Author’s response to reviewer number 2

AC: We thank the anonymous referee for the detailed review of our manuscript. We carefully reviewed each comment and have amended at manuscript to address the issues raised. Reviewer comments are in black with our responses in blue. Changes to the manuscript are in the small font size 10.

RC2: General major comment:

• Besides the AOD data and the Angstrom Exponent data, did you analyze the SDA from the sun photometer? I believe this will give further information on fine and coarse mode AOD and it would help to better differentiate the fine and coarse mode aerosols.

AC: We thank the reviewer for this suggestion. We were aware that the SDA product can yield submicron (fine) and super-micron (coarse) AOD at 500 nm, and that from this the fraction of fine mode to total AOD can be computed. However, at the time we undertook this study, there were (and remain) few published dust detection case studies which had incorporated SDA data (e.g., Capelle et al., 2018; O’Neill et al., 2023). SDA products can also (like with regular AOD) produce significant errors when there is cirrus cloud, due to the high latitude and mountainous area this site is situated in, it inevitably experiences a high amount of incidence cloudy days. This is an issue with any AERONET data but it was decided that we would not use SDA. At the same time, we were also keen to use an approach that integrated short and long AERONET wavelengths in a comparable manner. To balance the discussion, we have included mention of the potential of SDA data going forward. We hope that this is satisfactory. The manuscript now reads:

“However, these thresholds may not encompass the optical parameters of HLMA and this may also impact retrievals at this site. Further exploration of other AERONET products, for example the Spectral Deconvolution Algorithm (SDA), may further help define thresholds for HLMA.” [Lines 515-518]

• I think this classification based on the threshold from Verma et al. (2015) and Dubovik et al. (2002) are very primitive and as presented in figure 9b it is not very realistic. You try to classify aerosol types based on Verma et al. (2015) and Dubovik et al. (2002) thresholds. First of all, Dubovik et al. (2002) tried to investigate the absorption and other aerosol optical properties in several key locations. As they mentioned in this paper, they used these thresholds because the values of real and imaginary parts of the refractive index, as well as single scattering albedo, are given only for the condition of $\tau_{(440)} > 0.4$ for Urban-industrial, mixed, and biomass burning aerosols, and for the conditions of $\tau_{ext(1020)} > 0.3$ and $\alpha < 0.6$ for desert dust. On the other hand, Verma et al. (2015) tried to define thresholds for the Jaipur AERONET station in India and the aerosol in different regions has its own properties (as you
claimed in the introduction). So, I strongly suggest authors define their thresholds for
their station based on the properties of the aerosol at Kluane lake station.

AC: We thank the reviewer for this comment. The Verma et al. (2015) threshold used in this
study was for broad characterisation of the aerosols at the site and has been used in other
scholarly articles for helping define thresholds (e.g., Bibi et al., 2016; Djossou et al., 2018;
Iftikhar et al., 2018; Léon et al., 2021; Platero et al., 2018; Singh et al., 2020). The Dubovik et
al. (2002) paper is a highly cited paper used for defining thresholds for dust using AERONET
which verified AERONET data using in-situ measurements (e.g., Ciren and Kondragunta,
2014). As HLMA is understudied, particularly using AERONET data, little to no thresholds
had previously been defined. Therefore, the thresholds of Verma et al. (2015) were used to
broadly characterise what was happening at the site. Under this classification marine aerosols
are present at the site, these maybe be due to clouds or other arid background aerosols at the
site. Therefore, the authors added in a comment regard the use of this threshold later in the
manuscript regarding this issue. The manuscript now reads:

“The Verma et al. (2015) threshold is used in this study for broad characterisation of the aerosols at the site and
has been used in other scholarly articles for helping define thresholds (e.g., Bibi et al., 2016; Djossou et al., 2018;
Iftikhar et al., 2018; Léon et al., 2021; Platero et al., 2018; Singh et al., 2020). Under the Verma et al. (2015)
classification, marine aerosols are flagged, but at KLRS we concur and assume that these possibly represent clouds
and/or other arid background aerosols present at the site (see Table 1).” [Lines 250-255]

“In this study, the likely presence of dust events was determined through use of initial generic thresholds at two
different AERONET wavelengths, 500 nm and 1020 nm. Thresholds at 500 nm were used to broadly characterise
aerosols at Lhù’áán Mán with thresholds used in arid environments (Verma et al, 2015). Therefore, whilst the 500
nm definitions are useful to understand the aerosol environment at KLRS, it may not be truly representative of
dust emissions. This is evident when compared to direct ground data observations, AERONET-derived dust events
in this study recorded at longer wavelengths were found to be a closer match to the known frequency of events
than those at shorter wavelengths (Figure 9ab). For example, on a day where RC data shows dust events for
95.8% of the day (24th May 2018), 11.6% of AOD readings were classified as dust using the thresholds from
Verma et al. (2015), whereas thresholds from Dubovik et al. (2002) yielded 24.2% AOD readings as dust. We,
therefore, note that careful consideration in wavelength and definition thresholds is needed when quantifying
HLMA in AERONET data.” [Lines 500-511]

We hope this is satisfactory.

fine-mode AOD enhancements based on AERONET SDA product, Atmos. Chem. Phys., 17, 5991–6001,

Bibi, H., Alam, K., and Bibi, S.: In-depth discrimination of aerosol types using multiple clustering techniques
over four locations in Indo-Gangetic plains, Atmos. Res., 181, 106–114,
https://doi.org/10.1016/j.atmosres.2016.06.017, 2016.

- If you are using Version 3 Level 1.0 data (or DQ 1) you need to further investigate the clouds effects on your results. I quickly checked MODIS Aqua imageries for Kluane lake for the month of May 2018 and based on these images at least 30% of the days in this month were cloudy or partly cloudy.

AC: We thank the reviewer for this suggestion. Due to the high latitude and mountainous area this site is situated in, it inevitably experiences a high amount of incidence cloudy days. It would be hard to verify specific cloud impacts to a high-level of certainty. An investigation of available RC images to note the occurrence of cirrus cloud is currently being investigated by co-authors. At the time of the study, only one day (24/05/2018) of RC data was available to be analysed. However, the authors have gone through MODIS Terra imagery and have added information on cloudy days for this daily overpass period to the supplementary information (Table S1). The supplementary information now reads:

“S3. Implications of using Level 1.0 AERONET data

Cloud-screening is an essential part of the AERONET network data refinement. Clouds affect AOD, with cirrus clouds being included in the fine mode AOD and other cloud types having larger optical depths (Arola et al., 2017). To extract errors where the clouds are thin enough to get direct sun measurements, cloud screening is applied to all AERONET data (Arola et al., 2017). This cloud screening removes around ~20 to 50% of the data (Smirnov et al., 2000), and as seen in figure 9a removes many dust events. To get an accurate image of dust events at the site, level 1.0 data is used, but as a by-product some cloud optical depth may also be included in AOD
measurements. Arola et al. (2017) found that the uncloud-screened data added roughly 0.007 and 0.0012 onto the AOD. However, these results are proprietary and due to being unable to calculate the effect that cloud screening has at Lhù’a àn Mân and other locations or whether the screened cloud was actually dust, uncloud-screened data was used throughout the study. The SSA and volume size distribution inversion products are run using level 2.0 cloud-screened data. Days recorded as DEDs may have had some of the dust aerosol scans removed by these products and subsequent results.

Table S1. Dust event days and cloudy days at Lhù’a àn Mân over the study period. Cloudy days were decerned by analysing MODIS Terra images and DED decerned using 1020 nm wavelength from Dubovik et al. (2002).

<table>
<thead>
<tr>
<th>Month</th>
<th>No. of cloudy days in month</th>
<th>No. of DEDs</th>
<th>No. of coincident DEDs and cloudy days</th>
</tr>
</thead>
<tbody>
<tr>
<td>May-18</td>
<td>24</td>
<td>17</td>
<td>14</td>
</tr>
<tr>
<td>Jun-18</td>
<td>23</td>
<td>26</td>
<td>20</td>
</tr>
<tr>
<td>Jul-18</td>
<td>21</td>
<td>17</td>
<td>13</td>
</tr>
<tr>
<td>Aug-18</td>
<td>24</td>
<td>13</td>
<td>17</td>
</tr>
<tr>
<td>Sep-18</td>
<td>17</td>
<td>13</td>
<td>9</td>
</tr>
<tr>
<td>Oct-18</td>
<td>24</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>May-19</td>
<td>24</td>
<td>19</td>
<td>15</td>
</tr>
<tr>
<td>Jun-19</td>
<td>28</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Jul-19</td>
<td>31</td>
<td>17</td>
<td>17</td>
</tr>
<tr>
<td>Aug-19</td>
<td>28</td>
<td>20</td>
<td>19</td>
</tr>
<tr>
<td>Sep-19</td>
<td>16</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>Oct-19</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

I suggest adding a few sentences about how you compare daily mean MAIAC AOD with daily AERONET mean AOD. It is not clear if you compare one pixel (1*1km) with AERONET AOD or if you chose a bigger area and then averaged AOD values and used the averaged value for your analysis.

AC: We thank the reviewer for this suggestion. We created a polygon over the southern portion of Lhù’a àn Mân and calculated the average. This has been updated in the manuscript and now reads:

“1 km by 1 km pixels within the 70km² southern portion of Lhù’a àn Mân was analysed in this study. The mean MAIAC AOD retrieval for each day was then used for analysis. The valley is 4-5 km wide, and the dust plume size is often bigger than this (around ~25 km² – see figure S4). With dust advecting over the lake a uniform brightness background should aid in MAIAC AOD retrieval.” [Lines 315- 319]

We hope this is satisfactory.

RC2: Specific comments:
RC2: I suggest using either “high latitude” or “high-latitude”

AC: We thank the reviewer for this suggestion. The authors agree and have amended all cases to high-latitude.

RC2: I suggest using either “ground based” or “ground-based”

AC: We thank the reviewer for this suggestion. The authors agree and have amended all cases to ground-based.

RC2: L94: by direct sun and “sky scan” measurements

AC: We thank the reviewer for this suggestion. This was a useful comment and the authors have updated the manuscript accordingly. The manuscript now reads:

“The Aerosol Robotic Network (AERONET) is a ground-based collaborative network of automated sun-sky scanning spectral radiometers that determine the aerosol optical and microphysical properties by direct sun and “sky-scan” measurements (Holben, 1998)”.

RC2: L98: The Angström exponent (α) allows estimation of aerosol particle size (effective radius) not aerosol size distribution.

AC: We thank the reviewer for this suggestion. This has been amended in the manuscript and noted by the authors. The manuscript now reads:

“The spectral aerosol optical depth determined from these data are also used to derive an Angström exponent (α) which can in turn allow estimation of aerosol particle size (O’Neill et al., 2003)”.

RC2: L103: this map needs to be fixed. I don’t see any highlighted area in “yellow” and also circles are outside of the map. In the legend N is ~1750 but, in the caption, it says N ~ 1075. Please fix this as well.

RC: The authors thank the reviewer for highlighting the inconsistencies in this figure. The figure has now been modified to a more simplified format by changing the colours and caption, updating the numbers, and correcting the projection.
Figure 1. Location of all AERONET stations with stations in the high-latitudes or proglacial areas highlighted in orange. Cryospheric stations account for 48 out of 1655 global AERONET (data from the AERONET website: https://aeronet.gsfc.nasa.gov).

RC2: L134-135 Since AERONET also is a remote sensing measurement maybe you need to specify the remote observations to satellite observations.

AC: We thank the reviewer for this suggestion. The authors carefully considered this comment and concluded that we differentiate between remote observations and satellite observations by referring to “space-based” and “ground-based” measurements.

RC2: L199: Please add “Figure S1”

AC: We thank the reviewer for this suggestion. The authors agree and added figure S1 into the manuscript. The manuscript now reads:

“This is evidenced in meteorological stations further up and down the valley which are much less directionally variable than KLRS, with dominant wind directions of North-Northeast (supplementary information figure S1).”

RC2: L 210: You need to specify these max and min observed values are for the Kluane Lake AERONET station.

AC: We thank the reviewer for this suggestion. The authors agree and have added max and min to the AERONET stations. The manuscript now reads:

“AERONET returns at 1.0 data quality (DQ) range for between 232 measurements per day (maximum observed on 21/06/2019) to 1 return per day (minimum observed on 06/07/2018) at KLRS.”
RC2: L212: One of the aerosol types that you have in your classification is Marine. I don’t know if it is the case for Kluane lake with about 200 km far from the ocean and all of those mountains around the lake.

AC: We thank the reviewer for highlighting this issue. The authors agree that this is confusing as the KLRS is far from the ocean. The Verma et al., (2015) threshold used here was developed for a different location but used here to provide a broad characterisation of the detectable aerosols at the site. Under the Verma classification, marine aerosols were initially flagged, but at KLRS we concur and assume that these actually represent clouds and/or other arid background aerosols present at the site. Therefore, the authors have removed mention of “marine aerosols” and added a comment to underpin this change to the Verma approach later in the manuscript. The manuscript now reads:

“In this study, the likely presence of dust events was determined through use of initial generic thresholds at two different AERONET wavelengths, 500 nm and 1020 nm. Thresholds at 500 nm were used to broadly characterise aerosols at Lhù’aàän Mán with thresholds used in arid environments (Verma et al, 2015). Therefore, whilst the 500 nm definitions are useful to understand the aerosol environment at KLRS, it may not be truly representative of dust emissions. This is evident when compared to direct ground data observations, AERONET-derived dust events in this study recorded at longer wavelengths were found to be a closer match to the known frequency of events than those at shorter wavelengths (Figure 9ab). For example, on a day where RC data shows dust events for 95.8% of the day (24th May 2018), 11.6% of AOD readings were classified as dust using the thresholds from Verma et al. (2015), whereas thresholds from Dubovik et al. (2002) yielded 24.2% AOD readings as dust. We, therefore, note that careful consideration in wavelength and definition thresholds is needed when quantifying HLMA in AERONET data.” [Lines 500-511]

We hope this is satisfactory.

RC2: L213-214: based on Giles et. al., (2019), Level 1.5 represents near-real-time automatic cloud screening and automatic instrument anomaly quality controls and Level 2.0 additionally applies pre-field and post-field calibrations.

AC: We thank the reviewer for this suggestion and have now noted this detail in the text. The manuscript now reads:

“AERONET AOD data are computed at three DQ levels: Level 1.0 (unscreened), level 1.5 (represents near-real-time automatic cloud screening and automatic instrument anomaly quality controls), and Level 2.0 (all of above and applies pre-field and post-field calibrations) with the Version 3 automated control algorithm.”

RC2: L222-225: So how about cases where AOD is less than 0.3? That is the reason I think you should use the SDA product which is a standard product of AERONET and it breakdown the total AOD into fine and coarse mode AOD. So, you don’t need to define this threshold.

AC: We thank the reviewer for this suggestion. Due to the close proximity of the AERONET station to the dust source, having AOD readings of lower than 0.3 is not an issue in this context. We were aware that the SDA product can yield submicron (fine) and super-micron (coarse) AOD at 500 nm, and that from this the fraction of fine mode to total AOD can be computed. However, at the time we undertook this study, there were (and remain) few published dust
detection case studies which had incorporated SDA data. At the same time, we were also keen to use an approach that integrated short and long AERONET wavelengths in a comparable manner. To balance the discussion, we have included mention of the potential of SDA data going forward. We hope that this is satisfactory. The manuscript now reads:

“However, these thresholds may not encompass the optical parameters of HLMA and this may also impact retrievals at this site. Further exploration of other AERONET products, for example the SDA, may further help define thresholds for HLMA.” [Lines 515-518]

RC2: L310-312: Please add an explanation of why you use Spearman’s rank correlation coefficient.

AC: We thank the reviewer for noting the need for clarification. A Spearman’s rank correlation was used here to underpin likely relationships between variables and the approach conforms to assumptions regarding the data set and the data distribution. However, the authors agree that this does not aid the narrative of the paper, and we have therefore removed it.

RC2: L397: Not only below the mountain line but also if dust remains out of the sun photometer’s FOV still it will not be captured. So, for example, if the sun is in the south of the KLRS and the dust plume is to the north of the site, still it will not be captured.

AC: Thank you for drawing this to the authors attention an explanation of this was added to the manuscript. The manuscript now reads:

“A possible explanation as to why AERONET detected dust in the afternoon when the plume was not originating in the southern section of the delta is that the vertical motion of emitted dust was greater so that it was above the mountain line and thus detectable by AERONET. Furthermore, AERONET requires a direct sun measurement, if it is cloudy the dust will not be recorded. Dust must be in the AERONET stations FOV, when the sun is south of KLRS and the dust plume advects north, it will not be captured. A combination of dust emission in the evening and low height of the dust lead to dust event’s detection being underrepresented at Lhù’âân Mán.” [Lines 409-415]

RC2: L413-419: the caption is not very clear please use the same definition for the different variables as your y-axis labels. For example, you talk about Average weekly depth and the y labels are Lake Depth (m) and Weekly total Snowfall (cm) and it is a bit confusing.

AC: The authors agree, and this figure was fixed, the addition of weekly mean lake depth was added, and colours of lines changed for readability. The caption was also update accordingly and now reads:
Figure 8. Variability in DEDs in 2018 and selected seasonal variables that affect dust emission. The vertical bars display the total number of dust event days recorded by AERONET from AODo per week. The AERONET station was recording from 14/05/18 until 21/10/18, but no data was recorded between 24/07/18 - 14/08/18. Average weekly depth (cm) displayed with the solid line and average weekly air temperature (°C) displayed with the dot-dash line recorded at the Lhù’àän Män Research Site. Lake height displayed with the long dash line is taken from the Environment Canada lake depth gauge 09CA001 at Kluane Lake near Burwash Landing and is the average weekly water depth at that site.

AC: We thank the reviewer for this suggestion. This was corrected to 14/05/18 until 21/10/18.

RC2: L428: In the Figure 8 caption you said that “The AERONET station was recording from 14/05/18 until 21/10/18” and here “The AERONET station began recording on 13th May 2018”. Please fix the one that is not correct.

AC: We thank the reviewer for this comment and the authors agree, the 500 nm threshold was used to broadly characterise and may not be reflective of actual HLMA at the site. We have now updated the manuscript and the whole paragraph reads:

“Given the distribution of monitoring sites, most previous studies which investigate the radiative signature of dust using AERONET returns have been conducted at low latitudes (desert dust) using DQ 1.5 AERONET data (e.g., Santese et al., 2013; Binietoglou et al., 2015). In this study, the likely presence of dust events was determined through use of initial generic thresholds at two different AERONET wavelengths, 500 nm and 1020 nm.
Thresholds at 500 nm were used to broadly characterise aerosols at Lhù’ànn Màn with thresholds used in arid environments (Verma et al., 2015). Therefore, whilst the 500 nm definitions are useful to understand the aerosol environment at KLRS, it may not be truly representative of dust emissions. This is evident when compared to direct ground data observations, AERONET-derived dust events in this study recorded at longer wavelengths were found to be a closer match to the known frequency of events than those at shorter wavelengths (Figure 9ab). For example, on a day where RC data shows dust events for 95.8% of the day (24th May 2018), 11.6% of AOD readings were classified as dust using the thresholds from Verma et al. (2015), whereas thresholds from Dubovik et al. (2002) yielded 24.2% AOD readings as dust. We, therefore, note that careful consideration in wavelength and definition thresholds is needed when quantifying HLMA in AERONET data.” [Lines 500-511]

RC2: L493-494: Please rewrite this sentence. It is hard to understand.

AC: We thank the reviewer for this comment. The sentence has been rewritten to improve readability. The manuscript now reads:

“For DEDs in 2018 (using definitions from Dubovik et al. 2002 and at DQ 1.0) at Lhù’ànn Màn, the average α was -0.003 indicating a very coarse grain size.”

RC2: L496-497: based on Figures 11a and 11b the distribution is not bimodal and it is trimodal with a fine mode peak of 0.2 to 0.4 μm and 2 coarse mode peaks at 2.6 and 10.1μm.

AC: We thank the reviewer for this suggestion. The authors agree with this and have amended the manuscript to trimodal accordingly. The manuscript now reads:

“Scans made on DEDs (Figure 11a) show a trimodal distribution with peaks at 2.6 and 10.1μm.”

RC2: L499_500: AERONET inversion PSD bins (x-axis) are radius, not diameter but Bachelder et al. (2020) results as you mentioned here are in diameter so you need to convert one to another and then compare them together.

AC: The data from AERONET inversions are indeed in radius. This was then converted to diameter by the authors and always referred to as diameter to match Bachelder et al., (2020) and is common in scholarly work (e.g., Huang et al., 2023; Ryder et al., 2019; Song et al., 2022).

RC2: L501: Do you think this second peak (around 10μin radius) is real or it might be affected by the cloud? I know these results are from Level 2 inversion but if the cloud screening doesn’t work well for direct sun measurements, how much do you believe in these results from AERONET Inversion?

AC: The authors thank the reviewer for this comment. We took into careful consideration this comment. The cloud screening algorithm does not work well for dust detection as classifies dust as cloud and consequently removes the dust, we do not envision that it works vice versa. Therefore, we can assume there is some course dust blowing from the site which may be responsible for this second peak. We hope that this is satisfactory.

RC2: L503: “aerosol phases” is not clear to me. I think by “aerosol phases” you mean “aerosol types”

AC: The authors thank the reviewer for this comment, which was also raised by reviewer 1. The manuscript has been updated to aerosol types. The manuscript now reads:

“SSA was derived for the aerosol types show that dust scatter the most incoming radiation with biomass burning aerosols scattering slightly less (figure 11c).”

L510: the colours in the scatterplot are not the same as the colour in the caption, please fix this.

AC: The authors thank the reviewer for raising this and the caption has been amended to reflect the colours in the scatterplot and now reads:
“Figure 9. (a) The number of DEDs by month from 1020 nm over the 2018 and 2019 Lhù’ân Mân dust seasons detected by the different data quality levels computed by AERONET. DQ 1.0 is represented in blue, DQ 1.5 is represented in orange, and DQ 2.0 in green. (b) Scatterplot of daily DQ 1.0 AOD and α at 440-870 nm used to broadly characterise aerosols at Lhù’ân Mân for DEDs in the dust seasons of 2018 and 2019. In blue is the dust, black is biomass/industrial aerosols, grey is the arid background, green is marine type aerosols, and mixed types are represented in orange. Thresholds for each class are taken from Verma et al. (2015) whose definitions stems from Jaipur in India, these thresholds may vary from those found a KLRS but give a broad characterisation of aerosols present.”
AC: The authors thank the reviewer for raising this and the caption has been amended to reflect the colours in the scatterplot. The caption now reads:

“Figure 10. Aerosol compositions comparisons at Lhù’ànn Màn on a DED - 24/05/2018 (A&B) and a non-dust event day- 23/07/2018 (C&D). Scatterplots A&C are at DQ 1.0 AOD at 500 nm with thresholds from Verma et al. (2015) for broad characterisation of aerosols present at the site. The scatterplots B&D are at DQ 1.0 AOD with thresholds from Dubovik et al. (2002). In blue is the dust, grey is the arid background, green is marine aerosols, and mixed types are represented in orange.”

L521: Figure 11 a and b x-axis labels are radius, not diameter, please fix the labels.

AC: We thank the reviewer for this suggestion. Calculations were converted to diameter for these plots for easy comparison with other works.

RC2: L521: Why some of these plots in figure 11 are just for one year (for example Figure 11c) and some of these plots are for two years (Figures 11d and e)? Maybe it would be more reasonable if you keep the time range the same for all plots.

AC: We thank the reviewer for this comment. The inversion products were only available at KLRS from 2019 onwards. We have, therefore, amended the figure to only reflect plots from 2019 and updated the caption.

Figure 11. (a) Volume size distribution of aerosols at Lhù’ànn Màn Recordings that were taken on a DED (DED definition from Dubovik et al. (2002) in the 1020 nm band) are in blue, and recordings taken when there were biomass burning (defined from Verma et al., 2015) events (smoke) are in grey. Any days where dust or smoke
were not detected in AERONET are displayed in black. Models used to calculate volume size distribution are based on AERONET level 2.0 DQ with and AOD > 0.4. Dust event days are then pulled out for (b) underneath to show the presence of trimodal dust size. (c) Single scattering albedo for the principal aerosol types recorded at the Lhù’ånn Mân AERONET station for 2019 when AOD >0.4. Dust events are in green, biomass burning events are in pink, all other aerosol types are in blue. Models that calculate SSA are based on AERONET level 2.0 DQ. Frequency histograms of AOD (d) and Angstrom exponent (e) at Kluane Lake AERONET station in 2019.

RC2: L527: Again, the distribution is trimodal with a fine mode peak and two coarse mode peaks.

AC: We thank the reviewer for this suggestion. Thank you for this comment the manuscript was updated accordingly. The manuscript now reads:

“Dust event days are then pulled out for (b) underneath to show the presence of trimodal dust size.”

RC2: L529-530: Again, the colours in the caption have not matched the colours in the plot.

AC: Thank you for this comment the manuscript was updated accordingly. The caption now reads:

“Figure 11. (a) Volume size distribution of aerosols at Lhù’ånn Mân Recordings that were taken on a DED (DED definition from Dubovik et al. (2002) in the 1020 nm band) are in blue, and recordings taken when there were biomass burning (defined from Verma et al., 2015) events (smoke) are in grey. Any days where dust or smoke were not detected in AERONET are displayed in black. Models used to calculate volume size distribution are based on AERONET level 2.0 DQ with and AOD > 0.4. Dust event days are then pulled out for (b) underneath to show the presence of trimodal dust size. (c) Single scattering albedo for the principal aerosol types recorded at the Lhù’ånn Mân AERONET station for 2019 when AOD >0.4. Dust events are in green, biomass burning events are in pink, all other aerosol types are in blue. Models that calculate SSA are based on AERONET level 2.0 DQ. Frequency histograms of AOD (d) and Angstrom exponent (e) at Kluane Lake AERONET station over 2018 and 2019.”

AC: The authors thank the reviewer for this comment, the authors agree and updated the manuscript. The manuscript now reads:

“Figures 12 and 13 suggest a weak relationship between AOD\(_A\) and AOD\(_M\) at Lhù’ånn Mân during 2018.”