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Abstract: 10 

The assessment of the response of slopes to precipitation is important for various 11 

applications, from water supply management to hazard assessment due to 12 

extreme rainfall events. It is well known that theSoil and underground conditions 13 

prior to the initiation of rainfall events control the hydrological processes that 14 

occur in slopes, affecting the water exchange through their boundaries. The 15 

present study aims at identifying suitable variables to be monitored and modelled 16 

to predict the response of the slopesloping soil to precipitations. A The case study 17 

consisting of a loose pyroclastic coarse -grained soil cover mantle overlaying a 18 

karstic bedrock located in the southern Southern Apennines (Italy) is described,. 19 

where field Field monitoring has been carried out, comprisingof stream level 20 

recordings, meteorological recordingsvariables, and soil water content and 21 

suction has been carried out for few yearsamong others. Nevertheless, tTo 22 

enhance enrich the field dataset, a synthetic series of 1000 years has been 23 

generatedthe slope hydraulic behaviour of the case study has been simulated with 24 

a physically based model linked coupled to a synthetic stochastic rainfall time 25 

seriesmodel, getting a consistent hourly timeseries dataset of 1000 years, 26 

containing information on rainfall, aquifer water level and soil volumetric water 27 
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content at different depths. Machine Learning techniques have been used to 28 

unwrap the non-linear cause-effect relationships amongst linking the studied 29 

variables, which relations are commonly non-linear. The k-means clustering 30 

technique has been used for the identification of seasonally recurrent slope 31 

conditions, in terms of soil moisture and groundwater level, and the Random 32 

Forest technique has been used to assess how the way the slope response could 33 

be addressed and the importance of each variable conditions at the onset of 34 

rainfall controlled on the slope response and attitude of the soil mantle to retain 35 

much of the infiltrating rainwaterthe k-means clustering technique has been used 36 

to explore the geometrical disposition of data, and so the identification of 37 

seasonally recurrent different scenarios linked to the slope response. It has been 38 

The results shown that the slope response in terms of the fraction of rainwater 39 

being remaining stored in the soil mantle at the end of rainfall eventscover is 40 

naturally highly dependent on the rainfall amount, but water drainage and storage 41 

processes can be identified by normalizing the change in water storage with the 42 

rainfall depth. Indeed, with the methodology presented here, different 43 

hydrometeorological scenarios controlling major hydrological processes have 44 

been identified not only from the meteorological and seasonal behaviour but also 45 

from the underground conditions controlled by soil moisture and groundwater 46 

level prior to the rainfall initiation, weighting the role, on one hand, of the field 47 

capacity value on the ease of the water to flow in and out of the soil cover and, 48 

on the other hand, of the ground water level, the increase of which givesgiving 49 

evidence of the activation of slope effective drainage processeseven during 50 

relatively intense rainfall events. 51 

Keywords: Water storage, slope response, underground antecedent conditions, 52 

hydrological controls, Random Forest, k-means clustering 53 
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1. Introduction 54 

Slope response to precipitations is highly non-linear, in terms of runoff 55 

generation, rainwater infiltration and subsurface drainage processes, which are 56 

mostly depending on the initial soil moisture state at the onset of the each rainfall 57 

event (Tromp-Van Meerveld and McDonnell, 2006b; Nieber and Sidle, 2010; 58 

Damiano et al., 2017). The initial (or antecedent) conditions are related to 59 

hydrological processes that occur in the slopes, which control water how they 60 

exchanges between the slope and water with the surrounding systems (i.e., 61 

atmosphere, surface water, deep groundwater). These processes occur through 62 

the boundaries of the slope, and often evolve over long timescales of weeks or 63 

even months, much longer than the duration of rainfall events, typically ranging 64 

between some hours and few days. 65 

While the importance of antecedent soil moisture conditions on overland slope 66 

runoff and drainage has been early identified, and their role as predisposing 67 

conditions has already been recognizedrecognized long since (Ponce and& 68 

Hawkins, 1996; Tromp-Van Meerveld &and McDonnell, 2006a, 2006b), only 69 

recently the scientific community started providing new perspectives to better 70 

understand slope predisposing hydrologic conditions predisposing slopes to 71 

landslides (Bogaard and Greco, 2018; Greco et al., 2023), to explain why most 72 

of large rain events do not destabilize slopes, while only some do (Bogaard and 73 

Greco, 2016), and so to develop physically -based models capable of integrating 74 

this hydrological knowledge for predicting their landslide occurrence have been 75 

proposed (e.g., Bordoni et al., 2015; Greco et al., 2018; Marino et al., 2021; 76 

Bordoni et al., 2015). 77 

The triggering of some rainfall-induced geohazards, such as shallow landslides 78 

and debris flows, is favoured by pore pressure increase, caused by rainwater 79 

infiltration and consequent soil moisture accumulation. The storage of infiltrating 80 

rainwater within the soil also requires drainage mechanisms developing in the 81 
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slopes in response to precipitations to be not so effective to drain out much of the 82 

infiltrating rainwater (Marino et al., 2020b; Greco et al., 2021; 2023). 83 

Consequently, especially for nowcasting and early warning purposes, the 84 

identification of hydrological variables suitable to identify slope predisposing 85 

conditions is extremely useful. Thus, to better understand how the complex 86 

hydrological predisposing conditions may control the processes involving the 87 

slope sloping soil response in terms of water storage, a field monitoring campaign 88 

allowing for the assessment of the slope water balance is highly recommended 89 

(Bogaard and Greco, 2018; Marino et al., 2020a). 90 

The identification of suitable variables to be monitored in the field is indeed 91 

useful to achieve an insight of the behaviour of the interconnected hydrological 92 

systems (i.e., groundwater, surface water, soil water). Besides the study 93 

ofrainfall-induced landslides, The the proper evaluation of the hydrological 94 

scenarios in a region of interest could impact several other applications, from 95 

flood hazard assessment and the study of rainfall-induced landslides (Bogaard 96 

and Greco 2016Reichenbach et al., 1998; Forestieri et al., 2016; Chitu et al., 97 

2017), to the prediction of possible crop water stress conditions in relation to 98 

defoliation (Capretti and Battisti, 2007), pathogen expansions in chestnut grove 99 

(Gao and Shain, 1995), and plant mortality in a climate change context as well 100 

(McDowell et al., 2008). 101 

This research focuses on a case study of a slope located in Campania (southern 102 

Italy), in an area sensitive to problems associated to both dry and wet seasons, 103 

but where particularly frequently hit by destructive rainfall rainfall-triggered 104 

shallow landslides occurred. Such geohazards are recurrent along the carbonate 105 

slopes covered with unsaturated pyroclastic deposits typical of the area (Fiorillo 106 

et al., 2001; Revellino et al., 2013). The underlying limestone bedrock, densely 107 

fractured, is characterised by the presence of deep karst aquifers (Allocca et al., 108 

2014). The triggering of rainfall-induced shallow mechanism of landslides in the 109 
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area is controlled by the increase of water storage within the soil cover mantle 110 

after intense and persistent precipitations, leading to pore pressure build up 111 

(Bogaard and Greco 2016). Such geo-hazards are recurrent along the slopes 112 

covered with unsaturated pyroclastic deposits typical of wide areas of Campania, 113 

southern Italy (Fiorillo et al., 2001; Revellino et al., 2013). Slope equilibrium is 114 

in fact guaranteed by the additional shear strength promoted by soil suction (Lu 115 

and Likos 2006; Greco and Gargano 2015), which reduction often leads to slope 116 

failure due to shear strength loss by soil wetting during rainwater infiltration 117 

(Olivares and Picarelli, 2003; Damiano and Olivares, 2010; Pagano et al., 2010; 118 

Pirone et al., 2015). 119 

Not only the rainfall characteristics and the soil saturation play a role in the 120 

hydrological slope response to precipitations. Recent studies show that the 121 

response of the soil covers mantle to precipitations in the study area is affected 122 

not only by rainfall characteristics and antecedent soil moisture, but also by the 123 

wetness of the soil-bedrock interface with the underlying bedrock, which controls 124 

the leakage of water into the underlying fractured limestone (Marino et al., 125 

2020a,; b 2021). At the contact between soil cover and bedrock, intense 126 

weathering modifies the physical properties of the soil as well as of the fractured 127 

bedrock, which seem to be form a hydraulically interconnected system, the 128 

epikarst (e.g., Perrin et al., 2003; Hartmann et al., 2014; Dal Soglio et al., 2020). 129 

The changing hydraulic behaviour of the soil-bedrock interface can be related to 130 

the storage of water in the epikarst, where a perched aquifer forms during the 131 

rainy season uppermost part of the fractured bedrock (Greco et al., 20148, 132 

20148). Therefore, the aquifer water level arises as another possible monitoring 133 

variable to be considered within slope controls. 134 

The aim of this study is to identify the major hydrological processes controlling 135 

the slope response of the slope soil mantle to precipitations, and the seasonally 136 

recurrent conditions that affect its attitude to retain much of the infiltrating 137 
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rainwater, the most suitable through suitable measurable variables to quantify 138 

them. To this aim, a rich dataset of measured rainfall events and corresponding 139 

hydrological effects would be required, which was not available for the case 140 

study, where monitoring activities had been carried out for few years. Therefore, 141 

a synthetic 1000 years hourly dataset was generated, by means of a stochastic 142 

rainfall model and a simplified methodological approach gathering wide 143 

knowledge on field process simulations and data analysis is presented. In that 144 

way, a 1-D physically based mathematical model of the slope, that couples 145 

coupling the interaction between the unsaturated pyroclastic soil cover mantle 146 

and the underlying perched aquifer (Greco et al., 2018), was applied to describe 147 

the behaviour of a slope located in Campania (southern Italy), under a 1000-years 148 

long hourly rainfall synthetic time series. The Both models had been previously 149 

calibrated and validated on field experimental data from field monitoring carried 150 

out since 2001 (Damiano et al, 2012; Greco et al., 2013; Comegna et al., 2016; 151 

Marino et al., 2021 Damiano et al., 2012). The results of the simulations provide 152 

the synthetic time seriesdata of soil suction, water content and aquifer water level, 153 

all measurable in the field and assumed as representative of real field conditions, 154 

were analysed as if they were measured data. Once After identified sorting the 155 

rainfall events within the 1000- years hourly timeseries, a specific dataset is was 156 

built with the antecedent conditions one hour before the beginning of any each 157 

rainfall event, . comprising It included the previously named listed variables plus 158 

the total event rainfall amount depth, and the change in the water stored in the 159 

soil cover mantle at the end of the each rainfall events. To disentangle the non-160 

linear processes controlling the hydraulic behaviour of the slope, and their role 161 

on the soil response to precipitation, the dataset was analysed with Machine 162 

Learning (ML) techniques, i.e., clustering, and random forest,. Indeed, ML 163 

allows managing big amounts of data, such as those provided by assimilation of 164 

extensive monitoring networks, remote sensing, satellite products and other 165 

sources, without introducing any mathematical model structure to highlight the 166 
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cause-effect relationships linking the variables. to disentangle the nonlinear 167 

processes controlling the slope hydraulic behaviour due to rainfall events, and 168 

thus to identify the role played by the variables, suitable to be monitored in the 169 

field, on the slope response to precipitations. 170 

 171 
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2. Materials and methods 172 

The studied slope, described in section 2.1, belongs to the Partenio Massif, and it 173 

has the typical characteristics of many pyroclastic slopes of Campania (southern 174 

Italy) (Greco et al., 2018). Indeed, three major zones characterized by unsaturated 175 

pyroclastic deposits can be identified in Campania (Cascini et al., 2008): 176 

Campanian Apennine chain, composed by carbonate rock covered by a variable 177 

layer of pyroclastic soil (from 0.1 to 5 m); Phlegraean district, formed by 178 

underlying densely fractured volcanic tuff bedrock, placed under several meters 179 

of pyroclastic soils; and Sarno and Picentini Mountains, where a thin layer of 180 

pyroclastic material is over a terrigenous bedrock. In these three areas, the 181 

thickness of the soil covers mantle results is quite variable, according to the slope 182 

inclination and to the distance from the eruptive centre (De Vita et al., 2006; 183 

Tufano et al., 2021). 184 

To identify the seasonally recurrent conditions that affect the attitude of the soil 185 

mantle to retain much of the infiltrating water, a large set of measurements of 186 

rainfall events, and their effects on the slope, would be required. Hence, to enrich 187 

the data available from the monitoring activities carried out for some years at the 188 

slope (Marino et al., 2020a), A a synthetic dataset of slope the hydrologic 189 

response of the slope to precipitations, has been generated with a NSRP 190 

stochastic model of rainfall (Rodriguez-Iturbe et al., 1987) and a simplified 1D 191 

model of based on soil cover the interaction of the unsaturated pyroclastic soil 192 

mantle with rainfall (in the uppermost boundary) andthe underlying shallow 193 

perched aquifer (in the lowermost boundary), has been built forming in the 194 

epikarst. Both the models, described in the following sections, had been 195 

previously developed based on experimental data (Greco et al., 2013; 2018; 196 

Marino et al., 2021). The obtained synthetic dataset has been compared to the 197 

limited dataset from field monitoring, showing a reasonable agreement. 198 

Therefore, it has been considered reliable suitable to reproduce slope response to 199 
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climate forcing, in terms of soil volumetric water content, and perched aquifer 200 

water level, in the studied area (see Section 2.2)and rainfall. 201 

Moreover, tThe obtained synthetic data set has been analysed with Machine 202 

Learning techniques (Section 2.3), as they result quite powerful to identify non-203 

linear cause-effect relationships between variables, without introducing any 204 

model structure, as if the data were provided by field measurements. Besides, the 205 

results which come from these data analyses have been compared a priori to the 206 

limited dataset from field monitoring, showing a reasonable agreement. Figure 1 207 

shows the flowchart of the entire methodology. 208 

 209 

Figure 1. Flowchart summarizing the methodology followed in the analysis 210 

of sloping soil response to precipitation. 211 
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2.1. Case study 212 

The study area refers to the north-east slope of Monte Cornito, part of the Partenio 213 

Massif (Campania, southern Italy), 2 km from the town of Cervinara, about 40 214 

km northeast of the city of Naples. The slope was involved in a series of rapid 215 

shallow landslides after a rainfall event of 325 mm in 48 hours during the night 216 

between 15–16 December 1999, causing casualties and heavy damages (Fiorillo 217 

et al., 2001). A field monitoring station was installed nearby the big landslide 218 

scarp since 2001. Further details of the investigated zone, with indications of the 219 

area affected by the largest of the landslides triggered in 1999, are shown in 220 

Figure 2Figure 1. 221 
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 223 

*Maps Data: Google, ©2022 CNES/Airbus, Maxar Tecnologies 
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Figure 21. Location of the study area and indication of the zone affected by a large 224 
landslide in 19991 225 

Partenio Massif is part of the southern Apennines area. The bedrock mainly 226 

consists of Mesozoic-Cenozoic fractured limestones, mantled by loose 227 

pyroclastic deposits, resulting from the explosive volcanic activity of Somma-228 

Vesuvius and Phlegrean Fields, which occurred over the last 40.000 years 229 

(Rolandi et al., 2003). 230 

The fractured limestone formations of the southern Apennines often host large 231 

karst aquifers, through which a basal groundwater circulation occurs, for which 232 

regional groundwater recharge between 100 and 500 mm/year has been 233 

estimated, with 200 mm/year regarding the area of Cervinara (Allocca et al., 234 

2014). Moreover, recent studies showed that, in the upper part of the karst system, 235 

denoted as epikarst (Hartmann et al., 2014), more permeable and porous than the 236 

underlying rock, a perched aquifer often develops (Williams, 2008; Celico et al., 237 

2010). It temporally stores water and favors the recharge of the deep aquifer 238 

through the larger fracture system. The water, which is accumulated temporally 239 

in the epikarst, also reappears at the surface in small ephemeral streams. 240 

Specifically, the slope of Cervinara has an inclination between 35° and 50°, at an 241 

elevation between 500 m and 1200 m above sea level. The soil covermantle, 242 

usually in unsaturated conditions, is the result of the air-fall deposition of the 243 

materials from several eruptions, so it is generally layered. It mainly consists of 244 

layers of volcanic ashes (with particle size in the range of sands to loamy sands) 245 

alternating with pumices (sandy gravels), laying upon the densely fractured 246 

limestone bedrock. Near the soil-bedrock interface, a layer of weathered ashes, 247 

 
1 Google (2022) Cervinara, Italy. Available at: 

https://www.google.com/maps/@41.0114559,14.6411297,2097m/data=!3m1!1e3 (Accessed: 7 

March 2022) 
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characterized by finer texture (silty sand), with lower hydraulic conductivity, 248 

moderate plasticity and low cohesion, is often observed (Damiano et al., 2012). 249 

 250 

Figure 2. Characteristic soil profile for the slope near the scarp of the landslide 251 
occurred in 1999 in Cervinara 252 

The soil cover mantle thickness varies spatially from a minimum of 1.0 m, in the 253 

steepest part of the slope, to larger values at its foot (up to 4-5 meters). The thin 254 

soil mantle, compared to the slope width and length of hundreds of meters (Figure 255 

2), makes the flow processes nearly one-dimensional, except for the close 256 

proximity to geometric singularities. Figure 2 shows the soil layers constituting 257 

the cover, as found throughout the slope near the main scarp of 1999 landslide. 258 

The pyroclastic ashes soils of the profile usually exhibit are characterized by high 259 

porosity (from about 50% for the pumices,up to 75% for the ashes) and quite high 260 

values of saturated hydraulic conductivity (ranging up to the order of 1x10-5 m/s). 261 

Thus, this kind of soil lets rainwater infiltrate even during the most intense 262 

rainfall events, with little runoff generation, and it can store a large amount of 263 

water. without approaching saturation. The values of soil capillary potential, 264 

measured during the rainy season, rarely exceed -0.5 m, as observed also in other 265 
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slopes of the area (Cascini et al., 2014; Comegna et al., 2016; Napolitano et al., 266 

2016). 267 

The climate is Mediterranean, which is characterized by dry and warm summer 268 

and rainy autumn and winter, with mean annual precipitation of about 1600 mm, 269 

mostly occurring between October and April. The total potential 270 

evapotranspiration ET0, estimated with the Thornthwaite formula (Shuttleworth, 271 

1993), is between 700 mm and 800 mm in the altitude range between 750 m and 272 

400 m (Greco et al., 2018). The vegetation mainly consists of widespread 273 

deciduous chestnuts, with a dense understory of brushes and ferns, growing 274 

during the flourishing period (between May and September). In fact, visual 275 

inspections of the soil profile showed a large amount of organic matter and roots. 276 

In most cases, roots are denser in the uppermost part of the soil cover mantle and 277 

become sparse between the depth of 1.50 m and 2.00 m below the ground surface, 278 

reaching the basal limestones and penetrating the fractures. 279 
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 281 

Figure 3. Identification of surface water flow in the Castello stream at the beginning 282 
of the rainy season in November 2021 by visual recognition of springs and sinks in 283 
the watercourse2 284 

Moreover, in the surrounding area, several ephemeral and perennial springs are 285 

present, mostly located at the foot of the slopes, which supply a network of small 286 

creeks and streams, allowing to show the activity of the aquifer discharge to the 287 

surface water. An indication regarding the Castello stream (the main stream for 288 

this side of the basin), with springs, is shown in Figure 3Figure 3, where, during 289 

a field recognition in November the 11th 2021, the surface water flow appeared 290 

(springs) and disappeared (sinks) in some points along the stream course. 291 

 
2 Google (2022) Cervinara, Italy. Available at: 

https://www.google.com/maps/@41.0088511,14.65137,786m/data=!3m1!1e3 (Accessed: 7 

March 2022) 
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Normally the stream exhibits its lowest water depth values up to the beginning 292 

of the late autumn (Marino et al., 2020a, p.3.3), but it is interesting to note that 293 

the surface water in the stream emerging from the epikarstic springs is feasible 294 

to be monitored as an indicator of the active slope drainage status. 295 

2.1.1. Field monitoring data 296 

Several hydrological monitoring activities have been carried out at the slope of 297 

Cervinara since 2001, initially consisting of measurements of precipitations and 298 

manual readings (every two weeks) of soil suction by “Jet-fill” tensiometers, 299 

equipped with a Bourdon manometer (Damiano et al., 2012). Afterwards, since 300 

November 2009, an automatic monitoring station has been set at an elevation of 301 

585 m a.s.l., near a narrow track close to the landslide scarp of December 1999. 302 

The installed instrumentation consisted of tensiometers, time domain 303 

reflectometry (TDR) probes for water content measurements, and a rain gauge 304 

(Greco et al., 2013; Comegna et al., 2016). 305 

Since 2017, the hydro-meteorological monitoring was enriched (Marino et al., 306 

2020a), aiming at understanding the seasonal behaviour of the slope and the 307 

interactions between the hydrological systems, i.e., the unsaturated soil 308 

covermantle, the epikarst, and the underlying fractured bedrock. 309 

Specifically, the data collected by tensiometers and TDR probes were 310 

supplemented with those from a meteorological station (composed by a thermo-311 

hygrometer, a pyranometer, an anemometer, a thermocouple for soil temperature 312 

measurement, and a rain gauge), and with the water level in two streams at slope 313 

foot, so to gain useful information for the assessment of the water balance of the 314 

studied slope. 315 

The data collected during these from field monitoring activities , carried out 316 

between 2017 and 2020 with hourly resolution, consist of rainfall, 317 

evapotranspiration, soil moisture and suction at various depths, and the water 318 
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depth of the Castello stream. The data have been useful to highlight seasonally 319 

recurrent soil moisture distributions. More details about the measured data and 320 

the observed recurrent seasonal behaviour related to the moisture conditions of 321 

the soil profile of the area of Cervinara can be found in Marino et al. (2020a). 322 

2.2. Synthetic dataset 323 

Aiming at identifying suitable variables to be monitored in the field for the 324 

identification of the conditions controlling different slope responses to the 325 

precipitations, a rich dataset of rainfall and underground monitored variables, 326 

such as soil moisture and groundwater level, is needed. However, a complete 327 

field monitored dataset is not always possible to be analyzed and, when it exists, 328 

it is commonly available for short periods, granting a relatively low measurement 329 

density. Hence, a synthetic dataset, aiming at improving the information obtained 330 

from field monitoring, has been generated. This dataset has been obtained by 331 

means of the physically based mathematical model described hereinafter (section 332 

2.2.2). The model has been run with a 1000 -years synthetic hourly rainfall series, 333 

obtained with a stochastic rainfall generator, for which further details are given 334 

in section 2.2.1. 335 

2.2.1. Definition of synthetic rainfall events 336 

The Neyman-Scott rectangular pulse model (NSRP) has been used to obtain a 337 

1000- years long synthetic hourly series of precipitations. The NSRP model 338 

reproduces the precipitation process as a set of rain clusters, composed by 339 

possibly overlapping rain cells embodied by rectangular pulses, each one with 340 

random origin. The storm duration is represented by the cell width and its height 341 

represents the associated rainfall intensity, so that when multiple cells overlap, 342 

the total intensity is the sum of the intensities of the overlapping cells (Rodriguez-343 

Iturbe et al. 1987; Cowpertwait et al. 1996). 344 
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NSRP model calibration requires the identification of five parameters, using the 345 

method of moments (Peres and Cancelliere, 2014), based on available rainfall 346 

data for the investigated site. Specifically, the data from the rain gauge station of 347 

Cervinara, situated near the Loffredo village, belonging to the Civil Protection 348 

Agency of Campania Region available from January 2001 to December 2017 349 

with a time resolution of 10 min, were used. 350 

The aim of this study is the identification of variables expressing the slope 351 

conditions responsible of different responses to precipitations. In that sense, it is 352 

important to define the events within the rainfall time series to clearly distinguish 353 

antecedent conditions from the effects of the current rainfall event. 354 

In other words, within the 1000- years long time series, a criterion should be 355 

identified to separate rainfall events, so that a new event begins only when the 356 

effects of the previous one disappeared. For this study, the events were defined 357 

as periods with at least 2mm of rainfall, preceded and followed by at least 24h 358 

with less than 2mm (i.e., smaller than the mean daily potential evapotranspiration 359 

estimated for the case study). Indeed, the separation period of 24 hours is 360 

commonly used for the definition of the empirical thresholds for early warning 361 

systems against rainfall-induced landslides (e.g., Peres et al., 2018; Segoni et al., 362 

2018, Marino et al., 2020b). 363 
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 364 

Figure 4. Scatter plot of event rainfall depth and mean volumetric water content of 365 
the top 10 cm soil depth 1 hour (grey dots) and 24 hours (black dots) after the end 366 
of each rainfall event 367 

In fact, the mean volumetric water content (𝜃) at 10 cm depth drops below soil 368 

field capacity (𝜃 ≅ 0.35) 24 hours after the end of each event (Figure 4Figure 4) 369 

in all the cases in which such value was overcome at before the end of the event. 370 

This shows that a dry interval of 24 hours after a rainfall event is long enough for 371 

drainage processes to remove from the topsoil most of the water infiltrated from 372 

the previous event. As topsoil moisture controls the infiltration capacity at ground 373 

surface, after such interval the infiltration of new rainfall is only little affected by 374 

the remnants of the previous rainfall event. 375 

With the assumed separation criterion, a total of 53061 rainfall events within 376 

1000 years are obtained, with durations ranging between 1 and 570 hours, and 377 

total rainfall depth between 2 and 710 mm. 378 

2.2.2. Slope hydrological model 379 

As already pointed out in Section 2.1, the regular geometry of the slope, and the 380 

hydraulic characteristics of the soils, make the flow processes in the soil mantle 381 

mostly one-dimensional. Indeed, A a simplified 1-D model has had been 382 

previously developed and successfullybuilt, previously validated according to the 383 
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data collected during the hydrological monitoring activities (Greco et al., 2013; 384 

Greco et al., 2018), and was applied to investigate the hydrological response of 385 

the slope to synthetic hourly precipitation data. The unsaturated flow through the 386 

soil cover mantle is modelled with 1-D head-based Richards’ equation (Richards, 387 

1931), assuming for simplicity a single homogeneous soil layer, and it is coupled 388 

with a model of the saturated water accumulated in the perched aquifer. The 389 

adoption of a 1-D model is allowed thanks to the geometry of the considered soil 390 

covermantle, as well as to the prevailing water potential gradients orthogonal to 391 

the ground surface when the soil is in unsaturated conditions.   392 

The root water uptake has been accounted in the source term of the model, 393 

according to the expressions by Feddes et al. (1976), based on estimated potential 394 

evapotranspiration, with maximum root penetration depth equal to the soil cover 395 

mantle thickness and triangular root density shape. 396 

Two boundary conditions are considered for the unsaturated soil covermantle. At 397 

ground surface (i.e., the upper boundary condition), if the rainfall intensity is 398 

greater than the current infiltration capacity, the excess rainfall forms overland 399 

runoff. Otherwise, all rainfall intensity is set as infiltration. The bottom boundary 400 

condition links the soil cover mantle to a perched aquifer developing in the 401 

fractures and hydraulically connected to the unsaturated cover through the 402 

weathered soil layer (less conductive and capable of retaining much water), 403 

located at the contact between the cover and the bedrock. This soil layer 404 

penetrates the vertical conduits and fractures (Greco et al., 2013). In this context, 405 

the perched aquifer is modelled as a linear reservoir model, that receives water 406 

from the gravitational leakage of the overlying unsaturated soil cover mantle and 407 

releases it as deep groundwater recharge and spring discharge (Greco et al., 408 

2018). This conceptualization of the perched aquifer behaviour implies that the 409 

streamflow, supplied by the springs, is linearly related to the aquifer water level 410 

temporarily developing in the epikarst. Indeed, with this assumption, the model 411 
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closely reproduces the trend of the stream water level observed in the field (Greco 412 

et al., 2018; Marino et al., 2020a). The pressure head at the soil–bedrock interface 413 

is assumed to follow the fluctuations of the water table of the underlying aquifer. 414 

The hydraulic parameters of the soil cover have been obtained from previous 415 

laboratory tests (Damiano and Olivares, 2010) and field monitoring data analysis 416 

(Greco et al., 2013), considering the van Genuchten-Mualem model for the 417 

hydraulic characteristic curves (van Genuchten, 1980). The parameters 418 

describing the hydraulic behaviour of the perched aquifer hosted in the upper part 419 

of the limestone bedrock have been derived from previous studies, which showed 420 

that the model satisfactorily reproduced the fluctuations of water potential and 421 

moisture, observed at various depths in the unsaturated soil cover, both during 422 

rainy and dry seasons (Greco et al., 2013; 2018). Model parameters are 423 

summarized in Table 1Table 1. The groundwater level of the perched aquifer is 424 

referred to the base of the epikarst, which is assumed 14 m below the soil-bedrock 425 

interface. 426 

Table 1. Hydraulic parameters of the coupled model of the unsaturated soil cover 427 
mantle and of the aquifer hosted in the Epikarst epikarst (Greco et al. 2021). 428 

Soil covermantle 

Soil cover mantle thickness (m) 2 

Saturated water content (-) 0.75 

Residual water content (-) 0.01 

Air entry value (m-1) 6 

Shape parameter (-) 1.3 

Saturated hydraulic conductivity (m/s) 3x10-5 

Epikarst 

Epikarst thickness (m) 14 

Effective porosity (-) 0.005 

Time constant of linear reservoir (days) 871 days 

 429 

The equations have been numerically integrated with the finite difference 430 

technique, with a time step of 1 hour over a spatial grid with vertical spacing of 431 

0.02 m. 432 
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It is important to note that, even if the model simplifies the reality assuming a 433 

homogeneous soil profile, a more complex approach considering a layered profile 434 

would lead to difficult application of the model at less detailed scales such as 435 

regional and catchment scales. Consequently, the hydraulic properties of the 436 

homogeneous soil layer should be considered as effective properties, useful to 437 

reliably reproduce the observed phenomena. 438 

2.2.3. Synthetic hydrometeorological data 439 

As it has been stated from previous sections, the dataset comes from the 440 

simulation of the hydrologic response of a slope to 1000 -years long hourly 441 

rainfall time series, carried out with a physically based model, calibrated for the 442 

case study. The output contains the time series of soil water content and suction 443 

at all depths throughout the soil covermantle, of the water exchanged between 444 

the soil and the atmosphere, of the leakage through the soil-bedrock interface, 445 

and of the predicted water level of the underlying aquifer. 446 

One hour before the onset of each rainfall event, the following variables have 447 

been extracted, as they would be measurable in the field and are representative 448 

of antecedent conditions: the aquifer water level (ha), the mean volumetric water 449 

content in the uppermost 6 cm of soil cover mantle (𝜃6) and the mean volumetric 450 

water content in the uppermost 100 cm of soil cover mantle (𝜃100). To quantify 451 

the effects of rainfall on the slope response, the change of the water stored in the 452 

soil cover mantle at the end of each rainfall event (ΔS) has been computed and 453 

compared with the total rainfall depth of the event (H). 454 

Specifically, the inclusion of soil water content information has been chosen, as 455 

it can be obtained from available satellite-derived remote sensing products 456 

(Paulik et al., 2014; Pan et al., 2020; Paulik et al., 2014) or from field sensor 457 

networks (Wicki et al., 2020). Regarding satellite products, in many cases not 458 
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giving precise water content values, they satisfactorily reproduce temporal 459 

trends, which represent a valuable information for hazard assessment. 460 

Besides, as the model introduces a linear relationship to estimate the outflow 461 

from the groundwater system, the monitored stream water level has been 462 

considered comparable to the simulated groundwater level, as the two variables 463 

are assumed directly proportional in the model. 464 

2.3. Data analysis techniques 465 

The resulting dataset has been analyzed with Machine Learning techniques, 466 

aiming at capturing the complex interactions between the hydrological 467 

subsystems (i.e., soil covermantle, fractured bedrock, surface water). Indeed, the 468 

analysis of the data is not only constrained to classical statistical analyses, such 469 

as data frequency distributions, but also to data classification based on their 470 

geometrical distribution, and on quantifying the importance of the considered 471 

antecedent variables on the simulated response as well. 472 

2.3.1. Variable importance assessment by Random Forest 473 

The Random Forest is a Machine Learning method that sets its basis on the theory 474 

of regression/classification trees, bagging data and capturing even the complex 475 

or non-linear interactions in-between the data of a set with relatively low bias 476 

(Breiman, 2001). This method is often used to forecast a desired variable based 477 

on predictor variables in terms of regression or classification set of randomly 478 

constructed trees. In this case, a regression based Random Forest technique is 479 

applied to predict the slope soil storage response (ΔS) at the end of each rainfall 480 

event of total depth H, using as predictors all possible triplets of variables 481 

described in the section 2.2.3 (Htotal rainfall depth, haaquifer water level, 482 

𝜃6mean volumetric water content in the uppermost 6 cm and 𝜃100mean 483 

volumetric water content in the uppermost 100 cm):. Specifically, four Random 484 

Forest models have been developed: RF1 with input features 〈H, 𝜃6, ha〉, RF2, 485 



25 

 

with input features 〈H, 𝜃100, ha〉, RF3, with as input features 〈H, 𝜃6, 𝜃100〉 and RF4 486 

with input features: 〈H, 𝜃6, 𝜃100〉. The 80% of the dataset was used to train the 487 

models and tuning the major hyperparameters of random forest algorithm: the 488 

number of trees, the maximum depth, the minimum sample leaf, and the 489 

maximum number of feature (more details about the evaluation and optimization 490 

of the hyperparameters are provided in Appendix B). A total of 100 trees with a 491 

maximum leaf split of 20 nodes have been built for all variable combinations and 492 

trained with the 80% of the dataset randomly selected to obtain different regressor 493 

models.  494 

Then, the best triplet of predictor triplet of variables is selected according to the 495 

lowest value of the Root Mean Squared Error (RMSE) calculated using the test 496 

data set consisting of the 20% of the remaining data. 497 

Furthermore, to understand how a single variable affects the regression model, 498 

the predictor importance is measured by the sensitivity of Random Forest model 499 

to the predicted variable (i.e., soil cover mantle response), which is proportional 500 

to the RMSE, by permuting on purpose the variables between the levels of the 501 

model and calculatingestimating the corresponding change in the RMSE. Hence 502 

the most important variable is the one that exhibits the greatest change in RMSE 503 

after the permutations (Hastie et al., 2008). Hence, the importance of predictor 504 

variables follows the magnitude of the change in RMSE. This feature is usually 505 

referred to in relative terms to the most important variable, called variable relative 506 

importance (Hastie et al., 2008). 507 

2.3.2. Data classification by clustering analysis 508 

The exploratory analysis of spatial large datasets is often performed by means of 509 

clustering techniques, aiming at identifying different classes in the data, 510 

accounting on the distribution of the variables under study. There are two types 511 

of clustering algorithms used for class identification purposes: algorithms based 512 
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on the density of points and algorithms based on the distance between points. The 513 

algorithm used here is named k-means, and it is a distance-based procedure to 514 

cluster data, based on the number of desired clusters and their centroids. The 515 

algorithm assigns every element in the dataset to a cluster,proceeds to iteratively 516 

minimize minimizing the variance of the Euclidean distance of the elements of 517 

each cluster elements from their centroids, by accordingly moving these latter. 518 

Consequently, the data labelling is done based on their geometrical disposition in 519 

the studied plane or spacedot cloud, depending on the target number of clusters 520 

to be identified (Lloyd, 1982; Arthur and Vassilvitskii, 2007). When variables 521 

with very different magnitudes are being related for clustering purposes, it is 522 

convenient to normalize the data keeping the relative distances between 523 

observations. Therefore, the clustering here is applied to the standardized data to 524 

exploit the variance of each variable and keeping the geometrical disposition 525 

between observations stable. 526 

As the k-means algorithm does not automatically estimate the optimal number of 527 

clusters to be identified within the dataset, the Silhouette metric has been used 528 

here to evaluate the preferred number of clusters (Rousseeuw, 1987; de Amorim 529 

and Hennig, 2015). In fact, this metric quantifies the quality of cluster 530 

identification by scoring the difference between the overall average intra-cluster 531 

distances and the average inter-cluster distances related to the maximum between 532 

the latter two. In that way the metric would always be a value ranging from -1 533 

and 1, where typically 1 means that clearly distinguished clusters have been 534 

identified, 0 means that the identified clusters are indifferent, and -1 means that 535 

data are mixed in the identified clusters. 536 

3. Results and discussion 537 

The analysis is developed carried out on both field monitored and synthetic 538 

datasets, to quantify the information provided by the defined antecedent variables 539 

useful to predict the seasonal changes of the slope response to precipitations. 540 



27 

 

3.1. Role of measurable variables on the slope response of the soil 541 

mantle 542 

To select the most appropriate informative triplets of predictor variables, four 543 

Random Forest models for predicting the change in water storage (ΔS) in the soil 544 

covermantle, associated to rainfall events of total depth H, four Random Forest 545 

models are trained to predict the ratio ΔS H⁄ , based on the dataset consisting of 546 

all possible combinations of the synthetic variables: 〈H, 𝜃6, ha〉, 〈H, 𝜃100, ha〉, 547 

〈H, 𝜃6, 𝜃100〉 and 〈𝜃6, 𝜃100, ha〉. In fact, the change in storage ΔS is obviously 548 

strongly dependent on the event rainfall depth H (i.e., the more it rains the more 549 

soil storage increases), thus concealing important hydrological processes going 550 

on the slope. Differently, the choice of the ratio ΔS H⁄ , a measure of the amount 551 

of rain that remains stored in the soil mantle, allows detaching the water drainage 552 

processes from the water accumulation processes. For each Random Forest 553 

model, the values of the Root Mean Square Error (RMSE) are calculated, and the 554 

importance of each predictor variable is evaluated according to the procedure 555 

described in Section 2.3.1. The computational effort implied in doing the 556 

calculations by a conventional workstation with a Core(TM) i7-10870H 557 

processor and 16 GB of SDRAM memory is less than 2 minutes for each model 558 

run. The obtained results are reported in Table 2. 559 

Table 2. RMSE and variable importance for 𝑯, 𝜽𝟔, 𝜽𝟏𝟎𝟎 and 𝒉𝒂 in the prediction 560 
of soil response described as 𝜟𝑺 561 

  Importance 

Dataset RMSE H 𝜃6 𝜃100 ha 

〈𝐻, 𝜃6, ha〉 5.353 0.963 0.024 - 0.012 

〈𝐻, 𝜃100, ha〉 4.336 0.964 - 0.024 0.010 

〈𝐻, 𝜃6, 𝜃100〉 4.706 0.962 0.014 0.022 - 

〈𝜃6, 𝜃100, ha〉 24.665 - 0.313 0.340 0.345 

 562 
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As it could be seen from Table 2, an expected behavior on the slope response, 563 

quantified as ΔS, answers back highly depending on the rainfall amount as the 564 

most important variable in the triplet, while the antecedent conditions show an 565 

almost negligible importance with less than 3%. Additionally, the absence of total 566 

rainfall among the predictors leads to a substantial increase in the RMSE 567 

(24.665). This result is physically expected; the more it rains the more the water 568 

storage in the slope increases. Nevertheless, such strong relationship between H 569 

and ΔS could conceal important hydrological processes going on the slope. For 570 

this reason, normalization schemes could be introduced to account different 571 

processes in the slope response. In this case the ratio ΔS H⁄  is used as a measure 572 

of the association between the amount of rain and how much it was stored in the 573 

soil cover, pursuing to detach the water drainage processes from the water 574 

accumulation processes. To this end, additional Random Forest models are 575 

trained on the same four datasets for predicting the normalized water storage in 576 

slope ΔS/H. 577 

 578 

Table 23. RMSE and variable importance for 𝐇, 𝜽𝟔, 𝜽𝟏𝟎𝟎 and 𝐡𝐚 in the prediction 579 
of soil response described as 𝚫𝐒 𝐇⁄  580 

  Importance 

Dataset RMSE H 𝜃6 𝜃100 ha 

〈𝐻, 𝜃6, ha〉 0.213 0.352 0.329 - 0.319 

〈𝐻, 𝜃100, ha〉 0.197 0.293 - 0.405 0.302 

〈𝐻, 𝜃6, 𝜃100〉 0.203 0.340 0.261 0.399 - 

〈𝜃6, 𝜃100, ha〉 0.210 - 0.292 0.414 0.293 

 581 

All the choices of triplets indicate that all the tested variables are similarly 582 

informative to predict the Normalizing normalized the slope soil mantle response 583 
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ΔS H⁄  as ΔS H⁄  (Table 2Table 3) highlights the important role played by the other 584 

variables. It is worth to note the importance of the perched ground water level, 585 

which can be compared with the importance of the two soil water contents and 586 

of the total rainfall depth. The importance of ha on the slope response of the soil 587 

mantle suggests that, the presence of in some conditions, of the change in soil 588 

storage less connected to rainfall values and more linked to is affected by the 589 

capability effectiveness of water exchange between the soil mantle and the 590 

underlying aquifer and the soil cover, as it will be discussed in the following 591 

sections. Moreover, in Table 2Table 3 the variables with triplet showing the 592 

lowest RMSE values are is conformed by the total rainfall depth, the aquifer 593 

water level and the mean volumetric water content in the uppermost 100 cm. 594 

According to the Random Forest model, they are the most informative for 595 

predicting the slope soil mantle response. Therefore, the triplet 〈H, 𝜃100, ha〉 is 596 

used for further analysis. 597 

3.2. Underground Soil and underground antecedent conditions 598 

The field monitoring activities allow to get a complete dataset that traces the 599 

rainfall values coupled with the soil mean volumetric water content in the 600 

uppermost meter of the soil profile (𝜃100) and the water depth of the Castello 601 

stream (hs), both measured hourly for three years. The field monitored data, 602 

composed by 57 rainfall events, include the water level of the Castello stream 603 

rather than the direct measurement of the aquifer water level (ha). Nevertheless, 604 

a direct relationship links the water level in the aquifer and the water level in the 605 

stream, as assumed for the mathematical modelling. This dataset has been 606 

enriched synthetically, as it has been described in section 2.2. 607 
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608 

 609 

Figure 5. Field monitored mean volumetric water content in the upper meter of the 610 
soil profile (𝜽𝟏𝟎𝟎) and water depth in the Castello stream (𝐡𝐬) compared with 611 
simulated data (the vertical axis is plotted in logarithmic scale to help visualizing of 612 
small water levels). 613 

Therefore, to analyze the effects of the underground conditions on the slope 614 

response, Figure 5Figure 5 shows the simulated data (circular dots in the 615 

background) and the field monitored data (triangular colored dots). Logarithmic 616 

axes are used to distinguish the very low aquifer water level from the high values. 617 

Four major seasonally recurrent conditions could be identified for the water in 618 

the subsurface system from field monitored data: first, a condition usually 619 

occurring between December and May is characterized by the highest water 620 
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content in the soil and the highest measured water level in the stream. Second, 621 

the period from June to July is characterized by intermediate water content 622 

values, with still high level in the stream. Third, the period from August to 623 

September is characterized by the lowest values of water content in the soil, but 624 

also the lowest water depth ℎ𝑠 measured in the stream (few centimeters, in some 625 

cases nearly zero). Finally, the period from October to November is characterized 626 

by a wide range of values in soil water content and a relatively low range of 627 

stream water depth. 628 
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629 

 630 

Figure 6. Seasonal behavior of the aquifer water level (𝐡𝐚) and the mean 631 
volumetric water content of the upper meter of the soil profile (𝜽𝟏𝟎𝟎) for the 632 

synthetic dataset (the vertical axis is plotted in logarithmic scale to help 633 
visualizing small water levels). 634 

The underground antecedent conditions are naturally linked to a seasonal 635 

behavior dominated by the hydrological conditions which can be traced in time 636 

as it can be seen from the synthetic data (Figure 6Figure 6). The months from 637 

December to April follow a winter and spring behavior, characterized by wet soil 638 

conditions and aquifer water levels ranging from low to high. From June to July, 639 

a late spring behavior is visible, characterized by relatively dry soil (i.e., most of 640 



33 

 

the data falling below soil field capacity), in combination with relatively high 641 

groundwater levels (indicating a still active slope drainage). In August and 642 

September, a summer like behavior is shown, with the driest soil water content 643 

and generally low aquifer water level. Finally, in October and November, the end 644 

of the dry season is shown: a wide range of soil wetness coupled with a still low 645 

aquifer water level. 646 

For both the field monitored and synthetically obtained datasets, the observed 647 

conditions are the result of the time lag between the beginning of the rainy season 648 

and the slope response. The recurrent seasonal behavior observed for the 649 

synthetic dataset, although delayed or anticipated owing to the year-by-year 650 

variability of rainfall, is close to that observed in the field. 651 
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652 

 653 

Figure 7. Histograms for data distributions of (a) 𝜽𝟏𝟎𝟎 (left) and (b) 𝐡𝐚 (right) for 654 
the synthetic dataset 655 

The overall situation for the synthetic dataset of antecedent conditions (i.e., 656 

duplets 〈𝜃100, ha〉) can be described by the distribution of each individual 657 

variable, which can be seen in the histograms shown in Figure 7Figure 7. It is 658 

interesting to note that, for both 𝜃 and ha, a bimodal behaviour is observed, 659 

corresponding to dry and wet field conditions. 660 
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 661 

Figure 8. Identified clusters for the duplets 〈𝜽𝟏𝟎𝟎, 𝐡𝐚〉 representing underground 662 
antecedent conditions of the synthetic dataset. For each cluster, the centroids are 663 

shown. 664 

The k-means clustering technique has been used to investigate the geometrical 665 

distribution of the duplets 〈𝜃100, ha〉, with number of clusters ranging from 2 to 666 

7. According to the Silhouette metric, the optimal number of clusters is 3, with a 667 

metric value of 0.7, allocating the 28%, 30% and 42% of the data in clusters 1, 2 668 

and 3 respectively. Figure 8Figure 8 shows the 3 clusters obtained within the 669 

synthetic dataset. Centroid positions are also displayed, showing the zones of the 670 

clouds where most of the dots are gathered. This representation of the data use 671 

both vertical and horizontal axes in linear scale to let visualize distance 672 

magnitudes between the different clusters, but it corresponds to the same dataset 673 

shown in Figure 6Figure 6. 674 

The distribution of the data after clustering is also analyzed for each cluster and 675 

the histograms are shown in Figure 9Figure 9. It looks clear that the clusters 676 

capture different couplings of dry and wet underground antecedent conditions. 677 

*103 
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678 

 679 

Figure 9. Histograms for data distributions of (a) 𝜽𝟏𝟎𝟎 (left) and (b) 𝐡𝐚, (right) 680 
according to each identified cluster in the duplets 〈𝜽𝟏𝟎𝟎, 𝐡𝐚〉 681 
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In fact, cluster 1 captures dry conditions, with a volumetric water content below 682 

the field capacity 𝜃fc (it was estimated as 0.35 with the empirical relationship 683 

proposed by Twarakavi et al. (2009) according to the van Genuchten model 684 

parameters) and low values of ha. Differently, clusters 2 and 3 capture scenarios 685 

related to relatively wet soil cover mantle conditions (i.e., 𝜃100 > 𝜃fc), coupled 686 

to low ha in cluster 3, gathering scenarios normally observed in late autumn, and 687 

to the highest ha conditions for cluster 2, comprising conditions normally 688 

occurring in late winter and spring. 689 

The two chosen variables, 𝜃100 and ha, allow identifying three different 690 

antecedent slope conditions one hour before the onset of any rainfall event. 691 

Hence, it is worthy to investigate how these different antecedent conditions may 692 

be related to different slope responses to precipitations. 693 

3.3. Effects of underground soil and underground antecedent 694 

conditions on the slope response to rainfall 695 

The analysis of the data has been focused on identifying clusters within the 696 

triplets 〈𝜃100, ha, ΔS H⁄ 〉, aiming to evaluate the slope response as the amount of 697 

rainwater being stored/drained in the soil covermantle. The results are being 698 

plotted in the space composed by the variables that can be monitored in the field: 699 

(𝜃100, ha, H). 700 

As it is not always expected to experience increased soil storage during rainfall 701 

events, the identification of draining slope conditions is an important aspect. 702 
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703 

 704 

Figure 10. Clustering results of the synthetic data triplets 〈𝜽𝟏𝟎𝟎, 𝐡𝐚, 𝚫𝐒 𝐇⁄ 〉  705 
represented in the space (𝜽𝟏𝟎𝟎, 𝐡𝐚, 𝐇) 706 

 707 
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(b) 

(c) 

(a) 
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 709 

Figure 11. Clustering results of the triplets 〈𝜽𝟏𝟎𝟎, 𝐡𝐚, 𝚫𝐒 𝐇⁄ 〉  in (a) (𝜽𝟏𝟎𝟎, 𝐡𝐚) 710 
plane; (b) (𝜽𝟏𝟎𝟎, 𝐇) plane; (c) (𝐇, 𝐡𝐚) plane 711 
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Figure 10Figure 10 and Figure 11Figure 11 show the data clusters for the triplets 712 

〈𝜃100, ha, ΔS H⁄ 〉, for any identified rainfall event, represented in the (𝜃100, ha, H) 713 

space in a logarithmic axis representation. The Silhouette metric in this case 714 

suggests 4 as an optimal number of clusters with a metric value of 0.61. It is 715 

remarkable that three of the clusters are close to those already identified from the 716 

antecedent (seasonally recurrent) underground conditions (section 3.2). 717 

 718 

Figure 12. Distribution of the slope response 𝚫𝐒 𝐇⁄  for the data in each cluster 719 

Specifically, cluster 1, 2 and 3 correspond to different slope processes according 720 

to ΔS H⁄  (Figure 12Figure 12). Even if cluster 1 and cluster 2 show similar 721 

responses, with slightly smaller ΔS H⁄  for cluster 1, the controlling processes are 722 

indeed different; the conditions of cluster 1 are typically occurring in dry seasons 723 

with long dry periods between short rainfall events, leading to dry antecedent 724 

conditions, so that accumulation of water in the soil cover mantle (increase in 725 

water storage) is expected at each event. The data in cluster 2 are typically related 726 

to wet seasons, especially in late winter and spring, where rainfall events are more 727 

frequent, leading to antecedent wet soil (𝜃100 ≥ 𝜃fc) and antecedent high ground 728 

water level. However, these conditions do not seem to correspond to effective 729 

slope drainage, so that the slope response in cluster 2 results comparable to that 730 
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observed in cluster 1 in terms of ΔS H⁄ . Instead, the conditions gathered in cluster 731 

3 differ from those in cluster 2 for the lower aquifer water level ha, and the 732 

highest ΔS H⁄  indicates the lowest slope drainage. 733 

The additional cluster 4 identified here highlights a particular slope response, as 734 

it catches all the conditions where nearly zero and negative ΔS take place, 735 

meaning an effective slope drainage during rainfall events. It is interesting to note 736 

that, even for relatively high rainfall events (above 100 mm), this slope response 737 

occurs when soil moisture is above the field capacity and when this condition is 738 

coupled with very high groundwater level, probably due to the high permeability 739 

all along the soil cover mantle and to the hydraulic connection with the 740 

underlying aquifer. 741 

4. Conclusions 742 

This study aims at identifying and analysing the major hydrological controls of 743 

the slope response to precipitations and, in that way, defining suitable variables 744 

to be monitored in the field to predict such response. The studied case refers to 745 

the hydrological processes in a slope system consisting of a pyroclastic soil cover 746 

mantle overlaying a fractured karstic bedrock, where a perched aquifer develops 747 

during the rainy season. A synthetic time series of slope response to precipitations 748 

has been built, thanks to a physically based model, previously calibrated with 749 

field monitoring data, coupled with a stochastic rainfall generator. The seasonal 750 

behaviour of the slope shows substantial agreement between sSynthetic and 751 

experimental data show substantial agreement. In fact, the soil water content 752 

values measured in the field are close to those of the synthetic dataset. 753 

Furthermore, the simulated epikarst water level shows similar seasonal behaviour 754 

as the stream level records, indeed directly related with the discharge from the 755 

epikarst aquifer. The synthetic dataset has been explored with Random Forest 756 

and k-means clustering, to evaluate the slope response characterized as the 757 

change in water stored in the soil cover mantle (ΔS) during precipitation events 758 
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with rainfall depth H, starting from different underground antecedent conditions. 759 

These were quantified through the mean volumetric water content in the 760 

uppermost meter of soil cover mantle (𝜃100) and the aquifer water level (ha), one 761 

hour before the onset of rainfall. 762 

The ratio ΔS H⁄ , which allows identifying slope response regardless the amount 763 

of event precipitation, is sensitive to both ha and 𝜃100, with the groundwater level 764 

being the most influential antecedent variable. The underground antecedent 765 

conditions, characterized by 𝜃100 and haand linked to the seasonal 766 

meteorological forcing, allow identifying different slope responses, related to the 767 

seasonally active hydrological processes. 768 

High perched groundwater level, typical of winter and spring, indicates active 769 

slope drainage, which compensates rainwater infiltration, so that the soil storage 770 

remains stable, or even reduces, even after large rainfall events. 771 

Differently, low perched groundwater level corresponds to impeded slope 772 

drainage. When it occurs with initially dry soil cover mantle (typically in summer 773 

and early autumn), it tends to retain all the infiltrated rainwater as increased soil 774 

storage. When the soil cover mantle is already wet (i.e., above the field capacity) 775 

at the onset of rainfall events, as it usually happens in late autumn and early 776 

winter, the increase of soil storage is smaller, as the soil approaches saturation. 777 

The presented results suggest that monitoring antecedent conditions, by 778 

measuring suitable variables to identify the major hydrological processes 779 

occurring in the slope in response to precipitations, can be useful to understand 780 

such processes and to develop effective predictive models of slope response. 781 

Therefore, the proposed methodology can be replicated also in other contexts and 782 

be useful for several hydrologic applications: from the water supply towards 783 

natural streams due to infiltrated water, to the hydric stress estimation in crops 784 

(e.g., the centenary chestnut forests in the area of the case study) especially in 785 
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very dry seasons, but also for the design of effective monitoring networks 786 

exploiting geohydrological information for geohazard prevention (and early 787 

warning). 788 

  789 
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Appendix A: Calibration of the Stochastic Rainfall Generator 790 

The Neyman-Scott Rectangular Pulse (NSRP) model (Neyman and Scott, 1958; 791 

Rodriguez-Iturbe et al., 1987; Cowpertwait et al., 1996) is here used as stochastic 792 

rainfall generator. The NSRP describes the process of point rainfall as a 793 

superposition of randomly arriving rain clusters, each containing several rain 794 

cells with constant intensity. The hyetograph within a cluster is obtained by 795 

summing the intensity of the various cells belonging to the cluster. It has been 796 

calibrated based on 17 years of experimental data (2000-2016) of rainfall depth 797 

at 10 min time resolution, recorded by the rain gauge managed by the Civil 798 

Protection in Cervinara (Southern Italy). The calibration has been carried out by 799 

minimizing, for rainfall aggregated at various durations, the difference between 800 

the following quantities, estimated by the model and calculated from the 801 

experimental data: mean, variance, lag 1 autocorrelation, probability of dry 802 

interval, probability of transition from dry-to-dry interval and probability of 803 

transition from wet-to-wet interval. The calibration procedure, based on the one 804 

proposed by Coptwertwait et al. (1996), is described in detail in Peres and 805 

Cancelliere (2014). To account for the seasonality of rainfall, these quantities 806 

have been calculated month by month in the experimental record (Figure A1), 807 

suggesting that the calibration of the NRSP model should be carried out 808 

separately for seven homogeneous periods (September, October, November, 809 

December-March, April, May-June, July-August). 810 
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 811 

Figure A1. Monthly plot of hourly rainfall characteristics calculated based on the 812 
experimental data of the rain gauge of Cervinara. 813 

Table A1 gives the obtained parameters of the NSRP stochastic model, where  814 

represents the parameter of a Poisson process describing the arrival of clusters;  815 

is the mean number of cells in a cluster, also described by a Poisson process; β is 816 

the parameter of an exponential probability distribution describing the arrival 817 

times of each cell in a cluster, expressed as the number of time intervals of 10 818 

minutes starting from the beginning of a cluster; η is the parameter of an 819 

exponential probability distribution describing the duration of rain cells; ξ is the 820 

parameter of a Weibull probability distribution describing the rain intensity of 821 

cells, with cumulative probability function F(x, ξ, b) = 1 − exp(−ξxb), in which 822 

x is cell rain intensity and the parameter b = 0.8 has been set a priori 823 

(Cowpertwait et al., 1996). 824 

Table A1. Parameters of the NSRP model. 825 

 Param

. Sept Oct Nov 

 Dec-

Mar Apr 

May-

Jun 

Lug.Au

g 
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  (h-1) 0.01

5 

0.0052

4 

0.0025

7 

 

0.0238 

0.0080

9 0.00386 0.00900 

  (−) 2.68 36.4 57.1  2.60 38.7 21.6 1.40 

  (h-1) 0.26

5 0.156 0.0167 

 

0.813 0.123 0.116 24.5 

  (h-1) 1.41 57.3 1.43  0.280 15.5 8.59 1.23 

  (hb 

mm -b) 
0.33

0 0.047 0.450 

 

0.967 0.186 0.158 0.268 

The adherence of the rainfall generated with the stochastic model to the 826 

experimental rainfall data has been tested by evaluating rainfall characteristics 827 

different from those used for the calibration. For instance, Figure A2 shows the 828 

comparison of the rainfall depth, cumulated over one year, for the experimental 829 

data (17 years) and for 1000 years of synthetic data generated with the calibrated 830 

NSRP model.  831 

 832 

Figure A2. Comparison of observed (black) and simulated (red) cumulated rainfall 833 
plots in a year. 834 

                                     

    

    

    

    

    

    

 

Time (hours)

C
u
m
u
la
te
d
 r
ai
n
fa
ll
 (
m
m
)



48 

 

In Figure A3, the boxplot of the maximum hourly rainfall in one year, observed 835 

in the experimental dataset of 17 years, is compared with the same boxplot 836 

referred to 20 series of 17 years randomly extracted from the generated 1000 837 

years synthetic rainfall series. Several of the synthetic 17 years intervals show a 838 

distribution of the maximum hourly rainfall close to the observed one. 839 

 840 

Figure A3. Comparison of observed and simulated distributions (boxplots) of the 841 
maximum hourly precipitation in a year, for series of the same length. Each panel 842 
shows the distribution for the 17 observed years (boxplot is always the same), and 843 
17 randomly picked simulated years. 844 
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 845 

Figure A4. Scatterplot of total rainfall event depth (𝐇) vs. rainfall event duration 846 
(𝐃). The events have been sorted within the rainfall datasets by considering a 847 
separation “dry” interval of 24 hours with less than 2 mm rainfall. The blue dots 848 
represent events extracted from the 17 years experimental rainfall dataset, while 849 
the grey dots represent events extracted from the 1000 years synthetic rainfall 850 
dataset. 851 

Regarding the required comparison between synthetic and observed wet and dry 852 

intervals, figure A4 shows the scatterplot of duration and total rain depth of the 853 

events, sorted with a separation “dry” interval of    hours with less than   mm 854 

rainfall from the observed dataset (blue dots) and the synthetic dataset (grey 855 

dots). The plots show how the synthetic data contain the observed ones, and that 856 

the shape of the dot clouds looks quite similar. 857 

Figure A5 shows the frequency distributions of the durations of dry intervals 858 

belonging to the 17 years rainfall dataset, and the same distribution for the dry 859 

intervals extracted from the 1000 years synthetic dataset: the two distributions 860 

look nearly identical. 861 



50 

 

 862 

Figure A5. Frequency distributions of dry interval durations for events extracted 863 
from the 17 years experimental rainfall dataset (a) and events extracted from the 864 
1000 years synthetic rainfall dataset (b). The events have been sorted within the 865 
rainfall datasets by considering a separation “dry” interval of 24 hours with less 866 
than 2 mm rainfall. 867 

  868 

(a) (b)

 bserved Synthetic
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Appendix B: Tuning Random Forest hyperparameters 869 

The Random Forest (RF) algorithm (Breiman, 2001) has been very successful as 870 

a general-purpose classification and regression method. Starting from Bagging 871 

or Bootstrap Aggregation (Efron and Tibshirani,1993), RF builds several random 872 

de-correlated decision trees and then averages their predictions. 873 

The regression RF algorithm can be summarized as follows: 1) by means of 874 

bootstrap, a sample is extracted from the training data; 2) based on the 875 

bootstrapped data, a tree T of the random-forest is grown by repeating the 876 

following operations until a leaf node (a node without split) is reached: a) for 877 

each node, m variables are randomly selected from the p input variables or 878 

features (with 1 ≤ 𝑚 ≤ 𝑝); b) among the m variables,  the best variable and 879 

splitting point are selected according to a minimum criterium; c) the node is split 880 

into two daughter nodes. To build the RF with B trees, steps 1 and 2 are repeated 881 

B times. Then, the prediction, Ypred, for a new observation, X, is the average of 882 

the final values, 𝑇𝑏(𝑋), i.e., the values of the predicted variable corresponding to 883 

the leaves of each tree: 884 

𝑌𝑝𝑟𝑒𝑑 =
1

𝐵
∑ 𝑇𝑏(𝑋)𝐵

𝑏=1      (B.1) 885 

The main advantage of RF is the simplicity with which a forest can be trained, 886 

and the parameters of the algorithms optimized. In this paper, the scikit-learn 887 

framework (Pedregosa et al, 2011) is used to run the RF algorithm. 888 

The main hyperparameters of a RF are: 1) n_estimators: the number of trees of 889 

the forest; 2) max_depth: the maximum depth of each decision tree in the forest; 890 

3) min_samples_leaf: the minimum number of samples required to be at a leaf 891 

node; max_features: the number of features, or input variables, to consider when 892 

looking for the best split. 893 
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The procedure applied in this study to estimate and optimize the hyperparameters 894 

of the RF algorithm consists of the following steps: 895 

- Step  : the dataset is divided into a training set and a test set, respectively 896 

containing   % and   % of the data, randomly chosen. 897 

- Step  : the K-fold cross-validation technique (Stone,     ), with K=  , 898 

is applied to empirically determine a set of values for the 899 

hyperparameters, using only the training dataset. 900 

- Step  : for each fold, a RF is trained on the other k-  folds of the data and 901 

tested on the first fold. This process is repeated k=   times, so to use each of 902 

the k folds exactly once as the validation set. A performance metric is then 903 

calculated for each fold, to estimate how well the RF will perform on new 904 

data. In this work the Root Mean Square Error (RMSE) is used as the 905 

performance metric. 906 

- Step  : the RF is trained by changing one hyperparameters at once and using 907 

the default values for the other three (default values of hyperparameters as 908 

reported in Pedegrosa et al (    ) are: n_estimators=   ; max_depth=none, 909 

i.e., the tree is expanded until all leaves contain less samples than 910 

min_samples_split; min_samples_leaf= ; max_features= ).  911 

- Step  : from the results of the previous step, the ranges of hyperparameters, 912 

given in table B , are defined. These values represent the grid in which the 913 

optimal hyperparameters are searched. In other words, using the K-fold 914 

technique (step  ), RF model is fitted K times, and then the optimal set of 915 

values is the one minimizing the RMSE.  916 

- Step   (validation of the model), once the optimal values of the 917 

hyperparameters are determined, the performance of RF model is evaluated, 918 

for the test dataset as defined in Step  , using the RMSE.  919 

In this study, the described methodology is used to evaluate the hyperparameters 920 

for the following RF models: RF , trained using the input features ⟨H, 𝜃6, ha⟩; 921 
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RF , trained using ⟨H, 𝜃100, ha⟩; RF , trained using ⟨H, 𝜃6, 𝜃100⟩; RF , trained 922 

using ⟨H, 𝜃6, 𝜃100⟩. All models are trained to predict the normalized change of 923 

water storage in the soil mantle, ΔS H⁄ . Figures B , B , B  and B  show the 924 

results of step  . Specifically, they depict the trends of the RMSE versus the 925 

hyperparameters for RF , RF , RF  and RF , respectively. 926 

 927 

Figure B1. Performance of random forest model RF1 on the test and Cross 928 
Validation (CV) sets according to the test metric by changing the hyperparameters: 929 
(a) N_estimators (b) Max_depth (c) Max_features (d) Min_samples_leaf 930 
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 931 

Figure B2. Performance of random forest model RF2 on the test and Cross 932 
Validation (CV) sets according to the test metric by changing the hyperparameters: 933 
(a) N_estimators (b) Max_depth (c) Max_features (d) Min_samples_leaf 934 

 935 

Figure B3. Performance of random forest model RF3 on the test and Cross 936 
Validation (CV) sets according to the test metric by changing the hyperparameters: 937 
(a) N_estimators (b) Max_depth (c) Max_features (d) Min_samples_leaf 938 
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 939 

Figure B4. Performance of random forest model RF4 on the test and Cross 940 
Validation (CV) sets according to the test metric by changing the hyperparameters: 941 
(a) N_estimators (b) Max_depth (c) Max_features (d) Min_samples_leaf 942 

The analysis of the previous figures provides the search gird of hyperparameters 943 

given in Table B . After fitting each model K times (step  ), the optimal sets of 944 

hyperparameters are reported in Table B  for each RF model. Then, the 945 

performance of models RF , RF , RF , and RF  are evaluated on the test dataset 946 

using RMSE metric. The obtained results are summarized in Table B . 947 

The above-described analysis has been used to identify the most informative 948 

triplet of variables, which has been chosen as the one corresponding to the best 949 

performing among the optimal RF models, namely RF . 950 

Table B1. Hyperparameters range of variation 951 

Hyperparameter Range of variation 

n_estimators 5,10,20,25,30 

max_features 1,2,3 

min_samples_leaf 15,20,25 

max_depth 3,4, 5, 6,7 

 952 
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Table B2. Optimal values of Hyperparameters 953 

Hyperparamete

r 

Optimal values 

RF1 RF2 RF3 RF4 

n_estimators 30 30 25 30 

max_features 2 2 3 2 

min_samples_leaf 20 20 9 20 

max_depth 7 7 7 7 

 954 

Table B3. RMSE of studied models computed for the test dataset 955 

Model RMSE 

RF1 ⟨H, 𝜃6, ha⟩ 0.122 

RF2 ⟨H, 𝜃100, ha⟩ 0.120 

RF3 ⟨H, 𝜃6, 𝜃100⟩ 0.140 

RF4 ⟨𝜃6, 𝜃100, ha⟩ 0.124 

 956 

 957 

 958 
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