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Abstract. Comprehensive assessment of climate datasets is important for communicating to stakeholders model projections

and associated uncertainties. Uncertainties can arise not only from assumptions and biases within the model but also from

external factors such as computational constraint and data processing. To understand sources of uncertainties in global variable-

resolution (VR) dynamical downscaling, we produced a regional climate dataset using the Model for Prediction Across Scales

dynamical core version 4.0 coupled to the Community Atmosphere Model version 5.4 (CAM-MPAS). This document provides5

technical details of the model configuration, simulations, computational requirements, post-processing, and data archive of the

experimental CAM-MPAS downscaling data.

The CAM-MPAS model is configured with VR meshes featuring higher resolutions over North America, as well as quasi-

uniform resolution meshes across the globe. The dataset includes multiple uniform- (240 and 120 km) and variable-resolution

(50-200, 25-100, and 12-46 km) simulations for both the present-day (1990-2010) and future (2080-2100) periods, closely10

following the protocol of the North American Coordinated Regional Climate Downscaling Experiment. A deviation from the

protocol is the pseudo-warming experiment for the future period, using the ocean boundary conditions produced by adding the

sea surface temperature and sea ice changes from the low resolution version of the Max Planck Institute Earth System Model

in the Coupled Model Intercomparison Project phase five to the present-day ocean state from a reanalysis product.

Some unique aspects of global VR models are evaluated to provide background knowledge to data users and to explore15

good practices for modelers who use VR models for regional downscaling. In the coarse-resolution domain, strong resolution-

sensitivity of the hydrological cycles exists over the tropics but does not appear to affect the mid-latitude circulations in the

Northern Hemisphere including the downscaling target of North America. The pseudo-warming experiment leads to similar

responses of large-scale circulations to the imposed radiative and boundary forcings in the CAM-MPAS and MPI-ESM-LR
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models, but their climatological states in the historical period differ over various regions including North America. Such dif-20

ferences are carried to the future period, suggesting the importance of the base state climatology. Within the refined domain,

precipitation statistics improve with higher resolutions, and such statistical inference is verified to be negligibly influenced by

horizontal remapping during post-processing. Limited (≈ 50% slower) throughput of the current code is found on a recent

many-core/wide-vector High Performance Computing system, which limits the lengths of the 12-46 km simulations and in-

directly affects sampling uncertainty. Our experience shows that global and technical aspects of VR downscaling framework25

require further investigations to reduce uncertainties for regional climate projection.

1 Introduction

With increasing frequencies and intensities of extreme events witnessed in the last decades worldwide, there is an increas-

ing need for high-resolution climate information to support risk assessment and climate adaptation and mitigation planning

(Gutowski Jr. et al., 2020). However, limited by computing resources and model structures, climate projections produced by30

global climate and earth system models, including those in the most recent Coupled Model Intercomparison Project Phase 6

(CMIP6) (Eyring et al., 2016), are mostly available at grid spacing of 100-150 km. These models do not adequately resolve

regional climate variability associated with forcing such as mesoscale surface heterogeneities and orography (Roberts et al.,

2018). A subset of global models participated in the High Resolution Model Intercomparison Project feature grid spacing be-

tween 25 and 50 km, but the high computational cost leads to smaller ensemble sizes, fewer types of experiments, and shorter35

simulation lengths than those for the models with standard grid spacing (Haarsma et al., 2016). To bridge the scale gap, diverse

statistical and dynamical approaches have been developed to downscale global climate simulations to higher resolutions (4-50

km grid spacing) for different regions around the world (e.g., Wilby and Dawson, 2013; Giorgi and Mearns, 1991; Giorgi and

Gutowski, 2015; Prein et al., 2017). These downscaling approaches have been compared to inform methodological develop-

ment and to provide uncertainty information for users of the downscaled climate data (e.g. Wood et al., 2004; Fowler et al.,40

2007; Trzaska and Schnarr, 2014; Smid and Costa, 2018). However, few attempts (e.g. Wilby et al., 2000) have been made

to compare different statistical and dynamical downscaling methods under the same experimental protocol to reduce factors

confounding interpretation of the results.

The effort described in this work was initiated in a project supported by the U.S. Department of Energy, “A Hierarchical

Evaluation Framework for Assessing Climate Simulations Relevant to the Energy-Water-Land Nexus (FACETS)”, which aims45

to systematically compare representative dynamical and statistical downscaling methods to evaluate and understand their rel-

ative credibility for projecting regional climate change. The project has been expanded to a larger project, “A Framework for

Improving Analysis and Modeling of Earth System and Intersectoral Dynamics at Regional Scales (HyperFACETS)”, with a

larger multi-institutional team (https://hyperfacets.ucdavis.edu/). Through both project stages, we produced a model evaluation

framework that features a set of structured, hierarchical experiments performed using different statistical and dynamical down-50

scaling methods and models, and a cascade of metrics informed by the different uses of regional climate information (e.g.,
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Bukovsky et al., 2017; Rhoades et al., 2018a, b; Pendergrass et al., 2020; Pryor et al., 2020; Pryor and Schoof, 2020; Coburn

and Pryor, 2021; Feng et al., 2021).

Dynamical downscaling usually refers to numerical simulations over a limited-area domain to achieve a higher resolution

than those of global climate models (e.g. Giorgi and Mearns, 1991; Giorgi, 2019). Outputs from a global model simulation55

are used to provide the boundary conditions. This one-way nesting approach does not allow interactions between the target

high-resolution domain and the rest of the globe, and needs to deal with various issues from the prescribed lateral boundary

conditions (Wang et al., 2004). Another dynamical downscaling approach is global variable-resolution (VR) models. A class of

VR models uses the so-called stretched grid that is transformed continuously and non-locally to achieve finer grid spacings over

a specified region while grid cells are "stretched" (coarsened) in other regions of the global domain, retaining the same number60

of grid columns (e.g. Fox-Rabinovitz et al., 2000; McGregor, 2013). Several models of this class were compared under the

Stretched Grid Model Intercomparison Project (Fox-Rabinovitz et al., 2006). The other class of VR models increases the grid

density locally over specified region(s) without a compensating reduction of grid resolution over other parts of the globe. Such

a regional refinement is achieved by unstructured grids whose cell distributions are determined to tile the surface of a sphere

nearly uniformly, instead of being tied to geographical structures such as latitude and longitude coordinates (Williamson, 2007;65

Staniforth and Thuburn, 2011; Ju et al., 2011). The regional downscaling dataset described in this study are produced by the

latter VR approach.

As a part of the structured hierarchical experiments, we have produced a regional climate dataset using a global variable res-

olution dynamical core called Model for Prediction Across Scales (MPAS) coupled with the Community Atmosphere Model

(CAM) physics suite. The CAM-MPAS model allows high-resolution regional simulations to be performed using regional70

refinement facilitated by unstructured grids, along with its non-hydrostatic dynamics, climate-oriented CAM physics param-

eterizations, and other Earth system component models available in the Community Earth System Model (CESM). For the

dataset presented here, the model is configured on VR meshes with regional refinement over North America and quasi-uniform

resolution (UR) meshes across the globe (Figs. 1, 3). The VR configurations allow fine-scale features to be better resolved

inside the refinement region, which interact seamlessly with the large-scale circulations simulated at coarser resolution outside75

the refined domain.

The dataset is designed to be compatible with the regional climate simulations produced for the North American CORDEX

program (Mearns et al., 2017) (NA-CORDEX) and additional simulations using the Advanced Research Weather Research

and Forecasting (WRF) Model and RegCM4 models conducted under the HyperFACETS project. Few studies have compared

limited-area and global VR dynamical downscaling approaches at the climate time scale (Hagos et al., 2013; Huang et al., 2016;80

Xu et al., 2018, 2021), making such comparisons an important element of the HyperFACETS project. For example, limited-area

models are applied to specific regions conditioned on the global model simulated large-scale circulation prescribed through

lateral boundary conditions. Their lateral boundary conditions are identical regardless of the resolution of the downscaling

grid. In contrast, global variable resolution models simulate both the regional and global climate in a single model. Unlike

limited-area models, winds flowing into the regionally refinement domain can vary with the resolutions of the coarse-resolution85

domains and the transition zones and potentially through the upscale effects from the high-resolution domain. As can be seen
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(d) Variable, 50-200 km (e)Variable, 25-100 km (f )Variable, 12-46 km

m s-1

(c) ERA-Interim, ~80 km(b) Uniform 120 km(a) Uniform 240 km

Figure 1. JJA-mean zonal wind at the 200 hPa level in each of the present-day (eval) CAM-MPAS simulations and ERA-Interim: (a) globally

uniform 240km grid, (b) uniform 120 km, (c) ERA-Interim, (d) variable-resolution grid with 50 km grid spacing over North America and

200 km in the coarse-resolution domain, (e) variable-resolutions from 100 km to 25 km, and (f) variable-resolutions from 46 km to 12 km.

In (d)-(f), gridcells at approximate boundaries between the coarse-resolution, transition, and refined domains are marked by red dots.

in Fig. 1, the general pattern of the large-scale winds is similar across simulations at different resolutions and in ERA-Interim

(Dee et al., 2011). However, the zonal wind pattern in the eastern Pacific near California shows notable sensitivity to resolution

(and bias against ERA-Interim), which could affect downwind regional hydrometeorology.

As a relatively new approach, the VR framework has not been widely used in coordinated downscaling experiments. There-90

fore potential users of the CAM-MPAS climate dataset are not expected to be familiar with the characteristics of the model

and the specificity regarding the model outputs. It is also not clear if one can apply an experimental protocol developed for

regional models straightforwardly to global VR models. Furthermore, the timing of our production simulations coincided with

the introduction of new, many-core architectures of the High Performance Computing (HPC) system, such as Cori Knights

Landing at the National Energy Research Scientific Computing Center (NERSC). Climate simulations of our CAM-MPAS95

code on such a system revealed challenges that are relevant to the wider community that conduct global and regional climate

simulations. Hence, the goal of this paper is to provide a reference for not only the users of the experimental CAM-MPAS

downscaled climate dataset but also the future users of the CESM2-MPAS and other global VR models for regional downscal-

ing. Specifically, we provide: a technical summary of the CAM-MPAS model (Sect. 2), details of the CAM-MPAS downscaling
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experiments (Sect. 3), a description of the post-processing of model outputs and archival (Sect. 4), and general characteristics100

of model simulations (Sect. 5).

2 Model description

Previous works have already introduced the CAM-MPAS framework (Rauscher et al., 2013; Sakaguchi et al., 2015; Zhao et al.,

2016), but in this section we reiterate the descriptions of the MPAS and CAM models and their coupling for the convenience

of readers and the completeness of this document. More details are available from the cited references.105

2.1 The Model for Prediction Across Scales (MPAS)

MPAS is a modeling framework developed to simulate geophysical fluid dynamics over a wide range of scales (Skamarock

et al., 2012; Ringler et al., 2013). Currently four models based on the MPAS framework exist: atmosphere, ocean, sea ice, and

land ice (The MPAS project, 2013). The atmosphere-version (MPAS-Atmosphere) solves the compressible, non-hydrostatic

momentum and mass-conservation equations coupled to a thermodynamic energy equation (Skamarock et al., 2012). The novel110

characteristic of the MPAS framework is a C-grid finite-volume scheme developed for a hexagonal unstructured grid called

Spherical Centroidal Voronoi Tesselations (SCVT) (Ringler et al., 2010), accompanied by a new scalar transport scheme by

Skamarock and Gassmann (2011). The SCVT mesh can be constructed to have either quasi-uniform grid cell sizes or variable

ones with smooth transitions between the coarse and fine resolution regions (Ju et al., 2011). The C-grid staggering provides

an advantage in resolving divergent flows important to mesoscale features, and the finite-volume formulation guarantees local115

conservative property for prognostic variables of the dynamical core (Skamarock et al., 2012). MPAS-Atmosphere is available

as a stand-alone global atmosphere model with its own suite of subgrid parameterizations (Duda et al., 2015), but here we

use the MPAS-Atmosphere numerical solver as the dynamical core coupled to the CAM physics parameterizations. Previous

studies using VR meshes demonstrated that the MPAS dynamical core is able to simulate atmospheric flow across coarse and

fine-resolution regions without unphysical signals (Park et al., 2013; Rauscher et al., 2013). This capability of regional mesh120

refinement is the main feature we aim to test in the context of dynamical downscaling for regional climate projections.

2.2 The Community Earth System Model version 2 (CESM2) and Community Atmosphere Model version 5.4

(CAM5.4)

The model code base used for our simulations is a beta version of CESM2 (CESM1.5), the same code used by Gettelman

et al. (2018), who focused on regional refinement capability of the spectral element dynamical core. The atmospheric com-125

ponent model CAM has multiple versions of physics parameterization package. We use the CAM version 5.4, which is an

interim version toward CAM version 6 (Bogenschutz et al., 2018). The CAM5.4 physics is the default option for CAM in

CESM1.5. The parameterization components in CAM5.4 are summarized in Table 1. Their characteristics are documented

in detail by Bogenschutz et al. (2018), and a variety of diagnostic plots are publicly available (Atmosphere Model Working

Group, 2015). A major difference between CAM5.4 and the previous version CAM5.0 is the prognostic mass and number con-130
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centrations of rain and snow in the new cloud microphysics scheme, MG2 (Gettelman and Morrison, 2015; Gettelman et al.,

2015). Prognostic concentrations of precipitating particles make the model more appropriate for high-resolution simulations by

removing assumptions necessary for a diagnostic approach (e.g., neglecting the advection of precipitating particles, Rhoades

et al. (2018b)). The prognostic aerosol scheme is also revised as the four-mode version of the Modal Aerosol Module (MAM4)

(Liu et al., 2016), but we only use the diagnostic aerosol scheme (Bacmeister et al., 2014) for the simulations documented in135

this paper. Specifically, the monthly-mean aerosol mass concentrations for the year 2000 are derived from a previous simulation

using CAM version 4 with the prognostic three-moment modal aerosol scheme (Liu et al., 2012) on a one-degree grid. Given

the prescribed aerosol mass concentrations, aerosol number concentrations are calculated by an empirical relationship between

the two concentrations, and passed to the cloud microphysics.

Table 1. Physics parameterizations in CAM5.4

Process Reference

Boundary layer Bretherton and Park (2009)

Cloud macrophysics Park et al. (2014)

Cloud microphysics Gettelman and Morrison (2015); Gettelman et al. (2015)

Deep convection Zhang and McFarlane (1995); Neale et al. (2008)

Shallow convection Park and Bretherton (2009)

Prescribed aerosol Kiehl et al. (2000); Bacmeister et al. (2014)

Radiative transfer Iacono et al. (2008)

Turbulent mountain stress Richter et al. (2010)

2.3 CAM-MPAS coupling140

An early effort to port the MPAS dynamical core to the CESM/CAM model started in 2011 under the project "Development of

Frameworks for Robust Regional Climate Modeling" (Leung et al., 2013). The hydrostatic solver of the pre-released version of

MPAS (Park et al., 2013) was coupled to CAM4 by the collaborative work among Los Alamos National Laboratory, Lawrence

Livermore National Laboratory, and the National Center for Atmospheric Research. This CAM-MPAS model was extensively

evaluated through a hierarchy of experiments (Hagos et al., 2013; Rauscher et al., 2013; Rauscher and Ringler, 2014; Sakaguchi145

et al., 2015, 2016; Zhao et al., 2016). Those studies demonstrated the ability of VR simulations to reproduce the uniform,

globally high-resolution simulations inside the refined domain in terms of the characteristics of atmospheric circulations as

well as the sensitivity of the physics parameterizations to horizontal resolution. In the idealized aquaplanet configuration with

the older CAM4 physics, the resolution sensitivity of moist physics leads to unphysical upscale effects (Hagos et al., 2013;

Rauscher et al., 2013), but these artifacts are mostly muted when an interactive land model is coupled, along with the presence150

of other forcing such as topography and land/ocean contrast (Sakaguchi et al., 2015). The non-hydrostatic version of the MPAS

dynamical core (the released version 2) was later coupled to CESM version 1.5 to understand the behavior of the CAM5

6



physics in a wide range of resolutions over seasonal or longer time scales (Zhao et al., 2016; Hagos et al., 2018). Hagos et al.

(2018) used this model with a convection-permitting VR mesh (32 km to 4km) to study the sensitivity of extreme precipitation

to several parameters in the CAM5 physics, demonstrating stable coupling between the non-hydrostatic MPAS dynamical core155

and the global model physics package CAM5 at kilometer-scale resolution. The CAM-MPAS model for the present work is

similar to the one used by Hagos et al. (2018), except that MPAS v2 is replaced by a more recent version 4. The same CAM-

MPAS version as used in this study has demonstrated robust performance in simulating the Asian monsoon system using

30-120 km VR mesh (Liang et al., 2021).

The CAM-MPAS coupling is illustrated in Fig. 2 along with the process-coupling and their sequence in the host model160

CESM1.5. The coupling between the non-hydrostatic MPAS and the main driver of CAM uses a Fortran interface and call-

ing sequence similar to the default finite-volume (FV) and other dynamical cores available in CAM (Neale et al., 2010).

With this coupling approach, the dynamical core can be switched from the default FV to MPAS by simply providing a flag

"CAM_DYCORE=mpas" to the CESM build script (env_build.xml), along with an appropriate name of the horizontal grid

(e.g., "mp120a" has been defined for the UR120 grid following CESM Software Engineering Group (2014)). The vertical grid165

in CAM-MPAS follows the height-based coordinate used by MPAS-Atmosphere (Klemp, 2011), but the number of layers (32)

and the height of the interface levels are configured to closely match those of the hybrid σ-p coordinate used by other CAM

dynamical cores.

The CESM coupler is responsible for time-step management and sequential coupling of component models (Fig. 2). When

CAM is called by the coupler, the CAM driver cycles the dynamics, physics parameterizatons, and communication with the170

coupler. When the dynamics is called by the CAM driver, the MPAS dynamical core receives tendencies of horizontal momen-

tum, temperature, and mixing ratios that are predicted by physics parameterizations and the other CESM component models,

and summed by the CAM driver prior to the communication with MPAS. MPAS cycles its time steps from the previous at-

mospheric state with the physics tendencies used as forcing terms. After MPAS completes its (sub) time steps, the updated

atmospheric and tracer states are passed to CAM through the interface, including hydrostatic pressure, pressure thickness of175

each grid box, and geopotential height. The last three variables are required by the CAM physics that operates on a vertical

column under hydrostatic balance, without the need to know that the vertical column is discretized in a height-based or hybrid

pressure-based coordinate. No vertical interpolation or extrapolation are performed in coupling CAM and MPAS. The CAM-

MPAS interface layer also calculates hydrostatic pressure velocity and performs other required conversions (e.g., convert the

prognostic winds normal to cell edges to conventional u and v winds at cell centers, and mixing ratios defined with dry air in180

MPAS to those with moist air in CAM). Note that the pressure vertical velocity ω passed from MPAS to the CAM driver is

diagnosed under the hydrostatic balance and is different from the non-hydrostatic vertical velocity prognostically simulated in

the MPAS dynamical core.

A second-order diffusion is added to the top three model layers to produce the so-called sponge-layers following other CAM

dynamical cores (Jablonowski and Williamson, 2011; Lauritzen et al., 2012, 2018). The model top level is located at about 45185

km above the sea level. This model top is higher than those typically used in MPAS-Atmosphere (≈ 30 km). On the other hand,

the number of vertical levels in CAM5.4 is smaller than the default vertical levels in the MPAS-Atmosphere (41 in version 4),
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resulting in a relatively coarse vertical resolution for a mesoscale model. But its vertical resolution is within the range used by

regional models participating in NA-CORDEX (18 to 58 levels across models).

Figure 2. Process-coupling sequence in the CAM-MPAS model in the AMIP configuration. The MPAS dynamical core receives the time

rate of change of zonal and meridional winds (u, v), atmospheric temperature (T), and water in vapor and condensed phases (qi, with i = 1,

2, 3, ... for water vapor, cloud liquid, cloud ice, etc.) and returns an updated atmospheric state in terms of u, v, T, qi, hydrostatic pressure

(Phyd), pressure velocity (ωhyd), etc., after integrating adiabatic dynamics. Also shown are the names of the source code files and directories

where the coupling operations are carried out. The shell-variable "$CESMroot" refers to the top-level directory of the CESM code. The

parameterizations shown in gray color were not active in our CAM-MPAS simulations.

This experimental version of CAM-MPAS is available from our private repository on Github (see the Code and data avail-190

ability section), but it is not an official release and does not offer the same technical support as other CAM versions. Some

model structural differences between CAM and MPAS, such as the vertical coordinate, require further work to improve physical
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consistency throughout the coupling processes. An on-going effort to port MPAS to CAM/CESM addresses those remaining

technical issues as part of the System for Integrated Modeling of the Atmosphere (SIMA) project (Gettelman et al., 2021;

Lauritzen and Truesdale, 2021; Huang et al., 2022).195

3 CAM-MPAS downscaling experiments

3.1 Model grid and parameters

Three VR grids (50-200km, 25-100km, and 12-46km) and two quasi-uniform resolution (UR) grids (240km and 120km) are

used for the CAM-MPAS downscaling experiment (Table. 2). Figure 3 illustrates the UR and VR grids and the distributions

of grid cell spacing in the three VR grids. The five CAM-MPAS model resolutions are named UR240, UR120, VR50-200,200

VR25-100, and VR12-46. UR240 has a similar grid spacing as MPI-ESM-LR the Max-Planck-Institute Earth System Model

low resolution version (MPI-ESM-LR) (Giorgetta et al., 2013), whose ocean and sea ice outputs are used as boundary forcing

for the future experiment (see below). The UR120 grid has a comparable resolution to those in the majority of CMIP5 and

CMIP6 models. Although their grid spacing does not exactly match those of the coarse-resolution domains on the VR grids

nor the MPI-ESM-LR model, these two UR meshes are readily available from the MPAS website and serve as a reference205

for the VR simulations. The two VR grids, VR50-200 and VR25-100, are created for this project because similar VR grids

were not available from the MPAS mesh archive when the project started. The two meshes are designed to have rectangular-

shaped high-resolution domain over CONUS (Fig. 3), resembling the regional model domain for NA-CORDEX (CORDEX,

2015). The 12-46km VR mesh is obtained from the MPAS mesh archive and has a circular, and slightly smaller (by ≈30%)

high-resolution domain than the other two VR grids, but still covers the most of North America (Fig. 1f).210

Table 2. List of simulations. The simulation period does not include 1-2 spinup years. Regional grids are used for post-processed data and

defined in NA-CORDEX, except for NAM-88i and NAM-176i, which are defined in a similar manner to the other NA-CORDEX grids.

No. Name Model grid Regional grid (grid spacing) simulation period

1 UR240-eval Quasi-uniform 240km NAM-176i (2.0°) 1990-2010

2 UR120-eval Quasi-uniform 120km NAM-88i (1.0°) 1990-2010

3 VR50-200-eval Variable-resolution 50-200km NAM-44i (0.50°) 1990-2010

4 VR25-100-eval Variable-resolution 25-100km NAM-22i (0.25°) 1990-2010

5 VR12-46-eval Variable-resolution 12-46km NAM-11i (0.125°) 2001-2010

6 UR240-rcp85 Quasi-uniform 240km NAM-176i (2.0°) 2080-2100

7 UR120-rcp85 Quasi-uniform 120km NAM-88i (1.0°) 2080-2100

8 VR50-200-rcp85 Variable-resolution 50-200km NAM-44i (0.50°) 2080-2100

9 VR25-100-rcp85 Variable-resolution 25-100km NAM-22i (0.25°) 2080-2100

10 VR12-46-rcp85 Variable-resolution 12-46km NAM-11i (0.125°) 2091-2100
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(a) Uniform resolution
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Figure 3. Illustration of the MPAS meshes used for this study: (a) uniform resolution (240km) and (b) variable resolution (50-200km). In (a)

the black line represents the approximate domain for the NA-CORDEX experiment, and the red line represents the area covered by the NAM

grids for post-processed CAM-MPAS data. In (b) approximate boundaries between the 50-km domain and transition zone, and the transition

zone and 200-km domain are marked by red markers. The three histograms show the numbers of grid columns binned by grid cell spacing

(km) for (c) VR50-200, (d) VR25-100, and (e) VR12-46.
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As the default parameters in the CAM5.4 physics are tuned for the prognostic MAM4 aerosol model, we re-tuned CAM5.4

with the prescribed aerosol and the CAM-default dynamical core, Finite-Volume (FV) scheme, on its nominal one-degree

global grid. No attempt has been made to tune model parameters differently for the MPAS dynamical core and at each reso-

lution. While we are aware that resolution-dependent tuning and/or scale-aware physics schemes are necessary to fully take

advantage of increased resolution (Bacmeister et al., 2014; Xie et al., 2018), tuning each resolution for both global and regional215

climate requires extensive effort (e.g. Hourdin et al., 2017) and is left for future work. We also note that resolution-dependent

tuning is not usually done for limited-area models participated in NA-CORDEX and HyperFACETS, as well as other coor-

dinated projects that cover multiple model resolutions (e.g. Haarsma et al., 2016). The following parameters, however, are

changed for each resolution: timestep lengths, numerical diffusion coefficients, and the convective time scale used in the

Zhang-McFarlane deep convection scheme (Table. 3). In VR simulations, the dynamics timestep is constrained by the smallest220

grid spacing in the refined region (4x). The dynamics timesteps are initially set as4t= 6×4x and further adjusted to avoid

numerical instabilities that tend to occur within the stratospheric jet over the Andes. The physics timestep is scaled from the

default 1800 s for ≈1° grid spacing in the same ratio as grid spacing changes. The convection time scale is then adjusted to

scale with the physics timestep in order to reduce sensitivities to horizontal resolution and timestep (Mishra and Srinivasan,

2010; Williamson, 2013; Gross et al., 2018).225

Table 3. Resolution-dependent parameters. The default physics timestep and convective time scale is 1800 s and 3600 s, respectively.

Model grid CAM timestep (s) MPAS timestep (s) Convective time scale (s)

UR240 1800 900 3600

UR120 1800 450 3600

VR50-200 900 150 1800

VR25-100 600 85 1200

VR12-46 300 60 600

3.2 Model configurations

For all of our simulations, we use a predefined CESM component set "FAMIPC5" that automatically configures CESM and its

input data (e.g., trace gas concentrations) following the protocol of the Atmosphere Model Intercomparison Project (AMIP)

(Gates, 1992). In this configuration, the atmosphere and land models are active while sea surface temperature (SST) and sea-ice

cover fraction (SIC) are prescribed. The River Transfer Model (RTM) is also active to collect terrestrial runoff into stream flow230

(Oleson et al., 2010), but serves only for a diagnostic propose because the ocean model is not active. The so-called "data ocean"

model reads, interpolates in time and space, and passes the input SST to the CESM coupler, which calculates fluxes between

the atmosphere and ocean (CESM Software Engineering Group, 2014). The Community Ice Code version 4 (CICE4) is run

as a partially prognostic model by reading prescribed sea ice coverage and atmospheric forcing from the coupler to calculate

ice-ocean and ice-atmosphere fluxes (Hunke and Lipscomb, 2010).235
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The land component is the Community Land Model version 4 (CLM4) (Lawrence et al., 2011), which simulates vertical

exchanges of energy, water, and tracers from the subsurface soil to the atmospheric surface layer. CLM4 takes a hierarchy-

tiling approach to represent unresolved surface heterogeneities, distinguishing physical characteristics among different surface

land covers (e.g., vegetated, wetland, lake, urban), soil texture, and vegetation types (Oleson et al., 2010). While CLM4 is able

to simulate the carbon and nitrogen cycles and transient land cover types, these biogeochemical functionalities are turned off.240

Instead, our simulations use a prescribed vegetation state (leaf area index, stem area index, fractional cover, and vegetation

height) that roughly represents the conditions around year 2000 based on remotely sensed products (Lawrence et al., 2011).

The land cover types are also prescribed as the conditions around the year 2000, and fixed throughout the simulations in both

the eval and rcp85 experiments. These land surface settings are again consistent with the models that participated in NA-

CORDEX. Note that the spatial resolution of the original data to derive CLM’s land surface characteristics varies from 1 km245

to 1.0°, with 0.5° being considered as the base resolution (Oleson et al., 2010). These input data are available from the CESM

data repository (CESM Software Engineering Group, 2014).

The process coupling in CESM is already illustrated in the previous section (section 2.3, Fig. 2). In our experiment, the CLM4

land model, data ocean, and CICE4 sea-ice model are configured to run on the MPAS horizontal grid. This way, the state and

flux data between different model components do not need to be horizontally interpolated during the model integration. The250

RTM model in a diagnostic mode runs on it’s own 0.5° grid. The data ocean and RTM communicate with the coupler once and

eight times per day, respectively, while CAM, CLM4 and CICE 4 run and communicate through the coupler at the same time

step.

3.3 Model experiments and input data

The experiment is composed of decadal simulations for the present-day and the end of the twenty-first century under the Rep-255

resentative Concentration Pathway (RCP) 8.5, featuring a business-as-usual scenario leading to a radiative forcing of 8.5 W

m−2 by the end of this century. The two simulations are named following the CORDEX project protocol: "eval" denotes the

historical simulations using reanalysis data for boundary conditions for its principal role of model evaluation against observa-

tions. "rcp85" denotes the future simulations in which the external forcings follow the RCP8.5 scenario and the ocean/sea ice

boundary conditions are prescribed by adding the GCM-simulated climate change signals to the historical observations, the so-260

called pseudo-global warming experiment. We selected the Max-Planck-Institute Earth System Model low resolution version

(MPI-ESM-LR) MPI-ESM-LR model from the eight GCMs considered in NA-CORDEX (McGinnis and Mearns, 2021) based

on its good performance of the warm-season precipitation over the western and central U.S. (Chang et al., 2015; Sakaguchi

et al., 2021).

All the input data required to reproduce our simulations are publicly available (see section 7, Code and data availability). The265

SST and SIC for the eval run are taken from the ERA-Interim reanalysis (Dee et al., 2011). The 6-hourly ERA-Interim SST and

SIC data are averaged to daily values and provided to the model as input, then bilinearly interpolated to the MPAS grids by the

CESM coupler during model integration. Other model input data include surface topography, initial conditions, and remapping

weights between different input data and model grids (Appendix A). All the surface-related input data are remapped to each
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MPAS grid prior to the simulations following the CESM1.2 and CLM4 user guide (CESM Software Engineering Group, 2014;270

Kluzek, 2010). A set of high-level scripts is now available to help prepare input data for the FAMIPC5 and other similar CESM

experiments (Zarzycki, 2018). Topography input is generated by the stand-alone MPAS-Atmosphere code (init_atmosphere,

Duda et al. (2015)), which uses the GTOPO global 30s topography data (Gesch and Larson, 1996) as the input. The subgrid

topography information required by the gravity wave drag and turbulent mountain stress parameterizations in CAM5.4 are

produced by the NCAR-Topo tool by Lauritzen et al. (2015).275

As stated above, the future simulation is conducted using the pseudo-global warming approach (e.g. Haarsma et al., 2016)

based on the climate-change signal simulated by the MPI-ESM-LR model from the CMIP5 archive. Specifically, annual cycles

of the daily climatological SST and SIC are obtained from the historical and RCP8.5 simulations of the MPI-ESM-LR model

(ensemble member id r1i1p1), and differences between the two periods are calculated for each day of the year and each grid

point. This daily climatological difference (4SST and4SIC) is then added to the SST and SIC from the ERA-Interim data, and280

prescribed to the model. Other external forcings of solar irradiance, greenhouse gas, ozone and other tracer gas concentrations

are the same as the CESM1.2 RCP8.5 simulation conducted for CMIP5, except for the prescribed aerosol concentrations and

land cover characteristics being kept the same as the eval simulation.

The annual average4SST and4SIC are shown in Fig. 4e, f. While the SST and SIC distributions in the present-day period

are reasonably simulated by MPI-ESM-LR, regional biases exist over the Southern Ocean, North Atlantic, and off the west285

coasts of North and South America and South Africa (Fig. 4a–d). Because 4SST and 4SIC are added onto the climatology

from ERA-Interim, the future SST and SIC forcings given to CAM-MPAS are different from those in the MPI-ESM-LR model

over the biased regions. In Sect. 5.2.2 and Appendix E, we briefly compare the CAM-MPAS historical climate and its response

to the external forcings with those of the MPI-ESM-LR model. It is shown that, while the base-state climate differs between

the two models, their change into the future are rather similar under the same4SST and4SIC. Also of note is that the SST or290

near-surface air temperature (TAS) biases and their changes in the MPI-ESM-LR simulations differ from those of fully coupled

CESM simulations with CAM5 or CAM6 (Meehl et al., 2012, 2013; Danabasoglu et al., 2020). Specifically, our CAM-MPAS

downscaling data describe the response of the atmosphere to the ocean conditions derived from the external data (as with the

case for regional model simulations in NA-CORDEX), which may be very different from the climate evolution simulated by

CAM-MPAS being coupled to an active ocean model. Because CAM-MPAS and other VR atmosphere models are typically a295

part of global coupled climate models, it is possible to use ocean boundary conditions derived from fully coupled simulations

of the host model, or to run a fully coupled VR simulation, which provide climate-change signals that have co-evolved with

the same atmosphere model.

Limited area models participating in NA-CORDEX include another historical simulation called "hist", in which the lateral

and bottom boundary conditions are provided by the driving global models. Also the rcp85 simulations in NA-CORDEX use300

GCM outputs directly for boundary conditions ("direct downscaling") in contrast to adding the climate-change signals to the

observed present-day boundary conditions. We do not conduct the "hist" experiment with CAM-MPAS because our principal

goal is to assess the credibility of dynamically downscaled climate by the CAM-MPAS atmosphere model in comparison to

observational and other downscaled data, which at a minimum requires 1) the "eval" run with the prescribed ocean boundary
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Figure 4. Climatological mean sea surface temperature (SST) and sea ice cover fraction (SIC) from the MPI-ESM-LR model: (a) annual-

mean SST, (b) annual-mean SIC, (c) SST bias against ERA-Interim , (d) SIC bias, (e) SST change from the historical to RCP8.5 period, and

(f) SIC change over the same time periods. The historical and RCP8.5 averages are calculated over the 1986-2005 and 2080-2099 periods,

respectively.

conditions from observations, isolating the CAM-MPAS model’s bias without the influence of the GCM’s SST and sea ice305

biases, and 2) model response to external forcings associated with global warming, which can be reasonably assessed by the

pseudo-global warming experiment (see the general agreement in the large-scale climate response between the CAM-MPAS

and MPI-ESM-LR models in Sect. 5.2.2). An advantage of the global VR simulation in pseudo-global warming approach is

that, unlike adding the mean atmospheric climate change signals to the lateral boundary conditions for regional models, a

global VR simulation does include variability and high-order atmospheric responses to the warming. Because our dataset does310
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not have the "hist" experiment, we will use the terms "eval", "historical", and "present-day" interchangeably to refer to the eval

simulations.

The atmospheric initial condition for the eval experiment is taken from the ERA-Interim data on 1989-01-01_00 UTC for all

simulations except for the VR12-46 simulation that used 2000-01-01_00 UTC data. The land initial condition is taken from the

year 2000-01-01 from a 0.5° fully coupled CCSM4 simulation for the historical period (CESM, 2016). The CLM4 land state315

on the 0.5° grid is remapped to the MPAS grids following Kluzek (2010). Starting from these initial conditions, the model is

run for one year to spin up the eval simulations. For the future rcp8.5 experiments, the initial condition for each resolution is

taken from the 2011-01-01 state of the corresponding eval simulation, followed by 2 years of spin-up simulations. We found

that these spinup lengths are sufficient for the CONUS domain, but not necessarily adequate in the deep soil layer for the global

domain, particularly in high latitudes (will be discussed in Sect. 5.2).320

4 Downscaling Dataset

4.1 Post-processing

To facilitate comparison with other regional models in the NA-CORDEX model archive, the model output on MPAS’s unstruc-

tured mesh is remapped to a standard lat/lon regional grid defined by the NA-CORDEX project (the so-called NAM grid; Fig.

3 and Table 2). Variable names and units used in CAM/CESM are converted to those of Climate and Forecast (CF) metadata325

conventions (version 1.6) that are used by NA-CORDEX. Three-dimensional atmospheric variables defined on the terrain-

following model coordinate are vertically interpolated to the NA-CORDEX requested pressure levels (200, 500, and 850 hPa).

The following describes how such post-processing was performed.

We mainly used the Earth System Modeling Framework (ESMF) library (Balaji et al., 2018) through the NCAR Command

Language (NCL) (UCAR/NCAR/CISL/TDD, 2017a) for regridding MPAS output. The ESMF library provides several remap-330

ping methods, among which the first-order conserve method is used for extensive variables and fluxes, and the patch recovery

method is used for all other variables. For variables required at a specified pressure level, we first linearly interpolate from the

model height level to the pressure level, followed by horizontal remapping. The order of the vertical vs. horizontal interpola-

tion is not expected to be important for the accuracy of subsequent analyses (Trenberth, 1995). Note that the three pressure

levels available in the post-processed archive are not sufficient to close budget equations of vertically integrated quantities such335

as moisture and energy (B. Harrop, unpublished result). For moisture budget analyses, data users are encouraged to use the

vertically integrated moisture fluxes and water vapor path available in the daily variables (Appendix C2). For other variables,

it is possible to retrieve them at more pressure levels from the monthly or six-hourly raw model outputs (Appendix B).

Missing values exist in some variables in the raw model output on the MPAS grids, e.g., soil moisture in the grid points

where 100% of its area is covered by ocean/lake/glacier. The locations of such missing values do not change with time,340

and the corresponding grid points are masked when generating regridding weights. Time-varying missing values arise during

vertical interpolation to a pressure level over the areas where surface topography crosses the target pressure level. We followed

the guidance provided by the NCL website to regrid such time-varying missing values (UCAR/NCAR/CISL/TDD, 2017b).
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Specifically, we first remap a binary field defined on the source MPAS grid in which all values are one where the vertically

interpolated pressure-level variable is missing, and zero everywhere else. By remapping such a field from the original MPAS345

grid to the destination grid, we can identify by non-zero values which destination grid points are affected by the missing values

on the original grid, and the remapped pressure-level variables in these destination grid boxes are set missing. This rather

cumbersome procedure can be replaced by a remapping utility recently enhanced in the NetCDF Operator (NCO) (Zender,

2017).

Table 4. Mean (mm d−1), variance (mm2 d−2), kurtosis, and selected percentiles (mm d−1) of daily precipitation sampled from the central-

eastern United States (30-47 °N, 85-105°W) on the original and remapped grids with grid spacings similar to the original. "XXX to YYY" in

the row header refers to results on the remapped grid, e.g., "VR25-100 to NAM-22i" means that the statistics are calculated on the NAM-22i

grid to which precipitation fields are remapped from the original mpas grid. The seventh and last rows show the results after remapping twice

whereby precipitation fields are remapped from the VR25-100 (or WRF 25 km) grid to the NAM-22i grid, and then remapped back to the

original VR25-100 (or WRF 25k m) grid. The first-order conserve remapping method is used for all the results. The analysis domain covered

in the WRF output on the curvilinear grid is slightly smaller than the domain used for MPAS, hence the disagreement in statistics between

these two model groups. The statistics are based on the years 2001-2005, except for the fifth and sixth rows where data from 1991-1995 and

1996-2000 periods are used, respectively.

Model, grid mean variance kurtosis 95th 99th 99.9th 99.99th

VR50-200 original grid 2.02 30.35 65.71 10.19 26.87 60.17 97.30

VR50-200 remapped to NAM-44i 2.00 28.04 57.34 10.08 26.17 56.43 89.37

VR25-100 original grid 2.10 32.37 57.00 10.81 28.27 60.09 95.70

VR25-100 remapped to NAM-22i 2.09 29.85 53.17 10.74 27.78 58.45 92.20

VR25-100 to NAM-22i, 1991-1995 2.03 28.75 75.26 10.43 26.50 58.75 97.51

VR25-100 to NAM-22i, 1996-2000 2.12 31.39 55.35 10.83 28.77 60.73 95.51

VR25-100 to NAM-22i back to original 2.10 29.40 51.16 10.78 27.70 57.84 90.47

VR12-46 original grid 2.19 35.09 65.92 11.26 28.59 63.60 106.43

VR12-46 remapped to NAM-11i 2.18 34.38 64.72 11.20 28.30 62.76 104.75

UR120 original grid 2.06 34.10 74.48 9.91 28.91 65.73 103.57

WRF 25km original grid 2.81 52.05 49.60 15.67 35.12 69.07 116.62

WRF 25km remapped to NAM-22i 2.81 48.74 45.07 15.32 34.15 66.24 109.88

WRF 25km to NAM-22i back to original 2.81 48.64 42.89 15.41 34.08 65.81 108.32

NA-CORDEX documents minor artifacts due to interpolation by the patch recovery method (e.g., small negative values for350

non-negative variables such as relative humidity) (Mearns et al., 2017). The influence of horizontal regridding, or interpolation,

on the statistics has also been noted by previous studies (Chen and Knutson, 2008; Diaconescu et al., 2015). To understand the

effect of regridding in our post-processing, Table Fig. 5 compares selected statistics calculated on the original and remapped

daily precipitation using different remapping methods: bilinear, patch recovery, first-order conserve, and second-order conserve
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Raw grid Bilinear Patch Conserve
1st order

Conserve
2nd order

Raw grid Bilinear Patch Conserve
1st order

Conserve
2nd order

(a) Global mean daily precipitation, UR120

(b) Standard deviations of daily precipitation across the global grid , UR120

(c) Histogram of daily precipitation over CONUS, VR25-100

(d) Histogram of daily precipitation over CONUS, WRF 25km

Figure 5. Comparison of regridded daily precipitation using four different methods: (a) global annual average of precipitation in UR120 and

(b) standard deviations of precipitation across the global grid in UR120, (c) daily rain rate amount distributions over CONUS calculated on

the original MPAS grid in VR25-100 (dark blue line), on the remapped (1st order conserve) latitude-longitude NAM22 grid in VR25-100

(light blue circles), and on the original MPAS grid in UR120 (gray line), and (d) same as (c) but calculated on the original WRF grid in the

NA-CORDEX WRF-25km simulation (dark blue), on the remapped NAM22 grid in the WRF-25km simulation, and the UR120 histogram as

in (c) for comparison. The statistics are based on a 10-year period from 1990 to 1999, and the error bars in (a) and (b) shows 95 % confidence

interval based on the year-to-year variance. The distributions of rain rate amount is calculated following Pendergrass and Hartmann (2014),

using the minimum rain rate of 0.029 mm/day and a 7 % spacing.

available from the ESMF library (Balaji et al., 2018). The regridding effect on the (spatial) mean is negligibly small using any355

of the regridding methods. As shown in Fig. 5a, the global annual mean precipitation (3.004 mm d−1) is nearly identical (to

the accuracy of 10−3 mm d−1) for the original and the regular latitude-longitude 1° grid after remapping.

The variance loss due to remapping is typically ≈ 6-8% for daily precipitation. The magnitude of variance loss depends on

which variable is remapped — a variable with a smoother spatial structure than precipitation (e.g., atmospheric temperature)

is less affected by regridding. At the global scale, ≈ 6-8% loss of variance can be larger than year-to-year sampling variability,360

as illustrated in Fig. 5b. The second-order conserve method retains the spatial variance slightly better than the other methods.
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At regional scales, sampling uncertainty from different time periods (here each sample is five years long) can be as large as

the smoothing effect. This is illustrated in Table 4 (from the third to sixth rows) based on the statistics of daily precipitation

in the CONUS sub-domain east of the Rockies, calculated on the original VR25-100 grid and conservatively remapped to the

NAM-22i grid. We avoid the Rockies and other mountainous regions where year-to-year variability is so large that our sample365

size is not long enough to reliably estimate spatial variances. The third and fourth rows present the statistics on these two grids

from the years 2001-2005, while the fifth and sixth rows are from the 1991-1995 and 1996-2000 time periods, respectively,

on the NAM-22i grid. The five-year average of spatial variance is 32.37 mm d−1 on the original grid for 2001-2005, which is

reduced to 29.85 mm d−1 after regridding. The spatial variance from the other 5-year period can differ from the variance from

2001-2005 by as much as the regridding loss. Similar magnitudes of smoothing effect and sampling uncertainty are also found370

in kurtosis and extreme values represented by the 95th to 99.99th percentiles. These differences are not visible on the daily

precipitation histograms, calculated on the original VR25-100 grid, the remapped NAM-22i grid, and the UR120 output on its

raw MPAS grid, for the same CONUS sub-domain (Fig. 5c). The two histograms of VR25-100 are visually identical, and the

difference from the UR120 precipitation is clearly distinguishable.

Two other points notable in Table 4 are: 1) the smoothing effect becomes weaker with finer grid resolutions based on the three375

VR resolutions, and 2) successive remapping back from the regional NAM-22i to the original grid (the seventh row) leads to a

further loss of the variance and other moments but to a lesser degree compared to the first remapping. Similar smoothing effects

from the first and second remapping is observed in the outputs from the WRF model on a 25-km grid from the NA-CORDEX

archive. Despite the fact that WRF uses a regular latitude-longitude grid that is similar to the NAM-22i grid, regridding effects

on the selected statistics resemble those on the CAM-MPAS outputs. For example, regridding VR25-100 outputs loses ≈ 8 %380

of the daily precipitation variance by the first remapping, while the 25 km WRF simulation loses 6 %. The histograms of daily

precipitation in the WRF 25km simulation are shown in Fig. 5d, again confirming that the histograms are not visually affected

by regridding. Given such a priori knowledge of the regridding effect and sampling uncertainty at regional scales, we do not

expect that the remapping effect would seriously affect statistical inference of regional climate metrics.

4.2 Data Repositories385

Post-processed monthly and daily variables in the "essential" and "high priority" list of the NA-CORDEX archive (Mearns

et al., 2017) are accessible from the Pacific Northwest National Laboratory DataHub. All the variables and temporal frequencies

are available from the NERSC High Performance Storage System (HPSS), made accessible through web browsers by the

NERSC Science Gateway Service (see the Code and data availability section). All variables requested from the experiment

protocol are two-dimensional at a single level. Appendix C lists the post-processed variables.390

File names, attributes, and coordinates of the reported variables and their file specification follow the CORDEX archive

design (Christensen et al., 2014) and NA-CORDEX data description (Mearns et al., 2017). The file name is composed of the

following elements:

[variable name].[scenario].[driver].[model name].[frequency].[grid].[bias correction].[start month]-[end month].[version].nc.

In the CAM-MPAS dataset, the scenario is either "eval" for the historical period or "rcp85" for the pseudo-warming future395
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simulation. The driver is "ERA-Int" for the historical period and "ERA-Int-MPI-ESM-LR" for the rcp85 case. Post-processing

of the current CAM-MPAS simulations does not involve any bias corrections, hence it is labeled as "raw". The major version

refers to different production simulations and the minor version refers to changes/corrections in post-processing stage. The

publicly available CAM-MPAS outputs are either "v3" or "v3.1"; the major version is three because it was necessary to re-

run simulations twice due to major changes in model configurations, and the minor revision involves a different treatment of400

missing values arising from vertical interpolation to a pressure level (see Sect. 4.1). With the other straightforward file name

elements, an example file name for a daily precipitation data in the historical run of CAM-MPAS VR50-200 reads as:

pr.eval.ERA-Int.cam54-mpas4.day.NAM-44i.raw.198901-201012.v3.nc

and in the future pseudo-warming:

pr.rcp85.ERA-Int-MPI-ESM-LR.cam54-mpas4.day.NAM-44i.raw.207901-210012.v3.nc.405

Raw CAM-MPAS outputs on the global MPAS grid (i.e., not remapped to a regional latitude-longitude grid) are also available

from the NERSC HPSS space. Appendix B provides more information about the MPAS unstructured mesh, links to the archive

directory, and other resources to help analyze the raw MPAS data. The NERSC data archive also contains example scripts and

variables necessary to process model variables on the MPAS grid (e.g.,latitude and longitude arrays).

5 Simulations410

5.1 Computational aspects

In this section, we discuss some computational aspects of our simulations because one of the motivations to use a global VR

framework is its computational advantage compared to a global high-resolution simulation. On the other hand, global VR

simulations are expected to be more expensive than limited-area model simulations, if not considering the cost for the host

GCM simulations that provide boundary conditions. For example, the VR grids used in this study have 1.1 to 2.6 times more415

grid columns than the limited-area grids used by the RegCM4 and WRF models in the NA-CORDEX and HyperFACETS

archives (Tables 5 and F2). Here we do not compare simulation costs of CAM-MPAS VR configurations against regional

models, but focus on how the cost of CAM-MPAS simulations differ between the UR and VR grids and between the lower and

higher resolutions.

All of our simulations were run at NERSC. The following result is obtained from the production simulations and not a420

systematic scaling analysis of the CAM-MPAS code nor NERSC systems. The system configurations (e.g., number of nodes)

of our production simulations are not only based on good throughput but also on simulation cost as well as expected queue

wait time (Fig. D1), which often accounts for the majority of the total production time (e.g., for VR25-100, the average queue

wait time is approximately three times the actual computing time). All simulations used only the distributed-memory Message

Passing Interface (MPI) parallelism, i.e., shared-memory parallelism (OpenMP) is not used. The main computing system at425

NERSC switched from Edison to Cori when the production simulations of the CAM-MPAS model were starting (NERSC,
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2021). The newer system Cori is partitioned into two sub-systems, Cori-Haswell (HW) and Cori-Knights Landing (KNL). As

discussed below, the CESM-CAM-MPAS code showed large differences in performance on KNL and other systems, posing

a significant impact on our production cost. Interested readers are referred to Appendix D for further details of our run-time

configurations and the characteristics of the NERSC systems.430

Three simulations that are not part of the CAM-MPAS downscaling dataset are also included in the following as references:

1) the default FV dynamical core on the nominal 1° grid ("FV 1°"), 2) the same model configuration as UR120 but using the

newer version of the CAM-MPAS model that will be released as an official option of CESM2 ("UR120-new"), and 3) CAM-

MPAS on a quasi-uniform 30km grid ("UR30"). These three simulations were run for other projects, but with a similar set

of file outputs (monthly, daily, 6-hourly, 3-hourly, and hourly outputs) for more than five years. All simulations use the same435

CAM5.4 physics with prescribed aerosol.

Table 5. Simulation throughput and cost. The simulation cost is based on so-called "NERSC hour" (= number of nodes × number of hours

× machine-dependent charge factor × queue priority factor), assuming the "regular" queue, and shown in the units of 103 NERSC hours

per simulated years (NERSC hr sim.yr−1). Throughput (sim.yr day−1) is an average of at least 60 jobs with the standard deviations shown

in parentheses. Ncalc is the number of time steps per day over all grid boxes ×10−7. Most of the samples are production runs, except for

UR120-new, FV 1°, and UR30, which are not the part of the dataset described in this paper but shown as references.

Model grid Columns Ncalc System MPI tasks Nodes Col./task Throughput Cost

UR240 10242 4.7 Edison 120 5 85 11.9 (0.26) 0.6

UR240 10242 4.7 KNL 120 2 85 2.8 (0.12) 1.4

UR120 40962 31.5 Edison 384 16 107 5.5 (0.20) 4.5

UR120 40962 31.5 KNL 640 10 64 1.9 (0.08) 10.1

UR120-new 40962 31.5 KNL 640 10 64 3.5 (0.27) 5.5

FV 1° 55296 25.5 KNL 640 10 86 2.1 (0.06) 9.1

VR50-200 34306 73.8 Edison 240 10 143 2.3 (0.16) 6.7

VR50-200 34306 73.8 HW 256 8 134 2.3 (0.09) 11.7

VR50-200 34306 73.8 KNL 1024 16 34 1.6 (0.06) 19.4

VR25-100 137218 509.6 Edison 960 40 143 1.4 (0.10) 43.9

VR25-100 137218 509.6 KNL 2560 40 54 0.7 (0.05) 109.7

VR12-46 655362 3623.9 Edison 4320 180 152 0.8 (0.02) 345.6

VR12-46 655362 3623.9 KNL 5120 80 128 0.2 (0.02) 713.0

VR12-46 655362 3623.9 KNL 6144 96 107 0.3 (0.02) 697.3

UR30 655362 1409.3 KNL 6400 100 102 0.4 (0.02) 442.1

Figure 6a visualizes the simulation costs vs. total MPI tasks used, as often used in cost scaling studies. Table 5 lists the

numerical values used in the figure. Although scatters in the data from different computing systems are notable, there is a clear

trend to which we can fit a curve. The blue line represents a power function (y = axb) fitted to the simulation costs in the
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log-log space. The exponent b (= the slope of a straight line on the log-log plot) is 1.54 with a 95% confidence interval of 0.50,440

exhibiting a weak but non-linear increase. The non-linear increase is expected because linearly increasing cost is only possible

for an idealized case, also shown in the figure. The green line represents an ideal situation that the parallel part of the code

speeds up linearly with additional resources (an ideal weak scaling, eqn. 5.14 in Hager and Wellein (2011)), whose cost thus

increases linearly with the number of MPI ranks (slope of 1). The orange line of a constant cost applies only to the case where

the size of the problem (e.g., number of grid columns) stays the same so that using more resources shortens the simulation445

time. This is an ideal "strong scaling" and not applicable to the cost scaling for different resolutions over a fixed global domain.

It is obvious from this comparison that larger resource use for higher resolutions on a fixed domain size, such as the global

domain, always increases the computing cost non-linearly.

There are several reasons for the non-linear increase of the simulation cost against resources used, such as communication

and load imbalance (Hager and Wellein, 2011; Heinzeller et al., 2016). For estimating the simulation cost of a given MPAS grid,450

we found that it is simpler to use the number of calculations (physics and dynamics timesteps) per simulated day across all the

grid boxes in the global domain; Ncalc = (number of grid columns) × (number of vertical levels) × (number of timesteps per

day). Plotting simulation costs as a function of Ncalc (Fig. 6b), the fitted curve exhibits a slope of approximately one. Looking

at Ncalc as a function of the number of grid columns, it appears to be separated into two groups of VRs and URs, indicating

the timestep constraint from the high-resolution domains in VRs (Fig. 6c). The least-square fitted power functions have the455

exponents of 1.45 for both VR meshes and UR meshes. This weak non-linearity presumably comes from the dependence of

timestep length on grid spacing, which then becomes an additional implicit dependence on the numbers of grid columns.

As a specific example of VR vs. UR comparison, we take VR25-100, UR30, and UR120 because the latter two URs have

comparable grid spacings to the high- and low-resolution regions of the VR25-100 grid. We use Ncalc of the simulations

conducted on KNL to gauge the computational advantage of the VR25-100 against UR30, a uniform high-resolution simulation,460

as well as the extra cost added by the regional refinement to a uniform low-resolution simulation, UR120. The actual values of

Ncalc for these three resolutions are shown in the third column of Table. 5, which suggest UR30 to be 48 times more expensive

than UR120, while VR25-100 being 16 times more costly than UR120. The actual simulation cost closely follows the Ncalc

scaling; one simulation year of UR30 (480.0 ×103 NERSC hr sim.yr−1 ) is 48 times more expensive than that of UR120

(10.1 ×103 NERSC hr sim.yr−1.) The actual cost of VR25-100 is just 11 times that of UR120, lower than those expected465

from Ncalc, possibly reflecting the error from using an empirical curve fitted to three different systems in the single KNL

system. In this case, VR25-100 achieves a factor of four computational advantage compared to UR30 for obtaining a similarly

high-resolution grid over CONUS.

A couple of other points are noted in Table. 5 and Fig. 6. First, the computational costs of CAM-MPAS UR120 and the default

dynamical core FV 1° are comparable (1.9 vs. 2.1 sim.yr. day−1 for CAM-MPAS UR120 and CAM-FV 1°, respectively).470

Second, the model throughput (cost) of VR12-46 is 0.2 sim.yr. day−1, half (double) that of UR30, despite the fact that these

two grids have the same number of columns and the simulations are run with similar numbers of columns per MPI task.

The main reason for the difference is likely the shorter timesteps (about 1/3) in VR12-46 than in UR30 due to the numerical

constraint imposed by the smallest grid spacing in the high-resolution domain. Lastly, we get consistently lower throughput
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(c) Number of calculations (timesteps) over all grid boxes per simulation day

(b) Simulation cost vs. Ncalc
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Figure 6. Graphs showing the relationship between (a) simulation cost in terms of NERSC hours per simulated years (NERSC hr sim.yr−1)

and number of MPI tasks, (b) simulation cost andNcalc, (number of calculations = physics and dynamics timesteps per simulated day across

the global domain), and (c) Ncalc and number of grid columns. The parameters of the fitted linear lines (blue curves, linear in the log space),

y = a+ bx, are shown in the legend. UR120-new refers to the UR120 simulation using the new CAM-MPAS code under development. In

(c), we added data points for a variable-resolution 6-24km mesh (VR6-24) as well as uniform resolution with 15 and 7.5 km gridcells (UR15

and UR7.5) by using their numbers of grid columns and scaling the model timestep as described in Sect. 3.
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and higher costs on Cori-KNL than on the other two systems. Our experiment and previous studies (Barnes et al., 2017; Dennis475

et al., 2019) suggest a few compounding reasons (Appendix D): inefficient memory management for some global arrays,

poor vectorization, and less focus on shared-memory parallelism of the CAM5/MPASv4 source code, which are not aligned

well with the wider-vector and many-core architecture of KNL. However, the shorter expected queue time on KNL than HW

(Fig. D1) makes KNL our main system for production. The weaker performance of the experimental CAM-MPAS code on

KNL leads to a higher computational cost than our initial estimate for VR12-46, limiting the length of VR12-46 simulations480

to be half of other simulations. More importantly, the code characteristics described above are not necessarily unique to the

CAM5/MPASv4 codes but may be common in other global or regional climate models in which many lines of the codes are

written by domain scientists with little attention to code optimizations. Such climate models are not likely to be efficient on

emerging, more energy-efficient HPC architecture similar to KNL for having wider vector units and more cores per node (and

less memory per core) than previous systems. For example, two new systems being deployed to HPC centers in the United485

States –Perlmutter to NERSC (NERSC, 2022) and Derecho to the NCAR-Wyoming Supercomputing Center (NCAR Research

Computing, 2022)– share such characteristics in their CPU nodes.

Fortunately, some of the computational problems with the CAM-MPAS model have been resolved through the MPAS-

Atmosphere optimization, on-going effort to port the later version 6 of MPAS-Atmosphere to CESM2 (the SIMA project), and

other numerous changes across the CESM source code from CESM1.5 to CESM2. Those updates lead to almost 80% speed490

up of the UR120 throughput as can be seen on the UR120 and UR120-new simulations in Table 5. Some of the speed-up

comes from different compiler optimizations used for the two simulations, but the code development plays a major role in

this performance improvement. The Cori system is retiring but the computational advantage of the new code is expected to be

applicable to other systems including the new NERSC system Perlmutter. We expect decadal simulations on the VR12-46 grid

or even convection-permitting VR meshes will be feasible using the newer CAM-MPAS code, or SIMA atmospheric general495

circulation model with MPAS as its dynamical core option. Multi-season convection-permitting simulations have been already

carried out with the new SIMA-MPAS model (Huang et al., 2022).

5.2 General Characteristics of Simulated Climate

We briefly review selected aspects of the simulated climate. The focus here is the climate statistics at the global-scale and over

the regions outside the VR high-resolution domain of North America. This is because, although the post-processed datasets500

cover a broad area encompassing the NA-CORDEX domain (Fig. 3a), the limited area grid does not allow one to infer remote

sources of large-scale forcings and their dependency on model resolution, which may be important to understand processes

responsible for projected changes within the high-resolution domain. Appendix E presents additional figures and a table.

For the downscaled regional climate, Appendix F provides a general overview of the model performance focusing on the

CONUS region. The main findings of the regional assessment is that the performance metrics of precipitation improves with505

higher resolution, but the results are more mixed for other variables. Also, resolution-sensitivity of precipitation becomes

weaker within the North American domain compared to the global statistics, which is shown below. A separate, systematic
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investigation of the regional climate in comparison with other limited area models is being conducted (Sakaguchi et al., 2021)

and will be reported elsewhere.

(a) eval, global-mean 2-m air temperature (b) rcp85, global-mean 2-m air temperature

(c) eval, global-mean precipitation (d) rcp85, global-mean precipitation
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Figure 7. Time series of monthly, global mean (a) near-surface air temperature (TAS) in the present-day (eval) simulations, (b) TAS in the

future (rcp85) simulations, (c) precipitation (PR) in the present-day (eval) simulations, and (d) PR in the future (rcp85) simulations. "MPI"

in the legend refers to the MPI-ESM-LR model simulation. The shorter VR12-46 simulation appears only in the last 11 years.

5.2.1 Present-day Climate510

The time evolution of global mean TAS is nearly identical across the resolutions (Fig. 7a), indicating a strong constraint by

the prescribed SST. In contrast, global mean precipitation exhibits systematic differences among the resolutions such that it

monotonically increases with finer resolution; UR240 simulates the lowest global mean precipitation, followed by VR50-200,

UR120, VR25-100, and VR12-46 (Table 6, Fig. 7c), indicating that in the VR simulations the coarse-resolution domain dictate

the resolution sensitivity at the global scale. We see in Fig. 7c that the global precipitation of MPI-ESM-LR is similar to those515

of UR240 and VR50-200, the two resolutions closest to the MPI-ESM-LR model resolution.

Table 6 indicates that this monotonic increase is mainly contributed by convective precipitation, rather than large-scale

precipitation. The trend of increasing convective precipitation with higher resolution is opposite to what previous studies found

about the lineages of CAM-physics (Williamson, 2008; Rauscher et al., 2013; Wehner et al., 2014; Herrington and Reed, 2020).

This unexpected resolution sensitivity is not necessarily an improvement for the model hydrological cycle, and attributed to520
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the changes we made in the convective time scale of the ZM convection scheme (Sect. 2.2) based on our previous study (Gross

et al., 2018). It would be more preferable that the total precipitation and fractions of convective (associated with unresolved

updraft) and large-scale (associated with resolved upward motion) components remain unchanged for grid resolution coarser

than the so-called "gray-zone" (e.g., Fowler et al., 2016). However, our result does illustrate a potential (and cursory) use of the

convective time scale for tuning CAM-MPAS VR simulations. For example, smaller changes than we made in the time scale525

(Table 3) may result in more preferable partitioning of precipitation components. Readers are referred to section 8b of Gross

et al. (2018) for in-depth discussion about tuning mass-flux based convection parameterizations for VR models. Other notable

resolution sensitivities are reductions of cloud fraction and vertically integrated cloud liquid and ice mass concentrations,

which then bring about resolution-sensitivities to cloud radiative forcing and radiative fluxes. Reduction of cloud amount with

higher resolutions is noted by previous studies (Pope and Stratton, 2002; Williamson, 2008; Rauscher et al., 2013; Herrington530

and Reed, 2020). For example, Pope and Stratton (2002) found a reduction of the global-mean cloud liquid-water path by

12 gm−2 by refining grid spacing from ≈ 280 km to 90 km in the HadAM3 model. Herrington and Reed (2020) attributed

reduced cloud amount to stronger subsidence outside convective regions, which is linked to more intense resolved upward

motion within the convective regions at higher resolution. We speculate the same processes operate in our simulations with

additional complexities due to our tuning of the ZM convection scheme.535

Table 6. Global and annual means of selected variables from present-day (eval) simulations, taken from the AMWG diagnostic package

(Atmospheric Model Working Group, 2014). Abbreviations in variable names are: top-of-atmosphere (TOA), short wave radiative flux (SW),

long wave radiative flux (LW), short wave cloud radiative forcing (SWCF), and long wave cloud radiative forcing (LWCF). Observational

and reanalysis data (Obs) are provided through the AMWG diagnostic package and listed in Table E1. Averages are shown for variables for

which multiple observational data are available.

Variable UR240 UR120 VR50-200 VR25-100 VR12-46 cam5.4 1deg Obs

sfc. air temperature (K) 287.08 287.14 287.17 287.12 287.28 – 287.58

precipitation (mm d−1) 2.91 3.01 2.99 3.06 3.14 2.96 2.68

convective precip. (mm d−1) 1.81 1.83 1.89 1.93 2.00 - –

large-scale precip. (mm d−1) 1.10 1.18 1.10 1.13 1.15 - –

precipitable water (kg m−2) 26.12 25.82 25.81 25.56 25.35 25.77 24.70

column cloud liquid (g m−2) 54.17 52.92 53.93 53.64 39.83 – –

column cloud ice (g m−2) 22.23 22.26 19.31 17.52 14.79 – –

total cloud fraction (fraction) 0.64 0.62 0.64 0.63 0.59 0.66 0.67

TOA SWCF (W m−2) -50.31 -49.06 -49.48 -48.79 -42.89 -51.00 -49.96

TOA LWCF (W m−2) 26.21 25.16 25.13 23.88 21.46 25.41 27.87

TOA LW out (W m−2) 233.82 236.55 236.94 239.52 243.39 234.22 237.53

TOA SW net (W m−2) 238.40 239.66 239.34 239.99 246.65 237.51 239.72

Max zonal mean UA200 (m s−1) 34.7 33.6 34.2 32.9 31.9 35.4 31.4
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Figure 8 examines the spatial patterns of TAS and precipitation biases of VR25-100. We show VR25-100 as an example

because the bias patterns are generally similar at the other resolutions (Figs. E1, E2). As with CAM5.4 and other climate models

(Morcrette et al., 2018), the simulated TAS is too warm over the mid-latitude continents including the central United States

(Fig. 8a). Little difference from ERA-Interim is seen over the ocean, but notable exceptions exist over the Southern Hemisphere

storm track (≈ 0.5 °C) and the Arctic (> |4| °C). The TAS bias appears similar to that of CAM5.4 with the default 1° FV540

dynamical core (Atmosphere Model Working Group, 2015), indicating a more important role of physics parameterizations

than resolution or dynamical core for the bias (Appendix E).

Figure 8. Difference of climatological mean (a) 2-m air temperature over the 1990-2010 period between CAM-MPAS VR25-100 and ERA-

Interim, and (b) surface precipitation over the 1997-2010 period between VR25-100 and GPCP. The ERA-Interim sea surface temperature

and sea ice cover are used as input for the CAM-MPAS AMIP simulations. The CAM-MPAS outputs and the reference data (ERA-Interim

and GPCP) are remapped from their original grids to a global latitude-longitude grid with ≈ 0.7° grid spacing, a similar resolution to the

ERA-Interim grid.

The resolution-sensitivity of the global mean precipitation (Table 6c) originates mostly from the tropics between 20°S and

20°N (Figs. 8b, 9a) where the model overestimates precipitation compared to GPCP. This regional bias generally becomes

worse with higher resolution. While the tropics is far away from the downscale target of North America, tropical precipitation545

bias may have remote effects on large-scale circulations over the mid-latitudes through Rossby waves and subtropical jets (Lee

and Kim, 2003; Christenson et al., 2017; Dong et al., 2018; Wang et al., 2021). Such remote effects seems small over North

America but much more prominent in the Southern Hemisphere, consistent with the previous VR CAM-MPAS study (Sak-

aguchi et al., 2015). For example, steady changes across resolution appear in the zonal-mean sea-level pressure in the tropics

and in the high-latitudes, with clearly greater magnitude in the Southern Hemisphere than in the Northern Hemisphere (Fig.550

9b). Consistently, zonal-mean zonal wind also shows stronger resolution sensitivities over the tropics and Southern Hemisphere

than in the Northern Hemisphere (Fig. E3). The CAM Atmosphere Model Working Group (2015) shows a similar sea-level

pressure bias in the default CAM5.4, and the apparently large magnitude of the bias depends on which reanalysis dataset is used

as reference. Notably, higher resolution reduces the biases of sea-level pressure and zonal-mean zonal wind over the Southern

Hemisphere.555
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(a) Precipitation

(b) Sea level pressure
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Figure 9. Zonal and annual mean (a) precipitation and (b) sea level pressure from the CAM-MPAS simulations and reference data of GPCP

in (a) and ERA-Interim in (b). All data are first remapped to ≈ 0.7° latitude-longitude grid before taking zonal average. The inset in (b)

shows the same mean sea level pressure but only in the region between 35°S and 35°N.

In our global pseudo-warming experiment, differences between the CAM-MPAS and MPI-ESM-LR simulations in large-

scale circulations are also important to understand the processes underlying regional climate change over North America.

Figure 10 compares the climatological mean zonal wind at the 200 hPa level (UA200) and zonal anomalies of 500 hPa geopo-

tential height (ZG500) from the VR25-100 and MPI-ESM-LR model simulations of the historical period. We continue to use

VR25-100 as an example because differences between the two models (MPI-ESM-LR and CAM-MPAS) are substantially560

larger than resolution sensitivities of the CAM-MPAS model (not shown). Figure 10a–c indicates that in VR25-100, 1) the

mid-latitude (eddy-driven) jet is located at higher latitudes, 2) the subtropical jet over North America is stronger, and 3) the

Walker circulations over the Pacific and Atlantic oceans are also stronger than those in the MPI-ESM-LR model. Notable

differences in ZG500 includes a stronger ridge in VR25-100 than in the MPI-ESM-LR model over the western North America

(Fig. 10d–f). The stronger ridge and associated static stability, along with different jet locations and strength, indicate that the565

two models simulate differently the generation and propagation of atmospheric disturbances and local response to them, which
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are suggested to be important for the hydroclimate of the western and central U.S. (e.g., Leung and Qian, 2009; Song et al.,

2021).

Figure 10. Annual mean zonal wind at the 200 hPa level in (a) VR25-100, (b) MPI-ESM-LR, (c) difference between the two simulations,

and geopotential height at the 500 hPa level in (d) VR25-100, (e) MPI-ESM-LR, and (f) difference between the two simulations. All data

are remapped to ≈ 0.7° latitude-longitude grid by the patch method (Balaji et al., 2018). The wavy patterns in (e) and (f) near the Andes are

likely numerical oscillations in the MPI-ESM-LR model (Geil and Zeng, 2015).

5.2.2 Future Climate

The global-mean TAS remains insensitive to resolution in the future RCP85 case (Fig. 7b). Also similar to the historical period,570

we see steady increase of global-mean precipitation with finer resolution (Fig. 7d). As a result, all the resolutions project similar

changes of the global mean precipitation (4P) from the historical to RCP85 case within the range of 0.15–0.18 mm day−1.

Looking at the spatial patterns, the TAS change (4TAS) from the historical to RCP8.5 period in VR25-100 closely follows

the 4SST patterns derived from the MPI-ESM-LR model (by comparing Fig. 11a and Fig. 4e). The almost identical 4SST

leads to different climatological SST (and TAS) in the two future simulations (Fig. 11 b) because 4SST and 4SIC from the575
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Figure 11. Spatial patterns of the near-surface climate change from the historical (1990-2010) to future RCP8.5 case (2080-2100) and the

difference of the mean future climate between the VR25-100 and the MPI-ESM-LR model simulations: (a) simulated change of near-surface

air temperature (4TAS) in VR25-100, (b) difference of the mean TAS between VR25-100 and the MPI-ESM-LR model in the RCP8.5

simulations, (c) same as (b) but for SST difference, (d) same as (b) but for SIC difference, (e) precipitation change (4P) in VR25-100, and

(f) precipitation difference between the two RCP8.5 simulations.

MPI-ESM-LR model are added to the base state from ERA-Interim instead of the MPI-ESM-LR model itself (Fig. 11c, d). It

is notable that SST over the Arctic region is substantially warmer in VR25-100 than in the MPI-ESM-LR model, while such

difference is lacking in TAS (Fig. 11b, c). The discrepancy is a result of an assumption in the CESM data ocean model such

that SST below -1.8 °C (a typical freezing temperature of sea ice) is reset to this assumed freezing temperature, and the SST

shown in the figure is not the input to the model but output from the simulation. In the MPI-ESM-LR model simulation without580

such an assumption, the climatological SST can be as low as -5 °C over the Arctic region. We presume that this SST difference

does not directly affect TAS because of the Arctic sea ice cover.
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The spatial pattern of 4P in VR25-100 is characterized by a marked increase in the tropical Pacific, Arabian Sea, and

Northern Hemisphere storm tracks and by a reduction over the tropical Atlantic Ocean (Fig. 11e). These 4P responses over

the ocean generally agree with the MPI-ESM-LR model projection (Fig. E4), while the extent of regional features differ,585

especially in the equatorial region such that the Intertropical Convergence Zones (ITCZ) precipitation is projected to be more

intense in a narrower band in VR25-100 than in the MPI-ESM-LR model. Over land,4P in the two simulations diverges most

notably in the Amazon basin, as well as in Australia, southern Africa, and importantly, North America. These changes over

land become more visible in the ocean-masked contour plots in Fig. E5e, f. Those regions are also where we see resolution-

sensitivity of4P among the CAM-MPAS simulations (Fig. E5b–f), indicating a large uncertainty in the projection of regional590

hydrological cycles.

Figure 12. Simulated changes of annual-mean upper-level circulations from the historical (1990-2010) to future RCP8.5 case (2080-2100),

and the difference of the future climate between the VR25-100 and the MPI-ESM-LR model simulations: (a) 200-hPa zonal wind change

(4UA200) in VR25-100, (b) the future UA200 climatology in VR25-100, (c) UA200 climatology difference between VR25-100 and MPI-

ESL-LR in the RCP8.5 period, (d) simulated change of zonal anomaly 500-hPa geopotential height (4ZG500) in VR25-100, (e) the future

climatology of ZG500 zonal anomaly in VR25-100, and (f) ZG500 difference between VR25-100 and MPI-ESL-LR.
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Turning to the large-scale circulations, the projected change of the 200-hPa level zonal winds (4UA200) in VR25-100

indicate broader and more intense subtropical jets, mid-latitude storm tracks, and Southern Hemisphere polar jet in the end of

the twenty-first century (Fig. 12a, b). MPI-ESM-LR also projects such changes in terms of the zonal mean circulation (Shaw,

2019), and the spatial patterns of4UA200 are generally consistent between the two models with a pattern correlation of 0.87595

(Fig. E6). The projected changes of zonal anomaly of 500 hPa geopotential height (4ZG500) in VR25-100 are characterized

by the pattern-shift to the east over mid- to high-latitudes in the Northern Hemisphere (Fig. 12d, e). The shift is simulated

by MPI-ESM-LR and also found in the CMIP5 multi-model mean response (Wills et al., 2019). Because the responses of

these large-scale circulations to the imposed radiative forcings and (identical) ocean warming are similar in the two models,

the base-state differences as seen in Fig. 10c, f remain nearly unchanged in the future period (Fig. 12c, f). Therefore, distinct600

aspects of the large-scale forcings on the North American climate, as discussed in the previous section, will continue to be seen

in the RCP8.5 case.

5.2.3 Soil spin-up

Lastly, we would like the readers to be aware of soil spin-up at deep layers in the cold regions outside the refined region. A

previous study (Cosgrove et al., 2003) and community experience from the NA-CORDEX (Mearns et al., 2017) suggest that605

over the CONUS region (i.e., excluding permafrost regions from North America), one year is enough for the model soil state

to reach a quasi-equilibrium, provided a reasonably realistic soil moisture distribution for the spin-up initial condition (i.e., not

an idealized state such as spatially uniform soil moisture content). This is the case for the soil liquid water in the present-day

(eval) simulations with one-year spin-up starting from a condition taken from a previous CCSM4 historical simulation (Sect.

3). Using VR50-200 as an example, the CONUS-average soil liquid water does not show a systematic drift at any soil model610

levels, and neither does the global average (Fig. 13a, b, d). The CONUS-average soil ice does not show an obvious trend either

(Fig. 13c). However, the global-average soil ice in the 10th soil layer shows a clear increasing trend in the first≈ 10 years (Fig.

13e). Such a drift appears in the layer around 1-m deep and becomes stronger with depth (not shown). Because the same land

model CLM4 is used in this study and in the CCSM4 historical simulation, this adjustment is likely a response to different land

model resolutions and different atmospheric state. Similarly, the global-mean soil ice in the rcp85 experiment shows a steep615

decline in the first≈ 10 years (after the two-year spinup), followed by a still decreasing but weaker trend afterwards (Fig. 13f).

It is not clear that the weaker trend after 10 years represents the response to the future transient forcing or still converging to

the model’s own equilibrium state.

Spatially, most of the soil ice is stored over the northern high-latitudes and the Tibetan plateau, therefore the spin-up drift

only exists in the limited regions that are in the coarse-resolution domain in our VR grids (Fig. 14). Previous land modeling620

studies on permafrost regions suggest time scales of a hundred years for the water and energy cycles (Elshamy et al., 2020; Ji

et al., 2022), especially with the extended bedrock layers down to ≈ 50 m deep in CLM4 (Lawrence et al., 2008, 2012). We

note that the global mean temperature of the bottom bedrock layer keep increasing throughout the rcp85 experiment with the

overall increase of ≈ 3 K over the 20 year period (not shown).
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(a) Soil water CONUS average, eval

(b) Soil water CONUS average, eval, normalized

(d) Soil water global average, eval, normalized
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(c) Soil ice CONUS average, eval, normalized
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(f) Soil ice global average, rcp85, normalized
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Figure 13. Time series of monthly mean (a) soil liquid water in the first, fifth, and tenth model layers averaged over the CONUS region in

the VR50-200 eval experiment, (b) same as (a) but normalized by subtracting the temporal mean and dividing by the standard deviations,

(c) normalized soil ice content averaged over CONUS, (d) globally averaged and normalized soil liquid content, (e) globally averaged and

normalized soil ice content, and (f) same as (e) but from the rcp85 experiment.

These results and previous findings suggest that high-latitude and high-altitude (e.g. Tibetan Plateau) soil hydrology and625

thermodynamics in the deep layers require decades to centuries of spinup. It is not clear whether the model adjustment in such

deep, remote soil state can affect the simulated climate within the target refinement region. If such a remote effect exist, then

it is necessary for global VR models to spin up the high-latitude/altitude soil state for a downscaling experiment, although

it may be relevant to regional models in NA-CORDEX for the northern part of the domain. More detailed investigations are

required on the coupling between the deep soil over the high-latitudes and the target downscaling region resulting from global630

teleconnection (e.g., by affecting meridional temperature gradient).

32



(a) 1990-average soil ice (b) Difference from the 2001-2010 average
kg m-2

kg m-2

Figure 14. The soil ice content summed across soil layers in the VR50-200 eval simulation as (a) annual average over 1990 and (b) difference

between the 1990 average (immediately after the spinup) and last-10 year average.

6 Conclusions

The HyperFACETS project includes a large multi-institutional team and an important stakeholder engagement component to

support climate adaptation efforts across a wide range of sectors. The engagement suggested that a timely and comprehensive

documentation of a climate model and the model output dataset is important to meet the growing demand for well documented635

and curated regional climate datasets from climate scientists, impact assessment researchers, stakeholders, and regional and

national climate assessment activities. The aim of this work is to provide such a documentation for a relatively new global

VR model framework, and to facilitate improvement in not only the model sciences and but also technical aspects of the

climate model code, experimental protocol, and workflow from model configuration to post-processing under the changing

HPC environment.640

The CAM-MPAS simulations described in this paper are uniquely designed to facilitate the use and evaluation of the global

VR model to complement the multi-model dynamical-downscaling products from the NA-CORDEX program and additional

limited-area model simulations carried out under the HyperFACETS project. Details of the experimental CAM-MPAS model,

downscaling simulations, output post-processing, data archive, and on-going improvement of the CAM-MPAS model are

presented. A list of available variables and resources to analyze the raw model output on the unstructured grids are provided in645

the appendices.

Model biases are described in the global scale (Sect. 5.2.1) and regional scale within the high-resolution domain of the VR

simulations (Appendix F). It is noted that the biases are largely inherited from the CAM5.4 physics parameterizations, while

some model sensitivities to resolutions and/or timestep lengths are different from those reported in previous studies using the

CAM physics. Precipitation changes with resolution is likely due to the resolution-dependent tuning of the convection timescale650

in the ZM deep convection scheme, highlighting a potential benefit and need for more systematic efforts of model tuning in VR

downscaling. We also expect that the model biases mentioned above will be reduced in the future CAM-MPAS (SIMA-MPAS)

downscaling simulations coupled to the CAM6 physics parameterizations. A different deep convection parameterization, the
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Grell-Freitas scheme (Grell and Freitas, 2014), is being ported to SIMA-MPAS to alleviate several weaknesses in the CAM-

MPAS VR configuration (Jang et al., 2022).655

Looking ahead, an important next step would be to officially incorporate VR models into coordinated downscaling programs

such as CORDEX (e.g., Prein et al., 2022). Participation of VR models allows direct and more comprehensive intercomparison

of limited-area and global VR models. As our analyses of soil state and large-scale circulations suggest, some adaptations of

the experimental protocol and analysis scope are required to address differences between the two modeling framework. Having

both limited-area and VR models in a coordinated project may also facilitate interactions between global and regional climate660

modeling communities, which could accelerate model development and workflow improvement to further reduce uncertainties

in regional climate dataset.
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Appendix A: Model input

The Figure A1 visualizes the input data flow for the CAM-MPAS model as explained in section 3.2. Most of the data preparation

is to remap from the original input grids to the target MPAS grid, which is required for each different MPAS mesh.

CESM models

Atmosphere 
(CAM)
Dynamical core 
(MPAS)

Land surface 
(CLM)

River routing 
(RTM)Prescribed sea ice 

(CICE)
Data ocean 
(DOCN)

ERA-Interim
Sea ice cover

ERA-Interim SST

Mapping weight
ERA-Interim → MPAS

Land surface raw data
(land cover, soil texture, etc.)

Mapping weights 
each data grid → MPAS grid

CLM surface data

MPAS grid

0.5° RTM grid

CLM restart file from a 
previous simulation

CLM initial condition

ERA-Interim 
atmospheric state

CAM vertical grid & initial condition

GTOPO30 topography

Mapping weights 
RTM ↔ MPAS

Subgrid topography 
for gravity wave drag

CLM tool mksurfdata

CLM tool interpinicinit_atmosphere in MPAS-Atmosphere v4

NCAR_Topo (Lauritzen et al. 2015)

Coupler

Figure A1. Input data flow described in 3. Note that the data flow in the current CESM2 model and future versions with the officially

supported MPAS dynamical core are slightly different.

Fortran namelist files that describe non-default model parameters, input data paths, output variables, and other model1140

configurations, examples for VR25-100, are shared in a public space (https://portal.nersc.gov/cfs/m2645/pnnl/CAMMPAS/

namelists). A shell script (prod05_facets25-100_edison.sh) that executes a series of CESM scripts to set up CAM-MPAS

VR25-100 is also available in the same directory.
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Appendix B: Raw model output

For users who prefer to analyze raw model outputs on the MPAS unstructured mesh, the raw outputs are available on the1145

NERSC HPSS. Ancillary netcdf files for each MPAS grid are also available (Ancillary file link), including latitude/longitude

coordinates of the grid cell centers, land/ocean masks, surface topography, and grid description in the SCRIP format (necessary

to create remapping weights).

For users convenience, we provide a simple shell script to remap CAM-MPAS output to a regular latitude-longitude grid

(regrid_CAM_MPAS_NCO.sh), and a jupyter notebook to calculate regional statistics on the raw MPAS grid data (Region-1150

alAverage_mpasmesh.ipynb) in another directory (link). In the sub-directory "postprocess_6hr/", users can find more involved

example with an ncl script to post-process six-hourly model outputs into the CORDEX format as well as shell scripts to run

the ncl script in parallel on a NERSC KNL compute node using gnu parallel (Tange, 2018).

The MPAS mesh structure and other descriptions of the MPAS-Atmosphere model are provided in the MPAS user guide

(Duda et al., 2019) and MPAS tutorial practice guide. A number of example python and NCL scripts to visualize data on1155

the MPAS’s unstructured grids are provided from the MPAS model website. To apply them to CAM-MPAS outputs, two

adjustments are needed. First, variable names are different between the MPAS-Atmosphere and CAM-MPAS, the latter vari-

able names can be found in the CAM documentation webpage (e.g., https://www.cesm.ucar.edu/models/cesm1.0/cam/docs/

ug5_0/hist_flds_fv_cam5.html). Second, the dimension name "nCells" is used for variables defined at cell centers in MPAS-

Atmosphere, while the dimension name is "ncol" in CAM-MPAS.1160

A raw CAM-MPAS output, or history file, contains multiple variables at one or more time records (up to 24), as opposed to

a post-processed file that contains a single variable over a long period of time, from one year to the whole simulation period.

All variables in the CAM-MPAS history files are either defined at or interpolated from cell edges to to cell centers. Readers

are referred to the readme file https://portal.nersc.gov/cfs/m2645/pnnl/CAMMPAS/README_history.md) for details of the

history file format, organization, variables, etc.1165
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Appendix C: Archived variables

List of variables available on the NA-CORDEX regional grid.

Table C1: Monthly variables.

No. Name Long name units

1 clh High Level Cloud Fraction fraction

2 cll Low Level Cloud Fraction fraction

3 clm Mid Level Cloud Fraction fraction

4 clt Total Cloud Fraction fraction

5 evspsbl Evaporation kg m−2 s−1

6 hfls Surface Upward Latent Heat Flux W m−2

7 hfss Surface Upward Sensible Heat Flux W m−2

8 hur500 Relative Humidity at 500 mbar pressure surface percent

9 hur700 Relative Humidity at 700 mbar pressure surface percent

10 hur850 Relative Humidity at 850 mbar pressure surface percent

11 hurs Near-Surface Relative Humidity percent

12 hus500 Specific Humidity at 500 mbar pressure surface kg kg−1

13 hus700 Specific Humidity at 700 mbar pressure surface kg kg−1

14 hus850 Specific Humidity at 850 mbar pressure surface kg kg−1

15 huss Near-Surface Specific Humidity kg kg−1

16 pr Precipitation kg m−2 s−1

17 prc Convective Precipitation kg m−2 s−1

18 prw Water Vapor Path kg m−2

19 ps Surface Air Pressure Pa

20 psl Sea Level Pressure Pa

21 rlds Surface Downwelling Longwave Radiation W m−2

22 rlus surface upwelling longwave radiation W m−2

23 rlut TOA Outgoing Longwave Radiation W m−2

24 rsds Surface Downwelling Shortwave Radiation W m−2

25 rsdt TOA Incident Shortwave Radiation W m−2

26 rsus surface upwelling shortwave radiation W m−2

27 rsut TOA outgoing shortwave radiation W m−2

28 sfcWind Near-Surface Wind Speed m s−1

Continue on next page
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Table C1 – continued from previous page

No. Name Long name units

29 sic Sea Ice Area Fraction fraction

30 ta200 Air Temperature at 200 mbar pressure surface K

31 ta500 Air Temperature at 500 mbar pressure surface K

32 ta700 Air Temperature at 700 mbar pressure surface K

33 ta850 Air Temperature at 850 mbar pressure surface K

34 tas Near-Surface Air Temperature K
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Table C2: Daily variables. The lowest model level (for uas and vas) is located about 60 m above the surface. The variables in

bold font are considered "essential" and "high priority" in NA-CORDEX and available from both PNNL Datahub and NERSC

Science Gateway.

No. Name Long name units

1 hurs Near-Surface Relative Humidity percent

2 hus850 Specific Humidity at 850 mbar pressure surface kg kg−1

3 huss Near-Surface Specific Humidity kg kg−1

4 pr Precipitation m s−1

5 prw Water Vapor Path kg m−2

6 ps Surface Air Pressure Pa

7 psl Sea Level Pressure Pa

8 sfcWind Near-Surface Wind Speed m s−1

9 ta200 Air Temperature at 200 mbar pressure surface K

10 ta500 Air Temperature at 500 mbar pressure surface K

11 ta850 Air Temperature at 850 mbar pressure surface K

12 tas Near-Surface Air Temperature K

13 tasmax Daily Maximum Near-Surface Air Temperature K

14 tasmin Daily Minimum Near-Surface Air Temperature K

15 ua200 Eastward Wind at 200 mbar pressure surface m s−1

16 ua850 Eastward Wind at 500 mbar pressure surface m s−1

17 uas Eastward Near-Surface Wind (lowest model level) m s−1

18 utmq Vertically Integrated Eastward Water Vapor Flux kg m−1 s−1

19 va200 Northward Wind at 200 mbar pressure surface Pa

20 va850 Northward Wind at 850 mbar pressure surface Pa

21 vas Northward Near-Surface Wind (lowest model level) m s−1

22 vtmq Vertically Integrated Northward Water Vapor Flux kg m−1 s−1

23 wap500 Omega (=dp/dt) at 500 mbar pressure surface Pa s−1

24 zg200 Geopotential Height at 200 mbar pressure surface m

25 zg500 Geopotential Height at 500 mbar pressure surface m
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Table C3: 6-hourly variables. The lowest model level (for uas and vas) is located about 60 m above the surface.

No. Name Long name units

1 prw Water Vapor Path kg m−2

2 clwvi Condensed Water Path kg m−2

3 clivi Ice Water Path kg m−2

4 clh High Level Cloud Fraction fraction

5 clm Mid Level Cloud Fraction fraction

6 cll Low Level Cloud Fraction fraction

7 zmla Height of Boundary Layer m

8 rlut TOA Outgoing Longwave Radiation W m−2

9 rsdt TOA Incident Shortwave Radiation W m−2

10 rsut TOA outgoing shortwave radiation W m−2

11 tauu Surface Downward Eastward Wind Stress m s−1

12 tauv Surface Downward Northward Wind Stress m s−1

13 ts Surface Temperature K

14 evspsbl Evaporation kg m−2 s−1

15 ec Interception evaporation kg m−2 s−1

16 tran Canopy Transpiration kg m−2 s−1

17 evspsblsoi Water Evaporation from Soil kg m−2 s−1

18 mrfso Soil Frozen Water Content kg m−2

19 mrso Total Soil Moisture Content k m−2

20 mrro Total Runoff mm s−1

21 mrros Surface Runoff mm s−1

22 snw Surface Snow Amount mm

23 snm Surface Snow Melt mm s−1

24 snc Snow Area Fraction fraction

25 snd Snow Depth m

26 sbl Surface Snow and Ice Sublimation Flux mm s−1

27 hus850 Specific Humidity at 850 mbar pressure surface fraction

28 ta200 Air Temperature at 200 mbar pressure surface K

29 ta500 Air Temperature at 500 mbar pressure surface K

30 ta700 Air Temperature at 700 mbar pressure surface K

31 ta850 Air Temperature at 850 mbar pressure surface K

Continue on next page
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Table C3 – continued from previous page

No. Name Long name units

32 ua200 Eastward Wind at 200 mbar pressure surface m s−1

33 ua700 Eastward Wind at 700 mbar pressure surface m s−1

34 ua850 Eastward Wind at 850 mbar pressure surface m s−1

35 uas Eastward Near-Surface Wind (lowest model level) m s−1

36 va200 Northward Wind at 200 mbar pressure surface m s−1

37 va700 Northward Wind at 700 mbar pressure surface m s−1

38 va850 Northward Wind at 850 mbar pressure surface m s−1

39 vas Northward Near-Surface Wind (lowest model level) m s−1

40 wap500 Omega (=dp/dt) at 500 mbar pressure surface Pa s−1

41 wap700 Omega (=dp/dt) at 700 mbar pressure surface Pa s−1

42 zg200 Geopotential Height at 200 mbar pressure surface m

43 zg500 Geopotential Height at 500 mbar pressure surface m

44 zg700 Geopotential Height at 700 mbar pressure surface m
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Table C4. 3-hourly variables

No. Name Long name units

1 tas Near-Surface Air Temperature K

2 pr Precipitation kg m−2 s−1

3 prc Convective Precipitation kg m−2 s−1

4 ps Surface Pressure Pa

5 psl Sea Level Pressure Pa

6 huss Near-Surface Specific Humidity kg kg−1

7 hurs Near-Surface Relative Humidity percent

8 sfcWind Near-Surface Wind Speed m s−1

9 clt Total Cloud Fraction fraction

10 rsds Surface Downwelling Shortwave Radiation W m−2

11 rlds Surface Downwelling Longwave Radiation W m−2

12 hfls Surface Upward Latent Heat Flux W m−2

13 hfss Surface Upward Sensible Heat Flux W m−2

14 rsus Surface Upwelling Shortwave Radiation W m−2

15 rlus Surface Upwelling Longwave Radiation W m−2
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Appendix D: Computation at NERSC

The Cori Haswell (HW) and Edison systems at NERSC feature the same processor family (Intel Xeon processor) on more

traditional, massively parallel distributed memory architectures with fewer cores of higher CPU frequencies and larger memory1170

per node. In contrast, Cori Knights-Landing (KNL) employs an architecture with a different parallelism philosophy of many-

cores, wider-vector units, and non-uniform and high bandwidth memory access with the Intel Xeon Phi processors (He et al.,

2018). The transition to many-core architecture has occurred in multiple HPC facilities, motivated by better energy efficiency

(Allen et al., 2018; Loft, 2020) and preparation of user applications for more extreme many-core architecture with GPU systems

(NERSC, 2014).1175

To compile the CAM-MPAS code on all of the NERSC systems mentioned above, we use the Intel compiler wrapper

provided by the system vendor Hewlett Packard Enterprise Cray (NERSC, 2018). The libraries and compilers we used can be

seen in the file

[top directory]/cime/cime_config/cesm/machines/config_machines.xml

within the source code directory tree. All simulations except for "UR120-new" use the same model code and same compiler1180

options. The compiler optimization level (O1) is lower than the default for CESM (O2) for the CAM-MPAS code being

experimental. The UR120-new is run with the beta-version of the MPASv6-CESM2 coupled code with the O2 optimization,

which can improve simulation throughput by up to ≈ 10 % compared to O1 based on our benchmark simulations on KNL.

Shared-memory parallelism is not used because the MPAS-Atmosphere version 4 does not support OpenMP, and the CESM

code does not necessarily show better performance with the hybrid OpenMP + MPI compared with MPI-only configurations1185

(Helen He, personal communication). For MPI-only jobs, Heinzeller et al. (2016) recommended 100–150 grid columns per

MPI task to achieve good throughput for the stand-alone MPAS-Atmosphere model. Not all of our node configurations follow

their recommendation because of the reasons mentioned below.

At NERSC, queue wait time depends on requested wall-clock hours and number of nodes, but the former tends to be more

important than the latter (Figure D1). Therefore, we aimed for wall-clock time of 5-6 hours or less to integrate one- to six-1190

months in a single job to avoid a long queue wait time. Then we looked for sufficient numbers of MPI tasks to achieve this goal

to finally determine the number of nodes to request for production simulations. We were also interested in comparing different

systems during the transition period from Edison to Cori, so some simulations used similar numbers of nodes or MPI tasks on

different systems.

We explored several reasons for the lower throughput of our CAM-MPAS code on Cori-KNL than on Cori-HW and espe-1195

cially the older system Edison. Primary reasons seem to be inefficient memory usage, under-usage of shared memory paral-

lelism, and source code style that is not easily vectorized by compilers (in addition to the lower level of compiler optimization

we chosen as mentioned above). As summarized by He et al. (2018) and Barnes et al. (2017), the previous system Edison has

two Intel Ivy Bridge 2.6 GHz 12-core CPUs (24 cores per node) and 64 GB memory with∼100 GB/s bandwidth on each node.

Cori-KNL, on the other hand, has one Xeon-Phi 7250 1.4 GHz processor that has 68 physical cores, each of which can be1200

used with 4 hardware threads. A KNL node has a larger 96 GB memory with slower 85 GB/s bandwidth than Edison, but also
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Figure D1. The year 2020 annual average queue wait time for (a) Cori KNL as a function of requested wall-clock hours (x-axis) and requested

number of nodes (y-axis), (b) same as (a) but as line plots by further averaging the bins of requested hours to six groups as shown in the

legend, (c) same as (b) but for Cori HW system. The data was obtained from the "MyNERSC" website (accessible only by NERSC users)

with the help from the NERSC user support.

provides additional 16 GB high-bandwidth (450 GB/s) memory. Despite the lower clock frequency, KNL’s Xeon-Phi processor

performs 32 double precision floating point operations per second (FLOPS) per cycle compared to 8 FLOPS per cycle by

Edison’s Ivy Bridge processor.
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The overall performance of climate model code is typically limited by memory latency and bandwidth rather than arithmetic1205

speed (e.g., Fuhrer et al., 2018; Dennis et al., 2019), except for some components such as the MG2 microphysics (Barnes et al.,

2017). A naive use of all the 68 cores on KNL nodes as MPI ranks lead to 0.5 GB memory per rank (using KNL’s two different

memory units as a single entity), about one-fifth of 2.7 GB per rank when using 24 MPI ranks per node on Edison. In addition

to this memory-per-rank difference, we found inefficient memory use by the CESM1.5 code, which became clear with very

high resolution (more than 1 million columns) but already impacted resolutions with≈ 0.5 million grid columns, including the1210

VR12-46 and UR30 grids. An example of the inefficient memory use is to store unnecessarily long arrays on the memory of

each node (e.g., those cover the whole global domain instead of the sub-domain assigned to the MPI rank), which exacerbates

smaller memory per MPI rank on the NKL node.

Recommended programming models for Cori KNL are vectorization, shared-memory parallelism, and control of data block

size within the 16 GB high-speed memory. It was found that such programming design is not very common within the CESM1215

code during the NERSC Exascale Science Applications Program (NESAP), which was established to help NERSC users

to optimize their applications for KNL (He et al., 2018). As part of the NESAP, two sub-components of the CESM model

were optimized by the code developers and NERSC support staff. The MG2 microphysics code was found to be bounded

by computation with poor vectorization, and improved code structure for easier vectorization enhanced its speed by about

75% (He, 2016; Barnes et al., 2017). Optimizations of the High Order Methods Modeling Environment (HOMME) dynamical1220

core involved both better vectorization and rewriting the OpenMP loops, which together achieved twice faster performance

on KNL (Barnes et al., 2017; Dennis et al., 2019). While some optimizations are more specific to KNL, many of the code

changes improve performance on other systems such as the Cheyenne system in the National Center for Atmospheric Research

- Wyoming Supercomputing Center (Dennis et al., 2019).

It is generally difficult for these specific optimizations to be incorporated into the official release of the CESM code (let1225

alone off-branched experimental versions) within the life time of a typical HPC system of 4–5 years. This can be a serious

and common challenge for climate modeling research groups, whose numerical experiments require long simulation time.

Fortunately, the MPAS-Atmosphere code went through several optimizations in version 5, including changes similar to those

reported in the above studies. In addition, the memory-scaling issues in the CAM code have been addressed in the current

version of CESM2. Along with other numerous changes from CESM1.5 to CESM2.1, the latest version of CAM-MPAS1230

achieves substantially better performance on KNL (Table. 5).
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Appendix E: Global climate

This appendix provides additional information for the global climate and its resolution sensitivity in the CAM-MPAS simula-

tions.

E1 Present-day climate biases and resolution sensitivities1235

As mentioned in the main text (section 5.2.1), the present-day climatology of near-surface air temperature (TAS) is similar

across the resolutions (Figure E1). All the CAM-MPAS eval simulations share regional biases, most notably the warm bias in

the mid-latitude continents and in the Southern Hemisphere storm tracks. On the other hand, TAS over complex terrains such

as Tibetan Plateaus and western Americas show visible difference across resolution.

Previous studies of the CAM model suggest that the too warm TAS in the Southern Hemisphere storm track is related to1240

the underestimated low-level liquid clouds (Bogenschutz et al., 2018) and overestimated wind speed (and associated vertical

mixing) in the lower atmosphere. For the Arctic region, the CAM5 physics was shown to underestimate Arctic clouds, leading

to less downward longwave radiation, smaller surface net energy, and colder surface temperature (English et al., 2014; McIl-

hattan et al., 2017). Note that the sea-ice model in the CESM AMIP configuration interactively calculates the surface energy

balance and temperature given the prescribed ice coverage, unlike the open ocean surface where the surface skin temperature1245

is prescribed (section 3).

The contour plots of precipitation biases against GPCP show greater variations among simulations than TAS (Figure E2).

UR120 shows the smallest regional bias across the globe, presumably because its grid resolution and timestep are close to those

of FV1°, to which we tuned the CAM5.4 physics with the prescribed aerosol scheme (section 2.2).

E2 Future climate changes and resolution sensitivities1250

Figure E4 compares mean precipitation changes from the historical to RCP8.5 periods in the five CAM-MPAS simulations

and MPI-ESM-LR simulation. As mentioned in the main text, the overall spatial patterns are similar across the simulations.

Because the contour color range is set for the larger changes over the ocean, Figure E5 masks the ocean grid points and focuses

on land.
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(a)UR240 (b)UR120

(c)VR50-200 (d)VR25-100

(e) VR12-46
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(f ) ERA-Interim
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Figure E1. Difference of climatological 2-m air temperature over the 1990-2010 (2001-2010 for VR12-46) period between CAM-MPAS

simulations and ERA-Interim (a)-(e), and the annual mean temperature in ERA-Interim (f). The ERA-Interim sea surface temperature and

sea ice cover are used as input for the CAM-MPAS AMIP simulations.
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(f ) GPCP

(a)UR240 (b)UR120

(c)VR50-200

mm d-1

mm d-1

(d)VR25-100

(e) VR12-46

mm d-1

mm d-1

mm d-1

mm d-1

Figure E2. Difference of climatological surface precipitation over the 1997-2010 (2001-2010 for VR12-46) period between CAM-MPAS

simulations and GPCP (a)-(e) and the annual mean precipitation in GPCP (f). Grid imprinting in the contour plots (a) and (c) over some

regions (e.g., the Indian Ocean west of Africa) is a result of conservatively remapping coarser MPAS grids to the finer ≈ 0.7° latitude-

longitude grid.
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Figure E3. Annual climatology of zonal mean zonal wind in (a) UR120, (b) UR120 bias compared to ERA-Interim, and differences between

UR120 and other CAM-MPAS resolutions (c) UR240, (d) VR50-200, (e) VR25-100, and (f) VR12-46.

Table E1. Observational dataset used in Table 6 and their reference, obtained through Atmospheric Model Working Group (2014).

Name Variables Period Reference

ISCCP cloud fraction 1983-2001 Rossow and Schiffer (1999)

CLOUDSAT cloud fraction 1983-2001 Marchand et al. (2008)

ERBE energy flux and cloud radiative forcing 1985-1989 Smith et al. (1987)

CERES-EBAF energy flux and cloud radiative forcing 2000-2010 Loeb et al. (2009)

GPCP precipitation rate 1979-2009 Adler et al. (2003)

AIRS precipitable water 1988-1999 Susskind et al. (2003)

NVAP precipitable water 1988-1999 Randel et al. (1996)

MODIS precipitable water 2000-2004 King et al. (2003)

ERA40 reanalysis precipitable water 1980-2001 Uppala et al. (2005)

JRA25 reanalysis precipitable water 1979-2004 Onogi et al. (2007)

ERA-Interim reanalysis UA200, precipitable water 1989-2005 Dee et al. (2011)

HadCRUT3 surface air temperature 1961-1990 Brohan et al. (2006)
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(a)MPI-ESM-LR ∆P (b)UR240 ∆P 

(c)UR120 ∆P (d)VR50-200 ∆P

(e) VR25-100 ∆P  (f ) VR12-46 ∆P  
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Figure E4. Projected precipitation change from the historical to RCP8.5 periods in (a) MPI-ESM-LR, (b) UR240, (c) UR120, (d) VR50-200,

(e) VR25-100, and (f) VR12-46.

63



(a)MPI-ESM-LR ∆P (b)UR240 ∆P 

(c)UR120 ∆P (d)VR50-200 ∆P

(e) VR25-100 ∆P  (f ) VR12-46 ∆P  
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Figure E5. Same as Figure E4 but the ocean grid points are masked and a narrower color range is used to focus on precipitation change over

land.
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(c)UR120 ∆U  (c)VR50-200 ∆U

(e) VR25-100 ∆U (f ) VR12-46 ∆U
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Figure E6. Same as Figure E4 but for the projected change of zonal wind at the 200 hPa level (4UA200).
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(a)MPI-ESM-LR ∆ZG500 (b)UR240 ∆ZG500 

(c)UR120 ∆ZG500  (c)VR50-200 ∆ZG500

(e) VR25-100 ∆ZG500 (f ) VR12-46 ∆ZG500

m

Figure E7. Same as Figure E4 but for the the projected change of zonal anomaly of geopotential height at the 500 hPa level (4ZG500).
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Appendix F: Regional climate1255

This appendix provides an overview of the regional climate evaluated over CONUS (defined as 105°–85°W, 30°–47°N) and its

resolution sensitivity in the CAM-MPAS simulations.

The time series of annual- and regional-mean near-surface air temperature (TAS) over the CONUS region is nearly identical

among the different resolutions (Figure F1a, b), except for some seasonal maxima and minima where significant differences can

arise in some years. The TAS spatial patterns, shown as differences from the ERA-Interim temperature in Figure F2, illustrate1260

that the spatial patterns of the biases (and TAS itself) are also similar across simulations over the central and eastern U.S. Over

the western U.S., with complex surface topography, greater spatial variability is simulated by finer spatial resolutions. The

topography-related spatial variability seems to be filtered out and does not affect the regional average time series.

(a) eval, CONUS average (b) rcp85, CONUS average

(c) eval, CONUS average (d) rcp85, CONUS average

Figure F1. Time series of monthly average (a) near-surface air temperature in the present-day (eval) simulations, (b) near-surface air tem-

perature in the future (rcp85) simulations, (c) precipitation in the present-day (eval) simulations, and (d) precipitation in the future (rcp85)

simulations. All variables are averaged over the CONUS domain defined as 85–105°W, 30–47°N.

The CONUS-average precipitation, on the other hand, varies significantly across years and among the resolutions (Figure

F1c, d). The resolution-sensitivity of the CONUS-average precipitation is not as simple or systematic as the global mean1265

precipitation. A subtle but consistent increase with resolution appears in the total (convective plus large-scale) precipitation

after further averaging over time, but not in individual convective and large-scale components (Table F1). As in TAS, the spatial

patterns of precipitation bias are similar across simulations over the central and eastern U.S., but greater variability appears

with higher resolution over the western U.S. (Figure F3).
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Figure F2. Annual mean 2m air temperature bias as in Figure E1 but showing only the CONUS region. The last panel (f) is not the bias but

the mean surface temperature from ERA-Interim.

An interesting difference between the TAS and precipitation biases is that the TAS warm bias is maximized over the northern1270

central US (35–55°N) and shows little sensitivity to resolution, while the precipitation dry bias is greatest in the southern central

US (30–35°N) and does show sensitivity to resolution. Multiple performance metrics — the ratio of spatial variance, mean bias,

and centered (i.e., mean bias already removed) root mean square error (CRMSE) — calculated over the CONUS region suggest

that surface precipitation is best simulated by VR12-46 (Figure F4b). Comparing all resolutions, both the spatial variability

(variance ratio and centered RMSE) and the mean (normalized bias) of precipitation are better simulated by finer resolution.1275

On the other hand, the correlation and variance ratio for TAS depend more weakly on resolution (Figure F4a).

Other hydrological components show more consistent resolution-sensitivities than the surface precipitation. For example,

the regional average cloud cover and low-level humidity become progressively smaller with higher resolution (Table F1). The
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Figure F3. Annual mean precipitation bias as in Figure E1 but showing only the CONUS region and using NLDAS data instead of GPCP as

reference (f).

resolution-sensitivity is more subtle for large-scale forcing terms such as relative humidity and meridional winds at the 850 hPa

level (denoted as RH850 and VA850, respectively) and zonal wind at the 200 hPa level (UA200), which have been suggested1280

to be important for the regional hydrological cycle over CONUS (e.g. Bukovsky et al., 2017; Song et al., 2019). Compared to

ERA-Interim, VA850 metrics improve with finer resolution (Figure F4c). In contrast, UA200 and RH850 do not show similar

improvement with increasing spatial resolution. A lack of coherent resolution sensitivity of UA200 is consistent with Figure

E3 where little difference is seen between the simulations in the Northern Hemisphere mid-latitudes.

As we prepare a more detailed documentation of the regional climate simulations, we refer potential data users to the1285

following studies evaluating the aspects of the CAM-MPAS simulations not documented here. Feng et al. (2021) performed

in-depth analysis of the simulated precipitation over CONUS, focusing on the mesoscale convective systems (MCSs) and

associated large-scale environment. They found that the model is capable of simulating the large-scale meteorological patterns
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(a) Near-surface air temperature 

(c)Relative humidity at 850 hPa

(e) Zonal wind at 200 hPa

(d) Meridional wind at 850 hPa

(b)Precipitation

Correlation Variance ratio Normalized bias Centered RMSE

Figure F4. Model error metrics calculated over the CONUS region for (a) near-surface temperature, (b) precipitation, (c) relative humidity

at 850 hPa, (d) meridional wind at 850 hPa, and (e) zonal wind at 200 hPa. Annual averages for the years 1990–2010 (2000–2010 for VR12-

46)) from NLDAS is used as a reference for precipitation, and those from ERA-Interim are used for other variables. Four error metrics (as

a column) are presented: 1) linear correlation of spatial patterns (Corr.), 2) ratio of the spatial variance (σ2
ref/σ

2
mod , subscripts ref and mod

refer to the reference data and model, respectively), 3) normalized bias (%) ((X̄mod− X̄ref )/X̄ref )× 100, overbar denotes the regional

average), and 4) centered RMSE, which is a RMSE calculated after the regional averages are removed.

favorable for producing MCSs identified from the observed MCS database but at lower frequency, leading to underestimation

of MCS number. They conclude that the incorrect response of moist (deep convection) parameterizations to the large-scale1290

environment is likely the main reason for the bias. Pryor et al. (2020) compared the present-day and future simulations by WRF

and CAM-MPAS in terms of the mean annual energy density from the wind turbines derived from the near-surface wind speed,
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noting significantly weaker near-surface winds in CAM-MPAS than WRF. Their sensitivity test indicates the overestimated

drag from the turbulent mountain stress parameterization in CAM5, also reported by Lindvall et al. (2013). Because model

biases are largely inherited from the CAM5.4 parameterizations, previous studies using the CAM5 physics with VR approach1295

are also useful to understand the model behavior (Huang et al., 2016; Rhoades et al., 2016, 2018b; Gettelman et al., 2018).

Table F1. Climatological means of selected variables over CONUS from present-day (eval) simulations.

Variable UR240 UR120 VR50-200 VR25-100 VR12-46

sfc. air temperature (K) 288.1 287.73 287.52 287.34 288.06

precipitation (mm d−1) 1.91 2.03 2.04 2.10 2.16

convective precip. (mm d−1) 0.89 0.86 0.88 0.88 1.01

large-scale precip. (mm d−1) 1.02 1.17 1.16 1.22 1.15

precipitable water (kg m−2) 21.16 20.12 19.69 19.34 19.51

column cloud liquid (g m−2) 59.73 60.00 53.70 51.06 37.37

column cloud ice (g m−2) 29.49 27.84 22.97 20.65 18.19

total cloud fraction (fraction) 0.52 0.50 0.48 0.46 0.41

relative humidity at 850 hPa (%) 57.73 56.73 54.56 53.84 52.16

Table F2. Examples of number of grid columns in the regional model simulations from the NA-CORDEX and FACETS archives

Models 50km 25km 12km

RegCM4 30429 123825 310761

WRF 24009 96036 255000
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