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Abstract. In the past decade groundbreaking new satellite observations of the Arctic sea ice cover have been made, allowing

researchers to understand the state of the Arctic sea ice system in greater detail than before. The derived estimates of sea ice

thickness are useful but limited in time and space. In this study the first results of a new sea ice data assimilation system are

presented. Observations assimilated (in various combinations) are monthly mean sea ice thickness and monthly mean sea ice

thickness distribution from CryoSat-2, and NASA daily Bootstrap sea ice concentration. This system couples the Centre for5

Polar Observation and Modelling’s (CPOM) version of the Los Alamos Sea Ice Model (CICE) to the Localised Ensemble

Transform Kalman Filter (LETKF) from the Parallel Data Assimilation Framework (PDAF) library. The impact of assimilating

a sub-grid scale sea ice thickness distribution is of particular novelty. The sub-grid scale sea ice thickness distribution is a

fundamental component of sea ice models, playing a vital role in the dynamical and thermodynamical processes, yet very little

is known of its true state in the Arctic.10

This study finds that assimilating CryoSat-2 products for the mean thickness and the sub-grid scale thickness distribution

can have significant consequences on the modelled distribution of the ice thickness across the Arctic and particularly in regions

of thick multi-year ice. The assimilation of sea ice concentration, mean sea ice thickness and sub-grid scale sea ice thickness

distribution together performed best when compared to a subset of CryoSat-2 observations held back for validation. Regional15

model biases are reduced: the thickness of the thickest ice in the Canadian Arctic Archipelago (CAA) is decreased, but the

thickness of the ice in the Central Arctic is increased. When comparing the assimilation of mean thickness with the assimi-

lation of sub-grid scale thickness distribution, it is found that the latter leads to a significant change in the volume of ice in

each category. Estimates of the thickest ice improve significantly with the assimilation of sub-grid scale thickness distribution

alongside mean thickness.20
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1 Introduction

Arctic sea ice is an important indicator of climate change and plays a key role in the global surface energy balance. Depend-

ing on its thickness, its surface reflects 50-75 percent of incoming solar radiation and it impedes exchanges of heat, moisture

and momentum between the atmosphere and the ocean. Sea-ice freeze-up and melt also effects deep water formation and the25

thermohaline circulation. Since the beginning of the industrial era (1850+), surface temperatures have risen by approximately

1 degree Celsius on average worldwide, but Arctic amplification has seen temperatures in the Arctic rise at roughly twice

this amount (Serreze and Barry, 2011). The primary (but not solely responsible) mechanism driving Arctic amplification is a

declining sea ice cover observed over the Satellite era (1979+) (Dai et al., 2019). Observations of the sea ice state are sparse,

and only observations of sea ice concentration and motion are available over the whole extent of the satellite period. Sea ice30

freeboard – and consequently thickness observations – have only been attainable in the past two decades, and provide valuable

information on the sea ice state.

In order to better understand the changes in the Arctic sea ice that have occurred over the satellite era, data assimilation

(DA) can be used to fill in the spatial and temporal gaps in these observations. Sea ice in the Arctic is not spatially or tempo-35

rally uniform but varies with mixtures of thinner first-year ice (FYI) and thicker multi-year ice (MYI). Describing the variation

and evolution of the sea ice thickness in space and time is the goal of sea-ice modelling, but presently the sea ice state in the

Arctic is poorly known. Recently observations of the ice thickness distribution in the Arctic have been derived from CryoSat-2

(CS2) measurements (Schröder et al., 2019) and in this paper we provide new insights by using these new data to produce a

partial history (2012-2015) of the sea ice thickness distribution and its transformation during this period of minimum sea ice40

extent. The present study is intended to pave the way for a 40-year reanalysis of Arctic sea ice using the system described.

The earliest efforts to combine data assimilation techniques with large scale numerical sea ice models began in the early

1990s with work by Thomas and Rothrock (1993) on assimilating sea ice concentration data using Kalman smoother tech-

niques. As sea ice concentrations were the only available sea ice observations at this time most of the work on sea ice DA only45

used sea ice concentration observations, including in the pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS)

reanalysis (Zhang and Rothrock, 2003). Sea ice concentration is assimilated in PIOMAS using a relatively simple nudging

technique which aims to move the model variables closer to their observed counterparts through a weighting factor. Sea sur-

face temperatures are assimilated in PIOMAS through optimal interpolation (OI). PIOMAS has been extensively validated

through satellite and in situ (submarine, mooring) observations and the uncertainty for October sea ice volume estimations is50

believed to be 1.35× 103km3 (Schweiger et al., 2011). Sea ice motion observations were also an early focus of sea ice data

assimilation (Meier et al., 2000), available from ocean buoys and remotely sensed data. There were also some early efforts at

assimilating synthetic ice thickness data (Lisæter et al., 2007) which showed how a sea ice model may be impacted by sea ice
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thickness assimilation.

55

Within the past decade a growing number of ocean-sea ice DA systems and reanalyses have been produced and are in operation,

including the UK Met Office’s FOAM/GloSea5 (Blockley et al., 2014), NERSC’s TOPAZ4 (Sakov et al., 2012), ECMWF’s

Ocean ReAnalysis Pilot 5 (ORAP5) (Zuo et al., 2017), the MERRA Ocean product (Rienecker et al., 2011), the Global Ice

Ocean Prediction System (GIOPS) at the Canadian Meteorological Centre (Smith et al., 2016) and the US Navy’s Arctic Cap

Nowcast/Forecast System (Hebert et al., 2015). Many of these use 3D-Var or OI and assimilate only sea ice concentration.60

TOPAZ4 uses an Ensemble Kalman Filter (EnKF) for sea ice concentration and has tested the assimilation of CS2-SMOS

sea ice thickness (Ricker et al., 2017). The Met Office has tested sea ice thickness assimilation in its FOAM system with OI

assimilation of CS2 monthly mean ice thickness (Blockley and Peterson, 2018), and recently using 3D-Var assimilation of its

daily sea ice thickness data (Fiedler et al., 2022). They have also recently tested the model with assimilation of the combined

CryoSat-2-Soil Moisture and Ocean Salinity (CS2-SMOS) product (Mignac et al., 2022). A comparison of fourteen ocean-sea65

ice reanalyses (Chevallier et al., 2017) has found that the spatial pattern of ice volume varies widely between products, with

no reanalysis standing out as clearly superior when compared to altimetry estimates, ice thickness from sea ice models without

assimilation of sea ice concentration is not worse than that from systems constrained with sea ice observations. Many of these

studies also use PIOMAS to calibrate ice thickness simulations, but PIOMAS does not assimilate sea ice thickness. A recent

sea ice DA experiment is that of Fritzner et al. (2019), which assimilated sea ice concentration, ice thickness from both CS270

and SMOS, and a recently developed snow depth observational product from Rostosky et al. (2018) using CICE and an EnKF.

At the Geophysical Fluid Dynamics Laboratory (GFDL), researchers have further developed their seasonal prediction system

to include the assimilation of sea ice concentration using the Ensemble Adjustment Kalman Filter (EAKF), which significantly

improves seasonal predictions of sea ice extent (Zhang et al., 2021). The assimilation of Ocean and Sea Ice Satellite Applica-

tion Facility (OSISAF) sea ice concentration, OSISAF sea ice drift, CS2-SMOS sea ice thickness and sea surface temperature75

has also been studied in a global climate model at the Alfred Wegener Institute (AWI-CM v1.1). This uses a one-category

thickness distribution, zero-layer thermodynamics scheme and Elastic-Viscous-Plastic (EVP) sea ice rheology and assimilates

using a Local Error Subspace Transform Kalman Filter (LESTKF). This has been found to perform well against independently

available in situ data (Mu et al., 2020).

80

In the current study we use a sophisticated sea-ice model, the Centre for Polar Observation and Modelling (CPOM) version

of CICE in a 100 ensemble member Localised Ensemble Transform Kalman Filter to assimilate monthly mean ice thickness,

and – for the first time – sub-grid scale ice thickness distribution observations from CS2. We validate the effectiveness of this

assimilation by randomly choosing 75% of CS2 observations for assimilation, with the remaining for validation. The sub-grid

ice thickness distribution is a vital component of any sea ice model and yet our knowledge of its true state in the Arctic is poor.85

In Sect. 2 we outline the sea ice model and DA framework used to produce the sea ice DA system. In Sect. 3 we discuss the

observations of sea ice we use for assimilation and evaluation. In Sect. 4 we conduct studies to find ideal assimilation settings

and then use these to produce a four year reproduction of the Arctic sea ice state between 2012 and 2015. Furthermore, we
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compare and validate it against randomly selected CS2 observations that are not assimilated, independent Operation IceBridge

(OIB) observations (Kurtz et al., 2012), and the PIOMAS sea ice reanalysis. We look at how the modelled sea ice extent,90

thickness and volume differ when only assimilating sea ice concentration and when additionally assimilating mean thickness

and sub-grid scale thickness distribution to try and understand how the assimilation effects the distribution of the ice thickness

in the Arctic. In Sect. 5 we discuss the consequences of these results for the Arctic sea ice and the CPOM-CICE model, and

any potential drawbacks of the sea ice data assimilation system we use. We conclude by discussing the key outcomes from this

paper and our future research direction.95

2 Method

2.1 Sea ice model

We use the Centre for Polar Observation and Modelling (CPOM) version of the Los Alamos Natural Laboratory Sea Ice Model

(CICE) v5.1.2 (Hunke et al., 2015) with five ice thickness categories. CICE is a dynamic and thermodynamic model of sea

ice designed to function as the sea ice component of a fully coupled global climate model. We use the incremental remapping100

scheme of Lipscomb and Hunke (2004) to solve the horizontal transport equation, with the internal stress tensor in the sea

ice momentum balance determined using the elastic-plastic-anisotropic rheology of Tsamados et al. (2013). The model also

includes a parameterization of form drag (Tsamados et al., 2014). For the thermodynamic model, we use the 1-dimensional

vertical Bitz and Lipscomb model (Bitz and Lipscomb, 1999) which solves heat flux balance equations for the ice and snow

(if it exists) in each category and accounts for the effects of brine pocket melting and freezing. We use the Delta-Eddington105

approach for computing the ice shortwave albedo and incoming shortwave radiation, where the natural optical properties for

snow, sea ice and melt ponds are used to define their scattering and absorption characteristics (Briegleb and Light, 2007). This

Delta-Eddington approach is used in conjunction with the topographic melt pond scheme of Flocco et al. (2010). The bubbly

brine thermal conductivity parameterization is also used, which increases the conductivity of colder sea ice (Pringle et al.,

2007). The transport of ice in thickness space due to the thermodynamic changes in the sea ice uses the remapping scheme of110

Lipscomb (2001). The mechanical redistribution of the ice thickness is formulated by the scheme of Lipscomb et al. (2007)

with ice strength defined as in Rothrock (1975).

Although CICE was designed for use in a global climate model, in this research we use it in stand-alone mode, uncoupled

to an atmospheric or ocean model. The model has been used in this way to produce realistic estimates of the sea ice state, e.g.115

Schröder et al. (2019), and its computational efficiency facilitates physical and technical model development. CICE contains a

thermodynamic slab mixed layer ocean model with a prognostic ocean temperature. This model is initialised with ocean tem-

perature and salinity (3m depth) from a 1993-2010 climatology based on an ocean reanalysis (Ferry et al., 2011). The mixed

layer salinity is prescribed from the climatology and the prognostic temperature is restored to the monthly climatology with a

20 day timescale to account for heat advection in the ocean. The ocean currents (also at 3m depth) are also taken from the same120

reanalysis. The atmospheric forcing data used are NCEP-2 (Kanamitsu et al., 2002) comprising daily downward shortwave and
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longwave radiation fluxes and 6-hourly 2m temperature and humidity and 10m wind velocity. These atmospheric forcing fields

are perturbed to generate ensemble spread as described in Sect. 2.3. We also take monthly mean precipitation from the same

reanalysis, which is not perturbed. We use an ORCA 1 degree (a roughly 40km by 40km grid size) tripolar grid, covering the

whole Arctic region. A time step of 1 hour is used.125

2.2 The Ensemble Kalman Filter

The parallel data assimilation framework (Nerger and Hiller, 2013), known hereinafter as PDAF, is a software environment de-

signed to provide ensemble based DA algorithms that can be implemented within existing numerical models with only minimal130

changes to the model code. We are using PDAF V1.16, which improved observation handling over previous versions of PDAF

through the use of a modular implementation. PDAF currently contains the ability to implement many types of EnKFs, such as

the LETKF, the LESTKF and the stochastic EnKF. In our sea ice DA system we have coupled CICE to PDAF, and are using

the LETKF (Hunt et al., 2007). The basic Kalman filter is a sequential DA method, which solves for the mean and covariance

of the posterior’s probability density function (PDF) assuming it is Gaussian (instead of solving for the mode of the posterior135

PDF, as in variational methods). The equations for the Kalman gain and the mean and covariance analysis updates are

Kn =Pf
nH

T(HPf
nH

T +R)−1

140

xa
n = xf

n +Kn(yn −Hxf
n)

Pa
n = (I−KnH)Pf

n,

where Kn is the Kalman gain at time n, Pf
n is the forecast error covariance, H is the observation operator, R is the observation145

error covariance matrix, xa
n is the analysis model state, xf

n is the forecast model state, yn is the observation vector and Pa
n

is the analysis error covariance. The errors are assumed to have Gaussian statistics with zero mean. In the Kalman filter, it is

necessary to propagate the error covariance matrices using tangent-linear and adjoint models. This is not feasible in practice

because of the large size of the covariance matrix. To avoid this, an ensemble of states – which sample from the uncertainty at

time n – are used to approximate Pf
n. Then, post assimilation, each member is evolved forward using the model, thus creating150

an EnKF. The mean and covariance are then sampled at each assimilated time step.

We have chosen to use an EnKF, rather than variational methods, because it avoids needing tangent linear and adjoint H

matrix, and avoids the need to parametrise a Pf -matrix. Each of these would be time consuming and difficult. Using the EnKF

system also means that we can assimilate observations sequentially, rather than assimilating multiple observations in a window,155
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and it automatically yields (implicitly) a flow-dependent Pf -matrix from the ensemble. This means though that EnKFs are sus-

ceptible to ensemble collapse if the ensemble spread is not sufficient (Houtekamer and Mitchell, 1998). If ensemble collapse

occurs then the assimilation becomes ineffective because the EnKF will measure the forecast error to be anomalously small.

As the EnKF is sensitive to ensemble size and undersampling we can use both inflation (through use of a forgetting factor),

enhanced atmospheric forcing, and localisation to mitigate this. The LETKF implemented in PDAF makes use of a forgetting160

factor ρ (Pham et al., 1998) which is applied in a computationally more efficient way than an inflation factor r. The two are

related through ρ= r−2.

To avoid spurious correlations due to the relatively small ensemble size we use localisation, in which only observations within

a pre-specified localisation radius of each grid point are used to update the variables at that grid point. In CICE-PDAF we make165

use of a Gaspari and Cohn function (Gaspari and Cohn, 1999) as a weighting function for the observation error covariance,

which is scaled such that the effects of the observation smoothly reach zero at and beyond a defined localisation radius away

from the observation. We use a range of ρ and rl values in our experiments, which are presented in Sect. 4.

2.3 Generating Ensemble Spread

CICE is a forced dissipative model, and thus if we were to run it with n members under the same set of forcing parameters, we170

would not find enough ensemble spread necessary to produce a working DA system. Ensemble spread is vital for any ensemble

based DA to function correctly as it is used to capture the uncertainty in the model state. In CICE-PDAF we apply an EOF-

based perturbation method (Brusdal et al., 2003) to the 6-hourly NCEP-2 reanalysis atmospheric forcing fields (see Sect.2.1).

By applying the perturbations indirectly to the forcing in this way we preserve the dynamic and thermodynamic consistencies

within each forcing field. For each month we perform a multivariate analysis on each of the six atmospheric forcing fields. We175

then choose the number of EOF modes that represent the majority (95%) of the variability in each of the forcing fields. We

then add perturbations to the original forcing fields for each ensemble member using

j∑
i=1

αNiσiEOFi180

where i is the EOF mode, j the total number of EOFs chosen to represent the variance in the field, Ni are the random numbers

chosen from a normal distribution with zero mean and unit variance, σi are the climatological standard deviations of that

forcing field in a given month, and α is a multiplicative factor that we can use to amplify the perturbations on the atmospheric

forcing to induce additional ensemble spread. We have used α= 1.5. For each month in a particular year, the same random185

numbers are chosen for each field for the resulting perturbations to maintain consistency between each forcing field as they

were in the original forcing.
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2.4 Post analysis step processing

Due to the Gaussian assumption of the EnKF update, many of the CICE model state variables can move outside of their physi-

cal bounds, or cause a lack of physical consistency between state variables. In order to rectify this, the analysis ensemble states190

are verified by a series of post analysis checks done inside PDAF, before they are sent back to CICE. This proceeds as follows:

in the situation where the assimilation creates ice in a grid cell where there was none previously, we must prescribe the snow

enthalpy, ice enthalpy, salinity and surface temperatures. For model consistency this is done with the same thermodynamic

layer model used in CICE, with a linear temperature profile with a predefined salinity profile and melting temperature. Once

this is done we check the bounds of a number of CICE state variables for all situations (whether ice cover is created, destroyed195

or just modified): namely salinities, enthalpies, melt pond parameters and surface temperatures. We then reset negative ice

areas, ice volumes and snow volumes to zero. If total ice fractional areas exceed unity, these are normalised to unity, such

that the fractions of ice in each thickness category determined by the EnKF are preserved; ice and snow volumes are reduced

accordingly in line with this normalisation. Additionally it was also found that anomalously large sea ice thickness can occur

on the ice edge where the EnKF reduces the ice concentration to a very small amount (lower than 10−5) but ice volume is not200

reduced in the same way. These lead to ice thickness spikes, which can cause CICE to crash. In these situations ice in these grid

cells is removed. If ice within a thickness category in a grid cell is totally destroyed then the CICE state variables required to

be consistent with this are also reset. The exact variables which may be modified in this post-processing are specified in Table

1. CICE itself also contains its own routines that check for consistency and correct physical properties within the state vector.

205

Table 1 A list of CICE state variables altered during post-processing.

state variable physical meaning checks

qice(001-007) sea ice enthalpy in the vertical ice layers (1-7) within physical bounds and physically consistent

sice(001-007) sea ice salinity in the vertical ice layers (1-7) within physical bounds and physically consistent

qsno001 snow enthalpy within physical bounds and physically consistent

aicen fractional sea ice area within physical bounds, normalised if total concentration above 1.

vicen sea ice volume within physical bounds, normalised if total concentration above 1

vsnon snow volume within physical bounds, normalised if total concentration above 1

apnd melt pond area within physical bounds

hpnd melt pond depth within physical bounds

ipnd melt pond refrozen lid thickness within physical bounds

Tsfcn snow/ice surface temperature must be >−70◦C
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3 Observation and Evaluation Data

3.1 Sea Ice Concentration210

Sea ice concentration has been observable by passive microwave satellites since the early 1970s. Modern datasets of sea ice

concentration are derived from brightness temperature observations from satellite instruments such as the Scanning Multi-

channel Microwave Radiometers (SMMR) which were launched in 1978, the Special Sensor Microwave/Imagers (SSM/I)

launched between 1987-99 and the Special Sensor Microwave Imager Sounder (SSMIS) launched between 2003-14. SSM/I

data sets are extremely useful as they have provided a continuous time series of sea ice information since their launch – the215

most useful for us being sea ice concentration. The most widely used algorithms for obtaining sea ice concentration are the

NASA Team algorithm (Markus and Cavalieri, 2000) and the NASA Bootstrap (Comiso, 2017). Although based upon the

same principle, the algorithms differ in a number of key ways: different choices in both frequency channels and polarizations,

choice of reference brightness temperatures, and their sensitivity to surface temperature and surface characteristics. The NASA

Team algorithm looks at contributions from three different surface types: MYI, FYI and ice-free ocean (Cavalieri, 1991), and220

uses the 19V, 19H and 37V channels from the SSM/I, SSMR and SSMIS sensors with a resolution of 25km. The brightness

temperatures from these channels are then used to calculate a polarization ratio and spectral gradient ratio from which sea ice

concentration can be retrieved. The Bootstrap algorithm also uses the SSM/I, SSMR and SSMIS but instead takes advantage

of the correlated distributions of the brightness temperatures over the Arctic, specifically over the 37GHz channels. Unlike the

Team algorithm however, it only derives a single sea ice concentration rather than separate FYI and MYI concentrations. In225

comparisons between The Team and Bootstrap algorithms (Comiso et al., 1997) it was found that both generally show similar

ice-edge positions for the Arctic, though the Team algorithm in general derives smaller ice concentrations, especially during

January and around the inner ice pack. High temperature and emissivity fluctuations in the marginal ice pack can also produce

discrepancies (Comiso et al., 1997), which can lead to large differences in sea ice concentration calculations. The NASA Team

algorithm is also better at handling the brightness temperature fluctuations. Another key difference lies in their handling of230

melt ponds, which appear as open water in the satellite data (Comiso et al., 1997). The Bootstrap algorithm tries to offset this

bias by synthetically increasing estimates of sea ice concentrations much more than the Team algorithm does (Bunzel et al.,

2018).

For the following DA experiments we choose to assimilate Bootstrap sea ice concentration because it attempts to account for

the interferences in the radiometers caused by the melt ponds. Sea ice concentration retrieval errors are difficult to quantify235

but the overall retrieval accuracy is estimated to be between 5 and 10%. However, there are significant issues with measuring

newly formed sea ice (Comiso et al., 1992) because of the changes in the emissivity of sea ice as it grows, and with melt ponds

(Comiso and Kwok, 1996) as these appear as open water in satellite data. This causes particular problems over the summer

melting period as melt ponds can dominate the surface of the Arctic sea ice cover. The Bootstrap algorithm tries to offset this by

synthetically increasing its estimates of sea ice concentrations. There are also issues with the ice concentration retrieval arising240

from atmospheric conditions, thin ice and snow melt (Ivanova et al., 2015), in these grid cells error estimates could be as high

as 30% (Comiso, 2017). In CICE-PDAF we use sea ice concentration error standard deviations that depend on the time and
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concentration. For sea ice concentration above 0.8, we use an error standard deviation of 0.2 for May-September (inclusive)

and 0.1 outside of these months. Otherwise we use an error standard deviation of 0.15. The model version of the observation is

found easily just by summing the individual ice concentrations in each of the thickness categories, and the ice concentrations245

in each category are updated in the EnKF through the correlations between themselves and the total sea ice concentration.

3.2 Sea Ice Thickness

The sea ice thickness observations we assimilate are from the CPOM derived monthly mean CS2 sea ice thickness product

(Laxon et al., 2013). CryoSat-2 is a European Space Agency (ESA) mission whose primary aim is to observe trends in Earth’s

continental and marine ice fields (Wingham et al., 2006). It uses a Synthetic Aperture Interferometric Radar Altimeter (SIRAL)250

to monitor up to 88 degrees North. This works by transmitting microwave pulses at regular intervals defined by a pulse repeti-

tion frequency towards the Earth and measuring the time taken by the pulse to reflect off the Earth’s surface and return to the

satellite. CPOM uses such radar altimeter data from CS2 and processes them to produce Arctic sea ice thickness and volume

datasets (Tilling et al., 2018).

255

There are two important processes in deriving sea ice thickness measurements from the raw observation data: the differen-

tiation between measurements of surface elevation of the ocean and surface elevation of the sea ice, and the process which then

converts the calculated freeboard to thickness. Sea ice and the leads between ice floes can be differentiated in radar echoes by

the shape of the echo waveform, and then a process known as retracking is used to determine the location on each waveform

which represents the average surface elevation within the satellite footprint. CPOM uses a Gaussian-plus-exponential wave-260

form fit to retrack echoes from leads (Giles et al., 2008) and a 70% leading edge threshold from the first peak to retrack floe

echoes. Other retrackers have been used to produce freeboard and thickness data from CS2, which can yield markedly different

results (Ricker et al., 2014). It is assumed that the radar bursts reflect off the snow-ice interface as shown in (Beaven, 1995)

though more recent research shows that this may not always be the case (Stroeve et al., 2020). The biggest source of uncertainty

occurs when converting freeboard to sea ice thickness, which is found using265

hi =
fcρw +hsρs
ρw − ρi

.

where hi is sea ice thickness, fc is the sea ice freeboard, ρw is the density of seawater, hs is snow depth, ρs is snow density and

ρi is sea ice density, which is different depending on whether it is FYI or MYI. Thus to acquire measurements of sea ice thick-270

ness we require knowledge of the snow cover on the Arctic sea ice. Since such snow measurements are very limited, CPOM

uses snow depth from a modified Warren climatology (Warren et al., 1999). This is a climatology of snow depth derived from

in situ data gathered from Soviet drifting stations on MYI from 1954-1991. This climatology may no longer be valid due to the

large observed loss of Arctic sea ice in the past 2 decades - and in particular loss of MYI. For instance snow depth on FYI is

found to be half of that found in the Warren climatology (Kurtz and Farrell, 2011), so the modified climatology used by CPOM275

halves snow depth on FYI. Use of the Warren climatology is necessary because snow depth satellite retrievals are not currently
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feasible, and there are still large problems to overcome in snow loading models, such as uncertainties from the magnitude of

precipitation (Serreze and Hurst, 2000), unknown snow compaction and difficulties in estimating snow loss caused by leads.

Due to these uncertainties, CS2 ice thickness measurements of thinner ice, particularly below 0.5 metres, can have very large

error estimates, because of uncertainties in the snow depth. In our assimilation we use a relative observation error dependent280

on the observed ice thickness measured, with sea ice thicker than 5 m using a 50% relative error, and thinner ice using a 25%

relative error (Tilling et al., 2018). Ice thicknesses lower than 0.5 m is not assimilated due to the high uncertainty associated

with CryoSat-2 measurements of the thinnest ice. As there is a significant lack of sea ice thickness data available for validation,

we choose to assimilate approximately 75% of the available monthly CS2 data in our assimilation and then use the remainder

for validation. This is done by picking a random number between 0 and 1 for each grid cell and if this number is below 0.75285

data in that grid cell will be assimilated, otherwise it will be used for validation.

In addition to the assimilation of and evaluation with CS2 thickness data, we will also use Operation IceBridge (OIB) data

(Kurtz et al., 2013) from the same period to evaluate our assimilation studies. OIB is a NASA airborne mission which has been

in operation since 2009, intended to bridge the gap between ICESat (Schutz et al., 2005) and ICESat-2 (Markus et al., 2017).290

The aircraft are equipped with various measurement equipment, including a laser altimeter for measuring sea ice thickness,

and was used for early validation and calibration of the ICESat-2 laser altimeter, the Advanced Topographic Laser Altimeter

(ATLAS). The aircraft fly at an altitude of 460 metres, using along track smoothing of 40 metres and a frequency of 1 metre.

This oversampling allows for statistical smoothing (Farrell et al., 2011). As the more reliable Level 4 product (Kurtz et al.,

2016) does not cover the whole period of our assimilation experiment we also use the quick-look version 1 dataset (Kurtz295

et al., 2015) for evaluation. The observational data are at a much higher resolution than our model so have been interpolated

onto the ORCA 1 degree tripolar grid that our model uses.

3.3 Sea Ice Thickness Distribution

The problem that sea ice models seek to solve is the evolution of the sea ice thickness distribution, g

300

∂g

∂t
=−∇ · (gu)− ∂

∂h
(fg)+ψ,

where u is the ice velocity, f is the rate of thermodynamic ice growth and ψ is the ridging distribution function. g is solved

in sea ice models by splitting the ice in each grid cell into thickness categories and replacing g in the equation above with an,305

the fractional ice concentration in thickness category n (there is also an open water fraction a0 ). The five thickness categories

hn we use have lower bounds (in metres) of 0, 0.6, 1.4, 2.4 and 3.6. For this study we have thickness distribution observa-

tions derived from the individual observations of thickness from CS2. These individual measurements are binned according

to the thickness distribution used in our CICE model (Schröder et al., 2019), with measurements over one month used to find

monthly mean values. We then have observations of ten different variables; a∗n, the area of ice (as a proportion of the total ice)310
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in categories 1-5, where the open water fraction a0 in that grid cell is unknown, and hn, the mean thickness of ice in categories

1-5. For a∗n this means

5∑
n=1

a∗n = 1.315

These observed variables are related to the state variables an and vn by

an = a∗na320

hn =
vn
an
,

where a is the total fraction of sea ice in a grid cell, an is the fraction of sea ice in thickness category n in a grid cell and vn is

the volume of ice per unit grid cell area in category n. Precise error statistics on these measurements are difficult to derive due325

to the nature of the sea ice cover and the multiple sources of contributing errors. To find an error approximately consistent to

the error used in the CS2 mean thickness we do some error analysis shown in Appendix A. It is difficult to find errors for ice

concentration and ice thickness in each category that are consistent with all estimated values of mean ice thickness (which used

relative errors). However we find that using a total error of 0.3 for ice concentration in each category and 0.8 m for ice thickness

in each category leads at least to errors that are close to (or slightly worse than) the mean ice thickness error equivalent.330

In this paper we assimilate categories 1-4 in the thickness distribution alongside the mean thickness. Since the sum of the

elements of the thickness distribution is constrained, errors must be correlated between elements. Although we have observa-

tions in all ice thickness categories, instead of assimilating observations of a∗n and hn for 1≤ n≤ 5, with the approximation

of uncorrelated errors, we assimilate these observations only for 1≤ n≤ 4, plus the mean thickness. Assuming that errors335

in the latter data are uncorrelated is presumably a less damaging approximation than the first. In this paper, reference to the

assimilation of observations of the thickness distribution is shorthand for the latter collection of data.

4 Results

4.1 Experiment Setup

The ensemble members are generated from a single 1979-2011 stand-alone CICE run of the same configuration as the CICE-340

PDAF version. From this run we use the model state on January 1st 2012 to initialise all 100 ensemble members, and CICE-

PDAF then runs in ensemble mode for a year with no assimilation to generate some initial ensemble spread using the perturbed

atmospheric forcing. Assimilation starts at the beginning of 2012 for either one or four years depending on the experiment.
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We performed a number of different sea ice DA experiments in order to optimise and fine-tune some of the EnKF settings

and to assess the performance of the assimilation. In Table 2 we describe the configurations of these runs. In all experiments,345

sea ice concentration is assimilated daily, and CS2 thickness observations are assimilated monthly between January-April and

October-December, using monthly means and assimilated in the middle of the month, with the model equivalent of the observa-

tion constructed using the daily mean on the day of assimilation. We chose to assimilate these data on a monthly basis because

the errors for a daily product will be even more difficult to ascertain and will essentially involve a ‘smearing’ of the monthly

data. Assimilating CS2 data as monthly means does mean that some of the changes in the sea ice model can be significant, with350

large increments in grid cells where the model has a high degree of ensemble spread and its ensemble mean differs significantly

from the observations. We found that assimilating only once a month outside of the melt season (October-April) still enabled

the model to retain significant information from the assimilation. We also found that assimilating at the end of the month had

a negative effect on the system’s estimates of sea ice in the next month. Although total sea ice concentration and mean sea ice

thickness are not in the CICE state vector, their assimilation has a large affect on the CICE state vector through the correlations355

between each variable. For example, when assimilating sea ice concentration, the ice concentrations in individual categories

will be affected by their correlation with the total sea ice concentration calculated by the observation operator. This means

that even when not assimilating sea ice thickness, the assimilation can still have an effect on the model estimates of sea ice

thickness (and potentially all other variables in the CICE state vector).

360

Table 2 Configurations of different CICE-PDAF experiment runs. SIC indicates assimilation of daily sea ice concentration

(NASA Bootstrap), SIT indicates assimilation of monthly mean sea ice thickness from CS2, and SID indicates assimilation

of monthly mean sea ice thickness distribution from CS2. ne indicates the number of ensemble members in the run, ff is the

forgetting factor ρ, rl is the localisation radius, α is an amplification factor for the perturbation of the atmospheric forcing

fields and t indicates the length of the assimilation run in years.365
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run name SIC SIT SID ne ff (ρ) rl α t

control N N N 100 N/A N/A 1 4

assim_conc Y N N 100 0.995 100 km 1.5 4

assim_conc_hi Y Y N 100 0.995 100 km 1.5 4

assim_conc_hi_f100 Y Y N 100 1.00 100 km 1.5 1

assim_conc_hi_f99 Y Y N 100 0.99 100 km 1.5 1

assim_conc_hi_f98 Y Y N 100 0.98 100 km 1.5 1

assim_conc_hi_loc200 Y Y N 100 0.995 200 km 1.5 1

assim_conc_hi_loc400 Y Y N 100 0.995 200 km 1.5 1

assim_conc_hi_loc50 Y Y N 100 0.995 50 km 1.5 1

assim_conc_hi_amp1 Y Y N 100 0.995 100 km 1 1

assim_conc_hi_amp2 Y Y N 100 0.995 100 km 2 1

assim_conc_hi_4hd Y N Y 100 0.995 100 km 1.5 4

4.2 Tuning the assimilation settings370

PDAF provides some assimilation settings that can be tuned for the EnKF to function as the user wishes. In the LETKF, there

are three important factors to consider. These are the ensemble size, forgetting factor and localisation radius. For the ensemble

size, we want to use as large an ensemble as possible to reduce the need for localisation and inflation. Therefore we use an en-

semble size of 100. Figure 1 shows the effect of the forgetting factor on the ensemble spread of sea ice volume. The forgetting

factor, like ensemble size, will work alongside the atmospheric forcing perturbations to increase ensemble spread and reduce375

the likelihood of significant undersampling and ensemble collapse. We have generally found that the system is very sensitive to

changes in the forgetting factor, particularly when we assimilate CS2 products. In Fig. 1 we show some one-year assimilations

with different forgetting factors (0.98, 0.99, 0.995 and 1.00). As we expect, decreasing the forgetting factor will increase the

ensemble spread of the experiment. We found that using these low forgetting factors increases the chances of the sea ice model

crashing. These crashes are related to unphysical states being formed such as ’ice spikes’, where ice in grid cells (usually close380

to the ice edge) can have very small concentrations but thicknesses of well over 10 m. This problem often causes the model to

crash, and although fixable in post-processing becomes worse as the forgetting factor is lowered. Using 0.995 does not lead to

any model crashing, and this is the value used in all future experiments.

385

We also perform experiments with localisation radii between 50 and 400 km. Our choice of model grid means that without

varying the localisation too much or choosing unreasonable localisation parameters an observation will only maximally affect

grid cells which are 8-10 grid cells away. Grid cells located at the sea ice edge are most likely to be affected by these changes

13



J F M A M J J A S O N D
Month

0.5

1.0

1.5

2.0

2.5

3.0

En
se

m
bl

e 
Sp

re
ad

 (m
3 )

1e12
control
assim_conc_hi_f100
assim_conc_hi
assim_conc_hi_f99
assim_conc_hi_f98

Figure 1. Sea ice volume ensemble spread (one standard deviation) for 2012 in a control run and four CICE-PDAF runs using forgetting

factors of 1.00, 0.995, 0.99 and 0.98.

in localisation. In Fig. 2 we show Pan-Arctic maps of sea ice thickness in March and October for these runs with different

localisation parameters. The changes in the results when using differing localisations only show very slight differences with390

one another. We settle for using a 100 km localisation radii as a compromise between smaller radii close to coastlines and

larger radii in the middle of the ice pack.

Finally we look at the potential in amplifying the perturbations to the atmospheric forcing fields, used to generate ensemble395

spread as mentioned in Sect. 2.3. In Fig. 3 we show the spread in the sea ice volume for the control and three assimilation runs,

with the only difference in the assimilation runs being a change in the amplification of the perturbations (α= 1.0,1.5,2.0). As

expected, amplifying the perturbations increases the ensemble spread in the sea ice, particularly in summer. In some cases with

a= 2 the assimilation runs have a higher spread than the control. However we have found that amplifying the perturbations

this much can cause the model to become unstable, causing crashes in some of the ensemble members from a wide variety400

of issues. Due to this we only use a= 1.5, which does not cause these issues but still increases ensemble spread significantly.

This is a substantial amount of additional ensemble spread, but due to the dissipative nature of the model we want a spread as

large as possible without the model crashing.

405
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Figure 2. Maps of sea ice thickness (m) in March 2012 (top row) and October 2012 (second row). Columns show CryoSat-2 and 4 CICE-

PDAF runs using localisations of 50 km, 100 km, 200 km and 400 km. In this and other maps in this paper, grid cells lacking CryoSat-2 data

are shown in black in the CryoSat-2 plots.

Figure 3. Daily sea ice volume ensemble spread (one standard deviation) for 2012 in a control run and three CICE-PDAF runs using

atmospheric forcings which have been perturbed with different amplification factors (1, 1.5 and 2).
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4.3 Grid Cell Level Analysis

To understand how the assimilation of the thickness distribution will effect changes in the model, we will look at the correla-

tions between some of the model state variables such as sea ice concentration, thickness and volume, in a few grid cells before

and after assimilation. We will also look at the evolution of these variables throughout the first year of the assimilation time410

period. Figure 4 shows the correlations in winter and summer (January 1st and July 1st, 2012) at 2 different grid cells in the

Arctic; one in the Fram Strait and one in the Central Arctic region (close to the North Pole). In these locations the concentra-

tion, thickness, volume and thickness distribution of the sea ice in each of these will be significantly different because of how

the Arctic sea ice cover evolves differently in these regions.

415

In the Fram Strait the ice cover is seasonal and thin, whereas in the Central Arctic the ice is thicker. In the Fram Strait in

winter we see strong negative correlations between thickness and total volume with ice in the first and second thickness cat-

egories. There are positive correlations in the other three categories, with the strength of these correlations increasing with

thickness category. This is because this grid cell is mostly covered with ice in the thinnest categories, with small amounts in

the higher categories, so relatively small increases in ice in these thicker categories of ice will lead to more volume. Total sea420

ice concentration is positively correlated with the concentration in the second and third categories at this time and negatively

correlated with the others. During summer the Fram Strait correlations look different, because this region is now most likely

covered with ice only in the thinnest category, meaning that any small increase of ice in the thicker categories will lead to

higher thickness and volume.

425

In the Central Arctic, where the ice is much thicker (particularly in winter), the correlations between ice volumes in the

two thickest categories of ice and the total sea ice thickness and volume are very strong in both winter and summer. There are

strong negative correlations with the thinnest two categories. This pattern occurs for both the winter and summer, though in

winter there is also a positive correlation between category 3, volume and thickness, which is negative in summer. The corre-

lations between the ice concentration and volume between categories are strong in both seasons, but particularly in summer.430

As the Central Arctic is covered by 100% sea ice in winter, the correlations between the total sea ice concentration and the ice

concentrations of each thickness category are generally smaller than the correlations to the thickness or volume. In summer

the correlations are larger, but still not as strong as those in the Fram Strait. Overall this means that if assimilation results in

an increase in ice thickness in the Central Arctic grid cell, the sea ice concentration and volume in the thicker categories will

be increased, with some decrease in ice in the thinner categories. A common trait of these correlation matrices is neighbouring435

blocks acting almost as one category, this is because the ice concentration (aice) and volume (vice) in each category have

similar autocorrelations and are cross-correlated. When neighbouring categories are negatively correlated there is likely to be

exchange of ice area and volume between them.

440
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Figure 4. Correlation matrices of CICE state variables: fraction of ice in category n (aice[n]), volume of ice per unit grid cell in category

n (vice[n]), as well as the total sea ice concentration (conc), grid cell mean ice thickness (hi) and total grid cell sea ice volume (volume) in

January 2012 and July 2012 in the Fram Strait and the Central Arctic.

In Fig. 5 we show sea ice concentration and thickness in 2012 in the same two grid cells as discussed above. The CICE-PDAF

assimilation experiments tend to follow the Bootstrap sea ice concentration observations in a smoothed manner for most of the

year in both of the chosen grid cells compared to the control run. The stronger reduction of sea ice concentration in the model

vs. Bootstrap causes in artificial increase of ice thickness in the assimilation runs due to the negative correlation between con-

centration and thickness at this location and time. The three CICE-PDAF assimilation runs have a much higher mean thickness445

in this grid cell than the control run, even in the summer months when no CS2 thickness data are assimilated. In the Central

Arctic grid cell there is only a decrease in ice concentration in the control run, which is not matched by the observations or any

of the assimilation experiments. In assim_conc, sea ice thickness is overestimated in comparison to the CS2 measurements,

and is much higher than the other CICE-PDAF runs. The decreases in concentration caused by the assimilation in late summer

are not causing a decrease in ice thickness. This could be caused by the covariances between total sea ice concentration and450

the CICE state variables being very weak during this time of the year. This would mean that the small analysis updates in the

total sea ice concentration might not affect the mean sea ice thickness. In the Central Arctic assim_conc_hi_4hd performs best

between October and December but not as well as the other assimilation experiments in the first four months of the year.

455

17



J F M A M J J A S O N D
Month

0.00

0.25

0.50

0.75

1.00

Co
nc

en
tra

tio
n

(a) Fram Strait SIC

bootstrap
control
assim_conc
assim_conc_hi
assim_conc_hi_4hd

J F M A M J J A S O N D
Month

0.6

0.8

1.0

Co
nc

en
tra

tio
n

(b) Central Arctic SIC

bootstrap
control
assim_conc
assim_conc_hi
assim_conc_hi_4hd

J F M A M J J A S O N D
Month

0

1

2

3

Th
ick

ne
ss

 (m
)

(c) Fram Strait SIT
Cryosat-2
control
assim_conc
assim_conc_hi
assim_conc_hi_4hd

J F M A M J J A S O N D
Month

2

3

Th
ick

ne
ss

 (m
)

(d) Central Arctic SIT

Cryosat-2
control
assim_conc
assim_conc_hi
assim_conc_hi_4hd

Figure 5. Sea ice concentration and mean sea ice thickness in one grid cell in the Fram Strait and the Central Arctic in CICE-PDAF, Bootstrap

and CryoSat-2 in 2012.

4.4 Evaluation of CICE-PDAF assimilation experiments

To assess the effectiveness of the DA we look at the root-mean-square-error (RMSE) of the control runs, assimilation runs

and observations assimilated, against the Bootstrap data and the CS2 data randomly selected for validation throughout the four

years. In Fig. 6 we show the RMSE in daily sea ice extent for CICE-PDAF against the Bootstrap extent. Note that all experi-460

ments are very similar and overlay with each other in the figure. We see a large reduction in total sea ice extent RMSE when

assimilating sea ice concentration (blue, magenta, and black lines) in comparison to the control run (green line) in all three

experiments year-round. Assimilating ice thickness or ice thickness distribution in addition to concentration does not have any

visible impact on sea ice concentration.

465

In Fig. 7 we show mean thickness in CICE-PDAF against CS2 for our four experiments. Assimilating CS2 mean sea ice

thickness significantly reduced the RMSE in ice thickness compared to the evaluation data. We can see that the control has a

significant number of data points which lie outside the dense central region. For the assim_conc experiment, the ice appears

to be much thicker than in CryoSat-2 . With the assimilation of mean thickness included in assim_conc_hi the central region470

following the linear trend is now more visible. This is also reproduced in assim_conc_hi_4hd, though there is a bulge of slightly

thicker ice in CICE-PDAF between 1.5 and 2.5 m. In general it appears that the model is weighted towards slightly thinner

ice than the equivalent from CryoSat-2 observations. It seems that most of the improvement in thickness estimates when as-

similating CryoSat-2 data comes from removing a substantial quantity of the thickness estimates in the control that are too
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Figure 6. RMSE of daily sea ice extent for the control and three assimilation runs of CICE-PDAF in comparison to the Bootstrap extent

from 2012 to 2015.

high. Although the high density of low thickness estimates between 1 and 2 m that appear in the 2d histogram plot for control475

compared to that in assim_conc_hi and assim_conc_hi_4hd is smaller the assimilation of the products is not able to completely

remove this bias.

In Table 3 we show the RMSE for mean thickness and category 5 thickness compared to CS2. The RMSE in mean thickness480

was more than halved when assimilating CS2 sea ice thickness in comparison to the control run from 0.63 m to 0.27 m. On

the other hand assimilating Bootstrap concentration alone appears to be detrimental to the model estimates of monthly mean

thickness, as shown by the assim_conc experiment, which had a higher RMSE (0.88 m) than the control. As shown by the 2d

histogram plot in Fig. 7 (top right) this seems to be caused by the assimilation of concentration as the model estimates tend

to be much thicker than in CS2. In terms of the mean thickness, assimilating the ice thickness and concentration in the four485

thinner categories of ice did not improve sea ice thickness estimates. However assim_conc_hi_4hd did lead to significantly

improved estimates of the thickness in category 5 (RMSE of 1.7 m vs. 3.2 m), even though information about category 5 was

not directly assimilated (see Sect. 3.3). This improvement is not seen in any of the other CICE-PDAF runs. There were no

changes to the RMSE in the thickness or concentration in the other four categories compared to the CS2 data. This change in
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Figure 7. 2d histogram plots of sea ice thickness estimates in CICE-PDAF against the CryoSat-2 evaluation data for four CICE-PDAF

experiments.

thickness in category 5 also has a generally positive effect on the model estimates of volume in this category.490

Table 3 RMSE of the domain-averaged monthly mean ice thickness (hi) and ice thickness in category 5 (hice5) to CryoSat-2

evaluation data

RMSE (m) hi hice5

control 0.63 3.2

assim_conc 0.88 3.3

assim_conc_hi 0.27 3.3

assim_conc_4hd 0.27 1.7

495

In Fig. 8 we show monthly mean RMSE of ice thickness in category 5 for each experiment, compared to CS2, and snap-

shots of how this difference in thickness for one month (December 2013) leads to an improvement in the volume in this

category (using Bootstrap data to convert CS2 thickness estimates into volume). We found that additionally assimilating thick-

ness distribution leads to a significant decrease in the thickness and volume RMSE of category 5 in the model, because CS2500

estimates of thickness in this category are generally much lower. Assimilation of concentration and mean thickness seemed to

have a small negative effect on the estimates of category 5 thickness and volume for most of the experiment in comparison to
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Figure 8. LHS: RMSE of Category 5 sea ice thickness between 2012 and 2015 for January, February, March, April, October, November and

December for the control and CICE-PDAF assimilation runs, against CryoSat-2 sea ice thickness evaluation data. RHS: Maps of category

5 sea ice volume RMSE in December 2013 for four CICE-PDAF runs against CryoSat-2 evaluation data. Clockwise from the top left map:

control run, assim_conc, assim_conc_hi_4hd and assim_conc_hi.

the control. The improvement in category 5 RMSE occurs because the category 5 ice thickness in the control model is 6 to 7

metres in most places year round, whereas CS2 has much thinner estimates around 3.5 to 4 metres. In many areas the thickness

and volume of ice of the thickest category is much higher than in CS2, and only assimilating part of the thickness distribution505

seems to be able to resolve this difference. The assimilation of the concentration and thickness in the lowest four categories

then has an important effect on achieving better estimates of the thickness, volume and mass budget distribution in comparison

to observations on a pan-Arctic scale.

510

We also compare our results to OIB as shown in table 4. We take a domain-averaged monthly mean ice thickness for each

day we have OIB ice thickness available over the whole period for coincident grid cells with our model and then average this

result, as all OIB campaigns take place in the late freeze-up season. The assim_conc_hi and assim_conc_hi_4hd experiments

show an improvement in RMSE in comparison to the control, and are quite close to the RMSE of the CPOM CS2 observations

against OIB. Assimilating thickness distribution alongside the mean thickness did not improve the thickness RMSE much at515

all toward the IceBridge thickness data. Meanwhile the RMSE of assim_conc is negatively effected by the assimilation of

Bootstrap concentration alone. This comparison is not ideal, due to the changes differences in spatial and temporal resolution

in OIB and our model grid. This requires interpolation and comparing a daily averaged value from OIB measurements to daily

mean from our model, which assimilates sea ice thickness on monthly timescales. However the reduction in RMSE shown by

assim_conc_hi and assim_conc_hi_4hd can still be useful. In Fig. 9 we show scatter plots of our assimilation experiments and520
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CryoSat-2 ice thickness data against Operation IceBridge including the slope and intercept of a linear regression. There is little

difference between the control, assim_conc_hi and assim_conc_hi_4hd, except a less tighter fit to the line of best fit in the

control experiment, with some data points in the control spread quite far from their OIB counterpart. In these three experiments

the slopes and intercepts are very similar, with the slope smaller than the CryoSat-2 comparison, and the intercept too large. In

assim_conc, the spread of the data points is quite large in comparison to OIB, with many grid cells showing much smaller or525

thicker sea ice than the comparison to OIB, and there is also a greater slope than the Cryosat-2 comparison to OIB.

Table 4 RMSE of sea ice thickness (m) for the four CICE-PDAF experiments and the CryoSat-2 observations against Opera-

tion IceBridge. This compares daily sea ice thickness over grid cells and on days where Operation IceBridge data is available

(For each year, around 15 days in March and April).530

Experiment Ice Thickness RMSE (m)

control 0.64

assim_conc 0.92

assim_conc_hi 0.58

assim_conc_4hd 0.57

CryoSat-2 0.53

535

4.5 CICE-PDAF Assimilation Results

Looking at time series of daily pan-Arctic sea ice area, Fig. 10, we see that in all four years, the sea ice area in the freeze-up

season is smaller, and in the melting season is larger than the control, leading to a narrower seasonal variation. On a pan-Arctic

scale we see again that the assimilation of the concentration is the key factor for this area diagnostic, with the assimilation of

CS2 products providing no additional benefits, as expected.540

We show pan-Arctic sea ice volume in Fig. 11. We see that the assimilation of only concentration (blue) increases sea ice

volume over the experimental time frame in comparison to the control run after summer 2012. The assimilation of monthly

mean thickness in addition to this (magenta and black) appears to mitigate this effect, where assim_conc_hi (magenta) has545

sea ice volumes in winter comparable to the control run, but on the other hand it has greater sea ice volumes in summer.

The assimilation of the sub-grid scale thickness distribution (black) appears to cause a rebalancing of the ice thicknesses and

fractional areas in each category, leading to large swathes of ice being moved into lower thickness categories, which results

in lower sea ice volumes. A further analysis (see Fig. 14) shows that this is caused by large differences between the CS2 ice
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Figure 9. Scatter plots of mean sea ice thickness (m) estimates in CICE-PDAF runs and Cryosat-2 against Operation IceBridge for March

and April 2012-2015

2012 2013 2014 2015
Year

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ar
ea

 (m
2 )

1e13

bootstrap
control
assim_conc
assim_conc_hi
assim_conc_hi_4hd

Figure 10. Pan-Arctic sea ice extent from 2012-2015 from Bootstrap observations and four different CICE-PDAF runs. Solid lines show

observations or ensemble mean and the shading shows observation error or ensemble spread (one standard deviation)
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Figure 11. Pan-Arctic sea ice volume from 2012-2015 in four different CICE-PDAF runs. Solid lines show observations or ensemble mean

and the shading shows observation error or ensemble spread (one standard deviation).

thickness in category 5 and the model ice thickness in category 5. In the first four months of the experiment the increments in550

sea ice volume caused by the thickness distribution assimilation are significant because of these differences.

In Fig. 12 we show maps of sea ice thickness in October 2012-2015 from CS2, the control run, three CICE-PDAF experiments

and PIOMAS. We can see that CS2 has thinner sea ice than all the CICE-PDAF experiments and PIOMAS during this time555

period. In particular the control and assim_conc experiments show a tendency to pile up thicker and thicker ice against the

CAA. If we compare the ice thickness in assim_conc to that in assim_conc_hi we can see that the assimilation of the mean

thickness alongside the ice concentration significantly reduces the gradient of sea ice thickness from the sea ice edge towards

the CAA. The assim_conc_hi experiment has much thinner ice in these regions, similar to CS2. In assim_conc_hi there is

instead a much more homogeneous (in terms of mean thickness) ice cover across the Arctic, with a majority of the ice cover560

having a mean ice thickness in October between 1.4 and 2.4 metres. The assimilation of the CS2 mean ice thickness appears to

be very effective in CICE-PDAF, with the ice thickness of assim_conc_hi looking quite similar to that of the CS2 product, and

shown by the reduction in RMSE in Table 3. The assimilation of the concentration does however have the effect of significantly

reducing the amount of thin ice at the edges of the sea ice pack, with much less ice between 0 and 0.6 metres in the Arctic in

October in the CICE-PDAF experiments. Additionally assimilating the four thinnest categories of sea ice in the sub-grid scale565

thickness distribution generally had the effect of slightly increasing the thickness of the thickest ice, however this still has very

good agreement with CS2. The assimilation of the sub-grid scale thickness distribution is also most similar to PIOMAS at this

time. The assimilation of the CS2 products from October through April causes a thicker sea ice cover to persist throughout the
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Figure 12. Monthly mean sea ice thickness (in metres) in October 2012, 2013, 2014 and 2015 in CryoSat-2 and our CICE-PDAF experiments

(ensemble mean) and PIOMAS.

summer period than we see in the control model, with higher sea ice extents and volumes in summer (not shown).

570

Alongside ice thickness, we also look at sea ice concentration in September 2012-2015 in Fig. 13. Here all runs with assimi-

lation of sea ice concentration all show similarities to the Bootstrap sea ice concentration for the given year. This shows what

the RMSE was telling us from the top panels in Fig. 6 – that the assimilation of sea ice concentration works well, and moves

the concentration estimates in the assimilation experiments close to the observations. A significantly smaller marginal ice zone575
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(MIZ, the area of ice containing between 0.15 and 0.8 sea ice concentration), which is present in the Bootstrap sea ice concen-

tration, is also seen in the assimilation runs. The Bootstrap concentration tends to feature ice concentrations close to 1 inside

the ice pack, which could also lead to thicker ice within the ice pack because higher ice concentrations are expected to corre-

late with higher ice thicknesses – in Fig. 4 strong correlations are shown between concentration and thickness except for the

Fram Strait in Summer. These wide areas of high concentrations in the ice pack are not present in other sea ice concentration580

observation products such as the NASA Team product. For this reason it would be interesting to compare the assimilation of

different sea ice concentration products.

In Fig. 14 we show sea ice volume in each thickness category and the total Arctic sea ice volume for 2012-2015. Large differ-585

ences occur in the three largest categories, which we expect because smaller changes in the amount of ice in these categories

would lead to bigger differences in their volume. In the thinnest category (ice 0.6 m and thinner), there are small decreases in

the amount of ice in this category when compared to the control, but the three assimilation runs are generally similar to one

another. The largest differences seem to occur at the end of each melting season, with the control run having significantly more

ice in the thinner categories than the assimilation experiments. In category 2 (0.6-1.4 m) the same pattern occurs, but shifted590

slightly (with the maximum ice volume in this category occurring around late December and early January), and again with

significantly more ice at this time in the control run.

In category 3 (ice thickness between 1.4-2.4 m) we first see larger differences between the assimilation runs. Most notably

the assimilation of the thickness distribution (assim_conc_hi_4hd) has caused a significant decrease in ice in this category595

compared to assim_conc_hi at the end of the freezing-up season (March-April) in 2013. This decrease persists throughout the

rest of the run. The ice in this category in the control run tends to experience the greatest variation between the minimum and

the maximum, generally having the lowest amount of ice in this category at the end of summer but the most at the end of

winter. In assim_conc the reverse is true. The assimilation of thickness alongside concentration has a substantial effect on the

volume of ice in this category, particularly during the minimum, with assim_conc_hi having much larger ice volume estimates600

in this category than assim_conc. Additionally assimilating sub-grid scale thickness distribution seemed to remove this cate-

gory 3 ice created by the mean thickness assimilation, with assim_conc_hi_4hd having similar category 3 volume estimates

to assim_conc. In category 4 (2.4-3.6 m), assimilation leads to more ice in this category, particularly when assimilating the

sub-grid scale thickness distribution, where the analysis increments are quite large. This increase of ice volume in category 4

seems to counteract the decrease in categories 3 and 5 in this run.605

Looking at the thickest ice (3.6 m and thicker), the assimilation of concentration alone causes a large increase in category

5 volume. The assimilation of mean thickness tends to decrease the volume of the thickest ice compared to the control. The

addition of sub-grid scale thickness distribution assimilation does not seem to significantly affect the total volume of ice in this

category, however regional differences could be significant. It seems that the primary reason for the decrease in sea ice volume610
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Figure 13. Monthly mean sea ice concentration in September 2012, 2013, 2014 and 2015 in the Bootstrap observations, the control and three

CICE-PDAF experiments (ensemble mean).
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Figure 14. Volume of ice in each thickness category and the total volume for each of the CICE-PDAF experiments (ensemble mean).

when assimilating thickness distribution is that a decrease in ice in categories 3 and 5 is partially (but not fully) counteracted

by an increase in category 4 ice volume. Overall we see that assimilation of the thickness distribution product can have wide-

reaching impacts on the distribution of the sea ice in the Arctic.

615

5 Discussion

Overall, the assimilation of sea ice observations decreased the seasonal variation of both sea ice extent and sea ice volume in

the freeze-up and melting periods in comparison to the control run. The assimilation of the CS2 observations resulted in an

increase in the area of thicker ice extending outwards to the North pole from the CAA, but was compensated by a reduction in620

the thickness in the regions of the thickest ice. The sea ice in the control experiment was generally too thin throughout most

of the year, except in the CAA. As a lot of thin first year ice is being formed in the control model this will make it more

susceptible to subsequent melting during the melting season, and hence increase the seasonal variation. The model generally

appears to overestimate both summer ice melt and the winter freeze up, except in the CAA where the ice gets much thicker than

observations from CS2. This may be caused by too much ice advecting into this region in the model or the ridging formulation625

in the model favouring the formation of too much thick ice. This problem could be being exacerbated by possible issues with

the climatology we use to simulate the oceans, which may cause too much congelation growth in this region.
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Apart from in assim_conc_hi_4hd, the estimates of ice in the thickest category are poor (see Fig. 8), so the model appears

to have significant difficulties in simulating the thickest sea ice. In assim_conc the ice thickness and volumes are substantially630

larger than in the control, particularly in the regions of the thickest ice (ice thickness > 3.6 m). This could indicate issues

with the open water fraction in the CICE model as CICE generally has lower sea ice concentrations within the ice pack than

Bootstrap (which has concentrations generally close to 1 away from the ice edge) and the correlations between concentration

and thickness within the model could cause new ice created to be thicker than it should be. The marginal ice zone (MIZ) which

is defined as the area of ice between 15% and 80% concentration, forms a boundary region of small sized ice floes between635

the open ocean and the central ice pack which are strongly affected by ocean waves (Sundfjord et al., 2007). The interactions

between the atmosphere, ocean and sea ice are particularly strong in the MIZ, and a reduction in MIZ could also have strong

impacts on Arctic sea ice ecosystems (Barber et al., 2015). The assimilation of Bootstrap sea ice concentration also appears

to decrease the marginal ice zone (MIZ) area, which is again an artefact of the characteristics of the Bootstrap sea ice con-

centration. A wholesale change in the mean thickness across the Arctic will change how a lot of this ice behaves because the640

dominant physical processes on the sea ice change depending on its thickness. As the ice is much thicker the ocean waves have

a much smaller effect on it. Thicker ice created by the assimilation can also advect into the Beaufort and Lincoln seas causing

higher than expected ice thickness and volume in these regions.

The areas of thickest ice (> 3.6 m) and thinnest ice (< 0.6 m) narrowed rather than broadened when ice thickness products645

from CS2 were additionally assimilated. This resulted in a significant increase in the area of ice between 0.6 and 3.6 m thick.

In addition to the effects of the sea ice concentration assimilation, this could partially explain why the sea ice extent minima

in September were larger in the assimilation runs than the control model every year, because the thicker ice would be more

resilient to being fully melted during the melt season than the thinner ice. This study highlights significant benefits of obser-

vations of sea ice thickness and sub-grid scale thickness distribution for estimation of sea ice thickness and volume using data650

assimilation. It shows that there should be further emphasis put on making future observations of sea ice thickness in order

to establish a more accurate long term record of ice thickness and volume in a reanalysis, and also in making use of different

types of observations in sea ice data assimilation studies to ascertain a clearer picture of the Arctic sea ice.

One shortcoming of this study is that the observation errors of ice thickness, and the sub-grid scale thickness distribution655

(ice concentration and ice thickness in each category) are highly correlated, but for simplicity we do not account for observa-

tion error correlations. The observation error statistics on the sub-grid scale thickness distribution and the mean thickness are

both highly uncertain and are assimilated only once a month and only outside of the Arctic melting season. Assimilating only

once a month can cause large increments in some of the CICE state variables especially in October, after the 5 month Summer

period without assimilation. The assim_conc experiment differs significantly from assim_conc_hi and assim_conc_hi_4hd so660

the thickness assimilation is not only highly effective in reducing the RMSE in mean ice thickness but has a significant effect

in September, 5 months after any thickness or thickness distribution assimilation has taken place. A more accurate assessment
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of the uncertainties in the CryoSat-2 products assimilated in this study would likely lead to significant improvement in the

system and estimated sea ice state. The observations of the thickness distribution observations were processed with five thick-

ness categories in mind, as is used as the default in CICE, however it has been shown in a number of studies, for example665

Massonnet et al. (2011) and Smith et al. (2022), that including a higher number of ice thickness categories in the model can

lead to increased model skill in the Northern Hemisphere. If we were to increase the number of ice thickness categories in

the model, it would also require the reprocessing of the thickness distribution observations, and we would like there to be a

sufficient number of data points in each category for the data to be meaningful. For a larger number of categories this would be

much more difficult and there would be little data in many of the categories. A larger number of categories can represent the670

ice thickness distribution more realistically, however the thickness distribution observations provided are for the chosen five

categories.

Another important factor to consider is that many of the variables in the CICE state vector are assumed to be Gaussian are

bounded, for example sea ice concentration, as well as many other state variables which have upper or lower bounds. This675

means that we need to account for the correlations in the LETKF leading to unphysical sea ice states, so some variables need to

be altered after the assimilation to avoid model crashes. Of the observations we assimilate, sea ice concentration and sub-grid

scale thickness distribution have upper and lower bounds, and sea ice thickness has only a lower bound, therefore the observa-

tion error covariances for our observations should approach zero as the bounds are reached (Bishop, 2019). For simplicity we

have not applied this in our study. The observation error variances we have used for sea ice concentration and sea ice thickness680

do depend on the measured state, and in the case of sea ice concentration do get smaller as some bounds are approached, but this

is done to account for uncertainties in the observational method. To evaluate the ice thickness from the studies in this chapter,

we used randomly selected CryoSat-2 data held back for evaluation and OIB observations. When evaluating the studies with

the CryoSat-2 we have to recognise that although the data held back for evaluation was randomly selected, it is not completely

independent and so the evaluation data will be correlated in some way with the observations chosen for assimilation. In com-685

parison to the independent OIB observations, there was still a reduction in RMSE in assim_conc_hi and assim_conc_hi_4hd,

but only a small one from the RMSE to the OIB data in the control. The OIB data represents substantially different spatial and

time scales from the model such that the comparison, although useful, is difficult. Other studies of sea ice data assimilation,

such as Fiedler et al. (2022), have used the BGEP ULS Mooring sea ice draft data (Krishfield et al., 2014), and converted it to

thickness using a simple multiplication (Rothrock et al., 2003), but this ignores the snow depth issue when converting from ice690

draft to ice thickness, which Fiedler et al. (2022) also bring up, as they found that the converted ice thicknesses from BGEP

ULS moorings did not necessarily compare well to the CryoSat-2 observations of ice thickness, which meant that the assimila-

tion of the CryoSat-2 ice thickness observations worsened the validation with the BGEP ULS data in comparison to the control.

Assimilating Bootstrap sea ice concentration alone resulted in an increase in sea ice thickness and volume in comparison695

to the control experiment, and it performed worse against our evaluation CS2 and OIB datasets. This effect has not been seen

seen in other studies assimilating only ice concentration and evaluating modelled ice thickness. In Fritzner et al. (2019) when
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only OSISAF sea ice concentration was assimilated estimates of thickness generally improved in comparison to independent

observations, only performing worse in May, and unlike in our experiment the ice thickness and volume were generally re-

duced. It appears to be caused by the assimilation of Bootstrap sea ice concentrations in the summer months. There are a few700

months in summer when Bootstrap sea ice concentrations are higher than the control model, which would lead to positive

increments in sea ice concentrations. This may be causing unrealistic thickening of the sea ice through positive correlations

between sea ice concentration and sea ice thickness within the data assimilation. It seems that further care is required when

assimilating sea ice concentration alone when using assimilation schemes like we have used in this study. This is not an issue

for other reanalyses like PIOMAS, which uses a highly tuned nudging technique which only affects ice concentration close to705

the ice edge, and assimilates a different dataset of sea ice concentration observations (NASA Team). It is likely a result of some

unique characteristic of the Bootstrap sea ice concentration in combination with the physics of the CPOM-CICE model and

the data assimilation scheme we use. It does show that care should be taken in the interpretation of sea ice volume estimates

when assimilating sea ice concentration alone in any reanalysis study.

710

In this study we attempted to tune a number of important assimilation parameters - forgetting factor, localisation radius and an

amplification factor. We attempted to do this using a short 1-year assimilation study, which we assumed is a reasonable length

with which to determine their long term effects. However we showed that changing any of these parameters could in some

cases result in a considerably changed estimate of the sea ice state, without altering any part of the model or observations as-

similated. There is a significant amount of room for fine-tuning these parameters which could result in changes in the estimates715

of the sea ice state. The localisation radius study did show that larger radii may slightly improve the model estimates, but these

larger radii are probably physically unrealistic for the range of the effects of the CPOM-CICE model sea ice dynamics. In the

future a location-dependent localisation radius would be beneficial, especially near the sea ice edge. However they would not

likely change any of the outcomes of the study with regards to the intercomparison between each assimilation experiment.

With regards to ensemble size, more is generally better for the health of a data assimilation system, though 100 is on par with,720

for example, TOPAZ4, and much larger than in Fritzner et al. (2019).

In this study we have assimilated a sub-grid scale thickness distribution for the first time. When this is additionally assim-

ilated alongside the mean thickness there are benefits to the estimates of ice in category 5. The model appears to overestimate

the thickness of the thickest ice substantially. However it could be argued that this region where category 5 sea ice is present725

in large quantities is the least important because the ice cover has not changed as drastically here as it has in any other region

of the Arctic. The ice is so thick in this region that even under increased Arctic warming the ice concentration here is close to

or is 1, and has been throughout the satellite era. However a more accurate sub-grid scale thickness distribution could lead to

medium and longer term benefits to sea ice estimates in the rest of the Arctic.
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6 Conclusions730

We have produced a new sea ice data assimilation system CICE-PDAF, using the method of LETKF assimilation with a lo-

calisation radius of 100 km, a forgetting factor of 0.995 and an ensemble size of 100. Ensemble spread was further generated

in the system by perturbing NCEP-2 atmospheric forcing fields using an EOF method, and amplifying these perturbations to

further increase it. Using this DA system we conducted experiments assimilating NASA Bootstrap daily sea ice concentration

alongside CS2 products of monthly mean sea ice thickness and monthly mean sub-grid scale sea ice thickness distribution.735

This is the first time that a sub-grid scale sea ice thickness distribution product has been assimilated.

We have performed experiments comparing a control run (no assimilation) of the CICE-PDAF model alongside assimila-

tion runs and found that the assimilation performed well for sea ice concentration, sea ice thickness and sub-grid scale sea ice

thickness distribution. The best performing experiment in comparison to independent observations was assim_conc_hi_4hd,740

which assimilated sea ice concentration, mean sea ice thickness and the sea ice thickness distribution in the thinnest four cate-

gories of sea ice. For the first time we have assimilated a sub-grid scale sea ice thickness distribution, which caused significant

changes in the ice thickness distribution across the ice cover. The primary benefit from this was the significantly improved esti-

mates of the ice thickness in the thickest category (a reduction in RMSE of 1.5 m), which persisted throughout the time period.

By assimilating thickness distribution alongside mean thickness, there were important benefits to the thickness distribution and745

sea ice mass budget estimates in our sea ice model, primarily in the thickest category of sea ice.

Overall we have shown that the assimilation of the CS2 products were highly beneficial when compared to the assimilation of

concentration alone against randomly chosen CS2 evaluation data that were not assimilated. The enormous differences in ice

thickness between assimilating only ice concentration and assimilating both ice concentration and ice thickness are striking and750

suggest that information about sea ice thickness is essential to produce a realistic sea ice reanalysis data set. The assimilation

of the Bootstrap concentration in fact appeared to negatively effect CICE-PDAF estimates of sea ice thickness compared to

these evaluation data.

Code and data availability. CICE v5.1.2 is available here: https://github.com/CICE-Consortium/CICE-svn-trunk/tree/cice-5.1.2. PDAF v2.0

is available for download here: https://pdaf.awi.de/trac/wiki.755

Appendix A: Appendix A

The mean ice thickness of a grid cell is
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h=

5∑
n=0

anhn,760

where an is ice concentration and hn is ice thickness in thickness categories 1-5 (with category 0 as open water). Allowing

for errors in all the quantities such that h= htrue + ϵh, an = atruen + ϵan and hn = htruen + ϵhn, where "true" indicates the true

values and ϵ indicates the errors, we find

765

htrue + ϵh =

5∑
n=0

(atruen + ϵan)(h
true
n + ϵhn)

=

5∑
n=0

(
atruen vtruen + atruen ϵhn +htruen ϵan + ϵanϵhn

)
.

770

Since htrue =
∑
atruen vtruen , this reduces to

ϵh =

5∑
n=0

(
atruen ϵhn +htruen ϵan + ϵanϵhn

)
.

775

We do not know these errors, but we do assume we know their root mean square expected values ϵ2x = σ2
x, where the overline

indicates average over realisations. Neglecting the triple and quadruple products leaves us with

ϵ2h =

5∑
n=0

5∑
n′=0

(
atruen atruen′ ϵhnϵhn′ + atruen htruen′ ϵhnϵan′ +htruen atruen′ ϵanϵhn′ +htruen htruen′ ϵanϵan′

)
.780

To simplify this and be able to use it to make an estimation of the expected error statistics we make two assumptions, firstly

that the errors in area and height are uncorrelated, and secondly that the errors of ice concentration and thickness are uncor-

related between categories. This is likely to be untrue, especially considering that the sum of the ice concentrations in each

category are bounded, but without these assumptions it would be difficult to approximate the error statistics in the assimilated785

ice concentration and thickness in each category. With these assumptions we find

σ2
h =

5∑
n=0

(
atrue

2

n σ2
hn +htrue

2

n σ2
an

)
.
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