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Abstract. We extend the ecological component (‘ECOGEM’) of the carbon-centric Grid Enabled Integrated Earth 

system model (‘cGEnIE’) to include a diatom functional group. ECOGEM represents plankton community 

dynamics via a spectrum of ecophysiological traits originally based on size and plankton food web (phyto- and 

zooplankton; EcoGEnIE 1.0), which we developed here to account for a diatom functional group (EcoGEnIE 1.1). 

We tuned EcoGEnIE 1.1, exploring a range of ecophysiological parameter values specific to phytoplankton, 20 

including diatom growth and survival (18 parameters over 550 runs) to achieved best fits to observations of diatom 

biogeography and size class distribution, and to global ocean nutrient and dissolved oxygen distributions. This, in 

conjunction with a previously developed representation in the water column of opal dissolution and an updated 

representation of the ocean iron cycle, resulted in an improved distribution of dissolved oxygen in the water 

column relative to the previous EcoGEnIE 1.0, with global export production (7.4 Gt C yr-1) now closer to previous 25 

estimates. Simulated diatom biogeography is characterised by larger size classes dominating at high latitudes, 

notably in the Southern Ocean, and smaller size classes dominating at lower latitudes. Overall, diatom biological 

productivity accounts for ~ 20% of global carbon biomass in the model, with diatoms outcompeting other 

phytoplankton functional groups when dissolved silica is available due to their faster maximum photosynthetic 

rates and reduced palatability to grazers. Adding a diatom functional group provides the cGEnIE Earth system 30 

model with an extended capability to explore ecological dynamics and their influence on ocean biogeochemistry. 
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1 Introduction 

 

Dissolved silica (dSi) – H4SiO4 (orthosilicic acid) – plays a key role in numerous biogeochemical cycles, 35 

particularly in marine environments. Marine silicifiers take up dSi across the cell wall, both via diffusion and 

silicon transporters, to produce biogenic silica (bSi) (hydrated silica – SiO2•nH2O), which is used to build internal 

and external structures (Moriceau et al., 2019; Maldonado et al., 2019). As well as depleting dSi in their local 

growth environment, the ecological success of silicifiers impacts the cycling of other essential nutrients such as 

nitrogen, phosphate, and dissolved iron through competition with non silicifiers, and potentially also the cycling 40 

of carbon. Today, the dominant marine silicifiers are diatoms – phytoplankton with a protective opal frustule 

(silica shell) that mitigates grazing loss (Van Tol et al., 2012). Diatoms also exhibit relatively fast growth rates 

(Banse, 1982), enabling them to potentially out-compete other phytoplankton. As a result, the diatom genera is 

thought to be responsible for approximately 40% of global primary production in today’s ocean (Field et al., 

1998). The different cellular nutrient to carbon ratio of diatoms compared to other phytoplankton (O'donnell et 45 

al., 2021), together with the potential for the dense protective opal frustules to modify the mean depth at which 

carbon (and nutrients) can be returned to the water column from sinking biogenic material, implies that a complete 

representation of the ocean’s ‘biological pump’ requires that we account for the marine cycle of silica (Wilson et 

al., 2012). However, the spatio-temporal distribution of diatoms and their ability to dominate an ecosystem 

depends on a number of both environmental pressures, particularly dSi availability, together with underlying key 50 

metabolic trade-offs, such as control over frustule size, balancing predation vs. buoyancy, and/or optimizing their 

photosynthetic apparatus in light-intensive areas where excess energy must be dissipated (Hendry et al., 2018; 

Assmy et al., 2013; Lavaud et al., 2004) Indeed, the large number of different possible combinations of trade-offs 

and marine environments may be behind the evolution of the estimated 30,000 - 100,000 current species 

worldwide (Mann and Vanormelingen, 2013).  55 

One way of representing rates of nutrient (and carbon) uptake from the ocean surface and subsequent export of 

solid (and dissolved) biogenic matter in models is as a direct function of the ambient environment such as 

temperature, light, nutrient availability (Maier-Reimer and Hasselmann, 1987). Such an implicit approach has 

previously been used in box models (Ridgwell et al., 2002). However, the biogenically-induced flux modelling 

approach is limited, both when tasked with exploring events regarding the evolution of ecosystem complexity as 60 

ecosystems are not resolved (i.e. plankton diversity is not considered), as well as in respect to the details of 

seasonal productivity cycles and species successions and ‘blooms’, as standing biomass becomes a key state 

variable that creates temporal lags in the response of biological export to changes in the ambient physical and 

chemical environment. Instead, model approaches have been developed that can resolve biomass dynamics across 

a broad spectrum of complexities (Kwiatkowski et al., 2014). At one end, simple ‘NPZD’ (N – dissolved inorganic 65 

nitrogen, P – phytoplankton, Z – zooplankton and D – detritus) models (Kriest et al., 2010) are able to reproduce 

the variability of the mean ecosystem by simulating the effects of limiting factors (e.g. nutrient limitation), but 

fail to constrain potentially important biogeochemical processes and feedbacks associated with the biological 

pump due to their simplicity (Yool et al., 2013). Beyond this, in terms of complexity, models may include multiple 

(plankton) functional types (‘PFT’s) to better resolve fundamental biogeochemical functions, including those less 70 

sensitive to environmental perturbation (Friedrichs et al., 2007; Quere et al., 2005). However, PFTs are generally 

based explicitly on the observed characteristics of modern plankton, potentially impacting their potential 

application to past climates (Ward et al., 2018; Falkowski et al., 2004). The relationships between species, 
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ecosystems, and environment continually evolve through time, such as  the diversification of diatoms in the 

Cenozoic and their increasing dominance of dSi uptake (Conley et al., 2017). In turn, this has led to “trait-based” 75 

approaches that focus on the governing rules of diversity as opposed to imposing a specific and restricted diversity, 

have been devised (Follows and Dutkiewicz, 2011; Follows et al., 2007). Besides requiring fewer total number of 

parameters to be specified, trait-based approaches allow a greater resolution of diversity. However, they also 

require the identification of the underlying trade-offs that govern species competition and coexistence (Kiørboe 

et al., 2018). Currently, allometric relationships are often assumed to regulate these trade-offs, in which 80 

physiological and ecological traits can be linked to organism size (e.g. Mullin et al., 1966). Assuming then that 

these allometric relationships are consistent through time (or at least, rather more conserved than individual 

species themselves), trait-based approaches should be comparatively independent of the geological period to 

which they might be applied. 

In the case of the Earth system model of intermediate complexity (EMIC) cGEnIE – a global biogeochemical 85 

cycles (ocean circulation and primary climate feedbacks) model designed for addressing paleo questions 

(Ridgwell et al., 2007) – Ward et al. (2018) added a trait-based ecosystem, “EcoGEnIE” which explicitly accounts 

for the growth of plankton with traits assigned based on size and function. The paleo utility of now being able to 

simulate potential ecosystem structures (and associated marine biogeochemical cycles) of the past was 

demonstrated in Wilson et al. (2018). Here, we build on this earlier work and present an update to the EcoGEnIE 90 

1.0 framework by introducing a diatom phytoplankton functional group (including their allometric relationships) 

together with a marine silicon cycle – EcoGEnIE 1.1 – and tuned the model using Latin hypercube model 

parameter sampling (Section 3). Finally, we  evaluate how the results of our model ensemble with diatoms 

compares with global observations and the previous version of EcoGEnIE (Sections 4 and 5). We start (Section 

2) by describing the general structure and properties of the cGEnIE Earth system model (e.g., the marine 95 

biogeochemical components most relevant to simulating marine ecology), including a summary of the existing 

ecosystem model component and how this has been extended to include diatoms. 

2 The cGEnIE Earth system model 

 

2.1 Ocean (-atmosphere) physics 100 

                                                                                                                                                                                       

The underlying climate component in the configuration of cGEnIE used here comprises a 3-D frictional 

geostrophic ocean model coupled with a 2-D energy moisture balance model (EMBM) and a dynamic-

thermodynamic sea ice model (Marsh et al., 2011). We employ cGEnIE on a 36×36 longitude vs. latitude grid of 

equal area (equal divisions in longitude and the sine of latitude), with ocean depth resolved across 16 vertical 105 

layers that have a progressively increasing thickness, varying from 80.8 m at the surface to a maximum of 765 

m at depth. Here, to retain the same traceable representation of global ocean circulation as Cao et al. (2009) 

which formed the basis of the development of a variety of new biogeochemical cycles in cGEnIE (Crichton et 

al., 2021; Reinhard et al., 2020; Van De Velde et al., 2021), we also adopted the same modern continental 

configuration and ocean bathymetry, together with calibrated parameters controlling ocean, atmosphere, and 110 

sea-ice physics, as Cao et al. (2009). This differs from the physics configuration of Ward et al. (2018), who 

adopted both a slightly modified continental configuration, but more importantly, included a representaiton of 

mixed layer physics (Kraus and Turner, 1967). Ecologically, the depth of the mixed layer is critical to 
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calculating mean light penetration and hence photosynthetic rates. We hence diagnosed the mixed layer depth 

everywhere, calculating what the chlorophyll concentration would be if it were mixed evenly across this depth 115 

and what the average light level should be across that depth with that level of chlorophyll  (following Ward et al., 

2018), but did not enable temperature and salinity (or other tracers) to be physically mixed (thereby retaining the 

same ocean circulation as Cao et al., 2009). Finally, we also prevent photosynthesis under sea-ice (in practice, in 

each grid cell, light availability is scaled by the ice-free fraction), which was not adopted in Ward et al. (2018). 

We quantify and discuss the separate impacts of changing ocean physics vs. changing ecosystem structure 120 

between EcoGEnIE 1.0 vs. EcoGEnIE 1.1, as well as contrasting model projections against observations, later. 

 

2.2 Ocean biogeochemical cycling framework 

 

The BIOGEM code module in cGENIE provides the framework for ocean-atmosphere biogeochemical cycling, 125 

including regulating air-sea gas exchange as well as the transformation and partitioning of biogeochemical 

tracers within the ocean. As configured here, BIOGEM accounts for the biogeochemical cycling of carbon, 

phosphate, oxygen, carbon (Ridgwell et al., 2007), plus iron (Tagliabue et al., 2016), together with a previously 

developed parameterization of opal dissolution in the water column (Ridgwell et al., 2002 – summarized below 

and in the supplemental material) in order to complete the ocean silicon cycle in conjunction with the new 130 

ECOGEM diatom addition.  

For the iron cycle, we took the preindustrial (year 1850) dust field of Albani et al. (2016) to provide dissolved 

iron input at the ocean surface, and carried out a brief parameter calibration of the 2 key iron controlling 

parameters – the mean global (flux-weighted) iron solubility, and the scaling factor for the scavenging rate of 

free (non-ligand bound) iron by sinking particulate organic matter in the water column. This was in the form of 135 

a 2D parameter ensemble of iron solubility vs. scavenging rate with the resulting simulated 3D distribution of 

total dissolved iron in the ocean (i.e. free iron plus ligand-bound iron) statistically contrasted to observations 

(Tagliabue et al., 2016). For this parameter tuning, we utilized the (non-ecosystem-based) cGEnIE phosphate 

and iron limitation marine biogeochemical cycle configuration of Tagliabue et al. (2016) in the same Cao et al. 

(2009) configuration of ocean circulation as employed here. We then simply adopted the same two parameter 140 

values when using the ecosystem model in EcoGEnIE 1.1 (i.e. meaning that iron solubility and scavenging rates 

in the ocean were calibrated prior to and independently of the ecosystem model). The only differences in ocean 

iron cycling compared to Ward et al. (2018) are then: (1) the iron cycle is now tuned for the Cao et al. (2009) 

configuration of ocean circulation, and (2) the iron cycle is tuned to the more recent dust deposition field of 

Albani et al. (2016) rather than Mahowald et al. (1999). In terms of the resulting parameter values, the mean 145 

global solubility of dust-delivered iron is now 0.244 % as opposed to 0.201 % (partly to compensate for the 

overall lower dust fluxes of Albani et al. (2016) vs Mahowald et al. (1999), and there is a small reduction in the 

scavenging rate scaling (0.225 vs. 0.344 in Ward et al. (2018)). 

To complete the ocean silica cycle, opal must dissolve in the water column and at the seafloor, allowing silica to 

be released back into solution (dSi). The treatment of how sinking biogenic solid silica (bSi) dissolves in the 150 

water column follows Ridgwell et al. (2002), which used a simple quasi-empirical scheme that took into account 

the degree of ambient opal under saturation and evaluated against sediment trap observations. Note that in this 
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current paper, we do not attempt to calculate the fractional preservation of opal in accumulating sediments at the 

seafloor but instead impose a simple benthic ‘closure’ term such that all biogenic matter reaching the bottom of 

the ocean is entirely dissolved in the lowermost ocean grid cell instead of being buried in the sediments – 155 

effectively the same common closure term that is used for all the (e.g., carbon, nutrient) constituents of 

particulate organic matter as well as of CaCO3 – all of which are returned back into solution at the model 

seafloor. 

2.3 Ecological structure 

                                                                                                                                                                                   160 

The ecological component of the cGEnIE model – ‘EcoGEnIE’ – consists of a highly configurable generic 

plankton community (Ward et al., 2018) based on a series of functional groups and respective size classes. 

Originally, EcoGEnIE 1.0 described and evaluated just two functional types, zooplankton and phytoplankton, 

which were each delineated into 8 size classes (Table 1). (A mixotroph functional group was also coded, but not 

described and evaluated in Ward et al. (2018).) 165 

For EcoGEnIE 1.1, we implemented an additional diatom functional group, coded as a microphytoplankton that 

has a dSi nutrient assimilation requirement, lower palatability, and higher maximum photosynthetic rate than 

existing groups of an equivalent size class (Tréguer et al., 2018; Follows et al., 2007). As well as adding the 

diatom functional, we also differentiated the generic phytoplankton in EcoGEnIE 1.0 into 2 derived 

phytoplankton functional sub-types – ‘picoplankton’ and ‘eukaryotes’– differentiated by their respective 170 

photosynthetic rate exponent (Table 1) based on the trait-based modelling of Dutkiewicz et al. (2020). As per 

Dutkiewicz et al. (2020), plankton of equivalent spherical diameter < 3 μm exhibit an increase in maximum 

growth rate with increasing size, whereas anything larger than 3 μm exhibits a progressive decrease in 

maximum growth rate with further increases in size.  The EcoGEnIE 1.1 plankton community hence now 

comprises 4 functional groups (diatoms, picoplankton, eukaryotes and zooplankton). 175 

Table 1. The 4 EcoGEnIE 1.1 plankton functional groups and range of equivalent spherical diameter (ESD) 

‘species’ focussed on in this paper compared to that used in EcoGEnIE 1.0. 

j EcoGEnIE 1.1 

Functional type 

ESD 

(μm) 

EcoGEnIE 1.0 

Functional type 
ESD  

(μm) 
1 Diatom 2 Phytoplankton 0.6 

2 Diatom 20 Phytoplankton 1.9 

3 Diatom 200 Phytoplankton 6 

4 Picoplankton 0.6 Phytoplankton 19 

5 Picoplankton 2 Phytoplankton 60 

6 Eukaryote 20 Phytoplankton 190 

7 Eukaryote 200 Phytoplankton 600 

8 Zooplankton 6 Phytoplankton 1900 

9 Zooplankton 20 Zooplankton 0.6 

10 Zooplankton 200 Zooplankton 1.9 

11 Zooplankton 2000 Zooplankton 6 

12   Zooplankton 19 

13   Zooplankton 60 

14   Zooplankton 190 

15   Zooplankton 600 

16   Zooplankton 1900 
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We configure the assumed size structure of the members of the ecosystem differently to Ward et al. (2018) (see 

Table 1). Specifically, we choose to decrease the number of size classes (4 zooplankton instead of 8), and 180 

rationalize the remaining structure by e.g., removing the largest phytoplankton and smallest zooplankton size 

classes (that did not meaningfully persist in the simulations of Ward et al. (2018)). 

We also tested the impact of the EcoGEnIE 1.0 functional groups and size structure with our new physics and 

ecosystem tuning in “EcoGEnIE 1.1_phys_eco” (see Section 5.1). This allows comparisons of size-diversity 

range (1.0: 0.6 - 1900µm vs 1.1: 0.6 – 2000 µm) and functional diversity (1.0: 2 functional groups vs 1.1: 4 185 

functional groups). It additionally shows the effect of moving from an allometric unimodal scheme to individual 

photosynthetic rates with the same physics configuration. 

2.4 Diatom physiology 

 

The new parameterizations associated with the incorporation of diatoms in ECOGEM are described below. State 190 

variables (nutrient resources, plankton biomass and organic matter) in EcoGEnIE 1.1 follow the same equations 

in EcoGEnIE 1.0 and are described in the supplemental material.  

2.4.1 Size-dependent traits 

                                                                                                                                                                                 

Power-law functions of organismal volume (Vol = π[Equivalent spherical diameter]3 /6) define a given size-195 

dependent parameter (p). 𝑉𝑜𝑙0 is a reference value of 1 μm3. Values a and b are size scaling coefficients.  

𝑝 = 𝑎(
𝑉𝑜𝑙

𝑉𝑜𝑙0
)𝑏                                                                                                                                                               (1) 

In contrast to EcoGEnIE 1.0, which applies a unimodal photosynthetic uptake rate relationship for all 

phytoplankton, each phytoplankton functional group within the EcoGEnIE 1.1 population possesses specific rates 

as per (Dutkiewicz et al., 2020), as shown in Table 2. 200 

2.4.2 Diatom extension  

 

As per the other plankton functional groups in the model, diatom biomass (BDiat) varies over time as a balance 

between a growth term that depends on the uptake rate (V), and limitations by light, temperature and nutrients 

plus loss terms (grazing and mortality), which are fully described in the supplemental material. 205 

𝑑𝐵𝐷𝑖𝑎𝑡

𝑑𝑡
=  𝑉𝐷𝑖𝑎𝑡  ∙ 𝐵𝐷𝑖𝑎𝑡  − ((𝐺𝑟𝑎𝑧𝑖𝑛𝑔𝐷𝑖𝑎𝑡  ∙ 𝑃𝑎𝑙𝑎𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝐷𝑖𝑎𝑡 ) + 𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦𝐷𝑖𝑎𝑡)                                            (2)                                                            

We used commonly defined diatoms traits and trait trade-offs to characterise their competitiveness relative to 

other phytoplankton (Tréguer et al., 2021). Diatom defined traits include a higher maximum photosynthetic 

growth rate 𝑃𝐶
𝑚𝑎𝑥 than other phytoplankton (see growth curve in Dutkiewicz et al. (2020)), a dSi limitation 

through associated nutrient parameters, and reduced palatability, which is defined by a unitless parameter that 210 

modifies the relative grazing palatability on the group (Table 2, S1, Fig. S6). Within the model, diatom 

palatability (= 0.93) is smaller than for other prey (= 1), indicative of greater grazing protection. This reduced 

relative palatability accounts for diatoms’ competitive ability to mitigate grazing losses via their protective 
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frustules (Zhang et al., 2017). The model also represents the production of organic matter and biogenic silica 

(opal) by diatoms, which is exported out of the surface layer after diatom mortality or detritus from feeding.  215 

3 Model tuning 

 

We tuned both the new diatom-specific model parameters and a selection of other ECOGEM parameters related 

to how phytoplankton behaviour in general is controlled (e.g., as related to nutrient acquisition ability). These 

are listed in Table 2. We compared model results with global ecological and diatom observations (see section 220 

3.2).  

3.1 Tuning method 

 

The parameters, whose values we explored in the tuning process, include minimum and maximum nutrient 

quotas, maximum uptakes rates, and nutrient affinities. We tested a range of values derived from the literature as 225 

summarized in Table 2. We also tuned diatom palatability to best simulate diatom’s grazing protection. We kept 

Ward et al. (2018)’s parameter values for phosphate maximum uptake rate and the cellular carbon quotas as 

preliminary sensitivity experiments showed little sensitivity on biogeochemical output (mean oxygen 

concentration, export production, etc.) when exploring values around the previously well-constrained estimated 

values (e.g. studies seen in Table 2). We then used Latin hypercube sampling (Mckay et al., 2000) to generate a 230 

550-member ensemble sampling uniformly across the 18 model parameters we had identified as critical to 

controlling ecosystem dynamics (and hence of marine biogeochemical cycles). For each ensemble member 

experiment, we calculated a M-score (Watterson, 2015) to gauge model-data fitness with greater values 

representing better performance:                                                                                                                                 

𝑀 =  
2

п
arcsin [

∑
(𝑀𝑖−𝑂𝑖)

2

𝑛
𝑛
𝑖=1

𝜎𝑚
2 +𝜎𝑜

2+(𝜇𝑚−𝜇𝑜)2]                                                                                                                        (3) 235 

 

Here, the model (m) and observational (o) value in the i th ocean grid points (cell) out of a total n grid points are 

represented by Mi and Oi respectively, with mean square error described in the numerator. Mean and variance are 

denoted σ2 and μ. M-score therefore is non-dimensional and is value between 0 and 1, with higher values 

indicating better model-data performance. 240 

 

 

 

 

 245 

 

 

 

Table 2. List of ECOGEM parameters and Qmax:Qmin (where Qmax:Qmin = 1 represents a fixed quota as they are 

equal) selected for tuning and the range of tested values and cited literature (Ward et al., 2018; Ragueneau et al., 250 

2006; Dutkiewicz et al., 2020; Edwards et al., 2012). 
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Parameter Symbol Tested range  Best run Units References 

Quota and    

max/min ratio 

 

  

 

 

 

 

 

 

 

 

𝑄𝑃
𝑚𝑖𝑛 10-3 – 10-2 2.7x10-3 mmol P (mmol C)-1 Ward et al. 

(2018) 

𝑄𝑃
𝑚𝑎𝑥/ 𝑄𝑃

𝑚𝑖𝑛 1 - 10 8.0 mmol P (mmol C)-1  

𝑄𝐹𝑒
𝑚𝑖𝑛 5x10-7 - 1.5x10-6 0.7x10-6 mmol Fe (mmol C)-1 Ward et al. 

(2018) 

𝑄𝐹𝑒
𝑚𝑎𝑥/ 𝑄𝐹𝑒

𝑚𝑖𝑛 1 - 10 6.0 mmol Fe (mmol C)-1  

𝑄𝑆𝑖
𝑚𝑖𝑛 0.01 – 0.1 0.04 mmol Si (mmol C)-1 Ward et al. 

(2018) 

𝑄𝑆𝑖
𝑚𝑎𝑥/ 𝑄𝑆𝑖

𝑚𝑖𝑛 1 - 10 9.4 mmol Si (mmol C)-1 Ragueneau et al. 

(2006) 

Max uptake 

rate 
𝑉𝐹𝑒𝑎

𝑚𝑎𝑥 

𝑉𝐹𝑒𝑏
𝑚𝑎𝑥 

5x10-5 – 2x10-4 

-0.5 - -0.25 

1.7x10-4 

-0.13 

mmol Fe (mmol C)-1 d-1 

 

 

Ward et al. 

(2018) 

𝑉𝑆𝑖𝑎
𝑚𝑎𝑥 

 

𝑉𝑆𝑖𝑏
𝑚𝑎𝑥 

0.01– 0.1 

 

0.01 – 0.1 

0.07 

 

0.03 

mmol Si (mmol C)-1 d-1 

 

 

 

 

Ragueneau et al. 

(2006) 

Nutrient 

affinities 

        𝛂Pa 

 
0.5 - 1.5 0.94 m3 (mmol C)-1 d-1  

         𝛂Pb -0.5 - -0.25 -0.44  Ward et al. 

(2018) 

         𝛂Fea 0.15 – 0.2 0.18 m3 (mmol C)-1 d-1  

        𝛂Feb -0.5 - -0.25 -0.26  Ward et al. 

(2018) 

        𝛂Sia 1 - 5 4.8 m3 (mmol C)-1 d-1  

        𝛂Sib -0.5 - -0.25 -0.40   Edwards et al. 

(2012) 
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Grazing 

protection 
         0.3 – 1.0 0.93   

 

3.2 Observations 

 

We assessed how successful EcoGEnIE 1.1 was in generating realistic oceanic biogeochemistry by comparing 255 

model outputs to observations from the World Ocean Atlas 2013 (WOA13) climatological datasets of dissolved 

oxygen, phosphate and dSi (Garcia et al., 2013). This assessment allows direct comparison to the performance 

assessed in the original description paper of EcoGEnIE (Ward et al., 2018). (Using more up-to-date World 

Ocean Atlas datasets showed little difference in statistical model performance.) Climatological data were in the 

form of 1 degree resolution annual averages that were re-gridded onto the cGENIE model grid prior to statistical 260 

comparison. We also visually contrasted modelled chlorophyll concentrations (whilst also ensuring it was within 

the observed range) to an average from 1997 to 2002, measured by the SeaWiFs satellite (Seawifs). 

3.3 Model experiments 

 

We created an initial 20,000-year spin-up of the complete system (iron and silica cycles) with the default values 265 

from EcoGEnIE 1.0 for the non-silica and diatom-related parameters. Each of the 550 ensemble members was 

then run for 2,000 years ,continued from the same ocean biogeochemical and climate steady-state. Tests of 

longer integration times for ensemble member experiments showed that little (<1%) further change occurred in 

any M-scores for dissolved oxygen, phosphate, or silica beyond 2,000 years. 

  270 
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4 Results 

 

4.1 Model ensemble and justification of parameter set choices 

 

We first considered the statistical performance of all 550 model members vs. observations. Figure 1 shows the 275 

results from the tuning ensemble, ordered by averaged M-score across each of the comparisons of the global 

distributions of dissolved oxygen, phosphate, and silica. Figures 2 and 3 have the same format but now focus in 

on just the best 50 performing mean M-score ensemble members. There are clear apparent trade-offs within the 

mean M-score statistic with, for example, high O2 M-scores generally coinciding with lower PO4
3- M-scores and 

vice versa (also see SI Figure S3). Such a situation could arise, for example, for a ‘perfect’ phosphate cycle, but 280 

an incorrect C:P ratio, creating a trade-off between PO4 concentrations in intermediate depths tending higher 

than observations vs. dissolved O2 tending lower than observations. Improving one M-score then comes at the 

expense of the M-score of the other. (In such a situation the silica cycle would be somewhat decoupled from 

both P and O and hence not necessarily exhibit a clear trade-off with either.)  We also observe a similar trade-off 

between the mean ocean oxygen concentration and export production. Thus, while one might select the overall 285 

(mean) best M-score experiment when identifying a tuned parameter set with which to go forward, the ability of 

the model to simulate specific features of the global carbon cycle well, may also need to be taken into account, 

and likely depending on the specific application(s) of the tuned model.  

 

Figure 1. M-scores of O2 (yellow), SiO2 (grey) and PO4 (orange) mean global ocean concentrations of a 550-run 290 

ensemble. The selected run was #387 (highest average M-score). These scores are calculated by comparing model 

performance to re-gridded World Ocean Atlas annual average climatologies (Garcia et al., 2013). 
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Figure 2. Top 50 mean M-score values (dot-dashed line) as well as individual M-scores for O2 (yellow), SiO2 

(grey), and PO4 (orange) out of the 550-run ensemble. The selected run was #387 (highest mean M-score).   295 

 

Figure 3. POC export (Gt C yr-1), C:P export ratios, and global mean oxygen concentration (µmol kg-1) 

corresponding to the top 50 runs shown in Figure 2. Note that both [O2] (yellow line) and C:P (green points) are 

plotted on the same (LH y-axis) scale. 

 300 
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We chose our best run (run #387) primarily because it had the highest average M-score, although also 

considered trade-offs and selecting realistic oxygen concentrations (promoted by reasonably low export). We 

also picked the run with a carbon-to-phosphate export ratio close to the Redfield ratio of 106 and recent inverse 

models’ estimations of ~ 105 - 113 (Wang et al., 2019; Matsumoto et al., 2020; Teng et al., 2014). This 

characteristic favoured #387 (global C:P of 112) over the best silica performing run (run #96), which had a C:P 305 

of 116. While this study primarily concerns diatoms and the silicon cycle, we are also tuning the ecosystem as a 

whole, necessitating a realistic global C:P of export. Whilst run #464 has a similarly good C:P and a high 

average M-score, our pick has opal export value (107 Tmol Si yr-1) within estimates (Table 3) of 100 – 140 

Tmol Si yr-1 (Nelson et al., 1995). 

Run #387 also produces a global total POC export of 7.4 Gt C yr-1 (Fig. 3, Table 3), falling well within estimates 310 

of 4 -12 Gt C yr-1 (Devries and Weber, 2017; Henson et al., 2011; Dunne et al., 2005). Global mean oxygen 

concentration produced by this iteration is also acceptable at 164 µmol kg-1, close to the ~170 mean calculated 

from the regridded WOA dataset, whilst other high statistically scoring runs produced values beyond this range 

(e.g. run #426). Such attributes give run #387 an average M-score of 0.67, the top performing run (Fig. 2 and 

Fig. 3). 315 

4.2 Biogeochemical variables 

 

Overall, EcoGEnIE 1.1 captures the zonal contrast in phosphate concentrations between the polar and subpolar 

regions (> 2 µmol P kg-1) towards the poles with ~ 1 µmol P kg-1 moving towards the equator, Fig. 4). The 

model underestimates phosphate (WOA13 records ~1 µmol P kg-1) in equatorial and margin upwelling 320 

environments. This partly results from the more simplified physics and lower spatial resolution than e.g. current 

CMIP models (Séférian et al., 2020). However, the model-data comparison is also not strictly like-for-like, 

because in re-gridding higher vertical resolution WOA to the model grid, elevated subsurface concentrations 

become averaged into the re-gridded ‘surface’ layer that cGENIE is compared against. This will be particularly 

important in regions where the surface mixed layer is much shallower than 80.8m. For example, regions of 325 

shallow mixed layer but elevated sub-surface phosphate concentration, such as the equatorial Pacific appear, 

appear much more elevated in phosphate in both the re-gridded data and what the model is capable of in terms 

of nutrient limitation or depletion. Despite this, the model estimates of dSi concentrations in the equatorial 

upwelling are reasonable (~ 20µmol Si kg-1), although fall lower than the re-gridded concentrations present in 

the surface northern Pacific (~ 40 vs >50 µmol Si kg-1, Fig. 5).  330 
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Figure 4. Surface concentrations of dissolved phosphate for observations (a) and EcoGEnIE 1.1 output (b) (µmol 

P kg-1). 
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 335 

Figure 5. Surface concentrations of dSi for observations (a) and EcoGEnIE 1.1 output (b) (µmol Si kg-1). 

 

Through the ocean, EcoGEnIE 1.1 reasonably captures the main features of the vertical biogeochemical tracer 

distributions in each of the three main ocean basins (Atlantic, Indian, and Pacific). Consistent with observations, 

the model captures the propagation of dissolved oxygen (~300 µmol O2 kg-1) at depth through the North Atlantic 340 

and Southern Ocean via deep-water formatted and transport (Fig. 6). The model performs similarly for 

phosphate concentrations (Fig. 7), but with a slight underestimation in the intermediate northern Atlantic (which 

tend towards 0.5 µmol P kg-1 rather than observed values closer to 1 µmol P kg-1 at 1000 – 3000m depth). The 

highest concentrations of phosphate (3 µmol P kg-1) in the equatorial Indian ocean are seen between 2000 and 

4000 m in the observed climatology, where they are limited to < 2 km depths in the model, likely due to 345 

restricted resolutions at depths and the smaller size of the Indian basin. The same trends (discrepancies 

compared to WOA13 are most notable at the greatest depths) are observed in the model for dSi (Fig. 8). 

However, dSi is generally represented accurately across the three model ocean basins approaching 0 µmol Si kg-

1 in the surface and peaking at approximately 120 µmol Si kg-1 at depths (below 1000m in the Pacific and Indian 

ocean).  350 
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Figure 6. Zonally averaged vertical distribution of dissolved oxygen for the best EcoGEnIE 1.1 ((d)-(f)) run (µmol 

O2 kg-1) compared to WOA13 ((a)-(c)). 

 

Figure 7. Zonally averaged vertical distribution of dissolved phosphate (µmol P kg-1) of EcoGEnIE 1.1 ((d)-(f)) 355 

compared to WOA13 ((a)-(c)). 
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Figure 8. Zonally averaged vertical distribution of dSi (µmol Si kg-1) of EcoGEnIE 1.1 ((d)-(f)) compared to 

WOA13 ((a)-(c)). 

 360 

4.3 Ecological variables 

 

We also assessed performance of the tuned model relative to observations in chlorophyll from the SeaWiFs 

satellite (Seawifs), as well as export production relevant metrics such as the organic matter C:P (‘Redfield’) 

ratio. We additionally assess carbon biomass distributions in our configured plankton community. 365 

Firstly, EcoGEnIE 1.1 chlorophyll biomass compares generally well with satellite estimates, peaking at ~1 mg 

Chl m-3 in the high latitudes and equatorially. However, there is noticeable low chlorophyll in the eastern 

boundary upwelling regions in our simulations, an issue also visible in EcoGEnIE 1.0. Overall, Figures 9 and 

12d show similar distributions of chlorophyll biomass and total diatom biogeography, with EcoGEnIE 1.1 

presenting improved and distinct subtropical gyres from the original rendition. EcoGEnIE 1.1 tends to have 370 

more widespread peak Chl values than in the satellite images, with lower Chl in the subtropics and prominent 

Chl in the Southern Ocean (Fig. 9). However, it is known that satellite observations can underestimate 

concentrations in the high latitudes (Dierssen, 2010). This could help explain some of the model disagreement in 

the Southern Ocean. For the Arctic, the sign of the model-data mismatch is reversed and is more likely to be 

primarily due to the limited model resolution in this basin, reflecting restricted circulation in the model and/or 375 

poor seasonal sea-ice cover. 
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Figure 9. Satellite-derived (a) and modelled ((b) and (c)) surface chlorophyll a concentration (mg Chl m-3). 

 

Table 3. Performance of the three renditions of EcoGEnIE (EcoGEnIE, NoDiatom and EcoGEnIE 1.1) and their 

M-scores to WOA13 data. NoDiatom is configured identically to EcoGEnIE 1.1, with just the diatom functional 380 

group removed. Two additional runs are shown, one in which our new physics are applied to EcoGEnIE 1.0  

 EcoGEnIE 1.0 EcoGEnIE 1.1_phys EcoGEnIE 

1.1_phys_eco 

NoDiatom EcoGEnIE 

1.1 

Estimates 

Ecological 

configuration / 

Plankton 

1.0 / 1.0 1.0 / 1.0 1.1 / 1.0 1.1 / 1.1 

(minus 

diatoms) 

1.1 / 1.1  

Ocean 

biogeochemical 

configuration 

1.0 1.1 1.1 1.1 1.1  

O2 M-score 0.51 0.50 0.54 0.59 0.60  

PO4 M-score 

 
0.62 0.69 0.67 0.70 0.69  

SiO2 M-score 

 
- - - - 0.72  

Average M-score 

 
0.56 0.52 0.61 0.65 0.67  

[O2] /  µmol O2 kg-1 

 

POC export / Gt C 

yr-1 

 

140 

 

11.3 

129 

 

9.5 

144 

 

8.4 

179 

 

6.5 

164 

 

7.4 

~160-170 

 

4 – 12 

Opal export flux / 

Tmol Si yr-1 

 

- - - - 107 100 – 140 

Export C:P 138 145 120 102 112 106 
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(EcoGEnIE 1.1_phys) and another where our ecosystem tuning and new physics are applied to EcoGEnIE 1.0 

(EcoGEnIE 1.1_phys_eco), both these runs use 1.0’s plankton population. 

 

Global annual mean POC export in the model is 7.4 Gt C yr-1 (Table 3), which is within the estimated range of 4 385 

- 12 Gt C yr-1 (Devries and Weber, 2017; Henson et al., 2011; Dunne et al., 2005). Spatially, the modelled POC 

and opal export reaches relatively high values (> 4 mol C m-2 yr-1 and >1 mol Si m-2 yr-1 respectively) in the 

subpolar regions such as the Southern Ocean, the North and East equatorial Pacific, and exhibits relatively low 

values (<1 mol m-2 yr-1) in the subtropical gyres and high polar latitudes (Fig. 10a). The latter is due to sea-ice 

formation in the Southern Ocean, which in the model is assumed to prevent light penetration and hence limits 390 

production, while the Arctic low production is likely due to a combination of the seasonal presence of sea-ice 

cover in the model as well as the very limited model resolution in this region.  

The global C:P export ratio is approximately 112 in our preferred model calibration (Table 3), with higher ratios 

(> 120) in the subtropical gyres and low ratios (~ 90) in the subpolar and upwelling regions (Fig. 10b). This 

distribution, at least visually, agrees with previous estimates (Teng et al., 2014; Tanioka et al., 2022) with the 395 

exception of the North Atlantic, which has previously been observed to have extremely high values (~200). One 

reason that the model struggles to produce these high C:P ratios because it does not include a nitrogen cycle 

(and nitrogen fixation), thus regions where nitrogen may be at low or high concentrations (e.g., North Atlantic) 

may possess unrealistic C:P ratios. 

                                                                                 400 

Figure 10. Global POC (a) and opal export ((c), mol m-2 yr-1). Global surface distribution of carbon to phosphorus 

ratio for export of particulate organic matter (b).  
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Figure 11. Surface concentrations of total carbon biomass of EcoGEnIE 1.0 (a) and EcoGEnIE 1.1 ((b), mmol C 

m-3). Panel (c) depicts the relative increase or decrease of EcoGEnIE 1.1 from EcoGEnIE 1.0 for vertical fluxes 405 

of particulate organic carbon (mmol C m-2 d-1). 

 

The spatial distribution of diatoms (total biomass of all size classes) in EcoGEnIE 1.1 is consistent with 

previous estimates (Tréguer et al., 2018), with high concentration in the productive regions (e.g. equatorial 

upwellings, subpolar regions) and peaking in the Southern Ocean at ~ 1 mmol C m-3 (Fig. 12d). However, direct 410 

and explicit comparison to ecological datasets as a means of model verification is limited by observational 

sampling techniques as well as the relatively coarse model ecological size-structure (see section 5.2).  Diatoms 

contribute to 18% of total carbon biomass in the model and 6% of exported carbon. Of the 3 different size 

classes parameterized in the model (Table 1), the smallest (2 μm) is the most cosmopolitan and is abundant 

across all dSi-enriched regions – the Southern Ocean, equatorial upwelling zones, and North subpolar region 415 

(Fig. 12a). Their larger counterparts (20 μm) dominate in the subpolar and equatorial upwelling regions (Fig. 

12b) and boast a greater peak biomass (0.28 versus 0.19 mmol C m-3). The 200 μm diatom size class is further 

restricted in geographical extent, consistent with as diatoms increase in size in the model, they become 

increasingly restricted to dSi-enriched regions, most notably to the Southern Ocean (Fig. 12c). The relative 

carbon biomass distribution of the 2 and 20 μm diatoms carbon biomass is depicted in Figure 13. The Southern 420 

Ocean presents a dominance of diatoms within the larger size class, with over twice the carbon biomass than the 

2 μm class. In contrast, Equatorial upwelling regions are characterized by a somewhat equal size distribution 

between 2 and 20 μm, with the 2 μm class having slightly greater presence. All diatom size classes are virtually 

absent within the subtropical gyres and low nutrient regions.  
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 425 

Figure 12. Surface concentrations of carbon biomass for each diatom size class ((a) – (c) mmol C m-3) and their 

summed biomass (d). 

Figure 13. The relative presence of diatoms in the 20 μm size class compared to the 2 μm class. 
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5 Discussion and conclusions 430 

 

In this section, we assess and discuss how the projections of EcoGEnIE 1.1 compare to EcoGEnIE 1.0, what has 

changed and why, and paying particular attention to the impact of changing the configuration of the underlying 

ocean circulation component as well as adding a diatom functional type. We then discuss the capability of 

EcoGEnIE 1.1 in simulating diatom biogeography within size classes.  435 

5.1 EcoGEnIE 1.0 vs EcoGEnIE 1.1  

 

We first directly contrast EcoGEnIE 1.1 model outputs with the previous and original ecological version 

EcoGEnIE 1.0 (Ward et al., 2018), the latter including 8 size classes of phytoplankton and zooplankton as well 

as employing different ocean physics. We then assess the impact of the individual changes we have made (new 440 

physics, ecosystem tuning and size structure change with new functional groups) in runs defined within this 

section and Table 3 (NoDiatom, EcoGEnIE 1.1_phys and EcoGEnIE 1.1_phys_eco). 

Relative to EcoGEnIE 1.0, EcoGEnIE 1.1 performs better for all the biogeochemical tracers. EcoGEnIE 1.1 

mean oxygen concentration is more realistic than in EcoGEnIE 1.0 (164 versus 140 µmol O2 kg-1) which is a 

direct consequence of lower export production rates (7.4 versus 11.3 Gt C yr-1) and hence reduced respiration in 445 

the water column. Basin profiles in EcoGEnIE 1.0 (Fig. 14) also exhibited somewhat unrealistic elevated and 

widespread dysoxia in the low latitude and northern regions of the Indian Ocean. Again, in EcoGEnIE 1.0, this 

was likely due to the enhanced export (leading to greater oxygen consumption at intermediate depths). 

Despite a lower total global export flux in EcoGEnIE 1.1, specific regions -- notably equatorial upwellings  -- 

have higher export relative to EcoGEnIE 1.0 (Fig. 15a). Similar patterns are also seen in the NoDiatom run 450 

(identically configurated to EcoGEnIE 1.1: same functional groups, size structure and physics, but with no 

diatom functional group) export distribution which has lower production equatorially than EcoGEnIE 1.1 (Fig. 

15b) suggesting that the difference is primarily due to the change in ocean physics (Fig. S5). In other regions, 

the change in ecological configuration appears to dominate and the absence of diatoms in NoDiatom intuitively 

results in a Southern Ocean with less export production than under the same physics in EcoGEnIE 1.1.  455 

 

 

 

 

 460 
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Figure 14. Zonally averaged vertical distribution of dissolved oxygen for the best EcoGEnIE 1.1 ((d)-(f)) run 

(µmol O2 kg-1) compared to EcoGEnIE 1.0 ((a)-(c)). 

 

 465 

 

 

 

 

 470 

 

 

 

 

 475 

 

 

 

 

 480 

 

 

 

 

 485 

 

 

Figure 15. The relative increase or decrease of EcoGEnIE 1.1 from EcoGEnIE (a), and NoDiatom from 

EcoGEnIE 1.0 (b), for vertical fluxes of particulate organic carbon (mmol C m -2 d-1). 
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Another improvement apparent in EcoGEnIE 1.1 and NoDiatom from EcoGEnIE 1.0 is the C:P export ratio 490 

(Table 3), which is pushed significantly closer to the Redfield value of 106 likely thanks to the tuning of Qmin 

and Qmax values performed in this study to produce more realistic stoichiometries. Such results imply that the 

steps taken in to refine the model have produced more realistic and comprehensive biogeochemical interactions 

within the water column. We suspect that the retuning of C:P export ratio to ~112 helped EcoGEnIE 1.1 to 

produce more favourable basin profiles. 495 

Going from EcoGEnIE 1.0 to 1.1, there is a clear improvement in the distinction between low biomass in 

subtropical gyres and high in higher latitudes (Fig. 11), which can be attributed principally to the modified 

ocean physics (both NoDiatom and EcoGEnIE 1.1 share close similarities are distinction from EcoGEnIE 1.0). 

The EcoGEnIE 1.1 southernmost region of the Southern Ocean has lower POC export than the previous version 

(Figure 11c). This result probably comes from the new sea ice module in which growth is no longer enabled at 500 

these high latitudes. The POC export reduction above the Southern Ocean is due to the new physics, where 

subtropical gyres are better defined and subsequently plankton growth is more restricted at these now nutrient-

replete regions. Equatorial chlorophyll biomass of EcoGEnIE 1.1 has a noticeable increase from the original 

rendition (Fig. 9), producing results closer to satellite estimates (Fig. S4). The introduction of diatoms moving 

from NoDiatom and EcoGEnIE 1.1 is also notably felt in the Southern Ocean, likely due to the high 505 

concentrations of dSi which can only be utilised by diatoms in EcoGEnIE 1.1, as they are not present in 

NoDiatom. Overall (with the exception of the Southern Ocean and equatorial upwellings), there are only 

relatively marginal changes between EcoGEnIE 1.1 and NoDiatom runs (relative to the change of EcoGEnIE 

1.0 to 1.1), suggesting that in the absence of diatoms, other phytoplankton can take advantage of these vacant 

niches that diatoms would otherwise compete in. With our trait-based approach enabling size diversity amongst 510 

functional types, it is intuitive that plankton of the same sizes to the diatom classes would make up the 

difference with regards to the primary production deficit (i.e., size is the master trait) , although cannot reach 

similar productive output to diatoms in dSi-rich regions (e.g. Southern Ocean). 

The differences between EcoGEnIE 1.0 and 1.1 arise both due to the developments in adding phytoplankton 

functional groups, changing size structure, tuning of ECOGEM and switching the physics.  515 

Table 3 includes a run where the Ward et al. (2018) ecosystem (1.0’s functional groups, size structure and  

ecosystem tuning) was combined with our new physics, this run is called EcoGEnIE 1.1_phys. On the other 

hand, EcoGEnIE 1.1_phys_eco also has our new physics and still uses EcoGEnIE 1.0’s functional groups and 

size structure, but incorporates our ecosystem tuning. With the exact same ecological structure and parameter 

tuning as EcoGEnIE 1.0, we found that EcoGEnIE 1.1_phys only achieved slightly improved model 520 

correspondence to observations for phosphate, with the oxygen M-score drastically decreasing  There is, 

however, a decrease in export production (11.3 vs 9.5 Gt C yr-1), suggesting the change in physics helped 

improve this result. EcoGEnIE 1.1_phys_eco also shows slight improvements to phosphate M-score, it is likely 

that our ecosystem tuning somewhat complements the EcoGEnIE 1.0 plankton community due to the similar 

size range diversity. Once we introduce our non-diatom functional groups (NoDiatom) coupled with the new 525 

physics, it is evident how much the results improve (M-scores, export etc.). Adding the diatom functional group 

(and thus ecologically enabling the silica cycle) then improved the M-scores further with reasonable opal export.  
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5.2 Relative diatom distribution  

 

EcoGEnIE 1.1 produced diatom populations in which the smallest size class (2 μm) are the most dominant, a 530 

result that agrees with the relatively few observational estimates that are available, as we will discuss next. 

Genomic ribotype reads and in situ plankton recording in the northern Atlantic observe smaller diatoms to be 

more abundant than larger ones (Barton et al., 2013; Malviya et al., 2016), a characteristic we also find in 

EcoGEnIE 1.1, although relative north Atlantic abundance within the model (2 μm diatoms relative to the 20 μm 

diatoms) is two orders of magnitude greater than these recordings. However, studies such as these tend to be 535 

poorly constrained via instrumentation, as meshes cannot sample plankton < 20 μm, potentially resulting in a 

significant part of the plankton community remaining unrecorded. This could explain at least partly why 

EcoGEnIE 1.1 produces seemingly unrealistic relative abundances. Sensitivity testing in the model suggests that 

the proportion of these size classes depends on the uptake rate for dSi, 𝑉𝑆𝑖𝒂
𝑚𝑎𝑥 (Fig. 16). As 𝑉𝑆𝑖𝒂

𝑚𝑎𝑥 increases, the 

ratio of carbon biomass attributed to 20 μm compared to 2 μm biomass decreases. This is intuitive – the 540 

allometric relationships within functional groups result in larger plankton becoming less competitive as their 

nutrient quotas and uptake rates increase metabolic demand. There is a notable absence of the 200 μm diatom 

class in the northern Atlantic, despite recordings by Barton et al. (2013), suggesting EcoGEnIE 1.1 struggles to 

represent larger plankton. 

 545 

Figure 16. Sensitivity testing for dSi uptake rates of diatoms within EcoGEnIE 1.1. Panels (a) to (c) depict the 

relative presence of diatoms in the 20 μm size class compared to the 2 μm class. Values above 1 therefore indicate 

a region dominated by larger diatoms. 
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The difficulties associated with assessing the ecological performance of EcoGEnIE 1.0 persist in EcoGEnIE 1.1, 550 

these are mostly linked to the nature of ecological community observations and recordings. For example, with 

plankton biomass restricted to the upper layer (80.8 m) of the GEnIE ocean circulation model grid, direct 

comparisons to data collected in situ can be somewhat difficult, with satellite estimates inferring concentrations 

from the surface itself. In situ measurements of diatom distribution tend to opt for ribotype reads of size classes 

along expedition transects (Malviya et al., 2016); we are consequently restricted to inferences of regional 555 

patterns amongst classes as opposed to direct comparisons of global population.  

5.3 Conclusion 

 

This paper builds on the EcoGEnIE 1.0 model of Ward et al. (2018), which developed a size-based formulation 

of plankton ecology and embedded this in an Earth system model of intermediate complexity. We expanded the 560 

model to include a diatom and other phytoplankton functional groups and hence enable the marine silica cycle to 

be simulated. We not only tuned the model parameters for diatoms, but also re-tuned the most critical 

physiological parameters in the ecosystem model framework, identifying a parameter configuration that 

performed best towards observations of biogeochemical tracers and ecological variables.  

The EcoGEnIE 1.1 model successfully incorporated diatoms as a functional type, enabling dSi as a limiting 565 

resource. The competitive nature and success of diatoms in captured in the model as a prevalent group in our 

configured community (~ 20% of total biomass). With this new extension, there is a potential for further study 

regarding the ecological success of diatoms during future and past climatological perturbation and their role in 

the biological pump. For example, with these additions, this model could be utilised to explore the Cenozoic 

evolution of diatoms and their ongoing influence over the silicon cycle, long-term silica cycling (e.g. residence 570 

times) and their associated proxies (Conley et al., 2017; Tréguer et al., 2021). This study also acts as an example 

of the adaptability of the EcoGEnIE model, encouraging those looking to incorporate additional functional 

groups into the framework. 
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6 Code availability  575 

 

The code for the version of the ‘muffin’ release of the cGEnIE Earth system model used in this paper, is provided 

at https://www.seao2.info/cgenie/docs/muffin.pdf. Configuration files for the specific experiments presented in 

the paper can be found via the DOI: 10.5281/zenodo.10223295 (newest version). Details of the experiments, plus 

the command line needed to run each one, are given in the readme.txt file in that directory. All other configuration 580 

files and boundary conditions are provided as part of the code release. A manual detailing code installation, basic 

model configuration, tutorials covering various aspects of model configuration, experimental design, and output, 

plus the processing of results, can be found at https://www.seao2.info/cgenie/docs/muffin.pdf. 
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