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Abstract. Coastal areas can be tremendously biodiverse and host as well a substantial part of the world population and many

critical infrastructures. However, there are often fragile environments and
::::
that face various hazards as

::::
such

::
as flooding, coast

erosion, land salinization or pollution, earthquake-induced land motions, or anthropogenic processes. In this article, we inves-

tigate the stability of the Nice-Côte d’Azur airport that has been built on reclaimed land in the Var river delta (French Riviera,

France). This infrastructure is
:::
has

::::
been a permanent concern since the partial collapse of the platform in 1979 and the on-going5

subsidence of the airport runways. Here, we used the full archive of ESA SAR images from 1992 to 2020 to comprehensively

monitor the dynamics of the airport subsidence. We find
:::::
found that maximum downward motion rate is slowing down from 16

mm/yr in the 1990s to 8 mm/yr today. However, sediment compaction is still active and an acceleration phase of the continuous

creep leading to a potential failure of a part of the platform cannot be excluded. Our study demonstrates the importance of

remotely monitoring of the platform to better understand coastal land motions, which will ultimately help evaluate and reduce10

associated hazards.

1 Introduction

Global warming due to greenhouse gas emitted into the atmosphere is triggering a climate crisiswhose we can already see

immediate signs ,
::::

the
:::::::
impacts

::
of

::::::
which

::::
can

:::::::
already

:::
be

:::
felt

::
in

:::::::
current

::::::
times with more frequent extreme weather events

::::
such as flooding, heatwaves or wildfires. Another consequence due to this

:
of

:::
the

:
global warming is the rise of the sea level,15

and the impact on the stability of coastal urban areas where a substantial part of the world’s population lives. Actually, as the

Earth’s atmosphere get warmer, solid water (glaciers and ice sheets) melts and increases the quantity of sea water, that also

occupies more volume because of thermal expansion (Wigley and Raper, 1987; Frederikse et al., 2020). Those two combined

processes are inducing sea level rise (SLR) whose amplitude will depend on which Representative Concentration Pathway

(RCP) emission scenario is followed. SLR is thus estimated for 2100
:::
the

::::
year

:::::
2100 between 0.29 m and 0.59 m for a low20

emission scenario (RCP 2.6) or between 0.6 m and 1.1 m for a high emission scenario (RCP 8.5) (Oppenheimer et al., 2019).

Even if the mean Earth temperature increase is kept below 2°C (compared to the pre-industrial period) within the next decades,
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sea level will continue to rise for several centuries or more due to the system inertia (Schaeffer et al., 2012). This estimation

is worrying as UN reports that 40% of the world population live within 100 km from the coast (whose more than 600 million

people live in coastal areas that are less than 10 meters above sea level) and 8 of the 10 world’s largest cities are near a coast.25

Even if the mean Earth temperature increase is kept below 2°C (compared to the pre-industrial period) within the next

decades, sea level will continue to rise for several centuries or more due to the system inertia (Schaeffer et al., 2012). It is thus

important to think how cities can adapt to this long-term process as SLR has already destructive consequences. One solution is

to build sea barriers. Few of them have been already built around the world to contain, locally, sudden sea water rise that occurs

during extreme weather events as storms or high tides. Among the dozen of projects to impede the sea water to flood inland, we30

can mention one of the biggest barrier built in Venice (Italy) (Mooyaart et al., 2014). Venice is flooded regularly when high tides

(acqua alta) hit the city. To protect the rich cultural heritage from the floods, a titanic project (Mose) has been implemented. It

took advantage that Venice is built behind a lagoon with only four, relatively narrow (∼ 400 m) openings to the Adriatic sea. A

system with movable panels (flap gates) was set up to rise when high tides occur (Fice and Scotti, 1990; Mooyaart et al., 2014).

The project took 18 years and 6 billion dollars (plus about 100 million $ per year for maintenance) (Kolbus, 2019). Sea barriers35

at larger scale don’t exist yet. A famous project is the New-York Harbor storm surge barrier. But many arguments against

make it very hypothetical. Among them, we can list the cost of the project, the duration (few decades), the “insiders/outsiders”

dynamic, with only those behind the barriers receiving maximum protection, or the fact that the barrier could damage the zones

outside its protection. But maybe the most relevant argument is just as for the Mose barrier, it won’t protect the city from the

long trend sea level rise.40

However, sea rise is just one factor in the relative sea level changes and vertical ground motions can significantly amplify

or reduce the effect of the global SLR. Indeed, sinking ground along the shoreline greatly magnifies the effects of sea level

rise because both processes work together to worsen the situation (Milliman and Haq, 1996; Wöppelmann and Marcos, 2016;

Wu et al., 2022). Indeed, uplift or subsidence along the coast are generated either by natural phenomena (sediment compaction

(Cahoon et al., 1995), global isostatic adjustment (Farrell and Clark, 1976; Kendall et al., 2005; Peltier, 2004), or tectonics45

(Atwater, 1987)) or by human activities (ground water (Galloway and Burbey, 2011) or hydrocarbon extraction (Métois et al.,

2020), or land reclamation (Cavalié et al., 2015)).
:::
This

::::
last

:::
one

::::::::
becomes

:::::
more

:::
and

:::::
more

::::::::
frequent

:::
due

:::
to

:::::::::
population

:::::::
growth

::
in

::::::
coastal

:::::
areas.

:
Subsidence due to human activities are often very localized and difficult to model. They are thus often not very

well known and the underlying processes remain unclear. One of the most effective method to reveal them is to measure the

Earth surface displacements by InSAR (Bürgmann et al., 2000)
:::::::::::::::::::::::::::::::::::::::::
(Bürgmann et al., 2000; Cavalié and Trouvé, 2022). Actually,50

the spatial sampling of the radar allows to map finely the location and the amplitude of these surface deformations. Indeed,

::::
And the more InSAR studies, the more coastal subsidence are revealed

::::::::::::::
(Wu et al., 2022).

::
In

:::
the

::::
last

::::
few

::::::
years,

:::::::
several

:::::::
studies

:::
on

:::::::::::
deformation

:::::::::::::
measurements

:::
by

:::::::
InSAR

::::
over

::::::::::
reclaimed

:::::
lands

:::::
have

:::::
been

:::::::::
published,

:::::::
showing

:::
the

:::::::
raising

::::::::
attention

::
of

:::
the

::::::::::
community

:::
for

:::
this

:::::::
subject.

::::
For

:::::::
example,

::::::::::::::::::::
Xiong et al. (2022) and

:::::::::::::::::
Li et al. (2022) used

:::::::::
Sentinel-1

::::
data,

::::::::
covering

:::
five

::::::
years,

::
to

:::::::
observe

:::::::::
subsidence

::::
over

:::::::
several

::::::::
reclaimed

:::::
lands

::
in

:::::::
China.

:::::
Other

::::::
studies

:::::::::
processed55

::::::
several

:::::::
datasets

:::::
from

::::::::
different

::::::
sensors

:::
in

:::::
order

::
to

:::::
cover

:
a
::::::
longer

:::::::::::
observation

::::::
period.

:::::::::
However,

:::
due

::
to

:::
the

:::::::
lifespan

:::
of

:::
the

:::::::
different

:::::
SAR

:::::::
sensors,

:::::
these

::::::::
datasets

:::
do

:::
not

:::::::
overlap

::
in

:::::
time

:::
and

:::::
have

::::::::
temporal

:::::
gaps.

::::
For

::::::::
example,

::::
the

:::::::::
subsidence

:::
of
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:::::::
Urayasu

::::
city

:::::::
(Japan)

:::
has

:::::
been

:::::::::
measured

::::::
thanks

::
to

::::::::
ERS-1/2

:::::::::::
(1993-2006),

::::::
ALOS

:::::::::::
(2006-2010)

:::
and

::::::::
ALOS-2

:::::::::::
(2014-2017)

::::::
InSAR

::::
time

::::::
series

::::::::::::::::::
(Aimaiti et al., 2018),

:::::::
leading

::
to

::
a
::::
gap

:::::::
between

:::::
2010

::::
and

:::::
2014.

::
In

::::
this

:::::
case,

:::
the

::::::::
temporal

::::::
profile

:::
of

:::
the

:::::::::::
deformation

::::
was

:::
too

::::::::
irregular

:::
to

::::::
enable

:::
any

:::::::::
modelling

:::::
that

:::::
could

:::::::
connect

:::
the

:::::::::::::
measurements

::::::
across

:::
the

:::::::::
temporal60

::::
gap.

::::::::
However,

::
in

::::
two

:::::
other

:::::::
studies,

:::
the

::::::::
temporal

::::::
profile

::
of

:::::::::::
deformation

::::
was

:::::::
regular

:::::::
enough

::
to

::
be

:::::::::
modelled

:::
and

:::::
thus

::
to

::::::
recover

::
a
:::::::::::
deformation

::::::::
spanning

::::
the

:::::
whole

:::::::::::
observation

:::::::::
timelapse:

:::
on

:::
the

::::
one

:::::
hand,

::::::::::::::::::
Park and Hong used

::
a
::::::::::
hyperbolic

:::::
model

::
to

:::::::
connect

::::
two

::::::
InSAR

::::
time

:::::
series

:::::::::
measured

:::
by

:::::
ALOS

:::::::::::
(2007-2012)

:::
and

:::::::::
Sentinel-1

:::::::::::
(2014-2019)

::
on

::::::
Busan

:::::::::
reclaimed

:::::
lands

::::::
(South

:::::::
Korea);

:::
on

::::
the

:::::
other

::::::
hand,

::
a

:::::::::
settlement

::::::
model

:::::::::::::::::::::::::::
(Plant et al., 1998) established

::::::
during

::::
the

:::::::::::
preparation

::
of

:::::
Hong

:::::
Kong

::::::::::::
International

::::::::
Airport

::::
was

::::
used

:::
to

:::::::
connect

:::::
time

:::::
series

::::::::
acquired

:::::
over

::::
this

:::
site

:::
by

::::::
ERS-2

::::::::::::
(1998-2000),65

:::::::::
ENVISAT

::::::
ASAR

::::::::::
(2003-2010),

::::::::::::::
Cosmo-SkyMed

:::::::::::
(2013-2017)

:::
and

:::::::::
Sentinel-1

:::::::::::
(2015-2018)

:::::::::::::::
(Wu et al., 2020).

::::::
Several

:::::::
models

:::
for

:::::::::
subsidence

:::::::::::::
measurements

:::
are

:::::::::
compared

::
in

:::::::::::::::::
(Xiong et al., 2022),

:::::::
namely

::::::::::
hyperbolic,

:::::::
Poisson

:::
and

:::::::::::
exponential

:::::::
models.

::::::::
However,

::
in

:::
the

:::::::
precited

:::::::
studies,

:::
the

:::::::::::
deformation

:::::::::
modelling

::
is

::::::
limited

::
to

:
a
::::::::::::
mathematical

::::::::
function

::
fit

:::::::
without

:
a
::::::::::
theoretical

::::::::::
mechanical

::::::::::
framework

:::
and

::::
real

::::::::
physical

::::::::::
parameters

:::
for

::::
soils

::::
and

:::::
rocks.

:

In this study, we process 28 years of SAR data to obtain high-quality surface deformation time series covering the Nice Côte70

d’Azur airport (NCA), located in the French Riviera (southeastern France) (Figure 1a). This critical economical infrastructure

(it hosted 14.485 million passengers in 2019 before the pandemic) was built in the late seventies on reclaim lands over a narrow

coastal shelf (1-2 km wide). Tragically, in October 1979, during the building phase, part of the airport extension collapsed in the

sea, triggering a local tsunami that caused the death of 11 people (Figure 1b). Then, part of the project was cancelled (mainly

the construction of a commercial port attached to the airport) but the airport platform, which had already been completed, was75

used to build the two main runways that are currently in use (Figure 1e). For hazards, it is important to measure the long term

deformation of this area.

Cavalié et al. (2015) published a first study showing that between 2003 and 2011 (the acquisition period of Envisat) part

of the edges of the airport was subsiding at a maximum rate of 10 mm/yr. During this
::
the

::::
Var

:::::
delta

::
as

::::
well

:::
as

:::
the

:::::::
airport

:::
that

:::
is

::::::
located

:::
at

:::
its

::::::
mouth,

:::
is

:::::::::
subsiding.

::::
The

::::::
spatial

::::::
extent

:::
of

::::
this

::::::::::
subsidence

::
is

:::::::
strictly

::::::
limited

:::
to

:::
the

:::::::::::
quaternary80

::::::::
alluvium

:::::::
deposits

::
of

:::
the

:::::
delta

:::
and

::::
Var

:::::::
riverbed

:::::::
(Figure

::
4

::
in

::::::::::::::::::
Cavalié et al. (2015)).

::::::::
Actually,

:::
on

::::
both

::::
sides

::
of

::::
the

::::::::
riverbed,

:::
the

::::::::::
subsidence

::::
rate

:::::::
quickly

:::::
drops

::
to

:::::
zero

::::::
where

:::
the

:::::::::
transition

:::::
from

::::::::
alluvium

::
to

::::::::::::
conglomerate

:::::::
occurs.

:::::::::
Moreover,

::::
the

:::::::::
downward

::::::::::::
displacement

::::
rate

::::::::
increases

:::::::
toward

:::
the

:::
sea

:::
as

:::
the

::::::::
sediment

::::::
layers

:::
get

::::::
thicker

::::
and

:::::
more

::::::
recent

:::::::
(Figure

:
6
:::

in

::::::::::::::::::
Cavalié et al. (2015)).

:::::::
Indeed,

::
it

::::::
ranges

::::
from

::::
less

::::
than

::
1

::::::
mm/yr

::
in

:::
the

::::
Var

:::::
valley

:::
to

:
a
:::::::::
maximum

::::
rate

::
of

:::
10

::::::
mm/yr

:::
on

:::
the

::::::
airport

::::::::
platform

::::::
where

:::::::::
sediments

:::
got

:::::::
brought

::
in

::::
the

:::::
1970s

::
to

::::
built

::::
the

::::::::
runways.85

::::::
During

:::
the

:::::::::
2003-2011 period, InSAR data show essentially a steady subsidence. Here, we extended the time series in order

to observe the behaviour of the airport platform over a longer period (1992-2020).
::
To

::::
our

::::::::::
knowledge,

::
it

::
is

:::
the

::::::
longest

:::::
time

:::::
series

::
on

:::::::
InSAR

:::::::
derived

:::::::::
subsidence

::::::::::::::
measurements,

::::
even

::::::
longer

:::::
than

:::
the

::
24

:::::
years

::
of

:::::::
Mexico

::::::::::
subsidence

:::::::::::::
measurements

::
by

:::::::
InSAR

::::::::::::::::
(Chaussard et al.).

:
This provides an opportunity to investigate new mechanisms driving vertical land motion in

coastal areas. Actually, no physical process could explain a constant subsidence rate over several years. We thus processed the90

data from the ERS satellites between 1992 and 2001 and the data acquired by Sentinel-1 for the period 2014 - 2020. Then

we discussed and modelled the information brought by these new data sets. In particular, we investigated if a model of creep
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compaction of the airport platform can explain the data.
::::::
Unlike

:::::::::
precedent

:::::::
studies,

:::
this

::::::
model

::
is

:::
not

:
a
:::::::

simple
::::::::::::
mathematical

:::::::
function

::
fit

::::
but

::
it

::::
also

:::::::
includes

::
a

:::::::::::::
geomechanical

::::::::::
framework

:::
for

::::
slow

::::::
creep

:::
and

::::
the

:::::::
estimate

:::
of

:::::::
physical

::::::::::
parameters

:::
of

:::
the

::::
slope

:::::::::
materials.

:
Through our investigations, we measured a deceleration of the maximum subsidence rates of the platform95

from 16 mm/yr (1992-2001), then 9.5 mm/yr (2003-2011) to 8 mm/yr (2014-2020) over the study area.
::::
The

::::::::::
uncertainty

:::
on

:::::::::
subsidence

:::::
rates

:::
has

:::::
been

::::::::
carefully

:::::::::
estimated

:::
by

:::
two

::::::::
different

:::::::::
methods,

::::
both

:::::::
leading

::
to

:::::::::
estimates

::
of

:::::
about

:::
0.3

:::::::
mm/yr

:::
for

:::
the

:::::
three

:::::::
periods,

:::::
more

:::::
than

:::
an

:::::
order

:::
of

:::::::::
magnitude

::::::
below

:::
the

:::::::::
measured

::::::
rates. We find that the non-linear surface

displacement can be explained by a transient creep mechanism that fits the whole temporal evolution of observations. These

results are useful for future physics-based forecasting models of the coastal slope evolution.100

::
In

:::
the

::::::::
following

::::::::
sections,

:::
we

::::::
shortly

::::::
relate

:::
the

:::::
NCA

::::::
airport

:::::::
history.

:::::
Then,

:::
we

:::::::
present

:::
the

::::::
InSAR

::::::::::::
measurement

:::
of

:::
the

::::::
airport

::::::::
platform

:::::::::::
deformation,

:::::::::
including

:
a
:::::
noise

:::::::
analysis

::
of

:::
the

:::::::::
generated

:::::
data

:::
set.

::::
This

:::::
latest

:::::
point

::
is

:::::
rarely

:::::::::
discussed

::
in

:::
the

:::::::::
subsidence

:::::::
studies,

::::::::
although

::
it

::
is

::::::
crucial

::
to

:::::::::
accurately

::::::
assess

:::
the

::::::
hazard

::::
due

::
to

:::
the

:::::::::
subsiding

::::
area.

:::::::
Finally,

:::
we

::::::
model

:::
the

::::::
InSAR

::::::::::
observation

:::
to

:::::
better

::::::::::
understand

::::
the

:::::::::
underlying

::::::::
physical

:::::::
process

::
of

:::
the

::::::::
platform

:::::::::
subsidence

::::
and

:::::::
discuss

:::
the

::::::::
potential

:::::::::::
consequences

:::
of

::::
such

:::::::
vertical

:::::::::::::
displacements.105

2 History of the Airport construction

For the first half of the 20th century, Nice only hosted an aerodrome made of a single dirt track. Nice airport history really

started in 1944 when the allies and the Americans set up a logistics base in Nice and thus built the first tar runway (Figure

1c). In the following years, few limited inland extensions (several hectares) of the airport platform have been done to welcome

bigger planes. However, the airport is stuck between the sea and Nice city that prevents any development inland. As air traffic110

increased, it has been decided to extend the airport southward, on reclaimed land over sea in order to build a second runway.

More than hundred of studies have been done as it is a real challenge to build there, notably because the continental shelf is

very narrow (less than 2 km wide) and is bounded by very steep and deep slopes. The structural work of the platform was

performed between 1975 and 1978 when 30 000 000 tons of material were brought from a neighbouring hill (Ollié, 1982).

The sediments were then dynamically compacted (with a 130 kg mass falling from 22
::
23 m high). Meanwhile a 3-km long115

seawall have been built to protect the platform from the sea storms. In July 1978, the structural work of the airport platform

was finished while construction work continued to build a dyke where a commercial port would take place. Unfortunately, the

16th of October 1979, an undersea landslide triggered the collapse of this dyke (Figure 1b,d,e). As a result, the port project

got dropped, and the next three years were dedicated to consolidate the airport platform. In 1982, the last stage of the work

including the construction of the pavement was achieved. The Nice airport was then inaugurated in 1983 (de la Tullaye , 1989).120

Since
:::
then, only minor changes were added and Figure 1e shows the shape of the airport platform as it is today.
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is to combine different redundant paths between acquisition dates in order to reduce the phase noise level on the wrapped

interferograms.

ERS and Envisat interferograms are corrected for orbital and topographic components using DORIS and the ALOS DEM,

respectively. ALOS DEM is also used to correct Sentinel-1 interferograms. To help the phase unwrapping, interferograms are145

filtered and slightly downsampled by pixel multilooking with 2 looks in range and 2 × 5 looks in azimuth for ERS and Envisat

interferograms and 2 looks in azimuth and 2 × 4 looks in range for Sentinel-1 data. The resulting pixel spacing is ∼ 40 m × 40

m. Interferograms are properly referenced using areas around the airport that has been proven to be stable (Cavalié et al., 2015).

Finally, we used a constrained least-square inversion (Doin et al., 2012) in order to derive the surface displacement rates from

the interferograms. A temporal smoothing operator is applied to limit phase variations due to turbulent atmospheric delays150

(although atmospheric delays are limited as InSAR is a relative measurement and we work at small scale). Surface velocity

maps shown in Figure 3 are derived from the linear component of the time series for each pixel.

4 Surface displacements observed from 1992 to 2020

3.1
::::::

Surface
:::::::::::::
displacements

::::::::
observed

::::
from

:::::
1992

::
to

:::::
2020

Figures 3a-c shows the averaged vertical ground velocity for the ERS (1992-2001), Envisat (2003-2011) and Sentinel-1 (2014-155

2020) periods. Note that the color scale changes to match the maximum velocity value. This representation allows to see that

the spatial displacement pattern is steady through the whole observation window, although the amplitude decreases in time.

This is a major update compared to the 2015’s study
::::::::::::::::::
(Cavalié et al., 2015) where the time window was too short to measure

reliably any slow down of the surface displacement. Thus, with this new dataset, we have the opportunity to measure subsidence

rate variations over a 28 year long period of time.160

To better observe the temporal variations of the airport platform subsidence, Figure 3d shows the displacement evolution of

pixel P1 that is located in the maximum subsidence area (Figure 3a). As the changes of the carrier frequency between each

generation of satellites prohibit cross-interferogram (Envisat-Sentinel-1 for instance), the time series is discontinued. Thus,

Figure 3d shows the three trends for each satellite period (red dots). A simple linear regression reveals that, for P1, subsidence

rates were in average 16 mm/yr, 9.5 mm/yr and 8 mm/yr for the periods 1992-2001, 2003-2011, and 2014-2020, respectively.165

We thus observe a deceleration of 50% of the subsidence rates over 28 years. To better visualize the evolution of the pixel

displacement through the full period, one can make the assumption that no sharp motion took place between the 3 measured

periods and that the shape of the motion follows a logarithmic function (with Heaviside step functions to take into account the

discontinuities) :

f(t) = a log

(
1+

t

b

)
+ cH1 + dH2 + e (1)170

where t is the time, H1 and H2 are two Heaviside step functions, and a, b, c, d, and e are some constants. By inversion, one

can determine them and thus reconstruct the time series (Figure 3d).
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Figure 3. Projected vertical ground velocity (mm/yr) measured from (a) ERS (1992-2001), (b) Envisat (2003-2011), and (c) Sentinel-1

(2015-2020) data. Note that the color scale changes and is adapted to show the persistent patterns of deformation over time. Black dot in

(a) shows the location of pixel P1. (d) Time series of P1 vertical displacement. Red dots correspond to the three times series computed

independently. Black circles represent the reconstructed time series by constraining the displacement as a logarithmic function.
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3.2
::::

Noise
::::::::
Analysis

::::
and

:::::::::
Discussion

::::
Our

::::::
InSAR

:::::::::
processing

::::::::
strategy

:::::
turns

:::
out

:::
to

::
be

::::
very

::::::::
effective

::::
and

:::::
shows

:::::
very

::::
nice

::::::
results

::::
both

::
in
:::::

time
:::::::
(Figure

:::
3d)

::::
and

:::::::
spatially

::::::::
(Figures

:::::::
3a,b,c).

::::::::
Actually,

::
on

::::::
maps,

::::
land

::::::::::
subsidence

::
is
:::::::
clearly

:::::::
localised

:::
in

:::
the

::::::::
riverbed

:::
(we

::::
are

::::
able

::
to

::::::
detect175

:::::::
velocity

::::::
slower

::::
than

:
1
:::::::
mm/yr)

::::
and

::::
then

::::
over

:::
the

:::::::
airport

::::::::
platform

:::::
where

::::
the

:::::::::
downward

:::::::
velocity

:::::::::
increases.

::::::::::::
Qualitatively,

::
we

:::::::
observe

:::::
little

::::
noise

:::
in

:::
the

::::
data

::::
and

:::::
unlike

::::::
many

::::::
studies

:::::
about

::::::::::
subsidence,

:::
we

:::::
don’t

:::
see

::::
any

:::::
areas

::::
with

::::::::
artificial

:::::
uplift

:::
due

::
to

:::::::::::
atmospheric

:::::::
delays.

:::::::
Indeed,

:::::::
velocity

:::::
drops

:::::::
sharply

::
to

::
0

::::
over

:::
the

:::::::::::
consolidated

::::::::::::
conglomerate

:::::::
located

::
on

:::::
each

::::
side

::
of

:::
the

::::::::
riverbed.

::::::::
However,

::
it
::
is

:::::::::
important

::
to

::::::::
quantify

:::
the

:::::
error

::::
bars

:::
on

:::
the

::::
data

::
as

::
it

::
is

:::::
often

::
an

:::::::::
important

::::::::::
parameter

:::
for

::::::::
modelling

::::
the

:::::::::::
deformation.180

Estimating the noise level is both very important and tricky in InSAR and thus it is often either ignored in the published

InSAR studies or theoretical values are given. However, several methods have been developed to estimate the noise correlation,

notably to compute the InSAR data covariance matrix that are used in the inversion to retrieve parameters of the underlying

geophysical phenomena (Sudhaus and Sigurjón, 2009). In the previous study (Cavalié et al., 2015), authors evaluated the

uncertainties of the velocity maps by looking at the dispersion of surface velocity measurements in a nearby location where no185

surface displacement is expected. As a result, all velocity variations observed in the InSAR data are due to noise. Assuming

that the noise level is similar on the nearby deformed area, a 1-σ error can be computed. With this method, Cavalié et al. (2015)

estimated a 1-σ error of 0.25 mm/yr for the mean subsidence rate occurred between 2003 and 2011. Similarly, using the time

series, one can estimate the temporal dispersion of a pixel located on a stable area. Moreover, if the temporal evolution of

the surface displacement is simple enough (as it is the case for the NCA airport), one can remove a deformation model and190

then observe the residue dispersion. The advantage is that the 1-σ error is computed directly in the subsiding area (and not

for a pixel located nearby that can be affected by other local sources of noise). Figure 4 displays the InSAR signal residue

(after removing the logarithmic function estimated from Equation 1) for the pixel P1 (shown on Figure 3a). Overall standard

deviation on displacement σd is ∼4.2 mm. Interestingly, we see that data dispersion is very similar for the ERS, Envisat and

Sentinel-1 time series (that have been processed independently). As in Fattahi and Amelung, if we assume that the residue is a195

Gaussian white noise, the uncertainty on the deformation velocity σv can be estimated for each time series as:

σv =
σd√∑N

i=1(ti − t)2
(2)

where ti are the acquisition dates, t is the mean acquisition date and N the number of acquisitions. σv is estimated to 0.27

mm/yr for ERS, 0.28 mm/yr for Envisat and 0.32 mm/yr for Sentinel-1 dataset. Interestingly, the estimate for Envisat dataset

is very close to the 1-σ above mentioned error of 0.25 mm/yr estimated by a different method. Deformation velocity derived200

by InSAR using SBAS type techniques (Berardino et al., 2002) may be biased due to phase misclosure (De Zan et al., 2015).

Recent studies suggest that this phenomenon is due to the temporal change of scattering mechanism (Ansari et al., 2021): it

occurs either on vegetated areas where the scatterers vary in time due to growth or decay of the vegetation and also on bare

soils where moisture level changes according to precipitation events. However, our study is focused on an urbanized area that

should not be prone to this bias.205
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Figure 4. Displacement residues for P1 (InSAR times series minus the fit function estimated with equation 1). Residue dispersion is ∼4.2

mm.

4 Creep Modelling

The time series of surface displacement data estimated from InSAR analysis shows a non-linear transient evolution over

28 years (1992 to 2020) (Figure 3d). This reflects a progressive and long-term deformation .
:
of

::::
the

::::::::::
sub-surface

::::::
layers.

::::::::
Actually,

::::
soils

::::
and

:::::
rocks

::::
can

:::::::
exhibit

:::::
creep

:::::::::
behavior,

::::::
which

::
is

:::
the

::::::::::::
development

::
of

::::::::::::::
time-dependent

:::::::
strains

::
at

::
a
:::::
state

::
of

::::::::
constant

::::::::
effective

:::::
stress

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Bland, 1960; Findley et al., 1976; Jaeger and Cook, 1979).

::::::
Creep

::::::::
behavior

:::::::::
influences

::::
the210

::::::::
long-term

::::::::
stability

::
of

::::::::
grounds

::::
and

::::::::::
movement

::
of

::::::
slopes.

:::::
This

::::::::::::::
time-dependent

::::::::
material

::::::::
behavior

:::::::
exhibits

:::::::::::
viscoelastic

::
or

::::::::::
viscoplastic

:::::::::::::
characteristics

::::
that

::::
can

::
be

:::::::::::
reproduced

::::
with

::::::::
different

:::::
creep

:::::::
models

::
of

:::::::::
increasing

::::::::::
complexity

::::::::::
depending

::
on

:::
the

::::
type

:::
of

:::::::
material

::::
and

:::::::
loading

:::::::::
conditions

::::::::::::::::::::::
(Jaeger and Cook, 1979).

Previous studies of the submarine slope stability in the area of the Nice airport indicated that the geological formations below

the airport deform with a slow creep process Dan et al. (2007); Stegmann et al. (2011)
::::::::::::::::::::::::::::::::
(Dan et al., 2007; Stegmann et al., 2011).215

A clay layer is suspected to be the creeping section of the continental slope below the sea level and a potential contributor to

the origin of submarine landslide Leynaud and Sultan (2010)
::::::::::::::::::::::
(Leynaud and Sultan, 2010). Consequently, it is important to in-

vestigate the creep process to explain the slope deformation and failure. In addition, the time series of surface displacement

measured from 1993 to 2019
::::
1992

::
to

:::::
2020 indicates that the displacement is mainly vertical and the horizontal component is

negligible. This behavior suggests that a creep compaction is probably at play.220
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Several models have been developed to describe creep and failure in rocks Jaeger and Cook (1979)
:::::::::::::::::::
(Jaeger and Cook, 1979).

Creep represents strain increase with time. A typical creep curve indicates three different regions: the primary, secondary and

tertiary creep region (Figure 5a). Once the material experiences an instantaneous strain, as a result of sudden loading, the

primary creep region begins and has a decreasing strain rate with time. This behavior continues until the secondary stage starts

with a constant strain rate. The strain rate in secondary stage is the minimum strain rate of a creep deformation. The last stage225

of creep deformation is the tertiary creep regime characterized by very high strain rate and eventually failure.

The shape of the observed displacement at the surface of the airport is similar to the shape of the primary and secondary creep

stages of the theoretical creep curve. A viscoelastic Burger’s model can effectively reflect the primary and secondary creep

stages of rock creep process; however, it cannot describe the acceleration phase of tertiary creep. Here, we use an extended

Burger’s creep model made up of a series of Maxwell and Kelvin bodies
::::::::::::::::::::
(Jiang and Wang, 2022) to reproduce the

:::::
InSAR

:
obser-230

vations. Such viscoelastic model was previously employed to model soil deformation Yao et al. (2021)
::::::::::::::
(Yao et al., 2021), fault

relaxation after earthquakes Sun and Wang (2015)
::::::::::::::::::
(Sun and Wang, 2015), landslide creep Zou et al. (2013)

::::::::::::::::::::::::::::
(Zou et al., 2013; Liao et al., 2022),

and is often used in geology to illustrate the effects of both strain and stress relaxation. The transient creep (δ) with time (t) is

analytically calculated as follows:

δ(t) = σ0

[
1

EM
+

t

ηM
+

1

EK1

(
1− exp

(
−EK1t

ηK1

))
+

1

EK2

(
1− exp

(
−EK2t

ηK2

))]
(3)235

where EM , EK1, EK2 ::::
EK1

,
:::::
EK2

are the elastic moduli of the Maxwell body, the first and second Kelvin bodies, respec-

tively; ηM , ηK1, ηK2 :::
ηK1

,
::::
ηK2

are the viscosity of the Maxwell body, the first and second Kelvin bodies, respectively; σ0 is a

constant uniaxial load. The transient Kelvin component of the rheology is considered to be dominant at short timescales, while

the Maxwell component dominates at long timescales Jaeger and Cook (1979)
::::::::::::::::::::
(Jaeger and Cook, 1979). With this 1D model, 7

parameters need to be adjusted. We used an adaptive grid search method to invert the parameters. We set up the search range240

of each parameter to explore a large number of possible solutions, that is about 2.3 million of solutions. For the goodness of fit

of the best-fit solution, the misfit between the observed (obsi) and model-predicted (predi) displacement is estimated with the

reduced chi-square (χ2), defined as:

χ2 =
1

N −m

∑
i=1,N

(
obsi − predi

σi

)2

(4)

with N is the number of observations, m is the number of model parameters, and σi is the uncertainties (4.2 mm here).245

Figure 5b shows the best fit numerical solution to the measured displacement over time. The model provides a satisfying

fit of observations and adjusts the data with a reduced chi-square of 0.18957, and leads to σ0 = 0.099 MPa, EM = 32.1

MPa, EK1
= 0.86 MPa, EK2

= 0.47 MPa, ηM = 42.63 MPa/yr, ηK1
= 16.21 MPa/yr, ηK2

= 9.61 MPa/yr. These values are

consistent with the range of values obtained in laboratory experiments conducted on clays under triaxial compression condition

Xue et al. (2020)
::::::::::::::
(Xue et al., 2020). The difference between the observed and modeled displacements reflects mostly the data250

dispersion as we find a very similar standard deviation, 4.1 mm, for the residues (data minus model). Thus, this result suggests
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a) b)

Figure 5. (a) Strain-time plot for a conventional creep experiment. On this typical creep curve, the three creep phases (primary, secondary,

and tertiary) are labelled. (b) Time series of the measured displacement and the best fit numerical solution using the extended viscoelastic

Burger’s model. The model adjusts the data with χ2 = 0.18957.

that a transient creep mechanism properly models our observations of the vertical displacement associated with a long-term

compaction of materials. Based on this assumption, the airport deformation is still in primary stage of the creep process.

Although the data are well reproduced with an extended Burger’s creep model, which allows to investigate a transient

rheology for viscous compaction, an extension to a creep damage model in a three-dimensional stress state would be adapted255

to explore the full non-linear visco-elasto-plastic behavior with potential damage accumulation and accelerated creep (tertiary

creep stage in Figure 3d) toward dramatic failure. However, the 1D viscoelastic creep model used here is well adapted to

explain the data with a satisfying fit over the 28 years of observation.

In this study

5
:::::::::
Discussion

::::
and

::::::::::
Conclusion260

:::::
Land

:::
use

:
is
:::::::::::
particularly

::::::::
disputed

::
in

::::::
coastal

:::::
areas

::
as

::::
they

:::
are

:::::
often

::::::
highly

:::::::::
populated.

::::
The

::::::
intense

:::::::
human

::::::::
activities

::::
lead

::
to

::
an

::::::::
increase

::
of

::::::
various

::::::::
hazards

::
of

:::::
which

:::::::
vertical

:::::
land

:::::::
motions

:::
due

:::
to

:::::::::
superficial

:::
soil

:::::::::::
compaction.

::::
This

:::::
latest

:::::::::::
phenomena

:::
can

:::
be

::::::
caused

::::::
either

::
by

:::::::
natural

:::
or

:::::::::::::
anthropogenic

::::::::::
phenomena

::::
and

::::
can

::::
lead

::
to

:::::::
further

:::::
coast

:::::::
erosion,

::::::::
flooding

::
or

:::::
land

::::::::::
salinization

::
in

::::
case

:::
of

:::::::
ground

:::::
water

:::::::::
pumping.

::::::::
Actually,

:::::
most

:::
of

::::::::::
subsidence

::::::::
affecting

:::
the

:::::::
costline

:::::
near

:::
big

:::::
cities

::::
are

::::::
related

::
to

:::::::
ground

:::::
water

::::::::
pumping

:::::::::
(especially

:::
in

:::::::::
south-east

::::
Asia,

::::
like

::
in

:::::::
Jakarta

:::
for

:::::::::
example),

:::
but

::::::::::
subsidence

::
is

:
a
:::::::
natural265

:::::::
common

:::::::
feature

::
of

:::::
large

::::
river

::::::
deltas

::::
(Nil,

:::::::
Missipi,

:::
or

::
Po

::::::
rivers,

:::
for

::::::::
instance)

::::
and

:::
are

::::
due

::
to

::::::::::
compaction

::
of

:::
the

:::::::::
Holocene

::::::::
sediment

::::::
strata.

::
In

:::
the

::::
Var

:::::
delta

:::::::
(french

:::::::
Riviera,

::::::::
France),

:::
we

:::::::
observe

:::
the

::::::::::
interaction

:::::::
between

:::
the

:::::::
natural

:::::::::::
compaction

::
of

:::
the

::::::::::::::
unconsolidated

::::::::
Holocene

:::::::::
sediments

::
in

::::
the

::::
Var

::::
river

:::::
delta

:::::
with

:::
the

:::::::::::
construction

:::
of

:
a
::::::::::
man-made

:::::::::::::
infrastructure

:::
(the

:::::
NCA

::::::::
airport)

::::
that

:::::::
brought

:::
an

:::::::::
additional

:::::::::
superficial

:::::
load

::
on

::::
top

::
of

:::
the

:::::::::
sediment.

::::
This

:::::::::
extra-load

:::::
leads

:::
to

:::::::
amplify

:::::::::
drastically

:::
the

::::::::::
subsidence

::::
rate

::
as

::::::::
observed

::
in

::::::::::::::::::
Cavalié et al. (2015).

:::
In

:::
the

::::
case

::
of

:::
the

::::
Var

:::::
delta,

:::::::
hazard

:
is
::::
also

:::::::::
amplified270
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::
by

:::
the

::::
fact

::::
that

:::
the

::::::::
overload

::
of

::::::::
sediment

:::
has

:::::
been

::::
used

::
to

:::::::::
reclaimed

:::::
land

::::
over

:::
sea

::
in

::
a

::::
place

::::::
where

:::
the

::::::::::
continental

:::::
shelf

:
is
:::::::
narrow

::::
and

:::
the

:::::::::
undersea

::::::::::
topography

:::::::
quickly

:::::
drops

:::
to

:::::
-2500

::
m

:::::::
(Figure

:::
1).

:::::::::::::
Understanding

:::
the

:::::::::::
mechanism

:::
and

:::::
thus

:::
the

::::::::
evolution

::
of

::::::::
sediment

:::::::::::
compaction

::
is

:::::::
essential

::
to

::::::::
evaluate

:::
the

:::::::
danger

::::::
caused

:::
by

:::
the

:::::
coast

::::::::::
subsidence.

::::::::
Therefore, we use SAR interferometry to measure and analyze the temporal evolution of the ground displacement on the

Nice Côte d’Azur airport platform over a long period of 28 years. Extending the observation window to study the long-term275

subsidence leads to substantial improvements in the understanding of the ongoing mechanisms along this coastal area. Indeed,

the previous study Cavalié et al. (2015)
:::::::::::::::::
(Cavalié et al., 2015) measured the airport platform subsidence using only the Envisat

data that span the 2003-2011 period. This relative short period of observation impeded to detect accurately non-linearity of the

surface displacement and its change rate. By adding the ERS and Sentinel-1 data, the observation window more than tripled

(1992-2020) and times series of the surface displacement clearly reveal a transient non-linear deformation with decelerating280

subsidence rate over time, that is expected for ground layer compaction. Then, we used a simple analytical Burger’s creep

model to constrain the mechanisms and rheology at play. The data are properly explained by the primary and secondary creep

phases, highlighting a slow viscoelastic deformation at multiyear timescales. The best-fit solution allows to retrieve reasonable

mechanical values of the airport sediments that have been brought to build the platform extension. Our study thus proves that

the long-term InSAR data can improve our understanding of the surface processes and the subsurface material properties.285

Although the subsidence rate deceleratessince ,
::
at

:::::
least,

:::
for 28 years, our results show that the compaction of the sediment

is still active and its future evolution is uncertain and still at stake. Indeed, if compaction zones
:::::
bands

:
are developing under

the airport platform, creep process could potentially lead to accumulated material damage toward failure. Thus, through our

investigations, the data indicates that the stability of the airport platform should be monitored continuously with additional

high-quality space and land observations together with submarine instrumentation on the continental slope right below the290

airport. In an era in which climate change and sea-level rise pose unprecedented threats to coastal ecosystems and urbaniza-

tions Shirzaei and Burgmann (2018); Shirzaei et al. (2021)
::::::::::::::::::::::::::::::::::::::::::
(Shirzaei and Burgmann, 2018; Shirzaei et al., 2021), the long-term

observations of ground motions from space is essential to monitor the stability of coastal environment and will inform managers

and policymakers identify zones with exposure to hazards.

Data availability. Raw data used in this study are freely available online. Sentinel-1 SAR images are from the PEPS platform295

(https://peps.cnes.fr/rocket/#/search). ERS and Envisat SAR data were obtained free of charges through a ESA cat1 project

(https://earth.esa.int/eogateway/catalog/ers-1-2-sar-im-l0-sar_im__0p- and https://earth.esa.int/eogateway/catalog/envisat-asar-im-l0-asa_im__0p-

?text=envisat%20asar%20im%20l0%20%5Basa_im__0p%5D, respecively). The digital elevation model is freely available from JAXA

(https://www.eorc.jaxa.jp/ALOS/en/-dataset/aw3d30/aw3d30_e.htm). ERA-5 global reanalyses of atmospheric data are distributed by the

ECMWF (https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5). Velocity maps shown in Figure 3 are archived on Zenodo300

(https://doi.org/10.5281/zenodo.7038263).
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