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Abstract. Rockslides are a major hazard in mountainous regions. In formerly glaciated regions, the disposition mainly arises

from oversteepened topography and decreases through time. However, little is known about this decrease and thus about the

present-day hazard of huge, potentially catastrophic rockslides. This paper presents a new theoretical concept that combines

the decrease in disposition with the power-law distribution of rockslide volumes found in several studies. The concept starts

from a given initial set of potential events, which are randomly triggered through time at a probability that depends on event5

size. The developed theoretical framework is applied to paraglacial rockslides in the European Alps, where available data allow

for constraining the parameters reasonably well. The results suggest that the probability of triggering increases roughly with

the cube root of the volume. For small rockslides up to 1000 m3, an exponential decrease of the frequency with an e-folding

time longer than 65,000 yr is predicted. In turn, the predicted e-folding time is shorter than 2000 yr for volumes of 10 km3, so

that the occurrence of such huge rockslides is unlikely at present times. For the largest rockslide possible at present times, a10

median volume of 0.5 to 1 km3 is predicted. With a volume of 0.27 km3, the artificially triggered rockslide that hit the Vaiont

reservoir in 1963, is thus not extraordinarily large. Concerning its frequency of occurrence, however, it can be considered a

700 to 1200-year event.

1 Introduction

Rockslides are a ubiquitous hazard in mountainous regions. The biggest rockslide in the European Alps since 1900 took place15

in 1963 at the Vaiont reservoir. It involved a volume of about 0.27 km3. Owing to an overtopping of the dam, it claimed

more than 2000 lives. However, the reservoir played an important part in triggering this huge rockslide, so that it cannot be

considered a natural event. The largest natural rockslides in the Alps since 1900 are considerably smaller (e.g., Gruner, 2006).

In turn, two huge rockslides with volumes of several cubic kilometers have been identified and dated. These are the Flims

rockslide with a deposited volume of about 10 km3 (Aaron et al., 2020) in the carbonatic rocks of the Rhine valley and the20

Köfels rockslide with a deposited volume of about 4 km3 (Zangerl et al., 2021) in the crystalline rocks of the Oetz valley.

Estimates of the ages of these two giant events scatter by some 100 years (Deplazes et al., 2007; Nicolussi et al., 2015, and

references therein). Within this scatter, however, both ages are about 9500 BP. These ages refute the older idea of triggering by

glacial debuttressing. Since the inner Alpine valleys were largely free of ice at about 18,000 BP (e.g., Ivy-Ochs et al., 2008),
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an immediate relation to the deglaciation of the respective valleys can be excluded. Consequently, von Poschinger et al. (2006)25

concluded that rockslides of several cubic kilometers have to be taken into consideration also at present.

Although an immediate effect of deglaciation can be excluded
:::
for

:::
the

:::::
Flims

:::
and

::::::
Köfels

:::::::::
rockslides, the former glaciation of

the valleys plays a central part for rockslide disposition. In the context of paraglacial rock-slope failure, Cruden and Hu (1993)

proposed the concept of exhaustion (see also Ballantyne, 2002a, b). The concept is similar to radioactive decay. Starting from an

initial population of potentially unstable sites, it is assumed that each of them is triggered at a given probability per time λ. Then30

both the remaining number of potentially unstable sites and the rockslide frequency decrease like e−λt. Analyzing a small data

set of 67 rockslides with volumes V ≥ 1000 m3 from the Canadian Rocky Mountains, where 14 similar potentially unstable

sites where found, Cruden and Hu (1993) estimated λ= 0.18 kyr−1, equivalent to an e-folding time T = λ−1 = 5700 yr.

As a main limitation, however, the estimate T = 5700 yr refers to the total number of rockslides with V ≥ 1000 m3. Whether

this estimate could be transferred to rockslides of any given size is nontrivial. If this result could be transferred to rockslides of35

any size in the Alps, the present-day probability even of huge rockslides would be only by a factor of e
9500
5700 ≈ 5 lower than it

was at the time of the Flims and Köfels rockslides.

Analyzing the statistical distribution of landslide sizes became popular a few years later than the concept of exhaustion

was proposed, presumably pushed forward by the comprehensive analysis of several thousand landslides in Taiwan by Hovius

et al. (1997). Reanalyzing several data sets, Malamud et al. (2004) found that landslides in unconsolidated material as well as40

rockfalls and rockslides follow a power-law distribution over some range in size. The exponent of the power law was found to

be independent of the triggering mechanism (e.g., earthquakes, rainstorms or rapid snow melt), but is considerably lower for

rockfalls and rockslides than for landslides in unconsolidated material. The distinct dependence on the material was confirmed

by Brunetti et al. (2009). For deeper insights into the scaling properties of landslides, the review article of Tebbens (2020) is

recommended.45

Several models addressing the power-law distribution of landslides were developed so far (Densmore et al., 1998; Hergarten

and Neugebauer, 1998; Hergarten, 2012; Alvioli et al., 2014; Liucci et al., 2017; Jeandet et al., 2019; Campforts et al., 2020).

Some of these studies discussed landslides in the context of self-organized criticality (SOC). The idea of SOC was introduced

by Bak et al. (1987) and promised to become a unifying theoretical concept for dynamic systems that generate events of various

sizes following a power-law distribution. Jensen (1998) characterized SOC systems as slowly driven, interaction-dominated50

threshold systems. In the context of landslides, relief is generated directly or indirectly (e.g., in combination with fluvial

incision) by tectonics. This process is rather continuous and slow. In turn, landslides take place as discrete events if a threshold

is exceeded and consume relief. A system that exhibits SOC approaches some kind of long-term equilibrium between the two

processes
::::::::
long-term

::::::
driving

::::
and

:::::::::::
instantaneous

:::::::::
relaxation with power-law distributed event sizes.

Now the question arises how the idea of paraglacial exhaustion can be reconciled with the power-law distribution of rockslide55

sizes, perhaps in combination with SOC. While size distributions of rockfalls and rockslides were addressed in several studies

during the previous decade (e.g., Bennett et al., 2012; Lari et al., 2014; Valagussa et al., 2014; Strunden et al., 2015; Tanyas

et al., 2018; Hartmeyer et al., 2020; Mohadjer et al., 2020), only the two latest studies refer directly to paraglacial exhaustion.

Mohadjer et al. (2020) attempted to estimate the total volume of rockfalls in a deglaciated valley at different time scales up to
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11,000 yr. In turn, Hartmeyer et al. (2020) investigated the rockfall activity at walls above a retreating glacier at much smaller60

spatial and temporal scales.

In this paper, a theoretical framework for event-size-dependent exhaustion is developed, which means that the decay constant

λ depends on the event size. In the following section, it is illustrated that the Drossel-Schwabl forest-fire model as one of the

simplest models in the field of SOC already predicts
:::
and

:::
the

:::::
model

:::
for

::::::::
rockslide

:::::::::
disposition

::::::::
proposed

::
by

:::::::::::::::::::::
Hergarten (2012) already

::::::
predict such a behavior. In Sect. 3, the theoretical framework will be developed. This framework will be applied to the Alps65

in Sect. 4, and it will be investigated to what extent the sparse available data on large rockslides can be used to constrain the

parameters.

2 Motivation: The Drossel-Schwabl forest-fire model

2.1
:::

The
:::::::::::::::
Drossel-Schwabl

::::::::
forest-fire

::::::
model

Let us start with the Drossel-Schwabl forest-fire model (DS-FFM in the following) as an example. While several in their spirit70

similar models were developed soon after the idea of SOC became popular, the version proposed by Drossel and Schwabl

(1992) with a simplification introduced by Grassberger (1993) attracted the greatest interest. Although obviously oversimpli-

fied, it was found later that it reproduces some properties of real wildfires quite well (Malamud et al., 1998; Zinck and Grimm,

2008; Krenn and Hergarten, 2009).

The DS-FFM is a stochastic cellular automaton model that is usually considered on a two-dimensional square lattice with75

periodic boundary conditions. Each site can be either empty or occupied by a tree. In each time step, a given number θ of

new trees is planted at randomly selected sites, assuming that planting a tree at an already occupied site has no effect. Then a

randomly selected site is ignited. If this site is occupied by a tree, this tree and the entire cluster of connected trees are burned.

By default, only nearest-neighbor connections are considered.

Regardless of the initial condition, the DS-FFM self-organizes towards a quasi-steady state in which as many trees are80

burned as are planted on average. If the growth rate θ and the size of the model are sufficiently large, about 40 % of all sites

are occupied on average and the distribution of the fire sizes roughly follows a power law. The DS-FFM was investigated

numerically and theoretically in numerous studies (e.g., Christensen et al., 1993; Henley, 1993; Clar et al., 1994; Pastor-

Satorras and Vespignani, 2000; Pruessner and Jensen, 2002; Schenk et al., 2002; Hergarten and Krenn, 2011), resulting in a

more or less complete understanding of its properties.85

Let us now assume that the growth of new trees ceases suddenly at some time in the quasi-steady state, so that the available

clusters of trees are burned successively. Figure 1 shows an example computed on a small grid of 256×256 sites with θ = 100.

It is immediately recognized that the largest fires take place quite early. This property is owing to the the mechanism of ignition.

Each cluster of trees can be burned equivalently by igniting any of its trees. So the probability that a cluster of trees is burned is

proportional to the cluster size (number of trees). This implies that large clusters are preferred to small clusters at any time. This90

property was already used by Hergarten and Krenn (2011) for deriving a semi-phenomenological explanation of the power-law
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Figure 1. Burned clusters of trees without regrowth on a 256× 256 grid. One unit of time corresponds to one event of ignition. Colored

patches correspond to clusters burned at different times. White sites were already empty in the beginning, while black clusters are still present

after the simulated 1000 events of ignition.

distribution in the quasi-steady state and by Krenn and Hergarten (2009) for modifying the DS-FFM towards human-induced

fires.

Owing to the preference of large fires, the DS-FFM in a phase without regrowth is an example of event-size dependent

exhaustion. Figure 2 shows the size distribution of the fires derived from a simulation on a larger grid of 65,536×65,536 sites95

with θ = 10,000. It is immediately recognized that the distribution derived from the quasi-steady state (black curve) follows

a power law only over a limited rangewith an excess of fires with sizes s≈ 105 and a rapid decline at larger sizes. While this

behavior was
:
.
:::
The

:::::
rapid

::::::
decline

:::
for

:::::::
s > 105

::
is

:::
due

:::
to

:::
the

::::
finite

::::::
growth

::::
rate

::
θ.

:::
As explained by Hergarten and Krenn (2011),

the excess below the rapid decline is not relevant here
::
of

::::
fires

::
at

:::
the

::::::::
transition

::
to
::::

the
::::
rapid

:::::::
decline

::::::::
(s≈ 105)

::
is

:::::
owing

:::
to

:::
the

:::::
shape

::
of

::::
large

:::::::
clusters

:::
and

::
is

::::
thus

:
a
:::::::
specific

:::::::
property

::
of

:::
the

::::::::
DS-FFM,

::::::
which

::
is

:::
not

:::::::
relevant

::
for

:::
the

:::::::::
following

::::::::::::
considerations.100

The distribution of the fires that take place during the first 10,000 steps after growth has ceased is almost identical to the

distribution in the quasi-steady state. A small deficit is only visible at the tail. So the overall consumption of clusters during

the first 10,000 steps is negligible, except for the largest clusters. The trend that large clusters are consumed more rapidly than

small clusters is consolidated over larger time spans. As an example, the frequency of fires with sizes s≈ 105 is in the time

interval from t= 105 to 106 by more than two decades lower than in the quasi-steady state, while the frequency of fires with105

s/ 103 is still almost unaffected.

As a central result, the power-law distribution of the fires is consumed through time from the tail. In particular, the exponent

(slope in the double-logarithmic plot) stays the same in principle, while only the range of the power law becomes shorter.

Finally, however, the decay also affects the frequency of the smallest fires.
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Figure 2. Frequency of the fires in the DS-FFM during phases without growing trees. All distributions were obtained from simulations on

a 65,536× 65,536 grid with θ = 10,000 and smoothed by logarithmic binning with 10 bins per decade. The black curve describes the

frequency of fires per ignition event in the quasi-steady state, while the other curves describe different time slices. These data were obtained

by stacking 75 simulated sequences starting from different points of the quasi-steady state.

2.2
:

A
::::::
simple

:::::::
model

:::
for

::::::::
rockslide

::::::::::
disposition110

::::::::::::::::::::::
Hergarten (2012) proposed

:
a
::::::
simple

::::::
model

:::
for

::::::::
rockslide

::::::::::
disposition.

::::
This

:::::
model

::
is
::::::

based
::
on

::::::::::
topography

:::::
alone

:::
and

::::::::
assumes

:::
that

::::
each

::::
site

::
of

:
a
::::::
regular

::::::
lattice

::::
may

::::::
become

::::::::
unstable

:
if
::::::::

exposed
::
to

:
a
:::::::
random

::::::
trigger.

::::
The

:::::::::
probability

::
of

::::::
failure

:
p
::
is
::::::::
assumed

::
to

::
be

:
a
:::::::
function

:::
of

::
the

:::::
local

::::
slope

:::
S,

::::::::
measured

::
in

:::
the

:::::::
direction

:::
of

::::::
steepest

:::::::
descent

::::::
among

:::
the

:
8
::::::
nearest

::::
and

:::::::
diagonal

:::::::::
neighbors.

::::
Sites

::::
with

:
a
:::::
slope

:::::
below

::
a
:::::
given

::::
slope

:::::
Smin::::::

always
::::::
remain

:::::
stable

:::::::
(p= 0),

:::::
while

::::
sites

::::::
steeper

::::
than

::
a

::::
given

:::::
slope

:::::
Smax:::::::

become

:::::::
unstable

::::::::
whenever

:::::::
exposed

::
to

:
a
::::::
trigger

:::::::
(p= 1).

::
A

:::::
linear

:::::::
increase

::
in

::::::::::
probability,115

p=
S−Smin

Smax−Smin
,

::::::::::::::

(1)

:
is
::::::::
assumed

::
in

:::
the

:::::
range

:::::::
between

::::
Smin::::

and
:::::
Smax.

:::
As

::::
soon

::
as

:
a
::::
site

:::::::
becomes

::::::::
unstable,

::
as

:::::
much

:::::::
material

::
as

::::::
needed

:::
for

::::::::
reducing

::
the

:::::
slope

::
to

:::::
Smin::

is
::::::::
removed,

:::
and

::
a

:::::
trigger

::
is
:::::::
applied

::
to

::
all

::
8
:::::::::
neighbors.

:::::::::
Depending

:::
on

:::
the

::::::::::
topography,

:::
this

::::
may

::::
lead

::
to

:::::
large

:::::::::
avalanches.

:

::::::
Applied

:::
to

:::
the

::::::::::
topography

::
of
::::

the
:::::
Alps,

:::
the

::::::::::
Himalayas,

::::
and

:::
the

::::::::
southern

::::::
Rocky

::::::::::
Mountains,

:::
the

::::::
model

:::::::::
reproduced

::::
the120

:::::::
observed

:::::::::
power-law

::::::::::
distribution

::
of

::::::::
rockslide

::::::::
volumes

:::::::::
reasonably

::::
well.

::::::::::
Differences

:::::::
between

:::
the

::::::::::
considered

::::::::
mountain

::::::
ranges

::::
were

:::::
found

::::::::::
concerning

:::
the

::::::::
transition

::::
from

::
a
:::::
power

::::
law

::
to

:::
an

::::::::::
exponential

:::::::::
distribution

::
at
:::::

large
::::::::
volumes.

::::::::
However,

:::
the

::::::
model

:::
has

:::
not

::::
been

::::::
applied

::::::
widely

:::::
since

::::
then,

::::::
except

:::
for

:::
the

:::::
study

::
on

::::::::
landslide

:::::
dams

::
by

::::::::::::::::::
Argentin et al. (2021).

:

:::::
Figure

::
3

::::::::
illustrates

:::
the

:::::::::
application

::
of

:::
the

:::::
model

::
to

::
a

:::::
region

::
in

::::::::::
Switzerland.

:::::
Since

:::
the

::::::
model

:::
has

:::
not

::::
been

:::::
tested

::::::::::::
systematically

::
for

::::::
terrain

::::::
models

::::
with

:::
less

::::
than

:::
10

::
m

:::
grid

:::::::
spacing,

:::
the

:
2
::
m

::::::
terrain

:::::
model

::
of

::::::::::
Switzerland

:::::::::::::::::::::::::::::::::::::::::::::
(Bundesamt für Landestopografie swisstopo, 2022) was125

5



410 415 420 425 430 435 440
x (km)

5150

5155

5160

5165

5170

5175

y 
(k

m
)

Figure 3.
::::::::
Simulated

:::::::
rockslide

:::
sites

:::
for

:
a
:::
part

::
of

::::::::::
Switzerland.

::
In

::::::
addition

::
to

::
the

:::::::
outlines

:
of
:::
the

::::::
unstable

:::::
areas,

:::
the

:::::::
respective

::::::::
triggering

:::::
points

::
are

::::
also

:::::
shown

::
for

:::::
events

::::
with

:::::::
V ≥ 105 m3.

:::::
Colors

:::
are

:::
just

::::
used

::
for

:::::::::::
distinguishing

:::::::::
overlapping

::::::
outlines.

::::::::::
Coordinates

:::
refer

::
to
:::::
UTM

::
32.

::::::::
resampled

::
to

:::
10

::
m

:::
grid

:::::::
spacing.

:::::
Since

:::
the

::::::
model

:
is
::::
used

::::
only

:::
for

:::::::::
illustration

:::::
here,

::
the

:::::::::
parameter

:::::
values

::::::::
Smin = 1

::::
and

::::::::
Smax = 5

::::
were

:::::::
adopted

::::
from

::::::::::::::::::
Hergarten (2012) and

::::::::::::::::::
Argentin et al. (2021).

:::
A

::::
total

::
of

:::
10

::::::
triggers

:::
per

::::
km2

::::
was

:::::::
applied

::::::::::::
independently

::
to

::
the

::::::::::
topography

:::
(so

:::
not

:
a
::::::::
sequence

::
of

::::::::::
consecutive

:::::::
events).

::
As

:::
the

:::::
main

::::
point

::
to
:::
be

:::::::::
illustrated,

:::::::
different

:::::::::
triggering

:::::
points

:::::
result

::
in

::::
very

::::::
similar

::::::
events

::
at

:::::
some

::::::::
locations.

::
At

:::::
some

:::::
other

::::::::
locations,

:::::
events

::::::
arising

::::
from

::::::::
different

::::::
triggers

:::
are

:::::::::::
overlapping,

::
but

:::::
differ

::
in

::::
size.

:::::
Both

:::::
effects

:::::::
become

:::::::
stronger

::::
with

:::::::::
increasing130

::::
event

::::
size.

::::
This

::::::
means

:::
that

::::::
larger

:::::::
potential

:::::::::
rockslides

:::
are

::::
more

:::::
likely

::::::::
triggered

::::
than

::::::
smaller

::::::::
potential

::::::::
rockslides

::
in

:::
the

::::::
model.

:

:::::::::::
Qualitatively,

:::
this

:::::::
behavior

::
is

::::::
similar

::
to

:::
that

::
of

:::
the

::::::::
DS-FFM,

:::
but

:::::
more

::::::::
complex.

::::
Since

::::::::::
randomness

::
is

:::
not

::::::
limited

::
to

:::::::::
triggering,

:::
but

::
is

:::
also

::::
part

:::
of

:::
the

::::::::::
propagation

::
of
::::::::::

instability,
::::
even

:::::::::
rockslides

::
of

::::::::
different

::::
sizes

::::
may

:::
be

::::::::
triggered

:::
for

:::
the

:::::
same

:::::
point.

:::
In

::::::
contrast

::
to
:::

the
:::::::::

DS-FFM,
::::::
finding

:
a
::::::::::
quantitative

:::::::
relation

:::::::
between

:::::
event

::::
size

:::
and

::::::::::
probability

::
of

:::::
being

::::::::
triggered

:
is
::::
not

:::::
trivial

:::
for

::
the

::::::::
rockslide

::::::
model.

:
135

:
It
:::
is,

::::::::
however,

:::::::::
recognized

::::
that

:::
the

::::::::
triggering

::::::
points

:::
are

:::
not

:::::::::
distributed

:::::::::
uniformly

::
in

:::
the

::::
area,

::::
but

:::
are

:::::::::::
concentrated

::::::
around

::
the

::::::
lower

:::
part

::
of

:::
the

:::::::
outline.

::
In

::::
this

::::::
model,

:::
the

:::::
initial

:::::::::
instability

::::::::
preferably

::::::
occurs

::
at

::::
very

:::::
steep

::::
sites

:::
and

::::
then

:::::::::::::
predominantly

:::::::::
propagates

:::::
uphill

:::::
since

:::
the

::::::
uphill

::::
sites

:::::::
become

:::::::
steeper

:::
due

:::
to

::::::::
removing

::::::::
material.

:::::::::::
Accordingly,

:::
the

::::::::
increase

::
in

:::::::::
triggering

:::::::::
probability

::::
with

::::
area

::::
(and

::::
thus

:::
also

::::
with

:::::::
volume)

::::::
should

:::
be

::::::
weaker

::::
than

:::::
linear.

:

3 Theoretical framework140

Let us assume that the process of exhaustion starts at t= 0 from a given set of objects (potential events) described by a

nondimensional size s. This size is defined in such a way that the probability
::
λ of decay (generating an event) per time is
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proportional to s (as in the DS-FFM),

λ(s) = µs, (2)

with a given value µ. Then
:::
Let

:::::
φ(s, t)

:::
be the frequency density φ(s, t) of the objects still there at time t

:
.
:::::
Since

::::::
φ(s, t)

:::::
refers

::
to145

::
the

:::::::
number

::
of

::::::
objects

:::
of

:::
size

::
s,

::
it decreases according to

∂

∂t
φ(s, t) =−λ(s)φ(s, t) =−µsφ(s, t). (3)

This leads to

φ(s, t) = φ(s,0)e−µst, (4)

where φ(s,0) is the initial frequency density of the objects.150

Let us further assume that the objects initially follow a power-law (Pareto) distribution, which is most conveniently written

in the cumulative form

Φ(s,0) = ns−α (5)

with an exponent α. The cumulative frequency Φ(s, t) describes the expected number of objects with sizes greater than or

equal to s at time t. Accordingly, n is the
::
In

:::
the

::::::
context

::
of

::::::::
statistics,

::::::
Φ(s, t)

::
is

:::
the

:::::::::::::
complementary

:::::::::
cumulative

:::::::::
frequency,

:::::
while155

::
the

::::::::::
cumulative

::::::::
frequency

:::::::::
originally

:::::
refers

::
to

:::
the

:::::::
number

::
of

::::::
objects

:::::::
smaller

::::
than

::
s.

:::
For

::
a

:::::::::
power-law

::::::::::
distribution,

::::::::::
considering

::
the

:::::::::::::
complementary

:::::::::
frequency

::::::::
simplifies

:::
the

::::::::
equations

::::
and

:::::
allows

:::
for

:
a
:::::::::
convenient

::::::::
graphical

::::::::::::
representation

::
as

::
a
::::::
straight

::::
line

::
in

:
a
::::::::::::::::
double-logarithmic

:::::::
diagram.

:

::::
Since

:::::::::::
Φ(1,0) = n,

:::
the initial number of objects with sizes s≥ 1

:
is

::
n. The respective frequency density is

φ(s,0) =− ∂

∂s
Φ(s,0) = nαs−α−1, (6)160

which yields

φ(s, t) = φ(s,0)e−µst = nαs−α−1e−µst (7)

in combination with Eq. (4).

Computing the cumulative frequency Φ(s, t) requires the integration of Eq. (7):

Φ(s, t) =

∞∫
s

φ(σ,t)dσ =

∞∫
s

nασ−α−1e−µσtdσ. (8)165

Substituting u= µσt, the integral can
::
be transformed into

Φ(s, t) = nα(µt)
α

∞∫
µst

u−α−1e−udu= nα(µt)
α

Γ(−α,µst) (9)
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with the upper incomplete gamma function

Γ(eq,x) =

∞∫
x

ue−1q−1
::
e−u du. (10)

The negative rate of change in φ(s, t) defines the frequency density of the events per unit time
::
and

::
at
::::
time

::
t,170

f(s, t) =− ∂

∂t
φ(s, t) = µsφ(s, t) = nµαs−αe−µst. (11)

The respective cumulative frequency of the events per unit time, F (s, t), can be computed by performing the same steps as in

Eqs. (8) and (9):

F (s, t) =

∞∫
s

f(σ,t)dσ = nµα(µt)
α−1

Γ(1−α,µst). (12)

As an example, Fig. 3
:
4
:
shows the respective distributions for α= 1.2

::::::
(similar

::
to

:::
the

::::::::
DS-FFM)

:
and µ= 1

::::::
(which

::::
only

::::::
affects175

::
the

::::
time

::::::
scale). The two frequency densities f(s, t) and φ(s, t) are still close to the respective initial densities at t= 10−3 over

a considerable range of sizes. Their exponents differ by one (α vs. α+1). According to Eqs. (4) and (11), the actual frequency

density drops below the respective power law by a factor of e at a size

sc =
1

µt
,. (13)

which
::::::
Owing

::
to

:::
this

::::::::
property,

::
sc:can be used for characterizing the transition from a power law to an exponential decrease

::
at180

::::
large

:::::
event

::::
sizes. In this example, sc = 1000 at t= 10−3.

For the cumulative frequencies, the deviations from the respective power law extend towards smaller sizes compared to the

frequency densities. The stronger deviation arises from the dependence of the cumulative frequency at size s on the frequency

density of all greater sizes.

4 Application to paraglacial rockslides in the Alps185

Applying the framework developed in Sect. 3 to paraglacial rockslides in a given region requires the definition of the event size

s in the sense of Eq. (2) at first. This means that the probability of failure at a potential rockslide site is proportional to s. In

contrast to the DS-FFM considered
::
As

::::::::
discussed

:
in Sect. 2.1

::
2.2, defining s is not straightforward here. Let

::
So

:::
let us assume a

general power-law relation

s=

(
V

V0

)γ
(14)190

with a given exponent γ and a reference volume V0. Then
::::
Since

:
µ (

::
in Eq. (2) is the decay constant λ for

:::::
s= 1,

::
it

::
is

:::
the

:::::
decay

:::::::
constant

::
for

:
rockslides with a volume V = V0 ::::

here, and n (Eq. 5)
::
is the initial number of potential rockslide sites with V ≥ V0.

It should be expected that γ ≤ 1. As an example,
:
If

:::
the

:::::
shape

:::
of

:::
the

:::::::
detached

:::::
body

::::
was

::::::::::
independent

::
of

:::
its

:::::::
volume,

:::::
areas

:::::
would

:::
be

::::::::::
proportional

::
to

::::
V

2
3

:::
and

:::::::
lengths

::::::::::
proportional

::
to
:::::
V

1
3 .

::
So

:
assuming that failure can be initiated at each point of the

8
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Figure 4. Cumulative frequency and frequency density of the events per unit time (F (s, t), f(s, t)) and the objects still present (Φ(s, t),

φ(s, t)) at t= 0 and t= 10−3 for α= 1.2 and µ= 1. All distributions were normalized to the total number n of objects with sizes s≥ 1

(n= 1 in all equations).

fracture surface at the same probability and that the detached body of rock scales with size isotropically leads
:::::
would

::::
lead195

to γ = 2
3 . Alternatively, assuming that failure starts only from points at the outcrop of the fracture surface (so the perimeter)

::::::
Taking

:::
into

:::::::
account

::::
that

:::::
large

:::::::
detached

::::::
bodies

:::
are

:::::::::
relatively

::::::
thinner

::::
than

:::::
small

::::::
bodies

::::::::::::::::::::::
(Larsen et al., 2010) would

:::::
result

:::
in

:::::
γ > 2

3 ,
::::

but
:::
still

:::::::::::
considerably

:::::
below

:::
1.

:::
The

::::::
simple

::::::
model

:::::::::
considered

::
in
:::::

Sect.
:::
2.2

::::::::
suggests

:::
that

:::
the

::::::
length

::
of

:::
the

:::::::
outcrop

::::
line

:::::
might

::
be

:::
the

:::::::
relevant

:::::::
property

:::::
rather

::::
than

:::
the

::::
area,

::::::
which would result in γ = 1

3 .
:::::
γ ≈ 1

3 .
:

So
::::::
Keeping

:::
the

::::::::
exponent

::
γ

::
as

::
an

::::::::
unknown

:::::::::
parameter, forward modeling based on the concept of size-dependent exhaustion200

involves the four parameters γ, µ, α, and n. When referring to real-world data, however, it is not known when the process

of exhaustion started. Therefore, a real-world time t0 must be assigned to the starting point t= 0 used in the theoretical

framework, which introduces an additional parameter.

Since data on the frequency of rockslides are sparse and the completeness of inventories is often an issue, validating the

exhaustion model and constraining its parameters is challenging. For the European Alps as a whole, a combination of historical205

and prehistorical data is used in the following.

1. 18 rockslides with volumes between 106 and 107 m3 took place from 1850 to 2020 CE. These are 15 events until

2000 CE reported by Gruner (2006) and 3 events in the 21th century (Dents du Midi, 2006; Bondo 2011 and 2017).

2. 7 rockslides with volumes between 107 and 108 m3 took place from 1850 to 2020 CE (Gruner, 2006).

3. 2 rockslides with volumes greater than 108 m3 took place from 1000 to 2020 CE (Gruner, 2006).210

9



4. At t= 9450 BP, the largest potential rockslide volume is 10 km3, corresponding to age (Deplazes et al., 2007) and

volume (Aaron et al., 2020) of the Flims rockslide.

5. At t= 9500 BP, the second-largest potential rockslide volume is 4 km3, corresponding to age (Nicolussi et al., 2015)

and volume (Zangerl et al., 2021) of the Köfels rockslide.

6. At t= 3210 BP, the largest potential rockslide volume is 1.1 km3, corresponding to the Kandersteg rockslide (Singeisen215

et al., 2020).

7. At t= 4150 BP, the second-largest potential rockslide volume is 1 km3, corresponding to the Fernpass rockslide (Gruner,

2006).

Anthropogenically triggered rockslides were not taken into account in these data.

The data 4–7 differ from the data 1–3 since they are not inventories over a given time span, but refer to the largest or second-220

largest available volumes at a given time. The respective statistical distributions are described by rank-ordering statistics (e.g.,

Sornette, 2000, Chapter 6). A maximum likelihood approach that combines both types of data is presented in
:::::::
Despite

:::
the

:::::::
different

:::::
types

::
of

:::
the

:::::
data,

::::
they

:::
can

:::
be

::::::::
combined

::
in

::
a
:::::::::
maximum

::::::::
likelihood

::::::::::
formalism.

:::
The

:::::::::
likelihood

:::
of

:
a
:::::
given

:::::::::
parameter

::::::::::
combination

:::
(γ,

::
µ,

::
α,

::
n,

::::
and

::
t0)

::
is
:::
the

:::::::
product

::
of

:::::
seven

::::::
factors

::::
then.

:::
The

::::
first

::::
three

::::::
factors

:::
are

:::
the

:::::::::::
probabilities

:::
that

:::
18,

::
5,

:::
and

::
2

:::::
events

:::::
occur

::
in

:::
the

::::::
volume

::::::
ranges

::::
and

::::
time

:::::
spans

::::::
defined

::
in

:::
the

::::::
criteria

::::
1–3.

::::
The

:::::
fourth

:::::
factor

::
is

:::
the

:::::::::
probability

:::::::
density

::
of

:::
the225

::::::
volume

::
of

:::
the

::::::
largest

::::::::
potential

::::::::
rockslide

::
at

::::::::::
V = 10 km3

::::
and

:::::::
t= 9450

::::
BP.

:::
The

:::::::::
remaining

::::::
factors

:::
are

::::::::
obtained

::::
from

:::
the

:::::
same

::::::::
principle.

:::
The

:::::::::
respective

::::::::::
expressions

::
for

:::
the

:::::
seven

::::::
factors

:::
are

:::::::::
developed

::
in Appendix A.

However, the 7 constraints defined above provide a very limited basis for constraining the 5 parameters γ, µ, α, n, and t0.

Since these constraints refer to volumes V ≥ 106 m3, it would be useful to include information about smaller events from local

inventories. As exhaustion predominantly affects the frequency of large events, it makes sense to assume that the power-law230

distribution typically found in local inventories defines the initial distribution, so that the initial frequency density f(s,0) of

the events follows a power law with the exponent α (Eq. 11). As reviewed by Brunetti et al. (2009), this exponent is typically

in the range αV ∈ [1.1,1.4], where the subscript V indicates that this value refers to volume instead of the generic measure of

event size s. The relation between αV and α is easily obtained from the cumulative frequency of the events at t= 0,

F (s,0)∝ s−(α−1) ∝ V −γ(α−1) = V −(αV−1) (15)235

with

αV = γ(α− 1) + 1. (16)

While αV is used instead of α in the following, knowledge about αV from real-world inventories is not directly included in the

maximum likelihood approach. The typical range αV ∈ [1.1,1.4] is only used for checking whether the estimate obtained from

the maximum likelihood approach is consistent with local inventories.240

Figure 4
:::::::::
Technically,

:::
all

:::::::::::
computations

:::::
were

::::::::
performed

::
in
:::::
terms

:::
of

:
s
::::
(Eq.

:::
14)

::::::
instead

::
of

::
V
::::
and

:::::::::::
consequently

:::::
using

::
α

::::::
instead

::
of

:::
αV.

::::
The

::::::
transfer

::
to

::
V
::::
and

:::
αV,

::::::
which

:::
are

::::
more

::::::
useful

:::
than

::
s
:::
and

::
α
::
in

:::
the

::::::::::::
interpretation,

:::
was

:::::::::
performed

::::::::::
afterwards.
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Figure 5. Likelihood as a function of αV and γ for different scenarios. The maximum likelihood values taken over all combinations of the

remaining parameters µ, n, and t0 are shown. Likelihood values are normalized to the maximum value, and the gray contour line refers to

e−0.5 ≈ 0.61 of the maximum likelihood. Black contour lines describe the obtained time t0 (BP) at which the process of exhaustion started.

Colored dots refer to the points with the highest likelihood for αV = 1, 1.1, 1.2, 1.3 and 1.4.

:::::
Figure

::
5a shows the likelihood as a function of the exponents αV and γ.

:::
For

::::
each

:::::::::::
combination

::
of

::::
these

::::
two

::::::::::
parameters,

:::
the

::::::::
respective

::::::
values

::
of

::
µ,

::
n,

::::
and

::
t0 :::

that
:::::::::
maximize

:::
the

::::::::
likelihood

:::::
were

:::::::::
computed. Since absolute values of the likelihood have no

immediate meaning, all values are normalized to the maximum values.
:
In

:::::::
addition

::
to
:::
the

:::::::::
likelihood

::::::
values,

:::
the

:::::::
obtained

::::::
values245

::
of

::
t0 :::

are
::::::::
illustrated

::
in

:::::
form

::
of

::::::
contour

:::::
lines,

:::::
while

:::
the

::::::::
obtained

:::::
values

::
of

::
µ

:::
and

::
n
:::
are

:::
not

::::::
shown.

:

The highest likelihood is even achieved for αV = 1 in combination with γ = 0.28. However, the likelihood decreases only

by a factor of 0.68 for αV = 1.4 and γ = 0.47. For a Gaussian likelihood function, the standard deviation would correspond

to a reduction by a factor of e−0.5 ≈ 0.61, which is marked by the gray contour line. So the entire parameter region inside the

gray line cannot be considered unlikely.250

Qualitatively, however, the observed increase in likelihood towards smaller exponents αV makes sense. Since size-dependent

exhaustion particularly reduces the frequency of large events, it may introduce a bias towards larger estimates of αV in rockslide

inventories compared to the initial distribution.
::
As

::::::::
illustrated

::
in

::::
Fig.

::
4,

:::
the

:::::::
deviation

:::::
from

:::
the

:::::
power

:::
law

::::::::
increases

:::::::::::
continuously

::::
with

::::::::
increasing

:::::
event

::::
size,

:::
so

:::
that

:::::
there

:
is
:::
no

::::::
distinct

:::::
range

:::
of

::::::
validity

:::
for

:::
the

:::::::::
power-law

:::::::::::
distributions.

:::
As

:
a
:::::::::::
consequence,

::::
any

::::::
method

::::
that

::::
does

:::
not

::::
take

::::
into

::::::
account

:::
the

::::::::
deviation

:::::
from

:::
the

:::::
power

::::
law

::::::::
explicitly

::::
will

:::::
likely

:::::::::::
overestimate

:::
the

::::::::
exponent.

:
So255

the real value of αV may be rather at the lower edge of the observed interval αV ∈ [1.1,1.4] or even be slightly below 1.1.

In addition to the default scenario based on the 7 constraints defined above, Fig. 4 also shows the results of two alternative

scenarios. These scenarios challenge the assumption that the Kandersteg rockslide was the largest
:::
The

::::
data

:::
set

:::::
used

:::
for

:::::::::
calibration

:
is
:::
not

::::
only

:::::
quite

:::::
small,

:::
but

:::
also

:::::::::
potentially

::::::::::
incomplete.

:::
For

:::
the

:::::::::
inventories

::::
used

:::
for

:::::::::
constraints

:
1
:::
and

::
2,
:::::::::::::
incompleteness

:::::
should

::::
not

::
be

::
a
::::::
serious

::::::::
problem.

::::
The

:::::::::
inventory

::::
used

:::
for

::::
the

::::
third

:::::::::
constraint

::
is

:::::
small

::::
and

::::
thus

::::
does

::::
not

::::::::
contribute

::::::
much260

::::::::::
information,

::
so

::::
that

::
an

:::::::::
additional

:::::
event

:::::
would

:::
not

::::::
change

::::::
much.

::
In

::::
turn,

:::
the

:::::::::::
assumptions

::
on

:::
the

::::::
largest

::
or

:::::::::::::
second-largest po-
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tential rockslide at its time . In Fig. 4b,
:
a
:::::
given

::::
time

:::
are

:::::
more

::::::
critical.

:::
As

::
an

::::::::
example,

:::
the

::::::::::
Kandersteg

::::::::
rockslide

:::
was

::::::::
assumed

::
to

::
be

:::::
much

:::::
older

::::::::::::::::::::::::::::::::
(t= 9600 BP, Tinner et al., 2005) than

:::
the

:::::
recent

::::::::
estimate

::::::::::::::::::::::::::::::::
(t= 3210 BP, Singeisen et al., 2020) for

:::::::
several

:::::
years.

::
So

:::
the

::::::
criteria

::
6
:::
and

::
7
:::::
would

:::::
have

::::
been

:::::::
different

::
a

:::
few

:::::
years

::::
ago.

::
In

:::::::
general,

:::::::::
constraints

:::
4–7

:::::
based

:::
on

::::
rank

:::::::
ordering

::::
may

:::
be

:::::::
affected

::
by

:::
the

::::::::
discovery

::
of

::::::::
unknown

:::::
huge

::::::::
rockslides

:::
as

::::
well

::
as265

::
by

::::
new

::::::::
estimates

::
of

::::
ages

::
or

:::::::
volumes

::
of

:::::::::
rockslides

:::
that

:::
are

:::::::
already

::::::
known.

:::::::
Perhaps

::::
even

::::
more

:::::::::
important,

:::::::::
rockslides

:::::
larger

::::
than

::::
those

::
in

:::::::::
constraints

::::
4–7

::::
may

::::
take

::::
place

::
in
:::
the

::::::
future.

:

::
To

::::::::
illustrate

:::
the

:::::
effect

::
of

::
a

:::::::
potential

::::::::::::::
incompleteness, it is assumed that there was one more potential event larger than the

Kandersteg rockslide , but
::
is

:::
not

:::
the

:::::
largest

::::::::
potential

:::::
event

::
at

:::::::
t= 3210

::::
BP,

:::
but

:::
that

:::::
there

:
is
::::
one

::::::::
additional

:::::
larger

::::::
event.

:::
For

:::
the

:::::::::
formalism,

:
it
::::::
makes

::
no

:::::::::
difference

:::::::
whether

:::
this

:::::
event

::::::
already

::::
took

:::::
place

::
or

:::
will

::::
take

:::::
place

::
in

:::
the

:::::
future.

:::
As

:
a
::::::::
moderate

::::::::
scenario,270

:
it
::
is

:::::::
assumed

::::
that

:::
this

:::::::::
additional

::::
event

::
is
:
smaller than the Flims rockslide (1.1 km3 < V < 4 km3). This event may have either

been undetected so far or may take place in the future. This scenario shifts the rank of the event
:::::
events

:
in constraints 6 and

7 by one (Kandersteg to second and Fernpass to third). As expected, assuming an additional large event at rather late times

(3210 BP)results in a slower predicted

::
As

::::::
shown

::
in

::::
Fig.

:::
5b,

:::
this

:::::::
scenario

:::::
shifts

:::
the

:::::
likely

:::::
range

:::::::
towards

:::::
lower

:::::
values

::
of

:::
the

::::::::
exponent

::
γ.

:::::::::
According

::
to

:::
its

::::::::
definition275

:::
(Eq.

::::
14),

:::::
lower

::::::
values

::
of

::
γ

:::::::::
correspond

:::
to

:
a
::::::
weaker

::::::::::
dependence

:::
of

:::
the

:::::
decay

:::::::
constant

:::
on

:::::::
volume.

:::
So

:::
the exhaustion of large

events , which is reflected in lower values of the exponent γ
:::::::
becomes

::::::::
relatively

::::::
slower

:::::
then,

:::::
which

::
is

:::
the

:::::::
expected

::::::::
behavior

::
if

::
we

:::::::
assume

::
an

:::::::::
additional

::::
large

:::::
event

::
at

:
a
::::
late

::::
time.

The third scenario (Fig. 4
:
5c) goes a further step ahead by assuming that there was a potential event even larger than the

Köfels rockslide, but smaller than the Flims rockslide (4 km3 < V < 10 km3) at the time of the Kandersteg rockslide. This280

means that the rank of the Köfels rockslide in constraint 5 changes from second to third. However, the likelihood values shown

in Fig. 4
:
5c reveal no further shift towards lower values of γ, but even a small tendency back towards the default scenario

(Fig. 4
:
5a).

In the following, the rockslide size distributions corresponding to the five dots in all three scenarios (Fig. 4
:
5a–c) are con-

sidered. This means that the values αV = 1, 1.1, 1.2, 1.3, and 1.4 are considered for each scenario, while only the most likely285

values of the other parameters γ, µ, n, and t0 are used.

Figure 5
::
Let

:::
us

::::
now

:::::
come

::::
back

::
to

:::
the

::::::::
question

:::::
about

:::
the

::::
size

::
of

:::
the

::::::
largest

::::::::
rockslide

::
to
:::

be
::::::::
expected

::
in

:::
the

:::::
future

:::
in

:::
the

::::
Alps,

:::
so

:::
for

:::
the

::::::
largest

:::::::
potential

::::::::
rockslide

:::::::
volume

::
at

::::::
present

::::::
(2020

::::
CE).

:::
Let

:::::::
Φ(V,t)

::
be

:::
the

::::::::::
cumulative

::::::::
frequency

::
at
:::::::
present

::::
time

:::
(Eq.

::
9
::::::::
expressed

::
in
:::::
terms

:::
of

::
V

::::::
instead

::
of

:::
s).

::::
Then

:::::::
Φ(V0, t)::

is
:::
the

::::
total

:::::::
number

::
of

:::::::
potential

:::::::::
rockslides

::::
with

:::::::
V ≥ V0.

:::::
Each

::
of

::::
them

::
is

:::::::
smaller

::::
than

::
V

::
at

:
a
::::::::::
probability

::::::::::
1− Φ(V,t)

Φ(V0,t)
.
::::::
Raising

::::
this

:::::::::
probability

::
to

:::
the

::::::
power

::
of

:::::::
Φ(V0, t):::::

yields
:::
the

::::::::::
probability290

:::
that

::
all

::::::::
potential

:::::::::
rockslides

:::
are

::::::
smaller

::::
than

::
V .

:::::
Then

:

P (V,t) = 1−
(

1− Φ(V,t)

Φ(V0, t)

)Φ(V0,t)

::::::::::::::::::::::::::::::

(17)
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Figure 6.
:::::::::
Cumulative

::::::::
probability

::
of

:::
the

:::::
largest

:::::::
rockslide

::
at

:::::
present

:::::
(2020

::::
CE).

:::::::
Different

:::
line

::::
types

::::
refer

::
to

::
the

:::::
three

::::::::
considered

:::::::
scenarios.

:
is
:::
the

::::::::::
probability

:::
that

:::
the

::::::
largest

:::::::
potential

::::::::
rockslide

:::
has

::
a

::::::
volume

::
of

::
at
::::
least

:::
V .

:::::
Using

:::
the

:::::::
relation

:::::::::::::

(
1− x

n

)n→ ex
:::
for

:::::::
n→∞,

:::
this

:::::::::
probability

:::
can

:::
be

:::::::::::
approximated

:::
by

P (V,t) = 1− e−Φ(V,t)

::::::::::::::::::
(18)295

:
if
:::
the

::::
total

:::::::
number

:::::::
Φ(V0, t)::

is
:::::::::
sufficiently

:::::
large.

:

:::::
Figure

::
6
:
shows the cumulative probability

::::::
P (V,t) of the largest potential rockslide volume at the present time

::::::
present

(2020 CE), obtained from the extreme value distribution

P (V,t) = 1− e−F (V,t).

:
. For the default scenario, this volume is greater than 0.5 to 0.7 km3 (depending on αV) at 50 % probability (the median).300

::::
This

:::::::
variation

::
in
:::

the
:::::::

median
::::
size

::
is

:::::
owing

::
to
::::

the
::::::
finding

:::
that

::::::::
different

::::::
values

::
of

:::
the

::::::::
exponent

:::
αV:::::

yield
::::::
similar

:::::
values

:::
of

:::
the

:::::::::
likelihood,

::
so

:::
that

:::
αV::::::

cannot
::
be

::::::::::
constrained

::::::
further

:::::
from

::
the

:::::
data.

::
As

:::::::
already

:::::::
expected

:::::
from

::::
Fig.

::::
5b,c,

:::
the

::::
two

::::::::
scenarios

::::
with

:::
an

::::::::
additional

:::::
large

::::::::
rockslide

:::
are

::::::
similar.

:
However, the largest

rockslide is even larger than the Kandersteg rockslide (V = 1.1
::::::
median

::
of

:::
the

::::::
largest

:::::::
available

:::::::
volume

::
is

::
in

:::
the

:::::
range

:::::::
between

::::
0.74 km3 ) at 10–20 % probability. While this result seems to contradict constraint 6, we have to keep in mind that the model305

starts from a power-law distribution at an earlier time t0 (see contour lines in Fig. 4), which defines the distribution at all

later times in combination with the exhaustion model. Looking at Fig. 6, it becomes clear that the median value of the largest

volume is close to the volume
:::
and

::::
1.04 km3

:::
and

::::
thus

:::::
about

:::
1.5

:::::
times

:::::
higher

::::
than

:::
for

:::
the

::::::
default

:::::::
scenario.

:::
So

:::
the

:::::::
estimate

::
of

:::
the

:::::
largest

:::::::
volume

::
to

::
be

::::::::
expected

:::::::
involves

:::
two

:::::::
sources

::
of

:::::::::
uncertainty

::::
with

:::
the

:::::
same

::::
order

::
of

::::::::::
magnitude.

::::
First,

:::::
there

::
is

:::
the

:::::::
inability

::
to

:::::::
constrain

:::
αV::::::::::

sufficiently
::::
well,

:::::
owing

:::
to

::
the

:::::::
limited

::::::
amount

::
of

:::::
data.

::::::
Second,

:::::
there

::
is

:::
the

:::::::
potential

:::::::::::::
incompleteness

::
of

:::
the

::::
data310

:::::::::
concerning

:::
the

::::::
largest

:::::
events

::
at

:
a
:::::
given

:::::
time,

:::::
which

::
is

::::
here

:::::
taken

:::
into

:::::::
account

:::
by

::::::::::
considering

::
the

::::
two

:::::::::
alternative

::::::::
scenarios.

:
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Figure 7. Cumulative probability of the largest rockslide at the time of the Kandersteg rockslide (3210 BP). Different line types refer to the

three considered scenarios.

:
If
:::

we
:::

go
:::::

back
::
to

::::
the

::::
time

:
of the Kandersteg rockslide (1.01 km3 < V < 1.13 km3) at its time (t= 3210 BP), but the

respective statistical distribution is not narrow. As an example, the probability that the largest volume is greater than 2 is

about 15 %at that timefor all considered
::
the

::::::::
relevance

::
of

:::
the

:::::::::::
uncertainties

:::::::
changes.

:::
As

::::::
shown

::
in

::::
Fig.

::
7,

:::
the

:::::::
volumes

::::::::
predicted

::
for

:::
the

:::::::::
considered

::::::
values

::
of

:::
αV:::::

differ
::::
only

:::
by

:::::
about

::
10

:::
%.

::
At

::::
that

::::
time,

:::
the

::::::::
statistics

::
of

:::
the

::::::
largest

:::::::
possible

::::::::
rockslides

:::
are

::::
still315

:::::::::
constrained

::::
well

:::
by

:::
the

::::::
criteria

::::
4–7.

:::
The

::::::::::
predictions

:::::::
obtained

:::
for

:::::::
different

:
values of αV . While the distribution itself becomes

neither narrower nor wider through time, the scenarios scatter increasingly and introduce a larger variability in the expected

maximum rockslide sizes
::::
start

::
to

:::::
spread

:::::
when

::::::::::
proceeding

::::::
towards

:::
the

::::::
recent

::::
time.

::
In

::::
turn,

:::
the

:::::::::
difference

:::::::
between

:::
the

::::::::
scenarios

::::
stays

:::::::
roughly

:::
the

:::::
same.

::
So

:::
the

::::::::
question

::::::
whether

:::
the

::::::::::
Kandersteg

::::::::
rockslide

:::
was

:::
the

::::::
largest

::::::::
potential

::::
event

::
at

:::
its

::::
time

::
or

::::
only

:::
the

::::::::::::
second-largest

:::
has

:
a
::::::
similar

:::::
effect

::
at

::
its

:::::
time

::
as

:
it
:::
has

:::::
today.320

Cumulative probability of the largest rockslide at the present time (2020 CE). Different line types refer to the three considered

scenarios.

As already expected from Fig. 4b, c, the two scenarios with an additional large rockslide that is either undetected or may

take place in the future are similar. The median of the largest available volume is in the range between 0.74
:
a
:::::
third

:::::
source

:::
of

:::::::::
uncertainty,

:::
the

::::::::
statistical

::::::
nature

::
of

:::
the

::::::::
prediction

::::
must

:::
be

::::
taken

::::
into

:::::::
account.

:::::::::
Depending

:::
on

::
αV::::

and
::
on

:::
the

:::::::::
considered

::::::::
scenario,325

::
the

::::::::::
present-day

:::
85

::
%

:::
and

::
15

:::
%

:::::::
quantiles

:::
are

:::::::
0.3–0.65

:
km3 and 1.04

:::::
0.95–2 km3at the present time

:
,
::::::::::
respectively (Fig. 5).

::
6).

:::
So

::
the

:::
70

::
%

::::::::::
probability

::::
range

:::::::::::
(comparable

::
to

:::
the

:::::::
standard

::::::::
deviation

:::
of

:
a
::::::::
Gaussian

::::::::::
distribution)

::
of
:::

the
::::::

largest
::::::::
potential

::::::::
rockslide

:::::
covers

::
a

:::::
factor

::
of

:::::
about

:
3
::
in

:::::::
volume.

::::
This

::::::::::
uncertainty

::
is

::::
even

:::::
larger

::::
than

:::
the

:::
two

:::::
other

:::::::::::
contributions

::
to

:::
the

::::::::::
uncertainty.

::
It

:
is
:::
an

:::::::
inherent

:::::::
property

::
of

:::
the

::::::::
statistical

::::::::::
distribution

:::
and

::::::
would

:::
not

:::::::
decrease

:::::
even

:
if
:::

all
:::::::::
parameter

:::::
values

:::
(γ,

::
µ,

::::
αV,

::
n,

:::
and

:::
t0)

:::::
were

:::::
known

:::::::
exactly.

:
330
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Figure 8. Cumulative rockslide frequency at the present time (2020 CE). Different line types refer to the three considered scenarios.

In all scenarios, the probability that a rockslide with V ≥ 3 km3 takes place in the future is below 5 %. The probability

of a rockslide with V ≥ 10 km3 is even lower than 0.2 %. These results shed new light on the conclusion of von Poschinger

et al. (2006) that rockslides of several cubic kilometers have to be taken into consideration also at present. Such events may

be possible concerning their mechanism and the climatic conditions, but it is very unlikely that such an event would still be

waiting to take place
::::::::
according

::
to

:::
this

::::::::::
framework.335

In turn, the probability that there will be no rockslide with V ≥ 0.24 km3 is also less than 5 % (P = 0.95 in Fig. 5
:
6). This

result sheds new light on the artificially triggered rockslide that stroke the Vaiont reservoir in 1963 and claimed about 2000

lives. With a volume of about 0.27 km3, this rockslide cannot be considered extraordinarily large, and natural events of this

size must be taken into account in the future.

Figure 7
:
8
:

brings the probability of occurrence into play. It shows the expected cumulative frequency F (V,t) (events per340

year) at the presenttime
::::::
present. All curves are strikingly close to each other for 5 × 105 m3 ≤ V ≤ 2× 107 m3. In this range,

the frequencies are constrained well by recent inventories (constraints 1 and 2).

The 100-year event (F (V,t) = 0.01 yr−1) has a volume of 4–4.5× 107 m3. This is approximately the size of the rockslide

that took place in Val Pola in 1987 (e.g. Crosta et al., 2003). In the context of large events, the 475-year event is often considered,

which is the event with a probability of 10 % over 50 years. The predicted volume of this event is 0.15–0.2 km3. The predicted345

frequency of the size of the Vaiont rockslide (V = 0.27 km3) is between than 0.00145 yr−1 and 0.00085 yr−1, which means

that a 700 to 1200-year event was triggered at the reservoir in 1963. Finally, rockslides with a volume of 1 km3 should be

expected at a probability of less than 1 per 5000 years.

Let us now come back to the question of what we can learn about the process of exhaustion.
:::::::::
Concerning

::::
the

:::::::
process,

:::
the

:::::::
exponent

::
γ
::
is

:::
the

::::::
central

:::::::::
parameter,

:::::
while

:::
αV ::::

does
:::
not

::::
refer

:::::::::::
immediately

::
to

:::::::::
exhaustion

:::
and

::
µ,

:::
n,

:::
and

::
t0::::::

should
::::::
depend

:::
on

:::
the350

:::::::::
considered

::::
case

:::::
study. The likelihood plots shown in Fig. 4

:
5
:
tentatively suggest γ ≈ 1

3 . Despice
::::::
Despite the uncertainty of this
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estimate, γ ≈ 1
3 is clearly more likely than γ ≈ 2

3 . In terms of triggering a given site from different points, this finding suggests

that triggering should rather take place from the outcrop line of the failure surface (or a part of it) than from any point of the

entire failure surface.

This knowledge may also be useful for validating or refuting models. As an example,
:::
So

:::
far,

::::::::::
reproducing

:::
an

::::::::
exponent

::
in355

::
the

:::::
range

:::::::::::::
αV ∈ [1.1,1.4]

:::::
seems

::
to

:::
be

:::
the

::::
main

:::::
goal

::
of

::::::
models

::
of

::::::::
rockslide

::::::::::
disposition.

::::::::
Although

:::::::
already

::::::::::
challenging,

::::
this

::
is

:::
still

:
a
::::::
rather

::::
weak

::::::::
criterion.

::
In

:::
the

::::::
context

:::
of

:::::
SOC,

:
it
::::::
would

::::
only

::::
refer

::
to

:::
the

::::::::::
quasi-steady

:::::
state,

:::::
while

:::
the

::::::::
exponent

:
γ
::::::::
provides

::::::::
additional

::::::::::
information

:::::
about

:::
the

:::::::
behavior

::
if

::::::
driving

::::::
ceases.

:

::::::::
However,

:::
the

:::::::::
simulation

:::::
shown

::
in
:::::
Sect.

:::
2.2

::::::
already

::::::::
revealed

:::
that

::::::::::
determining

::
γ
:::::
from

:::::::::
simulations

::::
may

:::
be

::::::::::
challenging.

::::
The

:::::::
observed

::::::::::::
concentration

::
of

:
the model proposed by Hergarten (2012) predicts multiple rockslides with similar volumes at the360

same location, arising from triggering at different points. The multiplicity of such events as a function of the volume provides

a criterion for validation beyond the exponent αV of the event-size distribution. The same holds for the more comprehensive

model HyLands (Campforts et al., 2020), in which the approach for finding unstable volumes is very similar to that proposed by

Hergarten (2012)
::::::::
triggering

:::::
points

::::::
around

:::
the

:::::::
outlines

::
of

:::
the

::::::::
predicted

:::::::::
rockslides

:::::::::
tentatively

:::::::
suggests

:::
that

:::
the

::::::
model

::::::::
proposed

::
by

::::::::::::::::::
Hergarten (2012) may

::::::
behave

:::::::::
correctly,

:::
but

:::
the

:::::::::
occurrence

::
of

::::::::::
overlapping

::::::
events

::
of

::::::::
different

::::
sizes

:::::
make

::
a

:::::
direct

:::::::
analysis365

:::::::
difficult.

:::::::::
Simulating

:::
and

:::::::::
analyzing

:::::::::
exhaustion

::::::
starting

:::::
from

:
a
:::::::::::
quasi-steady

::::
state

::::::
would

::
be

::
an

:::::::::
alternative

:::::::
strategy

::
of

:::::::::
validation

::
for

:::::::::::::
comprehensive

::::::
models

::::
that

:::
also

:::::::
include

::::::::
long-term

:::::::
driving,

::::
such

::
as

::::::::
HyLands

::::::::::::::::::::
(Campforts et al., 2020).

As a fundamental property of the process of exhaustion, Fig. 8
:
9
:
shows the e-folding time

T =
1

λ
=

1

µs
=

1

µ

(
V

V0

)−γ
. (19)

Since the negative exponent γ of the power-law relation varies between 0.23 and 0.47 among the considered scenarios, there is a370

considerable scatter in T at small volumes. For V ≥ 10 km3, T is shorter than 2000 yr for all scenarios. In turn, T > 65,000 yr

for V ≤ 1000 m3. So paraglacial exhaustion should have a minor effect on the frequency of events with V ≤ 1000 m3. The

e-folding time T = 5700 yr estimated by Cruden and Hu (1993) occurs in Fig. 8
:
9
:
in a range from V = 4× 107 m3 to V =

5×108 m3, depending on the considered scenario. However, Cruden and Hu (1993) found T = 5700 yr as a lumped e-folding

time for an inventory with 1000 m3 ≤ V ≤ 5× 107 m3. So it seems that Cruden and Hu (1993) overestimated the exhaustion375

of small rockslides (underestimated T ), perhaps due to undetected potential landslide sites.

From a geological point of view, the time t0 at which the process of exhaustion started might even be the most interesting

parameter. As shown in Fig. 4
:
5, the likely parameter range even comprises values of t0 earlier than 15000 BP. Such values

would bring the deglaciation of the major valleys back into play. However, Fig. 9
::
10

:
reveals that the results become unrealistic

between t0 and the time of the Flims rockslide (9450 BP). In particular for small values of αV, the approach predicts an380

unrealistically large number of rockslides with V ≥ 10 km3 during the early phase of exhaustion.
::
All

::::::::::::
combinations

:::
that

:::::
yield

:
a
::::::
starting

::::
time

:::
t0 :::::

earlier
::::
than

::::::
15000

:::
BP

::::::
predict

::::
more

::::
than

:::
10

:::::::
potential

:::::::::
rockslides

::::
with

:::::::
V ≥ 10 km3

::
at

:::::::::
t= 15000

:::
BP,

:::
and

::
it

::
is

::::
very

:::::::
unlikely

:::
that

:::
the

:::::
Flims

::::::::
rockslide

::
is

:::
the

::::
only

::::::::
preserved

:::
one

::::::
among

::::::
those.

However, t0 is only a hypothetic time at which exhaustion started from a power-law distribution without any cutoff at large

sizes. As observed in Sect. 2.1, even the quasi-steady state of the DS-FFM already shows a cutoff in the power-law distribution385
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Figure 9. e-folding time of the exhaustion as a function of the volume. Different line types refer to the three considered scenarios.
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Figure 10. Cumulative frequency of potential rockslide sites with V ≥ 10 km3. Different line types refer to the three considered scenarios.

at large event sizes. This behavior is typical for models in the context of SOC.
:::::
While

:::
the

:::::
cutoff

:::
can

:::
be

::::::::
attributed

::
to

:::
the

:::::
finite

::::::
growth

:::
rate

::
in

:::
the

:::::::::
DS-FFM,

:
it
::
is
:::::
even

:::
not

::::
clear

:::::
what

:::
the

::::::::::
quasi-steady

:::::
state

:::::
would

::::
look

::::
like

::
in

:::
the

::::::::
rockslide

:::::
model

:::::::::
discussed

::
in

::::
Sect.

::::
2.2.

:
For the paraglacial exhaustion process ,

:
it

::
is,

::::::::
however,

:::::::
obvious

::::
that the initial relief imposes an upper limit to

the potential rockslide volumes. So we should assume that exhaustion starts
::
the

:::::::
process

::::::
already

:::::
must

::::
start

::::
from

::
a
:::::::::
power-law

:::::::::
distribution

::::
with

::
a
::::::
cutoff.

::
At

:::::
least

:::::::::::
qualitatively,

:
it
::::::

makes
:::::
sense

::
to
:::::::

assume
::::
that

:
it
:::::
starts

:::::
from

:::
the

::::::::::
distribution

::::::::
including

:::::
some390

:::::::::
exhaustion

::
at

:
a
::::
time

:
later than t0 , but with a distribution of potential volumes that already declines compared to the power

law at large volumes. In principle,
::::::::
(formally, Φ(V,t)

::
for

::::::
t > 0).

::
A

::::
later

::::::
starting

::::
time

::::::
would

:::::::::
correspond

::
to
::
a
:::::
lower

:::::
initial

:::::
relief

17



::::
then.

::
In

:::::
order

::
to

::::::::
estimate

::::
how

:::::
much

::::
later

::::
than

::
t0:::

the
:::::::
process

::::::
started,

:::
we

::::
can

:::::
make

:::
the

:::::::::
hypothesis

:::
that

:::::
there

:::::
were

:::
not

:::::
many

:::::::::
paraglacial

::::::::
rockslides

:::::
with

::::::
V ≥ 10

:
km3

:
in
:::::
total,

:::::
which

::::::
means

::::
that

::::::
Φ(V,t)

:
should not be much larger than 1 for V = 10 km3

at the time when the process of exhaustion started. If we assume 1≤ Φ(V,t)≤ 2, the process of exhaustion should have started395

between 12000 BP and 10000 BP .
:::
for

::
all

::::::::
scenarios

::
in

::::
Fig.

:::
10.

In view of this result, the deglaciation of the major valleys cannot only be refuted as an immediate trigger of the huge

paraglacial landslides in the Alps, but also as the start of the process of exhaustion. The starting point may, however, be

the massive degradation of permafrost caused by rapid warming in the early Holocene era. For the Köfels rockslide, the

potential relation to the degradation of permafrost was discussed by Nicolussi et al. (2015) and Zangerl et al. (2021). In400

these studies, the 2000-year timespan from the beginning of the Holocene era to the rockslide was considered too long for a

direct triggering. However, the concept of exhaustion only assumes that the respective sites became potentially unstable when

permafrost retreated. From the statistical data
::::::::
Returning

::
to

::::
Fig.

::
9,

:::
the

::::::::
predicted

::::::::
e-folding

:::::
times

::::
are

:::::::
between

:::::
1100

:::
and

:::::
2600

::::
years

:::
for

:::::::
volumes

:::::
from

:
4
::
to
:::
10 km3

:
.
::
In

::::
view

::
of

::::
this

:::::
result, a time span of 2000 yr to the occurrence of an actual instability is

not too long.405

However, the question for the actual trigger for the respective rockslides remains open. In principle, even the question

whether a unique trigger is needed is still open. Large instabilities may also develop slowly (e.g., Riva et al., 2018; Spreafico

et al., 2021) and failure may finally occur without a unique trigger.

5 Conclusions

In this study, a theoretical concept for event-size dependent exhaustion was developed. The process starts from a given set of410

potential events, which are randomly triggered through time. In contrast to a previous approach (Cruden and Hu, 1993), the

probability of triggering depends on event size.

The concept was applied to paraglacial rockslides in the European Alps. Although
::::
Since

:
available inventories cover only

a quite short time span and older data are limited to a few huge rockslides, constraining the parameters involves a large

uncertainty. Nevertheless, some fundamental results could be obtained.415

Assuming that the probability of triggering is related to the volume V by a power law V γ , the results indicate exponents

γ ≈ 1
3 or even slightly lower. Interpreting the dependence on volume as the possibility to initiate an event from different points,

this result suggests that initiation may rather start from the outcrop line of the failure surface (or from a part of this line) than

from any point of the failure surface. The exponent γ may be helpful for validating or refuting statistical or process-based

models.420

The concept of event-size dependent exhaustion predicts an exponential decrease of rockslide frequency through time with a

decay constant depending on V . For small rockslides with V ≤ 1000 m3, the respective e-folding time is longer than 65,000 yr.

So the frequency of small rockslides should not have decreased much since the last glaciation. In turn, the predicted e-folding

time is shorter than 2000 yr for V ≥ 10 km3. So the occurrence of rockslides in the order of magnitude of the Flims rockslide
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is unlikely at present times. These e-folding times are, however, consistent with the idea that the process of exhaustion was425

initiated by the degradation of permafrost at the beginning of the Holocene epoch.

For the largest rockslide possible at present times, different considered scenarios predict a median volume of 0.5 to 1 km3.

However, the predicted frequency of such large events is low (less than 1 per 5000 years for V ≥ 1 km3). The predicted 100-

year event has a volume of 4–4.5×107 m3. The artificially triggered rockslide at the Vaiont reservoir (1963 CE, V = 0.27 km3)

can be considered a 700 to 1200-year event in this context.430

Code and data availability. All codes are available in a Zenodo repository at https://doi.org/10.5281/zenodo.7313868 (Hergarten, 2022).

This repository also contains the data obtained from the computations. The author is happy to assist interested readers in reproducing the

results and performing subsequent research.

Appendix A: The maximum likelihood formalism

In this section, a maximum likelihood approach that combines data of the two types discussed in Sect. 4 is developed.435

The first type of data (constraints 1–3 in Sect. 4) refers to the number of events in a given range of sizes [s1,s2] during a

given time interval [t1, t2]. The expected number N is easily obtained from the cumulative frequency Φ(s, t) of the potential

events (Eq. 9) as

N = Φ(s1, t1)−Φ(s2, t1)−Φ(s1, t2) + Φ(s2, t2). (A1)

Then the likelihood is
::::::::
respective

:::::
factor

::
in
:::
the

:::::::::
likelihood

::
is

:::
the

:::::::::
probability

::::
that

:::
the

:::::
actual

:::::::
number

:
n
:::
of

:::::
events

::::::
occurs,

::::::
which

::
is440

given by the Poisson distribution

L1–3
::

=
Nn

n!
e−N ,. (A2)

where n is the actual number.

The second type of data (constraints 4–7 in Sect. 4) is described by rank-ordering statistics. The probability density of the

kth largest among n events is445

pk(s) =

 n

k

1−
∞∫
s

p(σ)dσ

n−k k

1

p(s)
 ∞∫
s

p(σ)dσ

k−1

(A3)

(Sornette, 2000, Eq. 6.4), where p(s) is the probability density of the events. Replacing p(s) by the frequency density φ(s) =

np(s), switching to the cumulative frequency Φ(s), and joining the binomial coefficients yields

pk(s) =
(n− 1)!

(n− k)!(k− 1)!

(
1− Φ(s)

n

)n−k
φ(s)

(
Φ(s)

n

)k−1

. (A4)
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In the limit n→∞ at finite k, terms n− 1, . . . , n− k can be replaced by n. In combination with the relation
(
1− x

n

)n→ ex,450

we obtain

pk(s) =
1

(k− 1)!
e−Φ(s)Φ(s)k−1φ(s). (A5)

When using the maximum likelihoodmethod, we must keep in mind that the measured event size is V , while the relation

between
::
If

:
s and

:::
was

:::
the

:::::::::
measured

::::::::
property,

:::
the

::::::::::
probability

::::::
density

:::::
pk(s)

::::::
would

:::::::
already

:::
be

:::
the

:::::::::
respective

:::::
factor

::
of
::::

the

:::::::::
likelihood.

:::::
Here,

:::::::
however,

:
V (Eq. 14) contains one of the parameters (γ) to be estimated. Therefore, we must transform the455

probability density pk (and thus φ) from
::
is

::
the

:::::::::
measured

:::::::
property,

::
so

::::
that

:::
the

::::::::
likelihood

::
is

:::::::
obtained

:::
by

::::::::::
transforming

:::::
pk(s)

:::::
from

s to V . For this purpose, we need the derivative
::::::::
according

::
to

L4–7 = pk(s)
ds

dV
:::::::::::::

(A6)

::::
with

ds

dV
= V −γ0 γV γ−1 =

γ

V0
s

γ−1
γ (A7)460

and obtain

L=
1

(k− 1)!
e−Φ(s)Φ(s)k−1φ(s)

γ

V0
s

γ−1
γ

for the respective likelihood
:::::::
obtained

::::
from

:::
Eq.

:::::
(14).

::::
Then

:::
the

:::::::::
likelihood

::
is

L4–7 =
1

(k− 1)!
e−Φ(s)Φ(s)k−1φ(s)

γ

V0
s

γ−1
γ .

::::::::::::::::::::::::::::::::::::

(A8)

Finally, the total likelihood is the product of the likelihood values according to Eq
::::
seven

::::::
factors

:::::::::
according

::
to

:::
Eqs. (A2) for the465

constraints 1–3 and Eq. (A8)for the constraints 1–4.
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