

1	Tracing subducted oceanic slabs in the mantle by
2	using molybdenum isotopes: A case study of
3	intraplate basalts from the Northeast China
4	
5	Qiugen Zheng ^A , Qifang Zheng ^B *, Yi Zhang ^C *, Guangyu He ^D , Qian Wang ^D , Jane Fitton ^E
6	A.School of Ocean Sciences, China University of Geosciences (Beijing), Beijing,
7	China,100083
8	B. School of Earth Sciences and Resources, China University of Geosciences (Beijing),
9	Beijing, China,100083
10	C.School of Earth Sciences, ZheJiang University, Hangzhou, China, 310058
11	D. State Key Laboratory of Isotope Geochemistry, Guangzhou Institute of Geochemistry,
12	Chinese Academy of Sciences, Guangzhou, China, 510630
13	E. Dept of Earth Sciences, University of Oxford, South Parks Road, Oxford OX1 3AN, UK
14	
15	
16	* Corresponding author:
17	Qifang Zheng and Yi Zhang
18	E-mail: xiaoyi_tu2021@163.com_
19	zhangyi920407@163.com
20	
21	
22	

23 Abstract

24	Determining subducted processes is very important for understanding lithological
25	heterogeneity because substantial quantities of slabs are recycled into the mantle. Molybdenum
26	isotopes have been used to distinguish sources materials because of the significant Mo isotopic
27	differences between the crust and the mantle. Here, we undertake a systematic Mo isotopic
28	investigation on a suite of well-characterized continental basalts from Keluo and Halaha-
29	Chaoer, located in Northeast China. $\delta^{98} Mo$ of Keluo varied from -0.41 to -0.23‰ with an
30	average of -0.34‰, and samples from Halaha-Chaoer ranged in $\delta^{98} Mo$ from -0.18 to -0.12‰
31	with an average of -0.15‰. The former is lighter than the mean value of fresh oceanic basalts
32	(-0.21‰), while the latter is similar to oceanic basalts. Combined with other geochemical
33	indications (LOI, Ce/Pb, La/Yb and so on), the Mo isotopic variations cannot be interrupted by
34	chemical weathering, continental crust contamination, or magmatic processes. The $\delta^{98}\text{Mo}$
35	variation in this study is explained by adding various oceanic crustal materials in magma
36	sources. The relationships of $\delta^{98} Mo$ with Ba/Th, Th/U, $^{143} Nd/^{144} Nd$ for the samples indicated
37	that sediment and altered oceanic crust have contributed to the significant variations in these
38	samples. This study indicates the great potential of Mo isotopes to distinguish different types
39	of recycled oceanic crust materials in the mantle.

40

41

- 42 Keywords: Molybdenum isotopes; Subducted oceanic slabs; Intraplate basalts; Northeast China
- 43

44 **1. Introduction**

45	Slab subduction is widely considered to be the primary mechanism for element cycling between
46	the crust and mantle (Hofmann, 1997; Stracke et al., 2003). The recycled materials with slabs
47	subduction are used to either generate the magmas in the subduction zone or form different
48	reservoirs, such as enriched mantle component I (EM I) and enriched mantle component II (EM
49	II) (Zindler and Hart, 1986). Previous investigations suggested that the oceanic crust account
50	for ~10% of the total mass of the mantle since the starting of subducted processes (Stracke et
51	al., 2003; Tang et al., 2016). The converted approach took varied materials into mantle and led
52	to lithological heterogeneity in the upper mantle (Perfit et al., 1980; Plank and Langmuir, 1998;
53	Castillo et al., 2000). Therefore, distinguishing the contribution of subducted materials was
54	required for understanding the lithological heterogeneity.
55	The previous works observed that the mobility of Mo could be negligible in the subduction
56	zones (Noll et al., 1996; Bali et al., 2012), suggesting that Mo isotopic composition of subdued
57	material can be recorded in the mantle (Freymuth et al., 2015). Supposing there are significant
58	differences in $\delta^{98}\mbox{Mo}$ and Mo concentration between the upper mantle, fresh oceanic crust,
59	altered oceanic crust, and sediment, the Mo isotope system will be a powerful tool to trace the
60	sources of magma and calculate the contribution proportion of each source. Bezard et al. (2016)
61	measured the Mo isotopic composition of Mid-Ocean Ridges Basalt (MORB) to establish the
62	Mo isotopic composition of the depleted mantle (DM) as -0.21±0.02‰. Freymuth et al. (2015)
63	analyzed the sediment and altered oceanic crust from ODP sites 801 and 802, ranging in $\delta^{98} Mo$
64	from -1.87 to 0.11‰ with an average value of -0.50‰ and from -0.88 to 0.86‰ with an average
65	value of -0.03‰, respectively. Moreover, the Mo concentrations of the upper mantle, altered
66	oceanic crust, and sediment are 1.65 $\mu g g^{-1}$, 0.35 $\mu g g^{-1}$, and 4.03 $\mu g g^{-1}$, respectively. The
67	significant differences in Mo isotopic composition and Mo concentrations between mantle and
68	crust indicate that Mo isotope has excellent potential to trace subducted processes.

69 Due to the natural advantage of the Mo isotope, many investigations focused on oceanic basalt

- vising Mo isotopic system to trace the subducted processes (König et al., 2016; Willbold and
- 71 Elliott, 2017; Zhang et al., 2020; Li et al., 2021). However, the current Mo isotope data of
- 72 intraplate basalt is very limited, and it is debated for using Mo isotope to trace recycled

- materials for intraplate basalt. Here, we measured a systematic Mo isotopic composition of a set of well-characterized basalt samples from Keluo and Halaha-Chaoer of Northeast China. Samples from Keluo display typical EM I characteristics, while samples from Halaha-Chaoer have the radiogenic isotopic signatures of the focal zone (FOZO) (Hart et al., 1992; Stracke et al., 2005). Thus, the samples allow us to use the Mo isotope to assess the contributions of recycled crustal materials to the mantle.
- 79 2 Sample

Northeast China was set between the Siberian Craton and the North China Craton, and 80 81 considered as the eastern segment of the Central Asian Orogenic Belt (Chen et al., 2007; Zhang et al., 1995). The plate suffered the closure of the Paleo-Asian Ocean and the amalgamation of 82 many microcontinent (Senger et al., 1993). Intraplate basaltic rocks in North China were formed 83 84 in the Cenozoic (Zhang et al., 1995; Zou et al., 2003). The Halaha-Chaoer and Keluo volcanic 85 fields were set at the Great Xing'an Mountains and the North of Songliao Basin (Zhang, 1992). 86 Fourteen samples were collected from two volcanic fields, including Halaha-Chaoer (2.0 Ma) 87 and Keluo (9.6–0.11 Ma), of Northeast China. These samples come from many works which 88 studied the evolution of volcanoes. Therefore, the geochemical and isotopic compositions of 89 more samples can be found in previous works (Sun et al., 2014, 2017), and particle samples are 90 measured in this study (Table S1). Here, we just provided a brief description of these samples. 91 The Mo concentration and MgO content of Halaha-Chaoer lavas ranged from 0.96 to 1.18 µg 92 $g^{\text{-1}}$ with an average value of 1.05 \pm 0.18 μg $g^{\text{-1}}$ and from 7.93 to 12.13 wt. %, suggesting significant crystallization. And the Sr-Nd isotopic ratios of Halaha-Chaoer samples is similar 93 to the FOZO component (initial $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ = 0.70354 - 0.7037 and $^{143}\mathrm{Nd}/^{144}\mathrm{Nd}$ = 0.51291 -94 95 0.5193). On the contrary, the Keluo lavas are characterized by a high Mo concentration of 1.21-2.63 µg g⁻¹ and same MgO content (7.67 to 11.28 wt.%) in relation to Halaha-Chaoer lavas. The 96 Sr-Nd isotopic compositions of the group sample are close to the EMI component (87Sr/86Sr = 97 0.70503-0.70541 and ${}^{143}Nd/{}^{144}Nd = 0.51235-0.51246$) (Table 1). The significant chemical 98 99 difference between Keluo and Halaha-Chaoer provided a great opportunity to check the ability of Mo isotope to trace the contributions of recycled crustal materials to the mantle. 100 101 **3** Analytical methods

4

102

3.1 Major and trace element analyses

103	The major and trace elements were conducted following the analytical procedures described by
104	Qi et al. (2000). An Inductively Coupled Plasma-Atomic Emission Spectrometer measured the
105	major elemental compositions. The loess on ignition (LOI) was analyzed after the samples were
106	heated for 30 min at 980°C. The samples were digested using a mixture of HF-HNO ₃ -HF. The
107	clean solutions were diluted to determine the trace element composition on an Inductively
108	Coupled Plasma-Mass Spectrometry (ELEMENT XR, Thermo, Germany). The reproducibility
109	for trace elements is better than 10% (2SD). All uncertainties of the major element are better
110	than 2% (2SE).
111	3.3 Mo-Sr-Nd isotopic analyses
112	The Mo isotopic measurement of all samples was carried out at the State Key Laboratory of
113	Isotope Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences.
114	Detailed processes for digestion, chemical purification and isotopic analysis can be found in Li
115	et al. (2014) and Zhao et al. (2017). Sr-Nd isotopes were determined at the China University of
116	Geosciences, Beijing, and a more analyzed method can be found in Xu et al. (2021).
117	The samples were digested using a 7 ml PFA beaker. Approximately 50-100 mg of powdered
118	samples were mixed with 2ml of concentrated HF and 1 ml of concentrated HNO3; the mixtures
119	were heated at 185 \pm 5°C for 36 h. The dry residues were dissolved into Aqua regia to digest
120	samples completely. The fully dissolved samples were evaporated to dryness and then
121	redissolved in 5ml 1.5 M HNO <mark>3</mark> .
122	The digested samples containing 100-200 ng Mo were spiked by the double spikes ($^{100}Mo-^{97}Mo$)
123	in a 15ml PFA beaker to correct the potential Mo isotopic fractionation of chemical purification
124	and measurement. The spiked samples were dried slowly at 90°C to allow the equilibration
125	between the samples and double spike and then redissolved in 4ml $\frac{1}{1000}$ of 0.1 M HF and
126	1M HCl. The sample solutions were loaded to prepare BPHA resin that was clean with 6 M
127	HCl and MQ. The matrix elements were washed out of columns by 0.1M HF-1M HCl. The
128	fraction of Mo was collected by 6 M HF-1M HCl in a 15ml PFA beaker. The eluted solutions
129	were evaporated to dry at 130 °C. Concentrated HNO3 and H_2O_2 were used to remove residual

130 organic materials from the resin. The total bank of the procedure is 0.5ng which can be

- 131 neglected in relation to the loaded sample. Sr and Nd were purified from matrix elements using
- 132 AG50W-X12 (200-400 mesh) resin and LN resin, respectively.
- 133 Molybdenum isotopic measurements were performed with a Multi-collector inductively 134 coupled plasma mass spectrometer (MC-ICP-MS, Neptune Plus, ThermoFisher). Sample 135 solutions were introduced into the plasma by an Aridus II desolvator system. The signal sensitivity of 95 Mo was ≥ 190 V μg^{-1} mL, and the bank signal of 95 Mo was less than 4 mV. The 136 137 solutions and samples were dissolved at 0.5 M HHNO₃ and diluted to 30 ng mL⁻¹ for measuring Mo isotopes. All Mo isotope analyses were carried out on the low mass resolution mode 138 139 $(\Delta M/M < 3000)$. The on-peak instrument and acid matrix blank were determined by measuring 1.5M HNO₃ before each sample and standard to subtract from the signal intensities. Every 5 140 samples were bracketed by a spiked SRM 3134 with 30 ng mL⁻¹ to normalize the Mo isotope 141 142 ratio of samples. More detailed parameters for the Mo isotopes measurements have been listed 143 in previous work. The Mo isotopic composition is expressed relative to NIST SRM 3134 as 144 delta (δ) notation: δ^{98} Mo=((98 Mo/ 95 Mo) sample/(98 Mo/ 95 Mo)_{NIST SRM 3134}-1) × 1000. Four 145 geological reference materials (NOD-A-1, NOD-P-1, BHVO-2 and BCR-2) from USGS were 146 digested, purified and measured with our samples. The Mo isotopic compositions re -0.79±0.04‰ 147 (2SD, n=5) for NOD-A-1, -0.87±0.05‰ (2SD, n=5) for NOD-P-1, -0.05±0.05‰ (2SD, n=5) 148 for BHVO-2 and -0.06±0.04‰ (2SD, n=5) for BCR-2, similar to previous works (Skierszkan 149 et al., 2015; Li et al., 2016; Willbold et al., 2016). 150 For Sr and Nd isotopic composition, the mass fractionations of chemical purification and
- For Sr and Nd Isotopic composition, the mass fractionations of chemical purification and instrument were calibrated with 88 Sr/ 86 Sr=8.375209 and 146 Nd/ 144 Nd=0.7219. The long-term analysis gave 0.710241 ± 24 for 87 Sr/ 86 Sr of NIST SRM 987 in the lab and 0.512434 ± 29 for 143 Nd/ 144 Nd of Alfa Aesar Nd. The Sr and Nd isotopic composition of BHVO-2 and BCR-2 determined in this study are consistent with previous values (Li et al., 2012).
- 155 **4. Results**
- The δ^{95} Mo values of Northeast China lavas vary from -0.41‰ to -0.12‰ (Table 1). The sample, from Keluo varied from -0.41 to -0.23‰ in δ^{95} Mo with an average of -0.34±0.10‰ (2SD), higher than the sediments (-0.50‰) and lighter than the altered oceanic basalts (0.03‰) (Freymuth et al., 2015). The samples from Halaha-chaoer have homogenous Mo isotopic

- 160 composition, ranging from -0.12 to -0.18% with an average of $-0.15\pm0.05\%$ (2SD), similar to
- 161 the fresh MORB (-0.21‰, Chen et al., 2022). The Sr-Nd isotopes, major and trace elements
- 162 composition were shown in Table 1 and Table S1.
- 163 5. Discussion
- Given Mo isotope can be fractionated during a range of processes, it is necessary to carefully assess the processes that may have modified Mo isotopic composition of these samples, such as chemical weathering, assimilation of shallow continental crust, magmatic differentiation and partial melting. And then, we estimate the effects of recycled crustal materials on the Mo isotopic variation of the samples.
- 169 5.1 Chemical weathering and Assimilation of crustal materials on Mo isotope

170 Mo isotopes were fractionated during chemical weathering, and lighter isotopes adsorbed onto 171 secondary minerals so that the weathered residual is lighter in δ^{95} Mo than fresh igneous rocks 172 (Greaney et al., 2021). However, the samples do not observe secondary minerals (Sun et al., 173 2014). Moreover, the loss on ignition (LOI) ranging from 0.00 to 1.28 does not display a 174 negative correlation (Fig. 1). Both pieces of evidences imply that the observed Mo isotopic 175 variation cannot be attributed to chemical weathering. 176 These basalts erupted through the continental crust, which is about 40km. The Mo content of

177 these basalts varies from 1.28 to 2.82 μ g g⁻¹ with an average value of 1.83 μ g g⁻¹, higher than 178 the average Mo concentration of continental crust is 0.8 µg g⁻¹ (Rudnick and Gao, 2014). The 179 upper continental crust is significantly different in δ^{95} Mo from the basalt (Yang et al., 2017; 180 Greaney et al., 2020). Hence, we must consider that crustal materials may modify the Mo 181 isotopic composition of these basalts. For the scenario, a negative correlation between Mo 182 content and δ^{95} Mo were expected because of the heavy Mo isotopic composition of the continental crust. However, we do not observe the relationship (Fig. 2). On the other hand, 183 binary mixing calculation implies that the Mo isotopic variation cannot be explain by binary 184 185 mixing between continental crust and mantle melt, because of unrealistic Mo concentration 186 ratio (Fig. 2). Hence, Assimilation of crustal materials is not the main process that leaded to the 187 Mo isotopic variation in these basalts.

188

189 **5.2** The effect of fractional crystallization on Mo isotope

190	The Mo isotopic composition of basalts from the Kos Island arc system ranged from 0.3 to
191	0.6%, indicating that Mo isotopes are fractionated during the fractional crystallization of
192	hornblende and biotite (Voegelin et al., 2014). However, Bezard et al. (2016) measured the Mo
193	isotopic composition of MORB from the Pacific-Antarctic ridge and the Mohns-Knipovich
194	ridge. The δ^{95} Mo did not show correlations with MgO that indicated magma differentiation,
195	suggesting that Mo isotopic fractionation is insignificant during the fractional crystallization of
196	MORB magma. Recently, Chen et al. (2022) analyzed some MORB glass to constrain the Mo
197	isotopic composition of the upper mantle. The correlations between $\delta^{95}Mo$ and magmatic
198	differentiation indicators were not observed, inferring that Mo isotopes were not fractionated
199	during magmatic differentiation (Chen et al., 2022). For our samples studied here, the
200	significant variation of MgO contents (from 6.9 to 13.0%) implies that fractional crystallization
201	plays an essential role in changing the chemical composition of basalts. As shown in Fig.3a,
202	Mo concentration in basalt from Northeast China correlates well with MgO; the positive
203	correlation indicates that Mo is a likely incompatible element enriched in solid phases during
204	melt evolution. The unclear correlations between $\delta^{98} Mo$ and MgO (Fig. 3b) and Mo (Fig. 2)
205	content suggest that the effect of fractional crystallization on the $\delta^{95}\text{Mo}$ of basalts is likely
206	insignificant. The observation is similar to the previous inference (Bezard et al., 2016 and Chen
207	et al., 2022) but different from the conclusions from Voegelin et al. (2014). Thus, the $\delta^{98} Mo$
208	variation cannot be explained simply to fractional crystallization and may be caused by partial
209	melting.

210 5.3 The effect of partial melting on Mo isotopic composition of basalts

Since sodium is a moderately incompatible element at melting the with highest concentration at started melting, the Na concentration of melt decreases with the growth of melting degree. Hence, Na_{8.0} indicates the degree of partial melting without the effect of fractional crystallization (Klein and Langmuir, 1987). Bezard et al. (2016) observed the absence of correlation between δ^{95} Mo and Na_{8.0}, explaining the trend that Mo isotopes are not fractionated during mantle melting. Since La is more incompatible than the heavy rare earth element Yb during the partial melting of mantle, (La/Yb)_N ratio is sensitive to the degree of partial melting.

218 Liang et al. (2017) observe broad correlations between δ^{98} Mo and (La/Yb)_N in ocean island 219 basalts (OIB), suggesting a significant effect of melting on the Mo isotopic variations. The conclusion is contrary to Bezard et al. (2016). However, for our samples, we did not observe 220 the clear relationships between δ98Mo and Na_{8.0} (Fig. 4a) as well as (La/Yb)_N (Fig. 4b). In 221 222 addition, McCoy-West et al. (2019) accessed the Mo isotopic behaviors using a non-modal 223 batch melting model and inferred that Mo isotopes were significantly fractionated during 224 mantle partial melting that melt is heavier in δ^{98} Mo than the residue. The fractionation was driven from as that Mo (VI) with heavier isotope is more incompatible than Mo (IV) (Leitzke 225 226 et al., 2017). However, the samples ($-0.33\pm0.10\%$) produced by the high degree of partial melting have lighter Mo isotopic composition than the samples with a low degree (-227 0.15±0.05‰), contrary to the prediction trend by the previous model (Fig. 4, McCoy-West et 228 229 al., 2019). Therefore, the evidences suggested that partial melting cannot explain the δ^{98} Mo 230 variation of these basalts.

231 5.4 Molybdenum isotopic variation induced by crustal recycling

The above discussions show that the Mo isotopic variation for these basalts cannot be explained by shallow-level processes, fractional crystallization and partial melting. Radiogenic isotopes, such as Nd and Sr, usually are used to reflect heterogeneous sources. The significant variations for ¹⁴³Nd/¹⁴⁴Nd and δ^{98} Mo imply that there are more than two components at least for the mantle sources of these basalts (Fig. 5). In the following, we will discuss the mechanisms that may be responsible for the processes of mantle enrichment and abnormal Mo isotopic composition,

238

239 Sediments could be recycled into the mantle with subducted slabs (Stracke et al., 2003). The 240 δ^{98} Mo of subducting sediments varied from -1.87 to 0.11% with an average value of -0.50 \pm 0.27‰ (2SE, n=16, Freymuth et al., 2015). Since Mo is a highly incompatible element and 241 lighter isotopes were preserved in the residual produced during metamorphic dehydration 242 243 (König et al., 2016), melts derived from recycled sediments should inherit the light Mo isotopic 244 composition. Hence, the incorporation of recycled sediments into peridotite melting could be responsible the lighter Mo isotopic composition. The δ^{98} Mo of basalt studied here (-0.30‰) is 245 lighter than fresh MORB (-0.21‰, Chen et al., 2022), and ¹⁴³Nd/¹⁴⁴Nd is higher than sediment 246

247	(0.51228, Vervoort et al., 2011) and lighter than fresh MORB (0.513074, Gale et al., 2013),
248	suggesting that sediment is one of source for these basalts from Keluo. On the other hand, Th/U $$
249	ratio is not fractionated significantly during magmatic processes as Th and U are incompatible
250	elements. Both elements can be fractionated during fluid processes because of the higher
251	mobility of U than Th (Hawkesworth et al., 1997; Bali et al., 2009; Ling et al., 2011). Thus,
252	there is a significant difference in the Th/U ratio between fresh MORB (3.54, Gale et al., 2013)
253	and sediment (6.64, Vervoort et al., 2011). Reasonability, the ratio is usually used as an indicator
254	of distinguishing the mantle sources (Sun et al., 2020). The Th/U ratio of our basalts (4.94 to
255	6.12) falls between sediment and fresh MORB. The observation indicates that sediment may
256	play an essential role in forming these basalts. It is noteworthy that there is not expected positive
257	correlation between δ^{98} Mo and Th/U ratio (Fig. 5b), implying other sources for the basalts.
258	Significant Mo isotopic fractionation is observed during seawater alteration (Freymuth et al.,
259	2015), suggesting that altered oceanic crust (-0.02‰) is heavier δ^{98} Mo than fresh ocean crust
260	(-0.21%). Thus, The incorporation of altered oceanic crust during the particle melting of mantle
261	could produce melts with significant various. Mo isotopic composition. Due to the mobility
262	difference between Ba and Th (Weaver et al., 1986), the Ba/Th ratio of the altered oceanic crust
263	will be increased with the growing extent of low-temperature hydrothermal alteration (Kelley
264	et al., 2003). Furthermore, the ratio will not be changed during slab dehydration (Kogiso et al.,
265	1997; Kessel et al., 2005). Hence, the ratio is used to trace the incorporation of altered oceanic
266	crust in the mantle (Sun et al., 2020). The Ba/Th ratios of these basalts range from 147 to 239,
267	higher than sediment and fresh MORB and similar to altered oceanic crust (Fig. 5c), indicating
268	the incorporation of altered oceanic crust into the source region of these basalts.
269	Therefore, recycled sediment and altered both have contributed to the basalt of Keluo produced
270	in Northeast China. The materials may have come from the westward subduction of the Pacific
271	plate (Tang et al., 2014). The contribution of the fresh oceanic crust is insignificant because of
272	the low Mo concentration. Mixing of melts produced from recycled sediment with the
273	contribution of mantle peridotites derived the variation of Mo isotopic composition in the
274	basalts.
075	(Carelarian

275 6. Conclusion

276	This work suggests that the basalt from Keluo displays heterogenous Mo isotopic composition
277	and is heavier Mo isotopic compositions than the upper mantle. At the same time, the sample
278	from Halaha-Chaoer is homogenous in $\delta^{98}\text{Mo},$ similar to the upper mantle. The isotopic
279	variation was explained by adding sediment and altered oceanic basalt with subducted oceanic
280	slabs into mantle sources. Therefore, the Mo isotope is a powerful tool in investigating the
281	effect of crustal recycling on mantle-derived magmas to understand recycling materials' roles
282	in mantle heterogeneity.
283	
284	Acknowledgements
285	We are grateful to Jie Li and FanHuang Li for analytical assistance, as well as Yang Sun and
286	Yongwei Zhao for sample collection. The work was supported by the National Key Research
287	and Development Program of China (2017YFC0703201), the National Science and Technology
288	Major Project of the Ministry of Science and Technology of China (2016ZX05014001), the
289	Strategic Priority Research Program of the Chinese Academy of Sciences (XDA14010201), the
290	National Natural Science Foundation of China (41530347, 41872225)
290 291	National Natural Science Foundation of China (41530347, 41872225) Reference
291	Reference
291 292	Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A
291 292 293	Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochim. Cosmochim. Acta 73(13), A80.
291 292 293 294	 Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochim. Cosmochim. Acta 73(13), A80. Bali, E., Keppler, H., Audetat, A., 2012. The mobility of W and Mo in subduction zone fluids and
291 292 293 294 295	 Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochim. Cosmochim. Acta 73(13), A80. Bali, E., Keppler, H., Audetat, A., 2012. The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth Planet. Sci. Lett. 351–352, 195–
291 292 293 294 295 296	 Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochim. Cosmochim. Acta 73(13), A80. Bali, E., Keppler, H., Audetat, A., 2012. The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth Planet. Sci. Lett. 351–352, 195–207.
291 292 293 294 295 296 297	 Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochim. Cosmochim. Acta 73(13), A80. Bali, E., Keppler, H., Audetat, A., 2012. The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth Planet. Sci. Lett. 351–352, 195–207. Bezard R., Fischer-Godde M., Hamelin C., Brennecka G. A. and Kleine T. (2016) The effects of
291 292 293 294 295 296 297 298	 Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochim. Cosmochim. Acta 73(13), A80. Bali, E., Keppler, H., Audetat, A., 2012. The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth Planet. Sci. Lett. 351–352, 195–207. Bezard R., Fischer-Godde M., Hamelin C., Brennecka G. A. and Kleine T. (2016) The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of
291 292 293 294 295 296 297 298 299	 Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochim. Cosmochim. Acta 73(13), A80. Bali, E., Keppler, H., Audetat, A., 2012. The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth Planet. Sci. Lett. 351–352, 195–207. Bezard R., Fischer-Godde M., Hamelin C., Brennecka G. A. and Kleine T. (2016) The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts. Earth Planet. Sci. Lett. 453, 171–181.
291 292 293 294 295 296 297 298 299 300	 Reference Bali E., Audetat A. and Keppler H. (2009) Mobility of U and Th in subduction zone fluids-A synthetic fluid inclusion study. Geochim. Cosmochim. Acta 73(13), A80. Bali, E., Keppler, H., Audetat, A., 2012. The mobility of W and Mo in subduction zone fluids and the Mo–W–Th–U systematics of island arc magmas. Earth Planet. Sci. Lett. 351–352, 195–207. Bezard R., Fischer-Godde M., Hamelin C., Brennecka G. A. and Kleine T. (2016) The effects of magmatic processes and crustal recycling on the molybdenum stable isotopic composition of Mid-Ocean Ridge Basalts. Earth Planet. Sci. Lett. 453, 171–181. C.J. Hawkesworth, S.P. Turner, F. McDermott, D.W. Peate, P. van Calsteren, U-Th isotopes in arc

304 island basalts. Lithos 216–217, 254–263.

305	Chen, S., Sun, P., Niu, Y., Guo, P., Elliott, T., Hin, R.C., 2022. Molybdenum isotope systematics of
306	lavas from the East Pacific Rise: constraints on the source of enriched mid-ocean ridge basalt.
307	Earth Planet. Sci. Lett. 578, 117283.
308	Commun. 12, 6015.
309	Freymuth H., Vils F., Willbold M., Taylor R. N. and Elliott T. (2015) Molybdenum mobility and
310	isotopic fractionation during subduction at the Mariana arc. Earth Planet. Sci. Lett. 432, 176-
311	186.
312	Gale A., Dalton C. A., Langmuir C. H., Su Y. and Schilling JG. (2013) The mean composition of
313	ocean ridge basalts. Geochem. Geophys. Geosyst. 14, 489-518.
314	Greaney, A.T., Rudnick, R.L., Romaniello, S.J., Johnson, A.C., Gaschnig, R.M., Anbar, A.D., 2020.
315	Molybdenum isotope fractionation in glacial diamictites tracks the onset of oxidative
316	weathering of the continental crust. Earth Planet. Sci. Lett. 534, 116083.
317	Hart S. R., Hauri E. H., Oschmann L. A. and Whitehead J. A. (1992) Mantle plumes and
318	entrainment-Isotopic evidence. Science 256, 517-520
319	Hofmann A. W. (1997) Mantle geochemistry: The message from oceanic volcanism. Nature 385,
320	219–229.
321	Kelley K. A., Plank T., Ludden J. and Staudigel H. (2003) Composition of altered oceanic crust at
322	ODP Sites 801 and 1149. Geochem. Geophys. Geosyst. 4, 8910. https://doi.org/
323	10.1029/2002GC000435
324	Kessel R., Schmidt M. W., Ulmer P. and Pettke T. (2005) Trace element signature of subduction-
325	zone fluids, melts and supercritical liquids at 120-180 km depth. Nature 437, 724-727.
326	Klein E. and Langmuir C. H. (1987) Global correlations of ocean ridge basalt chemistry with axial
327	depth and crustal thickness. J. Geophys. Res. 92, 8089-8115
328	Kogiso T., Tatsumi Y. and Nakano S. (1997) Trace element transport during dehydration processes
329	in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island
330	basalts. Earth Planet. Sci. Lett. 148, 193–205.
331	Konig S., Wille M., Voegelin A. and Schoenberg R. (2016) Molybdenum isotope systematics in
332	subduction zones. Earth Planet. Sci. Lett. 447, 95–102.

333 Leitzke F. P., Fonsecaa R. O. C., Sprungb P., Mallmannc G., Lagosa M., Michelya L. T. and Mu"nker

334	C. (2017) Redox dependent behaviour of molybdenum during magmatic processes in the
335	terrestrial and lunar mantle: implications for the Mo/W of the bulk silicate Moon. Earth Planet.
336	Sci. Lett. 474, 503–515.
337	Li CF., Li XH., Li QL., Guo JH., Li XH. and Yang YH. (2012) Rapid and precise
338	determination of Sr and Nd isotopic ratios in geological samples from the same filament
339	loading by thermal ionization mass spectrometry employing a single-step separation scheme.
340	Anal. Chim. Acta 727, 54–60.
341	Li H. Y., Zhao R. P., Li J., Tamura Y., Spencer C., Stern R. J., Ryan J. G. and Xu Y. G. (2021)
342	Molybdenum isotopes unmask slab dehydration and melting beneath the Mariana arc. Nat.
343	Arc). Lithos 190–191, 440–448.
344	Li J., Liang X.R., Zhong L.F., Wang X.C., Ren Z.Y., Sun S.L., Zhang Z.F. and Xu J.F. (2014).
345	Measurement of the isotopic composition of molybdenum in geological samples by MC-ICP-
346	MS using a novel chromatographic extraction technique. Geostand. Geoanal. Res, 38, 345-
347	354,
348	Li, J., Liang, XR., Zhong, XC., Wang, ZY., Ren, SL., Sun, ZF., Zhang, JF., Xu, JF., 2014.
349	Measurement of the isotopic composition of molybdenum in geological samples by MC-IC-
350	MS using a novel chromatographic extraction technique. Geostand. Geoanal. Res. 38 (3), 345-
351	354.
352	Liang Y. H., Halliday A. N., Siebert C., Fitton J. G., Burton K. W., Wang K. L. and Harvey J. (2017)
353	Molybdenum isotope fractionation in the mantle. Geochim. Cosmochim. Acta 199, 91-111.
354	Ling M. X., Wang F. Y., Ding X., Zhou J. B. and Sun W. D. (2011) Different origins of adakites
355	from the Dabie Mountains and the Lower Yangtze River Belt, eastern China: geochemical
356	constraints. Int. Geol. Rev. 53(5-6), 727-740.
357	McCoy-West A. J., Chowdhury P., Burton K. W., Sossi P., Nowell G. M., Fitton J. G., Kerr A. C.,
358	Cawood P. A. and Williams H. M. (2019) Extensive crustal extraction in Earth's early history
359	inferred from molybdenum isotopes. Nat. Geosci. 12, 946-951
360	Noll, P.D., Newsom, H.E., Leeman, W.P., Ryan, J.G., 1996. The role of hydrothermal fluids in the
361	production of subduction zone magmas: evidence from siderophile and chalcophile trace
362	elements and boron. Geochim. Cosmochim. Acta 60, 587-611.

- 363 Perfit, M., Gust, D., Bence, A., Arculus, R., Taylor, S.R., 1980. Chemical characteristics of island-
- arc basalts implications for mantle sources. Chem. Geol. 30 (3), 227–256.
- 365 Plank, T., Langmuir, C.H., 1998. The chemical composition of subducting sediment and its
- 366 consequences for the crust and mantle. Chem. Geol. 145, 325–394
- 367 Qi, L., Hu, J., Gregoire, D.C., 2000. Determination of trace elements in granites by inductively
- 368 coupled plasma–mass spectrometry. Talanta 51, 507–513.
- 369 Rudnick R. L. and Gao S. (2014) Composition of the continental crust. In Treatise on Geochemistry
- 370 (eds. H. D. Holland and K. K. Turekian), second ed. Elsevier, Oxford, pp. 1–51.
- 371 Skierszkan EK, Amini M, Weis D (2015) A practical guide for the design and implementation of the
- 372 double-spike technique for precise determination of molybdenum isotope compositions of
- 373 environmental samples. Anal Bioanal Chem 407:1925–1935
- 374 Stracke A., Bizimis M. and Salters V. J. M. (2003) Recycling oceanic crust: Quantitative constraints.

375 Geochem. Geophys. Geosyst. 4, 8003. https://doi.org/10.1029/ 2001GC000223, 3.

- 376 Stracke A., Hofmann A. W. and Hart S. R. (2005) FOZO, HIMU, and the rest of the mantle zoo.
- 377 Geochem. Geophys. Geosyst. 6, Q05007. <u>https://doi.org/10.1029/2004GC000824</u>.
- 378 Sun Y., Teng F.-Z., Ying J.-F., Su B.-X., Hu Y., Fan Q.-C. and Zhou X.-H. (2017) Magnesium
- 379 isotopic evidence for ancient subducted oceanic crust in LOMU-like potassium-rich volcanic
- 380 rocks. J. Geophys. Res. Solid Earth 122, 7562–7572.
- 381 Sun Y., Ying J., Zhou X., Shao J. A., Chu Z. and Su B. (2014) Geochemistry of ultrapotassic volcanic
- rocks in Xiaogulihe NE China: implications for the role of ancient subducted sediments. Lithos
 208–209, 53–66.
- 384 Tang Y., Obayashi M., Niu F., Grand S. P., Chen Y. J., Kawakatsu H., Tanaka S., Ning J. and Ni J.
- 385 F. (2014) Changbaishan volcanism in northeast China linked to subduction-induced mantle
- 386 upwelling. Nat. Geosci. 7, 470–475.
- Vervoort J. D., Plank T. and Prytulak J. (2011) The Hf–Nd isotopic composition of marine sediments.
 Geochim. Cosmochim. Acta 75, 5903–5926
- 389 Voegelin A. R., Pettke T., Greber N. D., von Niederha"usern B. and Na"gler T. F. (2014) Magma
- 390 differentiation fractionates Mo isotope ratios: evidence from the Kos Plateau Tuff (Aegean
- 391 Willbold M. and Elliott T. (2017) Molybdenum isotope variations in magmatic rocks. Chem. Geol.

392	449, 253–268.
393	WillboldM., Hibbert K., Lai Y. J., Freymuth H., HinR. C., Coath C., Vils F. and Elliott T. (2016)
394	High-precision mass-dependent molybdenum isotope variations in magmatic rocks determined
395	by double-spike MC-ICP-MS. Geostand. Geoanal. Res. 40, 389-403.
396	Xu LJ., Liu SA. and Li S. (2021) Zinc isotopic behavior of mafic rocks during continental deep
397	subduction. Geosci. Front. 12(5) 101182.
398	Yang J., Barling J., Siebert C., Fietzke J., Stephens E. and Halliday A. N. (2017) The molybdenum
399	isotopic compositions of I-, S and A-type granitic suites. Geochim. Cosmochim. Acta 205,
400	168–186.
401	Zhang Y., Yuan C., Sun M., Li J., Long X., Jiang Y. and Huang Z. (2020) Molybdenum and boron
402	isotopic evidence for carbonrecycling via carbonate dissolution in subduction zones. Geochim.
403	Cosmochim. Acta 278, 340-352.
404	Zhao, PP., Li J., Zhang L., Wang ZB., Kong DX., Ma J-L., Wei GJ., Xu jF (2015)
405	Molybdenum mass fractions and isotopic compositions of interna tional geological reference
406	materials. Geostand. Geoanal. Res. 40, 217-226.
407	Zindler A. and Hart S. (1986) Chemical geodynamics. Annu. Rev. Earth Planet. Sci. 14, 493-571.

Table 1 Molybdenum i	sotonic com	position of Northeas	t China basalt and	geological	l reference materials
Table I Morybuenum I	solopic com	iposition of normeas	i China Dasan and	geologica	i reference materials

Sample	Mo(µg g ⁻¹)	MgO(%)	Na _{8.0}	LOI	Ce/Pb	Th/U	Ba/Th	(La/Yb) _N	⁸⁷ Sr/ ⁸⁶ Sr	143Nd/144Nd	δ ⁹⁸ Mo	2SD
Keluo												
DYS12-01	2.42	7.93	3.61	0.86	10.9	4.94	239	40.6	0.70514	0.51240	-0.38	0.04
DYS12-02	2.45	7.89	3.48	0.75	9.83	5.01	224	43.7	0.70509	0.51241	-0.36	0.04
XYS12-01	2.63	8.02	4.12	0.16	8.53	5.06	147	47.7	0.70541	0.51239	-0.41	0.03
XYS12-04	2.53	8.6	3.98	0.4	17.0	5.15	176	49.1	0.70534	0.51236	-0.38	0.05
JS12-01	1.48	11.28	4.16	1.28	15.4	5.46	227	39.8	0.70511	0.51242	-0.32	0.04
JS12-02	1.52	11.3	4.25	0.9	15.2	5.40	223	36.3	0.70503	0.51243	-0.38	0.03
DZS12-02	1.46	11.43	4.90	0.08	17.6	5.52	202	41.5	0.70514	0.51243	-0.23	0.05
DZS12-03	1.32	11.62	5.09	0.06	17.0	4.93	231	44.3	0.70507	0.51246	-0.34	0.03
XGS12-01	1.73	10.11	4.04	0.68	9.26	4.96	201	42.8	0.70527	0.51238	-0.28	0.04
XGS12-02	1.88	9.93	4.02	0.34	9.99	5.87	198	43.2	0.70531	0.51238	-0.29	0.05
HS12-01	1.21	12.13	4.96	0.12	15.4	6.32	231	35.2	0.70514	0.51244	-0.34	0.04
HS12-03	1.38	12.05	5.02	0.06	20.35	6.12	238	37.2	0.70516	0.51241	-0.32	0.03
Halaha-												
Chaoer												
07CH02	1.04	12.97	4.64	0.10	17.40	4.13	134	10.2	0.70365	0.51293	-0.15	0.03
07AES07	1.01	10.88	4.27	0.30	12.14	4.09	105	10.3	0.70371	0.51291	-0.12	0.03
07AES09	0.96	10.43	4.13	0.12	15.59	3.98	97	9.4	0.70369	0.51293	-0.18	0.04
07AES16	1.18	12.5	4.82	0.11	20.34	4.44	109	9.9	0.70354	0.51293	-0.13	0.05
Geological r	eference n	naterials										
NOD-P-1											-0.79	0.04
NOD-A-1											-0.87	0.0
BCR-2											-0.06	0.0
BHVO-2											-0.05	0.0

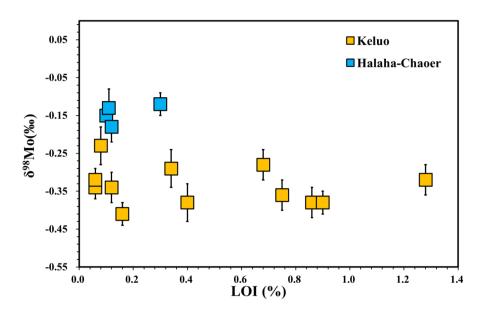


Fig.1 δ^{98} Mo versus loss on ignition (LOI) for Northeast China basalts. Data are reported in

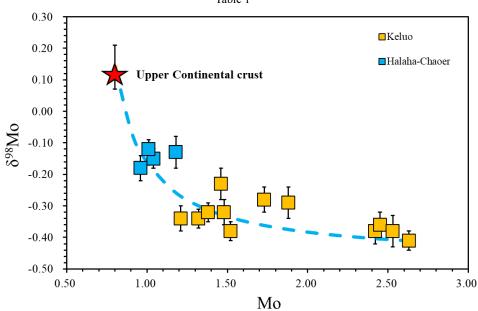


Fig.2 Plots of δ^{98} Mo against Mo concentration for Northeast China basalts. The average Mo isotopic composition of upper continental crust is $0.14 \pm 0.07\%$ (Yang et al., 2017). Data are reported in Table 1.

Table 1

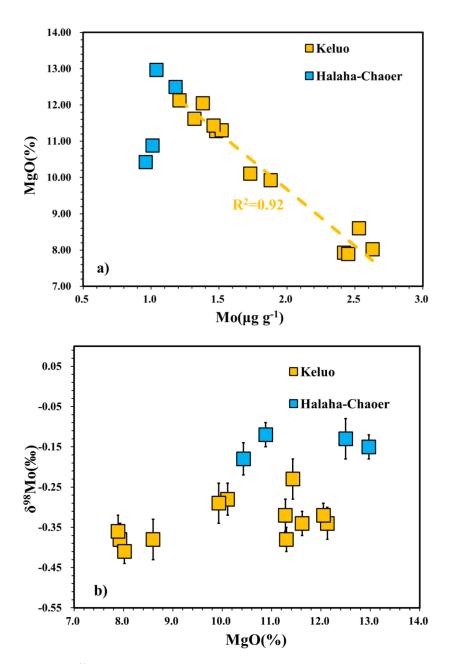


Fig. 3 Plot of δ^{98} Mo against Mo concentration (a) and MgO content (b) for Northeast China

basalts.

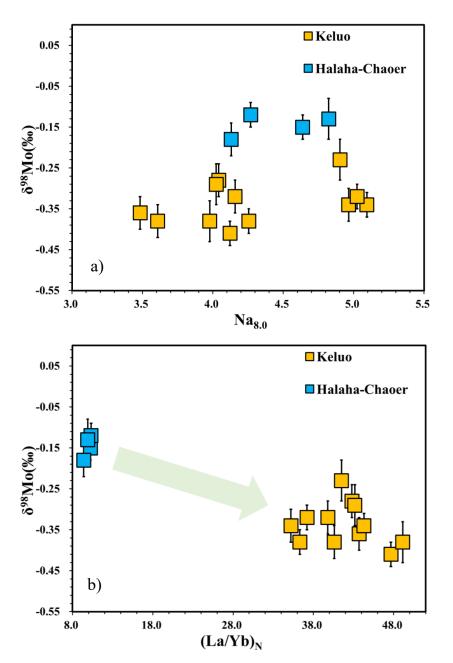
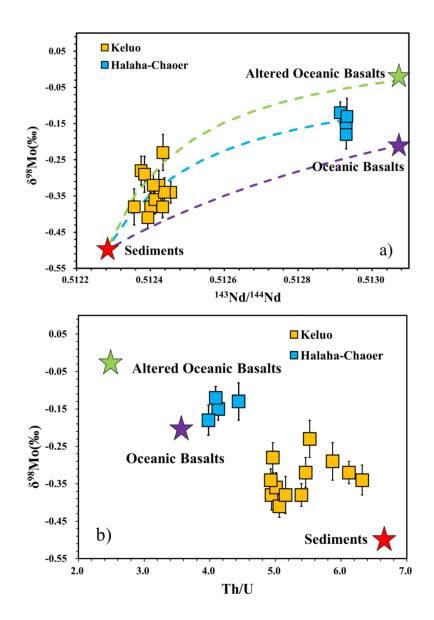



Fig. 4 δ^{98} Mo versus Na_{8.0} (a) and (La/Yb)_N (b) for Northeast China basalts. Na_{8.0} was calculated by Na_{8.0} = Na2O+(0.373×MgO)-2.98 (Klein and Langmuir, 1987). Data are reported in Table 1

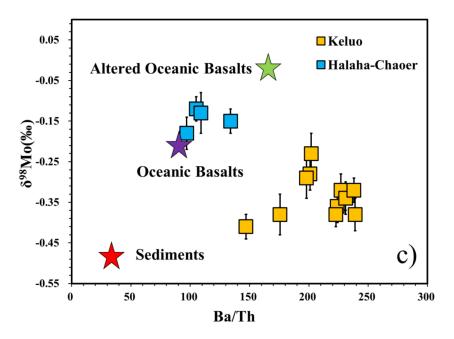


Fig. 5 Plot of δ⁹⁸Mo against ¹⁴³Nd/¹⁴⁴Nd (a), Th/U (b) and Ba/Th (C) for Northeast China basalts. The clay-rich sediments, highly altered oceanic crust, and unaltered oceanic basalts are represented by sediments from DSDP sites 294/295 (Vervoort et al., 2011), samples from the Bay of Islands ophiolite (Parendo et al., 2017), and the average E-MORB (Gale et al., 2013), respectively. The Nd isotopic ratio of clay-rich sediments is 0.512380 (Vervoort et al., 2011), whereas the Nd isotopic compositions of highly altered oceanic crust and unaltered oceanic basalts are assumed to be similar to that of the average E-MORB (0.513074) (Gale et al., 2013). The Th/U and Ba/Th ratios of these components are 6.64 and 35 (Vervoort et al., 2011), 2.5 and 166 (Parendo et al., 2017), and 3.54 and 92 (Gale et al., 2013), respectively.