of GPP may also have large uncertainties. 544 
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 545 

Figure 10. Mean monthly observations and selected optimal ELM-FATES simulations in Exp-ML 546 

for (a) ET, (b) SH, (c) BW, and (d) GPP. Each red line represents one experiment simulation (four-547 

year simulation average). The black curves are monthly climatologic averages from 2000 to 2008, 548 

and the grey shaded area represents the interannual variabilities (i.e., 𝑚𝑒𝑎𝑛 ±549 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑	𝑑𝑒𝑣𝑎𝑡𝑖𝑜𝑛).  550 
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4. Discussion 551 

4.1 Limited guidance of observed trait relationships for PFT coexistence modeling in FATES 552 

We found degraded PFT coexistence in ELM-FATES simulation when observed trait relationships 553 

are considered. More specifically, constrained by observed trait relationships, Exp-OBS has fewer 554 

coexisting cases than Exp-CTR which does not consider the observed trait relationships. The 555 

observed trait relationships were derived from site measurements in the species-rich tropical 556 

ecosystem where plant coexistence commonly happens (Kraft et al., 2008), which is expected to 557 

enhance the PFT coexistence simulations. This inconsistency could be due to several possible 558 

reasons. First, ELM-FATES is a typical "trait filtering" model (Fisher et al., 2018), and the realistic 559 

simulation of PFT dynamics largely depends on the fidelity with which trait tradeoff surfaces are 560 

prescribed in the model (Scheiter et al., 2012). Implicit representation of trait tradeoff in the current 561 

ELM-FATES model may not be well balanced, which may differ from the observed trait 562 

relationships that lead to coexistence in the real world (at least for the ecosystem at our study site). 563 

In particular, there may be correlated tradeoffs that are measured (e.g., with below ground 564 

processes, Chitra-Tarak et al. 2021) but not represented in the model. A second reason could be 565 

the mismatch between different spatial scales. The observed trait relationships are derived from 566 

field measurements across tropical forests over a large region with diverse species and climate, 567 

e.g., the relationship in equation (1) is for plant species in Panama. In contrast, ELM-FATES 568 

simulations were conducted at the K34 site scale with specific species composition. Therefore, the 569 

large-scale trait relationships may not reflect the small-scale trait relationships. Wright et al. (2005) 570 

showed that trait relationships fitted for individual sites varied considerably. Third, the observed 571 

trait relationships are based on simplified equations, which may not be able to comprehensively 572 

reflect PFT coexistence. For example, although equation (2) derived from Longo et al. (2020) can 573 
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reflect the negative relationship between SLA and 𝐿01%2 , the 𝑅4  of this equation is about 0.49, 574 

which may not be accurate enough to represent trait relationships. Additionally, these equations 575 

(1)~(3) do not consider the uncertainty of traits covariance. In Koven et al. (2020), the uncertainties 576 

between trait covariance were considered when sampling parameters for FATES experiments. 577 

Furthermore, machine learning models can also be employed to extract the relationships between 578 

plant traits, which can then be incorporated into ELM-FATES and evaluated in future studies. 579 

 580 

4.2 Advantages of ML surrogate models on improving PFT coexistence modeling 581 

ELM-FATES simulations driven by parameters selected using the XGBoost models essentially 582 

improved PFT coexistence and better captured observations. Compared to the initial Exp-CTR, 583 

which was used to train the XGBoost models, the proportion of coexisting PFTs in Exp-ML 584 

reaches 73.1%, 3.6 times more than 20.6% in Exp-CTR. Further filtering the coexistence 585 

experiments by observations, Exp-ML still has 33.0% of experiments left with good model 586 

performance, 23.6 times that of 1.4% of experiments in Exp-CTR with good performance. Our 587 

ML-based approach also outperforms the empirical correlations built in Section 3.2, which only 588 

yields 32.5% of coexistence experiments and this reduces to 2.3% of experiments if further 589 

constrained by observation. The large proportion of optimal experiments selected by our ML 590 

approach also outperforms previous studies using direct filtering approaches. Buotte et al. (2021) 591 

conducted two stages of experiments to select optimal parameters for CLM-FATES modeling with 592 

two conifer species; only 0.3% (1 out of 360) of the cases met the given criteria in the first stage 593 

experiments, which increased to 5.5% in the second stage experiments. Huang et al. (2020) 594 

conducted CLM-FATES modeling with two tropical PFTs at the Tapajós National Forest sites; 595 

only one parameter set out of seventy (about 1.4%) was selected with reasonable fractions of two 596 
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PFTs and minor errors compared to observations. In addition, the parameter selection procedures 597 

of these two studies require some degree of subjective decision making and expert knowledge. On 598 

the other hand, our ML-based approach takes a more objective procedure, and little expert 599 

knowledge is required except for the initial determination of the parameter reference ranges. 600 

Importantly, we believe this approach can be repeatable as, e.g., model developments lead to 601 

changes between the parameter values and model predictions of forest structure and function, and 602 

can be used to define constrained ensemble values that will allow assessment of confidence in 603 

model predictions. Even though simulating the coexistence of different plants may not be a big 604 

concern for individual-based VDMs, e.g., LPJmL-FIT (Sakschewski et al., 2015, 2016) and 605 

TROLL (Maréchaux and Chave, 2017), our approach also could be applied to the selection of key 606 

parameters that regulate vegetation dynamics in these models. 607 

 608 

Our study also reproduced the observations satisfactorily. Holm et al. (2020) conducted the ELM-609 

FATES simulation with only one PFT considered at the same K34 site. Our study yields better or 610 

similar performance in the magnitude of AGB, and the magnitude and seasonal variation of GPP, 611 

ET, SH, and BW (Table 2 and Figure 3 in Holm et al. 2020 vs. Figures 8 and 10 in this study). It 612 

should also be noted that the overestimation of simulated energy fluxes (latent heat and SH) from 613 

January to May could be associated with the energy-related processes (e.g., energy partition, 614 

surface albedo) in ELM-FATES. Other potential reasons could be related to the uncertainties in 615 

atmospheric forcing and the common issue of incomplete energy budget closure at eddy covariance 616 

towers (Wilson et al., 2002; Foken, 2008; Rocha et al., 2009). 617 

 618 
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Compared to the predictions of GPP, ET, SH, and BW simulated by ELM-FATES, the XGBoost 619 

surrogate models show slightly degraded performance in predicting the simulated 𝐵𝑅148 and AGB 620 

(Figures 5 and S5). Three parameters (𝑉#$%&,1%607, 𝑆𝐿𝐴1%607, and 𝐿01%2,1%607) mainly control the 621 

predictions of ET, SH, BW, and GPP, while eight features are crucial for predicting AGB and 622 

𝐵𝑅148. Even though the XGBoost algorithm has an excellent ability to capture complex nonlinear 623 

relationships, it does not predict well the PFT competition related variables of AGB and 𝐵𝑅148 624 

because the physical model cannot robustly predict coexisting PFTs due to the higher 625 

dimensionality of predicting PFT composition as compared to other ecosystem variables. Another 626 

important point worth mentioning is the small sample size of coexistence cases in Exp-CTR, with 627 

only 309 cases having 𝐵𝑅148 in the range of [0.1, 0.9], while the majority of cases are dominated 628 

by either early or late successional PFT. This limited sample size may not provide enough data to 629 

train the XGBoost surrogate model sufficiently for predicting 𝐵𝑅148 within the range of [0.1, 0.9]. 630 

Therefore, further studies are still needed to improve the emulation of PFT competition related 631 

variables. Other approaches that have been applied in VDMs but not specifically for PFT 632 

coexistence modeling, for example, the generalized likelihood uncertainty estimation (GLUE) 633 

approach (Zhang et al., 2022) and the Bayesian model emulation approach (Fer et al., 2018), could 634 

provide alternative ways. Furthermore, we suggest exploring other machine learning algorithms, 635 

such as Gaussian process and neural network algorithms, which may be better suited for capturing 636 

non-linear correlations and learning from sparse data. 637 

 638 

Overall, our study presents a reproducible approach that utilizes machine learning to identify 639 

parameter values that improve model fidelity against observations and promote coexistence 640 

between plant functional types in vegetation demography models across diverse ecosystems. This 641 
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approach has the potential to enhance the modeling of PFT coexistence in other ecosystems, such 642 

as the mixed conifer forests in Sierra Nevada, California (Buotte et al., 2021), Amazon forests 643 

subject to selective logging (Huang et al., 2020) and tropical forests with heterogeneous soils and 644 

subject to droughts in Panama (Cheng et al., 2021). 645 

 646 

4.3 Trait tradeoffs between coexisting PFTs 647 

Trait-related parameters show tradeoffs between early and late successional PFTs for the ELM–648 

FATES simulated coexisting experiments. The relative differences between the two PFTs in 𝑆𝐿𝐴, 649 

𝑉#$%&, and 𝑊𝐷 complementarily coordinate with the relative difference in 𝑀!" and 𝐿01%2, hence 650 

avoiding competitive exclusion (Figure 9). These ELM-FATES reflected tradeoffs are consistent 651 

with the niche-based species coexistence mechanisms of environmental filtering and niche 652 

partitioning (MICHALKO and PEKÁR, 2015; Adler et al., 2013). On the one hand, in the 653 

coexisting cases, the relative differences between the two PFTs' parameters should not be 654 

considerable. For example, a large difference in SLA more likely favors the early cases (green 655 

dash box in Figure 9). This is related to environmental filtering in which coexisting species require 656 

some degree of convergence in strategy to survive and persist under given environmental 657 

conditions (Cadotte and Tucker, 2017; Thakur and Wright, 2017). On the other hand, some degree 658 

of differences should exist between the two PFTs' parameters in the coexisting cases. This is 659 

related to niche partitioning to ensure either differences in resource requirements or differences in 660 

tolerance to surrounding conditions (Kraft et al., 2015; Fowler et al., 2013). Phenomenological 661 

evidence has shown that functional trait variation promotes coexistence or increases species 662 

richness (Uriarte et al., 2010; Angert et al., 2009; Adler et al., 2006; Mason et al., 2012; Ben-Hur 663 

et al., 2012). 664 
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 665 

In our ELM-FATES simulations, the primary axis of competition for resources is light. The 666 

tradeoffs between the two PFTs' parameters differentiate their vertical competition in light 667 

absorption, which has been shown to strongly control tropical forest community composition 668 

(Farrior et al., 2016; Poorter et al., 2003). Even though the early PFT has a shallower rooting depth 669 

than the late PFT, there is no critical dry condition during our simulation period (i.e., corresponding 670 

to values of the water stress factor (BTRAN) close to 1.0 in Figure S7). Therefore, competition for 671 

water resource access negligibly contributes to PFT coexistence in this study. Previous tropical 672 

studies also revealed these coexistence mechanisms. At a tropical forest site in eastern Ecuador, 673 

Kraft et al. (2008) found that cooccurring trees are often less ecologically similar, and both 674 

environmental filtering (different topographic habitats of ridgetops vs. valley) and niche 675 

differentiation simultaneously contribute to species coexistence. Swenson & Enquist (2009) also 676 

found that at small spatial scales in a tropical forest, most traits of coexisting species were under-677 

dispersed, consistent with environmental filtering, while the seed mass and maximum height were 678 

over-dispersed, reflecting niche partitioning. 679 

 680 

4.4 Limitations and further model development 681 

Some limitations exist in our experiments. Niche partitioning is a critical aspect of promoting 682 

species coexistence, which is closely related to spatial heterogeneity, temporal heterogeneity, 683 

disturbances (e.g., nature enemy, fire), and resource partitioning (Adler et al., 2013). In our current 684 

ELM-FATES simulations, some processes that have been or are being developed in the model are 685 

not considered. These processes include nutrient limitation (Holm et al., 2020), fire disturbance 686 

(Fisher et al., 2015), subsurface lateral flow (Fang et al., 2022), and plant hydraulics (Chitra‐Tarak 687 
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et al., 2021; Li et al., 2021). Ignoring these processes could limit the potential of niche partitioning 688 

among PFT in our ELM-FATES simulations. Topography has been recognized as an essential 689 

spatial heterogeneity factor for tropical forests, but it is not considered in ELM-FATES (Kraft et 690 

al., 2008; Costa et al., 2022). For example, Fang et al. (2022) coupled a three-dimensional 691 

hydrology model (ParFlow) with ELM-FATES and found that lateral flow plays a prominent role 692 

in governing aboveground biomass, and Cheng et al. (2021) also found a critical role for subsurface 693 

hydrology on coexistence. As these processes are added to the model, the reproducibility aspects 694 

of the XGBoost method to identify PFT combinations that match a broad range of criteria will be 695 

particularly important. 696 

 697 

Lacking other features or processes could also affect PFT coexistence in the current FATES. For 698 

example, plant trait plasticity, that plants can adjust their morphological and/or physiological traits 699 

to better adapt to the environment (Nicotra et al., 2010; Bloomfield et al., 2018; McDowell et al., 700 

2022), is also not well considered in FATES. Leaf traits such as 𝑉#$%& and SLA do vary vertically 701 

through the canopy in FATES, via a prescribed relationship described by Lloyd et al., 2010. Liu 702 

and Ng (2019) found that the SLA of a desert shrub is significantly correlated with seasonal water 703 

availability. Additionally, FATES only considers the inter-PFT variance of functional traits (e.g., 704 

different 𝑉#$%& for early and late PFT). However, studies revealed that trait variations commonly 705 

exist within and between species (Wright et al., 2005; Engemann et al., 2016; Meng et al., 2015; 706 

Dong et al., 2020; Siefert et al., 2015), which play a vital role in maintaining plant diversity (Violle 707 

et al., 2012; Lu et al., 2017). Reproductive features that enhance competitive exclusion tendencies 708 

have been illustrated to affect coexistence (Maréchaux and Chave, 2017; Fisher et al., 2018). 709 

Hanbury‐Brown et al. (2022) discussed the importance of the representation of forest regeneration, 710 
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including improving parameters and algorithms for reproductive allocation, dispersal, seed 711 

survival and germination, environmental filtering in the seedling layer, and tree regeneration 712 

strategies adapted to wind, fire, and anthropogenic disturbance regimes. Besides, both growth-713 

survival and stature-recruitment tradeoffs are critical to accurately predict successional patterns in 714 

tropical forest structure and competition (see details in Rüger et al., 2020), which should also be 715 

better considered in future model development. Furthermore, measured plant traits are increasingly 716 

available, e.g., the TRY datasets (Kattge et al., 2020) can be used to improve the model process 717 

and parameterizations. Future studies on properly and adequately using these datasets to guide 718 

VDM parameterizations are advocated. 719 

 720 

4.5 Enhancing VDM prediction with machine learning 721 

We provide a brief overview of how machine learning can be applied to improve the modeling of 722 

plant dynamics, specifically in the context of vegetation demographic models. Firstly, ML can be 723 

used to derive trait parameter values. For instance, in this study, ML could be applied to replace 724 

the simple equations to derive the relationships between measured traits (Section 4.1). By 725 

integrating multiple datasets, including in situ measurements, atmospheric forcing, and remote 726 

sensing, ML could derive the spatial patterns and temporal variations of trait parameters for use in 727 

large-scale VDM modeling. Secondly, ML can be utilized to optimize parameters by developing 728 

surrogate models that emulate the relationships between the parameters and the VDM simulations, 729 

and using the surrogate models to identify optimal parameter values. This application has 730 

demonstrated success in this study and previous studies (e.g., Tsai et al., 2021; Dagon et al., 2020; 731 

Watson-Parris et al., 2021). Another benefit of using ML in VDMs is the ability to develop 732 

benchmark datasets. For example, studies have successfully employed ML to derive AGB datasets 733 
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for various ecosystems (Morais et al., 2021; Zhang et al., 2020; Li et al., 2020; Bispo et al., 2020; 734 

Pham et al., 2020). These datasets can serve as benchmarks to evaluate the accuracy of VDM 735 

simulations. Lastly, ML can be used to replace semiempirical sub-models with little theoretical 736 

bases in DGVMs (Reichstein et al., 2019). For example, accurately modeling wildfire using 737 

process-based wildfire models integrated in DGVMs remains challenging. However, ML-based 738 

wildfire models have shown advantages in accuracy and computational efficiency (Rodrigues and 739 

Riva, 2014; Jain et al., 2020; Sayad et al., 2019), and have the potential to be employed in Earth 740 

system models to improve wildfire simulations (e.g., Zhu et al., 2022).  741 
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5. Conclusions  742 

In this study, we explored two possible solutions to improve PFT coexistence modeling in a cohort-743 

based model (ELM-FATES): (1) using plant trait relationships established from field 744 

measurements and (2) using machine learning surrogate models to optimize trait parameter values. 745 

Three ensembles of ELM-FATES experiments were conducted over a tropical forest site at 746 

Manaus, Brazil. We found that considering the observed trait relationships (Exp-OBS) slightly 747 

improves the simulations of water (ET), energy (SH and BW), and carbon (GPP, AGB) when 748 

compared against observations, but degrades the simulation of PFT coexistence. Based on Exp-749 

CTR, the ML surrogate models were built to optimize the ELM-FATES parameters by integrating 750 

the observations (i.e., ET, SH, BW, GPP, and AGB) and PFT coexistence criteria. Exp-ML, with 751 

parameters selected by the ML surrogate models, vastly improves the simulation of PFT 752 

coexistence, and also better reproduces the annual means and seasonal variations of ET, SH, BW, 753 

GPP, and the filed inventory of AGB. This study demonstrates the benefits of using machine 754 

learning models to improve the modeling of PFT coexistence in ELM-FATES, with important 755 

implications for modeling the response and feedback of ecosystem dynamics to climate change. 756 

Our results also suggest that the incorporation of additional mechanisms into ELM-FATES is 757 

essential for robust modeling of coexisting PFTs. 758 

  759 
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