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the neglected error dependency between two datasets might
become much larger than the smaller error covariance,
e.g., 1Dk̃;̃i−1Dj̃ ;̃k ≈ 0, 1

21D̃i;j̃ > C̃i
∣∣∣
true

. This phenomena
was also described and demonstrated by Sjoberg et al. (2021)
for scalar problems, but the generalization to covariances5

matrices is expected to increase the occurrence of negative
values in off-diagonal elements. Because spatial correlations
and, thus, true covariances may become small compared with
uncertainties in the assumptions or sampling noise, estimated
error covariances at these locations might become negative.10

However, the occurrence of negative elements does not af-
fect the positive definiteness of a covariance matrix, which is
determined by the sign of its eigenvalues.

4.2 Approximation for more than three datasets

While independence among all datasets is required to esti-15

mate the error covariances of three datasets (I = 3), the use
of more than three datasets (I > 3) enables the additional
estimation of some error dependencies or cross-covariances
(see Sect. 2)CE6 . Although this potential of cross-statistic es-
timation was previously indicated by Gruber et al. (2016) and20

Vogelzang and Stoffelen (2021) for scalar problems, a gener-
alized formulation exploiting its full potential by minimizing
the number of assumptions is still missing.

As described in Sect. 2 for I > 3 datasets, AI > 0 gives
the number of error cross-statistics that can potentially be es-25

timated in addition to all error covariances. Consequentially,
the independence assumption between all pairs of datasets
can be relaxed to a “partial-independence assumption” where
one independent dataset pair is required for each dataset I .
The estimation of error covariances can be generalized in30

two ways. Firstly, the direct formulation for three datasets
in Sect. 4.1.1 is generalized to a direct estimation of more
than three datasets in Sect. 4.2.1. Secondly, Sect. 4.2.2 intro-
duces the sequential estimation of error covariances of any
additional dataset. This estimation procedure of additional35

error covariances is denoted as “sequential estimation”, as
it requires the error covariance estimate of a prior dataset, in
contrast to the “direct estimation” from an independent triplet
of datasets (“triangular estimation” in Sect. 4.1) or gener-
ally from a closed series of pairwise independent datasets40

(“polygonal estimation” in Sect. 4.2.1).

4.2.1 Direct error covariance estimates

For more than three datasets (I > 3), the estimation from
three residual covariances in Eq. (39) can be generalized to
estimations of error covariances from a closed series of F45

residual covariances (see Sect. 3.3.1). For any odd F with
3≤ F ≤ I , each error covariance can be estimated under the
assumption of vanishing error dependencies along the closed

series of datasets Dĩf ;˜if+1
∀f ∈ [1,F − 1] and DĩF ;̃1:

Cĩ1
(29)
≈
{inF }

1
2

[(F−1∑
f=1

(−1)f−10if ;if+1

)
+0iF ;i1

]
,

∀F odd ∧ 3≤ F ≤ I. (48) 50

Here, “ ≈
{inF }

” indicates the assumption of neglectable er-

ror dependencies along the series of datasets. As shown
in Sect. 2, the problem cannot be closed for less than
three datasets, even under the independence assumption. For
F = 3 datasets, Eq. (39) is a special case of Eq. (48) with 55

indices i1 = i, i2 = j , and i3 = k.

4.2.2 Sequential error covariance estimates

Similar to the estimation for three datasets (I = 3) in
Sect. 4.1.1, the error covariances of the first three datasets
can be directly estimated from residual covariances or cross- 60

covariances using Eqs. (39), (40), or (41). This triplet of the
first three datasets that are assumed to be pairwise indepen-
dent is denoted as a “basic triangle”. Similarly, a “basic poly-
gon” can be defined from a closed series of F pairwise inde-
pendent datasets, where each two successive datasets in the 65

series as well as the last and first element are independent
of each other (see Sect. 4.2.1). Then, the error covariance
of each dataset in the series can be directly estimated from
Eq. (48).

Based on this, the remaining error covariances can be cal- 70

culated sequentially. For each additional dataset i with F <
i < I CE7 , its cross-statistics to one prior dataset ref(i)< i
need to be assumed in order to close the problem. This prior
dataset ref(i) is denoted as the “reference dataset” of dataset
i. With this, the remaining error covariances can be estimated 75

from residual covariances under the partial-independence as-
sumption X̃

i;r̃ef(i) = 0:

C̃i
(25)
≈
{inI }

0i;ref(i)−Cr̃ef(i), (49)

where “ ≈
{inI }

” indicates the assumption of independence to the

reference dataset, i.e., X̃
i;r̃ef(i) = 0. 80

Similarly, each additional error covariance can be esti-
mated from two residual cross-covariances with respect to
its reference dataset ref(i) and any other dataset j :

C̃i
(34)
≈
{inI }

0i;ref(i);i;j +0ref(i);i;ref(i);j −Cr̃ef(i). (50)

From the equivalence of residual statistics in Eq. (35), 85

it follows that the two formulations of error covariances in
Eqs. (49) and (50), respectively, are equivalent and produce
exactly the same estimates, even if the underlying assump-
tions are not perfectly fulfilled.
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CE7: Explanation for the handling editor:

The sequential form introduced in this subsection can be used for all additional datasets which are not estimated with the direct form in Sect.4.2.1. This applies to all datasets with indices larger than F (F is the last dataset estimated with the direct form) and thus also the last dataset with index I. Therefor, the correct range of additional datasets i is F "smaller" i "smaller-or-equal" I instead of i "smaller" I. Please change it accordingly in all three cases, because the descriptions in p.11,l.33 and p.12,l.28 are directly based on the formulation here.

Apologies for the inconvenience caused.




