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Abstract. Strong hurricane winds damage power grids and cause cascading power failures. Statistical and machine learning

models have been proposed to predict the extent of power disruptions due to hurricanes. Existing outage models use inputs

including power system information, environmental, and demographic parameters. This paper reviews the existing power

outage models, highlighting their strengths and limitations. Existing models were developed and validated with data on a few

utility companies and regions, limiting the extent of their applicability across geographies and hurricane events. Instead, we5

train and validate these existing outage models using power outages for multiple regions and hurricanes, including Hurricanes

Harvey (2017), Michael (2018), and Isaias (2020), in 1,833 cities along the U.S. coastline. The dataset includes outage data

from 39 utility companies in Texas, 5 in Florida, 5 in New Jersey, and 11 in New York. We discuss the limited ability of state-

of-the-art machine learning models to (1) make bounded outage predictions, (2) extrapolate predictions to high winds, and (3)

account for physics-informed outage uncertainties at low and high winds. For example, we observe that existing models can10

predict outages as high as 25 times more than the number of customers and cannot capture well the outage variance for wind

speeds over 70m/s. Finally, we present a Beta regression outage modeling framework to address the shortcomings of existing

power outage models.

1 Introduction

Hurricanes can cause significant damage to the power distribution systems resulting in large power failures and losses of billions15

of U.S. dollars (Smith, 2020). Strong winds from hurricanes can destroy the exposed overhead distribution lines in a power grid

and cause cascading power failures. For example, Hurricane Isaias (2020) damaged old power infrastructure and caused more

than two million power outages across the U.S. More than a million outages occurred in New Jersey (https://www.nytimes.

com/2020/08/04/nyregion/isaias-ny.html, last access: 21 September 2022) even though Hurricane Isaias had transitioned to a

Tropical Storm when it hit New Jersey, reducing its sustained winds to 25 m/s (Latto et al., 2021). To address this issue, the U.S.20

Department of Energy (DOE) has prioritized investing in enhancing power infrastructure resilience (National Academies of

Sciences and Medicine, 2017). The Senate of the U.S. passed the Grid Research Security Research and Development Act

(2020) with a budget of 573 million U.S. dollars to be spent from 2020-2025 to improve grid security to withstand shocks and

rapidly recover from disruptions (Congress.gov, 2020).
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Hurricane induced power interruptions can cause billions of dollars in losses and long-lasting impacts on vulnerable com-25

munities. The power outages caused by storms can last for several hours to a week. Large-scale power blackouts show the

vulnerability of the power grid to hurricanes, e.g., (1) 8.1 million homes lost power during Superstorm Sandy (2012) (Shep-

pard and DiSavino, 2012), (2) 1.7 million consumers in the Southeast United States lost power in the aftermath of Hurricane

Michael (2018) (EIA.GOV, 2018) and (3) Hurricane Ida (2021) was responsible for 1.2 million electrical outages (AJOT,

2021). Critical infrastructure systems such as hospital systems and fire departments are especially vulnerable since they need30

to have the power restored within a few hours after a power outage to respond to the disaster (Ceferino et al., 2020).

Utilities must first assess the vulnerabilities in their power system infrastructure to enhance the resilience to hurricanes. Re-

searchers have developed machine learning models to help utilities evaluate their vulnerabilities to predict the extent of power

outages from hurricanes. These outage models use inputs including hurricane, power system, environmental, and demographic

information. Outage prediction models can assist utilities in planning and placing their resources before and during an extreme35

event for an emergency response to rapidly recover the failed power distribution systems (Arab et al., 2016). These models can

also inform about the existing vulnerabilities so utilities can also plan for grid hardening before a hurricane damages the power

grid (Ouyang and Dueñas-Osorio, 2014).

Liu et al. (2005) developed a Negative Binomial Generalized Linear Model (GLM) to predict the power outages in North

and South Carolina. This model used hurricane parameters such as maximum wind speeds and duration of wind speeds over40

20 m/s; environmental parameters including land cover, tree type, soil drainage properties, precipitation; and utility informa-

tion on the number of transformers and customers. The model included only a specific utility, which limited the use of the

outage model to other regions. The model also included a storm indicator, making the model not applicable to hurricanes with

different characteristics than the ones in the training data. Liu et al. (2007) also presented an Accelerated Failure Time model to

estimate the power outage duration. Next, Liu et al. (2008) investigated the spatial correlation of power outages through spatial45

Generalized Linear Mixed Models (GLMM) but did not observe any significant improvements in power outage prediction.

Han et al. (2009b) also developed a Negative Binomial GLM to predict outages in the Gulf Coast based on extensive

information on hurricane parameters, additional environmental indicators (e.g., precipitation, soil moisture, tree type, land

cover), and system information (e.g., number of poles, number of transformers). This model did not include any specific utility

and storm indicators and instead used only generalizable features (e.g., wind speed, precipitation) to make the model applicable50

to any hurricanes. Han et al. (2009a) also developed Generalized Additive Models (GAMs) with the same input features as

GLMs. GAMs showed an improved accuracy over GLMs in power outage predictions because GAMs can effectively model

the highly non-linear behavior of input parameters, e.g., precipitation and soil moisture can have non-linear effects on power

outages (Han et al., 2009a).

Guikema et al. (2010) and Quiring et al. (2011) used decision tree models, Classification and Regression Trees (CART) and55

Bayesian Additive Decision Trees (BART), with additional topological and soil parameters, to better capture the variability of

power outages. Decision trees provide a flexible way to represent the non-linear relation between input parameters and outages.

More recently, researchers developed decision trees-based machine learning methods which are robust to outliers and noise,

called Random Forest (Breiman, 2001), to predict power outages caused by storms. Random Forest regression is an extension

2

https://doi.org/10.5194/egusphere-2022-975
Preprint. Discussion started: 10 October 2022
c© Author(s) 2022. CC BY 4.0 License.



of decision tree methods for regression. A series of parallel decision trees are fit in the Random Forest regression method to60

capture non-linearity and achieve high predictive accuracy. Nateghi et al. (2014) calibrated a Random Forest model to outage

data from the Gulf Coast. Nateghi et al. (2014) used six input parameters to capture the damaging effects of trees on power

lines. These six input parameters included 3-s gust wind speed, duration of strong winds, soil moisture at different depths,

the number of customers served, and tree-trimming practices used to predict outages. Later, Guikema et al. (2014) used only

publicly available data to develop a hurricane outage prediction model, independent of utility-specific input parameters, with65

Random Forest regression using 3-s gust wind speed, strong winds, and the number of customers served.

Maderia (2015) improved accuracy in power outage predictions with Random Forest models by including information on

tree species. Tonn et al. (2016) used Quantile Regression Forests (Li and Peng, 2011) to predict power outages at different

confidence intervals. Guikema et al. (2014) and McRoberts et al. (2018) developed a two-stage zero-inflated power outage

prediction model to better account for zero outages. The first stage of such a model is classification to predict outages or no-70

outages. The second stage is the Random Forest regression to predict the count of outages on the point classified as having

an outage. Wanik et al. (2017) used a Random Forest model with Lidar-derived tree height data to predict power outages.

Shashaani et al. (2018) developed a three-stage power outage prediction model to improve the accuracy of power outage

predictions even further. The first stage of the model is a binary classification to predict the location of outages; the second

intermediate stage is the clustering of outage locations into a low, moderate, and large number of outages to address high75

right-skewness of non-zero outage data point; and the third stage is the prediction of the number of outages.

As the power outage data is generally not made publicly available by the utilities, the previous models are primarily calibrated

to data from a few regions. For example, Liu et al. (2005, 2007, 2008) developed the outage prediction model for North and

South Carolina. Guikema et al. (2014), Nateghi et al. (2014), and Shashaani et al. (2018) developed the outage prediction

models for the Gulf Coast. This paper addresses this gap by calibrating and validating existing models to extensive outage80

data from New Jersey, New York, Florida, and Texas at the city level. Thus, we investigate the generalized behavior of power

outage models across the United States and focus on publicly available input variables to make our calibrated models widely

applicable.

In this paper, Section 2 describes the input features, data sources, and data preprocessing used in the model development for

power outage prediction. Section 3 explains the selection of important and uncorrelated input features for model development.85

GLM, GAM, and Random Forest power outage models are described in sections 4, 5, and 6, respectively. Section 7 describes

the results for calibrated models and compares performance with the previous models in the literature. Section 8 highlights the

limitations of existing state-of-the-art power outage prediction models to (1) make bounded outage predictions, (2) extrapolate

for high winds, and (3) account for physics-informed uncertainties at low and high winds. Section 9 describes the framework

for future research to address the shortcomings of existing power outage models, and Section 10 summarizes the findings of90

this paper.
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2 Data Description

We acquired power outage data from PowerOutage (poweroutage.us, last access: 21 September 2022), an organization that

tracks and records outages from utilities at the city level across the U.S. The data covered the power outages for Hurricane

Isaias (2020) for 11 utilities in New York and 5 in New Jersey, for Hurricane Michael (2018) for 5 utitlies in Florida, and95

Hurricane Harvey (2017) for 39 utilities in Texas. Our dataset has about 3.6 million outages in total. Figure 1 shows outages

caused by Hurricane Isaias in New Jersey in 2020. Supplementary Figures S1, S2, and S3 present power outages across New

York due to Isaias, Florida due to Michael, and Texas due to Harvey, respectively.

Previously, Liu et al. (2005) developed an outage model at zip code levels and smaller 1km× 1km grid cells. However, the

final selected model was zip code level, as the aggregation of input parameters at the 1km× 1km grid level led to more errors100

in outage predictions. Since then, outage models have been developed at coarser grids. For example, Han et al. (2009b, a);

Guikema et al. (2010); Quiring et al. (2011); Nateghi et al. (2014) developed the models for 2.5km× 3.7km grid cells. Tonn

et al. (2016) developed outage models at the zip code level, McRoberts et al. (2018) predicted outages at the resolution of

census tracts, and Shashaani et al. (2018) predicted outages at 5km× 5km grid cells.

We calibrated outage models at the city level resolution, comparable to the most recent models by McRoberts et al. (2018)105

and Shashaani et al. (2018). A model with finer resolution could be developed, provided higher-resolution power outage data

and input parameters. Here, we used data with reported outages for 1833 cities in New York, New Jersey, Texas, and Florida.

Following the previous literature, we use the covariates listed in Table 1. We interpolated the data to obtain model inputs at the

city level across all covariates. Further description of the availability and resolution of each variable is provided in subsequent

subsections. The total number of data points available is 1833 (cities). The dataset has been divided into train and test datasets110

with a ratio of 80:20. The training data was further divided into an 80:20 ratio for training and validation.

2.1 Response Variable

We focused on two response variables, the number of outages in a city and the fraction of customers without power. GLM and

GAM use Poisson and Negative Binomial distributions to assess the count of outages as they model discrete and non-negative

variables. Random Forests can model the fraction of households without power in a city, which is important to compare impact115

levels across cities.

2.2 Hurricane Parameters

The hurricane parameters considered for this study are 3-s gust wind speed and duration of strong winds over 20m/s, as in

previous research (Liu et al., 2005; Han et al., 2009b, a; Guikema et al., 2010, 2014; Shashaani et al., 2018). The overhead

distribution system is the most vulnerable component of a power grid to high hurricane winds (National Academies of Sciences120

and Medicine, 2017). The distribution lines and poles are often close to trees and do not have considerable setbacks. The

uprooting of trees due to strong winds often propagates damage to distribution lines. The poles are designed to sustain wind

speeds of around 20m/s (IEEE, 2007). Thus, anything above 20m/s can damage the electric poles. The 3-s gust wind speed and
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duration of strong winds for the three hurricanes in the dataset were calculated based on a complete wind profile model for

tropical cyclones by Chavas et al. (2015). We determined the wind speed for each city at its centroid.125

Figure 1. Power Outages in aftermaths of Hurricane Isaias (2021) in New Jersey
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2.3 Land Cover Data

Power grid patterns vary for different land use classes, resulting in different outage mechanisms. For example, rural areas can

suffer larger power outages since they have radial grid patterns where component failures can propagate more than in cities

with gridded patterns (Petersen, 1982). We obtained National Land Cover Data (NLCD) available from the Multi-Resolution

Land Characteristics Consortium, which is maintained by the United States Geographical Survey (USGS) (https://www.mrlc.130

gov/viewer/, last access: 21 September 2022). NLCD data is available in raster format with a resolution of 30m x 30m. USGS

has classified the original land cover data into 20 different classes. We have reclassified the NLCD data into nine to match

previous power outage models. The nine different major classes of land cover data are developed area, water area, barren land,

forest area, scrub area, grasslands, pasture land, cultivated cropland, and wetlands. We utilized the spatial analyst in ArcGIS (a

tool for Geographic Information Systems) (ESRI 2019) to clip the 30m x 30m land cover raster for each city. We used zonal135

analysis within ArcGIS to determine the percentage of area covered by the nine major land cover classes.

2.4 Precipitation and Soil Moisture Data

Precipitation and soil moisture have been extensively used in power outage models, e.g., Han et al. (2009b); Nateghi et al.

(2014); McRoberts et al. (2018). These parameters have non-linear effects on power outages, as deviations below and above

standard values can result in more outages. The poles and overhead distribution lines in the vicinity of trees are susceptible140

to falling trees due to strong hurricane winds. The wet soil conditions from high precipitation and soil moisture increase the

likelihood of trees and electric poles uprooting from strong hurricane winds (Han et al., 2009b; Nateghi et al., 2014). Also,

persistent drought conditions, e.g., low precipitation in the months before a hurricane, can weaken the roots of trees because of

gaps in the soil layer. Thus, making trees more susceptible to strong winds (McRoberts et al., 2018).

Precipitation and soil moisture data are available from the variable infiltration capacity (VIC) model from National Land145

Data Assimilation System Phase 2 (NLDAS2) (Xia et al., 2012; Xia, 2012). Precipitation and soil moisture have been recorded

each hour since 1979 with a resolution of 0.125◦× 0.125◦. We rescaled the data to match the centroids of cities by taking the

value available at the nearest point.

Soil moisture from NLDAS2 is available for three depths, 0-10 cm, 10-40 cm, and 40-100 cm. We calculated daily soil

moisture for these depths by taking the average hourly readings. Soil moisture can vary at different geographical locations150

due to different soil types in different regions. We first normalized soil moisture to compute deviations from average values

by computing percentiles. We fit Pearson Type III distributions to the daily time series of soil moisture for all three layers

to normalize the soil moisture across different geographies. We use maximum likelihood estimates (MLE) to compute the

parameters for Pearson Type III distribution (Hosking and Wallis, 1997). Then, we evaluate the soil moisture percentile. We

denote the soil moisture percentiles for three layers of soil at 0-10 cm, 10-40 cm, and 40-100 cm depth as CDF1, CDF2, and155

CDF3, respectively.

Precipitation data is represented in the form of the Standard Precipitation Index (SPI) (Wu et al., 2007; Guttman, 1998;

Casey, 2016). SPI for the months before the storm’s impact can also be used as a proxy for the dryness and wetness of the
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soil. For the current study, we calculated SPI for durations of 1 month, 3 months, 6 months, and 12 months by adding hourly

time-series data for precipitation. The following are three steps to compute SPI. First, we fit the Pearson Type III distributions160

to the time series of precipitation using MLE. Second, we compute the percentile from the Pearson Type III distribution. Third,

we take the inverse of the calculated percentile using a standard normal distribution to get the SPI for each duration.

We also included the expected precipitation after the hurricane makes landfall for the next 7 days as heavy rain can lead to

flooding resulting in clustered outages (McRoberts et al., 2018). The soil moisture percentiles and SPI values are obtained since

the day before the hurricane impacts the power systems. This would allow for an early warning to the utilities and community165

members to take precautionary steps before hurricanes hit the area.

2.5 Root Zone Depth

The effective root zone depth is defined as the depth of the soil from which plants and trees can effectively extract water and

nutrients for growth (http://www.wood-database.com, last access: 21 September 2022). The more effective the root zone depth

for trees, the less likely they will fail from strong hurricane winds (McRoberts et al., 2018). We add root zone depth as an input170

parameter for outage predictions because it could indicate the hazard from falling trees to the power lines. Root zone data is

available from the United States Department of Agriculture (USDA) under Gridded Soil Survey Geographic ((dataset) Soil

Survey Staff) at 30m× 30m resolution as raster data. The root zone depth at the city level is calculated as the average of the

root zone in a city using the spatial analytic tool in ArcGIS.

2.6 Percentage Treed Area175

USDA created National Insect and Disaster Risk Maps (Krist Jr. et al. (2014)) in 2012, which has the area covered by trees at

240m× 240m as raster data. The raster tree data is used to calculate the percent of the area covered by trees at the city level

using the spatial analytic tool in ArcGIS (ESRI 2019).

2.7 Elevation

Previously, researchers have found that hurricane wind speeds (and thus damages) vary with surface topography (Chapman,180

2000; Miller et al., 2013; Guikema et al., 2010; Quiring et al., 2011; McRoberts et al., 2018). Thus, we use the median and

mean elevation at the city centroid as topographic variables. We obtained the mean and median elevation from the Digital

Elevation Model at a 30m resolution scale developed by USGS as part of DEM: Global Multi-Resolution Terrain Elevation

Data (GMTED2010) (Danielson and Gesh, 2011).

2.8 Density Data185

Demographics data is available from American Community Survey (ACS) (https://www.census.gov/programs-surveys/acs, last

access: 21 September 2022). ACS collects the different demographic data for each US census tract. ACS started data collection
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in 2010, and we have considered data from 2019. We obtained the population density as it is indicates the number of distribution

poles and system components exposed to winds (Liu et al., 2007).

3 Model Development: Feature Selection190

Machine learning models with high dimensional input data can be hard to train, especially when datasets are sparse, as in the

case of infrastructure failures. Input features can be correlated, leading to higher generalization errors. This means the machine

learning model can fit well the training data, i.e., with small errors. However, we might observe significant errors after testing

the model with additional data. Also, correlated features can lead to a flawed understanding of the relation between input and

predicted outages (Verleysen and François, 2005).195

Feature selection, also called variable selection, is an essential step in machine learning model development to select relevant

variables and discard redundant and highly correlated ones (Cai et al., 2018). We performed the feature selection for outage

prediction in two steps. First, we performed a forward selection with a linear regression (Kohavi and John, 1997) for an initial

rank on feature importance (Figure 2). A linear model might not be the best model to forecast power outages. However, it

can provide initial insights into the dependence of an input feature on outages. We started with a set of empty features and200

added features one by one. At each step, we selected the variable that led to the largest increase in the 20-fold cross-validation

R2. Our results show that, as expected, wind speed and duration of strong winds affect the power outages most. We found

precipitation and soil moisture are important for outage prediction even for linear regression, suggesting that their relevance

could be even higher for non-linear regressions. We also found that population density is critical for outage prediction, which

could be explained by a positive correlation between density and the density of transformers, as described in (Liu et al. (2007)).205
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Feature Abbreviation Data Source Previous Applications

Outages Fraction_Outages poweroutage.us -

3-s Gust Wind Speed Vmax* Hurricane Parameters [1] [9-18]

Duration of Strong Winds Duration

Percent Developed Area Developed National Land Cover Data [2] [9-18]

Percent Water Area Water

Percent Barren Area Barren

Percent Forest Area Forest

Percent Scrub Area Scrub

Percent Grassland Area Grassland

Percent Pasture Area Pasture

Percent Crops Cultivated Area Crops_cultivated

Percent Wetlands Area Wetlands

Standard Precipitation Index 1 month SPI1 NLDAS2 [3,4] [11-16]

Standard Precipitation Index 3 months SPI3

Standard Precipitation Index 6 months SPI6*

Standard Precipitation Index 12 months SPI12

Soil Moisture 1st Layer CDF1* NLDAS2 [3.4] [11-16]

Soil Moisture 2nd Layer CDF2

Soil Moisture 3rd Layer CDF3

7 day precipitation Precip_7days NLDAS2 [3.4] [9,10]

Root Zone Depth Root_zone* Gridded Soil Survey [5] [15]

Percent Treed Area Treed_area* NIDRM [6] [15]

Mean Elevation Mean_Elevation GTDEM 2010 [7] [15,16]

Median Elevation Median_Elevation

Population Density Pop_Density* American Community Survey [8] [14,15,16]
Table 1. Parameters to build the power outage prediction models:all variables are rescaled at the city level. Parameters are grouped into

categories separated by horizontal lines. We selected one variable from each category from each group to minimize correlation across

parameters.

*-variables finally selected for model development after performing feature selection

Sources: [1] Chavas et al. (2015); [2] https://www.mrlc.gov/viewer/, last access: 21 September 2022; [3] Xia et al. (2012); Xia (2012); [5]

(dataset) Soil Survey Staff; [6] Krist Jr. et al. (2014); [7] Danielson and Gesh (2011); [8] https://www.census.gov/programs-surveys/acs, last

access: 21 September 2022; [9] Liu et al. (2005); [10] Liu et al. (2008); [11] Han et al. (2009b); [12] Han et al. (2009a); [13]Nateghi et al.

(2014); [14] Guikema et al. (2010); [15] McRoberts et al. (2018); [16] Shashaani et al. (2018); [17] Wanik et al. (2017); [18] Wanik et al.

(2015)
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Figure 2. Forward Selection: Selection of important input parameters based on importance to explain the variability in outage predictions.

Feature descriptions are shown in Table 1.

In the second stage, we analyzed the correlations between the input parameters. Supplementary Figure S4 shows the cor-

relation coefficients for each pair of variables. We found that input features within the same category in Table 1 are highly

correlated. For example, maximum wind speed and duration of strong winds, which are at the top of the ranking in forward

selection (Figure 2), have a correlation coefficient of 0.89 (Supplementary Figure S4). Hence, we kept only maximum wind

speed as an input feature since it is better ranked than the duration of strong winds in the forward selection. We conducted a210

similar analysis for the different categories listed in Table 1 to select the input variable with the strongest predictive power. Due

to their lower importance in our results, we did not include parameters from the elevation and land cover categories, as they

contribute less than 1% to R2. Finally, we selected the following seven variables that will be used throughout the paper.

– 3-s Gust Wind Speed

– 7-day precipitation215

– SPI 6 month

– Soil Moisture 1st Layer

– Population Density

– Percent Treed Area
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– Root Zone Depth220

4 Generalized linear models

Generalized Linear Models (GLMs) are a generalization of ordinary linear regression. GLMs allow us to use a flexible link

function to relate a linear model (of the input variables) to the response variable (Dunn and Smyth, 2018). Unlike ordinary

linear regressions, GLMs do not assume homoscedasticity, i.e., when the variance of the response variable is constant across

the values of the input variables. The assumption of homoscedasticity fails for the number of customers without power since225

this output variable has positive counts, and when damage to power infrastructure is negligible (e.g., little storm), the variable’s

variance (and mean) should change and approach zero (Dunn and Smyth, 2018).

In addition, GLMs can utilize multiple statistical models to represent the data instead of the only normal distribution as in

ordinary linear regressions. Outages have a lower bound of zero counts that normal distributions cannot capture. Thus, previous

researchers have used the following distributions to represent outages with GLMs. Thus, previous researchers have used the230

following distributions to represent outages with GLMs.

4.1 Poisson GLMs

Poisson regression models, a category of GLMs, are applicable for positive count data where observations are independent.

Outages are modeled as a Poisson random variable:

P (y;µ) =
e−µµy

y!
(1)235

where y is the number of outages in a city. The Poisson distribution is described by the parameter µ, the mean number of

outages in a city. A log-link connects the parameter µ to the input variables, which assures that µ is greater than zero.

ln(µ) = βX (2)

where β is learned from the historical outages from extreme events, often through maximum likelihood estimation (MLE).

MLE finds the value of β that maximizes the probability of observing the data. Readers can refer to Dunn and Smyth (2018) for240

more information on MLE estimates for GLMs. We use glm package in R studio (https://www.rdocumentation.org/packages/

stats/versions/3.6.2/topics/glm, last access: 21 September 2022) to fit the Poisson GLM to our power outage data.

The variance in a Poisson distribution is equal to the mean, i.e., V ar(y) = µ. Thus, the variance grows as µ increases.

However, previous research has found that outage variance from historical data is significantly bigger than the mean (Liu et al.,

2005; Han et al., 2009b, a), a phenomenon that is known as overdispersion in Poisson regressions (Dunn and Smyth, 2018).245

Overdispersion may arise from the interdependence of output variables, especially when they happen in clusters (Dunn and

Smyth, 2018). Poisson distributions represent counts of events, e.g., customers without power, that are independent (Liu et al.,

2007). In contrast, multiple outages in the city can happen due to the failure of the same power grid components (Liu et al.,

2005; Han et al., 2009b). Thus, outage counts are not independent.
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4.2 Negative Binomial GLMs250

Negative Binomial GLM is a hierarchical model which can account for overdispersion effects in power outage count predictions

(Dunn and Smyth, 2018). Negative Binomial GLMs are based on a Poisson-Gamma mixture distribution, i.e., the outage count

y is distributed as a Poisson random variable

P (y;µ,τ) =
e−µτ (µτ)y

y!
(3)

where µ is a factor that when multiplied by τ equals the mean of the Poisson distribution. τ is an additional random variable255

to account for extra variance, with mean equal to 1 and distributed as Gamma

P (τ ;k) =
(1/k)1/k

Γ(1/k)
τ1/k−1e−τ/k (4)

where k is the overdispersion parameter and Γ() is the gamma function, thus, the variance of τ equals k. After marginalizing

the random variable τ ,

P (y;µ,k) =
Γ(y + 1/k)

Γ(y + 1)Γ(1/k)

(
µ

µ + 1/k

)y(
1− µ

µ + 1/k

)1/k

(5)260

which is equivalent to a Negative Binomial distribution with a variance of µ + kµ2. This variance is higher than the one in

the Poisson GLM with one term that is proportional to µ2. Thus, Negative Binomial GLMs account for significantly higher

variances. µ is parameterized as in Eq. 2. Then, β and k are estimated through through MLE, using the glm package in R studio

((https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm, last access: 21 September 2022)).

4.3 Zero-inflated GLMs265

Researchers have also developed zero-inflation outage prediction models to improve statistical performance for unbalanced

data, e.g., when there are a lot of data points with no outages (McRoberts et al., 2018; Shashaani et al., 2018). The zero-

inflation model has two levels of predictions (McRoberts et al., 2018; Shashaani et al., 2018). The first level can be a logistic

regression or a decision tree model to check if there is at least one power outage (Hall, 2000). The first level model predicts

"0" in case of no outages and "1" in case of at least one outage. The second level is the regression model predicting the number270

of outages for cases where the prediction was "1" at the first level. In this paper, we do not fit zero-inflated models as our data

is balanced, i.e., we observe at least one outage in each city.

5 Generalized additive models

GLM models assume a linear relationship between the logarithm of the mean number of outages and input parameters (Eq. 2).

However, previous research has shown that they have non-linear relationships (Han et al., 2009a), which can be modeled with275
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non-parametric extensions of GLMs (Yee, 2012). Generalized Additive Models (GAMs) capture non-linear relationships using

smoothing functions

ln(µ) = β0 +
∑

j=1

βjfj(xj) (6)

where µ is the mean outages for a city, xj ∈X is the individual input parameter, β0 is the intercept, and fj(xj) are the

smoothing functions for each input parameter. Some examples of smoothing functions are regression splines, B-splines, and280

P-splines. Splines of any order could be used to fit GAMs, but accuracy increases negligibly after the quartic degree (Yee,

2012). Thus, we used quartic order polynomials for all input variables, except for maximum wind speeds. For this variable, we

reduced the order of the polynomial to 1 to always obtain a monotonically increasing relationship between winds and outages,

as we would expect from the structural behavior of infrastructure against extreme loads. We used MLE to estimate GAMs’

parameters through iteratively reweighted least squares (IRLS) (Wood, 2017) using the MGCV library in R studio.285

Poisson GAM assumes the Poisson distribution on number of outages as described in Eq. 1, with link function equal to Eq. 6.

Similarly, negative Binomial GAMs assume the Poisson-Gamma distribution mixture for the number of outages as mentioned

in Eq. 5, with link function equal to Eq. 6.

6 Random Forests

Random Forest regressions (Breiman, 2001) are non-parametric ensembles of decision trees that do not assume any underlying290

probability distribution for the decision variable. Tree-based methods are easy to build and powerful machine learning tools.

Decision trees split at each node based on some criteria involving the value of a particular input variable. For regression trees,

binary splits at each node are performed for each variable (Figure 3) (Hastie et al., 2001). The split with the largest reduction

of squared errors is selected at each step. The splitting stops once there is no performance gain for the regression analysis. For

the prediction, the decision tree will point to a final leaf node based on the criterion for the splitting of feature space, and the295

output for the decision tree is the average of the predicted variable,

ŷi = average(yi|xi ∈ Lm) (7)

where Lm is the final leaf node. (Fig. 3).
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Figure 3. Example of a simple decision tree with two input features: maximum wind speed (Vmax) and precipitation (SPI6) to predict

outages. Split at the root node (R) is done with Vmax. Thus, if the value of wind speed is greater than value V 1, the points will belong to the

right interior node (I2) otherwise they belong to left node. Similarly, interior nodes are further divided into leaf nodes L1,L2,L3, and L4

using values of SPI6.

Random Forest “grow” a large number of parallel decision trees and bag new samples for each decision tree (Breiman, 2001).

Bagging involves drawing new training points with replacements to fit each decision tree with a random selection of features.300

The final output is the average of outputs from each decision tree modeled in parallel. The random selection of features results

in the development of uncorrelated trees, reducing the variance in predictions (Hastie et al., 2001).

Random Forest models can generally capture the non-linear between the input parameters and output predictions. However,

a Random Forest is not easily interpretable as it is based on multiple decision trees. In this paper, we use the sci-kit learn

module in python to fit the Random Forest model. We also use the GridSearchCV module in Python (Pedregosa et al., 2011)305

to tune for the parameters and select the model with the least error on out-of-bag samples.

7 Application of existing models

In this section, we discuss the statistical performance of different outage models by first training the models on training data and

then comparing the R2 metrics on hold-out test data. We use different R2 metrics since traditional ones, like the coefficient of

determination, have many limitations for counting variables, as discussed in the Appendix. We also compare the performance310

of developed models for our generalized data covering the Southeast, Southwest, and Northeast regions in the U.S. with the

results from previous models applied to a particular region.

7.1 Generalized Linear Models

We trained Poisson and Negative Binomial GLMs to predict the outage counts. The predictions are based on the seven input

features mentioned in the feature selection section. All the input features are significant at a p-value of 2×10−6. We compared315
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the statistical performance of the Poisson and Negative Binomial GLMs (Table 2). We have a total of 1,528 training data points

with seven input variables and one additional slope constant. Thus, the residual degrees of freedom for each model is 1,520.

Model Residual Deviance R2
DEV R2

ψ

Poisson GLM 6,305,346 0.29 -

Negative Binomial GLM 2,078 0.33 0.85
Table 2. Statistical performance measurements for Generalized Linear Models

The high value of residual deviance, relative to the degree of freedom, in the Poisson GLM shows large overdispersion (Liu

et al., 2005; Han et al., 2009b; Dunn and Smyth, 2018). Thus, using this new outage dataset, we confirm that the variance

in historical outages largely exceeds the mean value. Negative Binomial GLM has a low residual deviance value compared320

to the Poisson model and is more similar to the degrees of freedom, indicating that Negative Binomial GLM can handle

overdispersion in power outage predictions more satisfactorily.

The R2
DEV is slightly higher for the Negative Binomial GLM, also suggesting Negative Binomial’s better statistical perfor-

mance. The R2
ψ for the Negative Binomial GLM is 0.85, which means the model can capture 85% of variability by considering

the additional level of uncertainty in the form of Poisson-Gamma mixture given by Eq.5 for outage counts. The reported value325

of R2
ψ for Negative Binomial GLM in this paper is comparable to the values presented by Han et al. (2009b), i.e., ∼0.8.

However, we observe a lower value of R2
DEV compared to previous literature, i.e., ∼0.6. The lower value of R2

DEV may be

due to the use of fewer parameters, e.g. seven in this study versus 20 in Han et al. (2009a), as R2
DEV always increases with

more predictors. For example, we get a value of 0.48 for R2
DEV when all the input variables in Table 1 are included, but we

considered fewer parameters to avoid correlated features and enhance the generalization of these models. We may also get a330

lower value of R2
DEV because we have a generalized dataset covering different regions in the U.S., and previous models were

applied to data from smaller regions.

7.2 Generalized Additive Models

We also trained the Poisson and Negative Binomial GAMs. Like for GLMs, GAMs are trained with the seven input features

mentioned before. All the input features are significant at a p-value of 2× 10−6 for both models. Like for GLMs, the residual335

degrees of freedom for each model is 1520.

Model Residual Deviance R2
DEV R2

ψ

Poisson GAM 3,913,424 0.53 -

Negative Binomial GAM 1,813 0.81 0.99
Table 3. Statistical performance measurements for Generalized Additive Models
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The residual deviance for Poisson GAM (Table 3) is ∼38% less than the one in Poisson GLM (Table 2), which is a minimal

improvement to overcome the large overdispersion as the deviance is still significantly higher than the degrees of freedom.

However, R2
DEV shows a more significant performance improvement as its value increases to 0.53 for Poisson GAM (Table 3)

over a value of 0.28 for Poisson GLM (Table 2).340

Negative Binomial GAM has a low value of residual deviance, which indicates that Negative Binomial GAM can handle

overdispersion. Additionally, non-linear shapes from spline functions (Eq. 6) for GAMs improve the outage predictions. The

R2
DEV for Negative Binomial GAM improves significantly to a value of 0.81 (Table 3) over the 0.33 in Negative Binomial

GLM (Table 2). The observed value of 0.99 for R2
ψ is similar to the one reported by Han et al. (2009a) in their GAM model

development for power outage predictions. The R2
DEV for GAMs is not available in the previous literature, so further compar-345

isons with previous work could not be made.

7.3 Random Forest

We calibrated the Random Forest model to predict the fraction of customers without power. We performed the calibration using

the GridSearch tool in Python with cross-validation to select the best input parameters for the Random Forest. The number

of randomly grown trees in the selected Random Forest model is 500. The optimization resulted in a Random Forest with a350

cross-validation R2 of 0.86, comparable to the cross-validation R2 presented by Nateghi et al. (2014). The cross-validation R2

for Random Forest model cannot be compared to different R2 statistics calculated for GLM and GAM models as the output for

Random Forest (fraction of outages) differs from GLM and GAM models (outage counts). Also, we cannot calculate R2
DEV

and R2
ψ statistics for Random Forest as there is no underlying probability distribution assumed for Random Forest predictions.

We present the variable importance in the Random Forest model in Figure 4. We calculated the variable importance by355

training a base model with all the input features and a permuted model resulting from training different Random Forests

and removing one feature at a time from the base model. We ranked importance by finding the variable that leads to the

largest difference in the mean squared error between the base (full) model and the permuted (reduced) model. We present the

normalized importance factors in decreasing order of importance (Figure 4).

We found that maximum wind speed is the most important parameter in the Random Forest model (Figure 4), which co-360

incides with our findings from a simple linear regression in Figure 2. Precipitation is the second important variable, with a

relative importance of 0.33, as trees can more easily be torn out from wetter soil. Population density is the third most important

variable in outage predictions since it is a proxy for cities’ density of transformers exposed to winds.
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Figure 4. Random Forest variable importance in the decrease order of importance. All importance factors are normalized by the highest

value, i.e., the factor for Vmax.

Random Forest and Negative Binomial GAMs show superior performance in predicting the power outages caused by a

hurricane. The performance of different models is often compared based on root mean squared error and mean absolute error365

(Chai and Draxler, 2014). Since, as discussed earlier, Random Forest and Negative Binomial GAMs predict different variables,

fraction and count of outages, respectively, Mean Squared Error (RMSE) and Mean Absolute Error (MAE) cannot be compared.

Instead, we discuss in the next section the key limitations of these models when making predictions for outages.

8 Limitations of state-of-the-art outage models

Different machine learning models discussed in previous sections can predict the power outages for a hurricane-stricken city.370

Here, we discuss the limitations of state-of-the-art machine learning models for power outage predictions.

8.1 GLM and GAM’s Predictions are Unbounded

GLM and GAM regressions can predict the mean number of outages in the city. The models have a lower bound of zero as both

Poisson and Negative Binomial distributions predict the count of outages. However, there is no upper bound on the predicted

number of outages. Hence, GLM or GAM models can predict more outages than the number of customers, resulting in an375

overestimation of power outages.
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Figure 5. Outage predictions on 20% holdout test. Black dots represent the cities with predicted outages larger than the number of customers.

Grey dots represent the cities with predicted outages less than or equal to number of customers.

For illustration, we present the power outage predictions on 20% hold out test data for the Negative Binomial GAM (Figure

5). For 64 cities out of 367 (17.4%) in test data, predicted outages are more than the number of customers, and the overesti-

mation can be significant. For example, the model predicted outages as high as 25 times the number of Rockleigh, New Jersey

customers. The average ratio of predicted outages over the number of customers in the cities that experience overestimation380

was 4.1. The cities that experienced overestimation had smaller populations, with an average of 6,260, e.g., Rockleigh had

only 106 customers. In contrast, cities without overestimation had an average population of 28,500. Modelers could impose an

upper bound on the predictions using the total number of customers as maximum possible outage. However, this adjustment

would violate the assumptions in the Poisson-Gamma mixture model (Eq. 5) and GAM link function (Eq. 6).

8.2 Random Forest’s Lack of Extrapolability for High Winds385

Random Forest predictions are an average value of the outages in the training data (Eq. 7). Thus, unlike GLMs, Random Forest

predictions are bounded by the minimum and maximum values of power outages in training data. Based on simple physics, one

would expect more damage and more outages from higher wind speeds. In order to understand the influence of wind speeds

on the power outages in the Random Forest regression, we plotted the partial dependence of the fraction of customers without

power against wind speed. The partial dependence, g(xj) (Hastie et al., 2001; Nateghi et al., 2014) of the input variable xj is390

given by

g(xj) =
1
N

N∑

i=1

ŷi(xj ,xic) (8)

where N is the total number of observations, xic are the variables other than xj , and ŷi is outage prediction (Eq. 7) for the

ith data point. To plot the partial dependence, we varied xj (wind for this case) and kept xic (input parameters other than wind

speed) constant. We estimated outages by averaging all observations in training data plotted against the xj (wind speed).395
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For this assessment, we trained the Random Forest model on a reduced dataset with only New York and New Jersey and on a

complete dataset, including Florida and Texas. We present the partial dependence of wind speed in Figure 6, also including the

distribution of wind speeds in the training data. Hurricanes of category 3 or higher bring wind speeds above 40 m/s that can

significantly damage electric poles (Bjarnadottir et al., 2013). However, they are significantly less observed in inland cities, es-

pecially in the Northern United States, as storms often weaken in their transition to higher latitudes and after leaving the ocean.400

For example, only tropical storms with wind speeds of less than 33 m/s have impacted New York City for the past 20 years

(https://coast.noaa.gov/hurricanes/#map, last access: 21 September 2022). For example, Superstorm Sandy (2012) transitioned

to a tropical storm before impacting New York City (https://coast.noaa.gov/hurricanes/#map, last access: 21 September 2022).

As per ASCE 7-10 wind hazard maps (https://hazards.atcouncil.org/, last access: 21 September 2022), a wind speed of 43m/s

has a return period of 100 years for New York City. Thus, it is very unlikely and evident from Figure 6 to get outage data in405

New York and New Jersey for winds above 43 m/s.

Figure 6. (a) Partial dependence of wind speed on power outages. (b) Distribution of wind speed in the complete and reduced dataset.

Random Forest model does not extrapolate for the wind speeds and outages not in the range of training data.

These limited outage datasets have strong implications for the validity and extrapolability of outage models based on Random

Forest regressions. Under the reduced dataset, i.e., with only New Jersey and New York, outage predictions increase as the wind

speed increases from 20 to 40m/s. However, the fraction of outages reache a maximum of 0.58 at wind speeds of 40m/s and
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does not increase with higher wind speeds. The Random Forest model cannot extrapolate for the higher winds, which limits410

the capability of Random Forest to make outage predictions for large hurricanes.

Under the complete dataset, results improve by including outages in Florida and Texas. These states experience higher winds,

e.g., their 100-year return-period winds are ∼ 70 m/s in contrast to the 43 m/s in New York (https://hazards.atcouncil.org/,

last access: 21 September 2022). The reduced dataset (with only New York and New Jersey) did not have any data points with

wind speeds above 40 m/s. In contrast, the complete dataset (including Florida and Texas) had 88 cities (4.6% of data points)415

with winds greater than 40 m/s and 29 cities (1.5% of data points) with winds above 70 m/s. With the complete dataset, the

Random Forest predictions reach a maximum value of 0.76 for winds of 75 m/s. While these results show improvement, they

also show that the data is still insufficient to make the Random Forest model follow the physics of infrastructure failure and

extrapolate predictions for high winds causing outages close to 100%.

8.3 Lack of physics-based variance shapes420

In catastrophic storms, we expect large outages with higher certainty, e.g., Hurricane Ida (2021) (Elamrouss (2021)) in Louisana

and Tropical Storm Fiona (2022) in Puerto Rico (Rivera et al. (2022)), close to 100%. Structural models for power poles

estimate failure probabilities close to 95% for winds of 70m/s (Ouyang and Dueñas-Osorio (2014); Bjarnadottir et al. (2013)).

Thus, the physics of infrastructure failure suggests that variance in outages should be smaller for catastrophic winds. To

evaluate if existing models follow these principles from the physics of power infrastructure failure, we quantified the variance425

in predictions for Jersey City by varying the wind speed and keeping the other input variables unchanged (Figure 7).

Figure 7. Prediction Ranges of Power Outage as a function of wind speed for (a) Negative Binomial GAM, (b) Random Forest. For GAM,

mean and standard deviations are based on Eq. 5. For Random Forest, we use Quantile Random Forest to determine percentiles and assume

Normal distribution to find comparable intervals of the mean plus and minus the standard deviation. Black lines indicate the mean outage

predictions. Blue dashed lines indicate the one standard deviation interval for outage predictions.
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As discussed previously, Negative Binomial GAMs capture the variability of outages better than Poisson models. Thus, we

focus on the former models and estimate the variance according to Eq. 5. Figure 7a shows the mean and one standard deviation

interval for outage predictions with varying wind speeds. We normalized the GAM’s predictions to show fractions and compare

them to the Random Forest model. GAM’s predictions go beyond 1, as discussed previously, but we truncated the y-axis at 1 for430

comparison purposes. The linear relationship in the link function ensures that the variance (mean) grows with wind speed. For

example, for a wind of 40 m/s, we have a standard deviation of 0.02, and for a wind of 70 m/s, we have a standard deviation

that is 15 times higher with a value of 0.3 for a fraction of outages. Thus, the variance shows higher values as the predicted

outage fraction approaches to 1. In fact, the variance is also unbounded in Negative Binomial GAM and goes to ∞.

Random Forest model can only predict the mean number of outages. Thus, it cannot evaluate variances. However, Quantile435

Regression Forest (QRF) (Meinshausen, 2006) can predict the outages at different confidence intervals, and we use it to

quantify variance. The QRF uses the recorded observation at the leaf node to predict confidence intervals. These intervals are

fully data driven as Random Forests do not assume any underlying probability distribution on predicted outages (Ahsanullah

et al., 2014). We presented Random Forest prediction intervals in Figure 7b. Random Forests had a standard deviation of 0.45

for high winds (> 70 m/s), departing from the expected value of zero for catastrophic winds. Additional data could improve440

these Random Forest variance estimates. However, as mentioned earlier, infrastructure failure data is sparse.

Moreover, structural models predict no damage to power infrastructure at wind speeds lower than 10m/s (IEEE, 2007;

Bjarnadottir et al., 2013). Thus, we expect outage predictions closer to 0 with a higher degree of certainty. Negative Binomial

(and Poisson) GAMs handle this case well as the variance is zero when the mean outage is zero (Eq. 1 and 5). In contrast, we

found that Random Forests had a standard deviation of 0.66 for zero wind speeds, showing that they also have limitations to445

represent physics-informed variance at low wind speeds.

9 Suggested future research for “comprehensive” outage risk assessments

Efforts are still needed to overcome the limitations of state-of-the-art power outage prediction models. In this paper, we suggest

the study of Beta GAMs to address them (Olkin and Liu, 2003). Beta distributions model random variables that take values

from 0 to 1. Thus, it can model the fraction of outages in a city. For illustration, we present the possible prediction ranges of450

outages with wind speed for a Beta distributed fraction of outages (Figure 8) (Yee, 2012; Olkin and Liu, 2003; Douma and

Weedon, 2019). Similar to Negative Binomial GAM, Beta GAM can account for the high variability of the input variables and

can handle the overdispersion in power outage data (Douma and Weedon, 2019).

Beta regression can outperform traditional methods due to three main factors. First, Beta GAMs can make bounded pre-

dictions on the percent of customers without electricity. This feature overcomes the shortcomings of unbounded Poisson and455

Negative Binomial GLMs and GAM that predict more outages than customers. Second, Beta GAMs extrapolate outages for

the extreme (low and high) values of winds. Beta predictions always go from its minimum value of 0 to its maximum value of

1, unlike Random Forest under existing outage datasets. Third, Beta GAMs make the variance at low and high winds closer to

the physics of infrastructure failure, i.e., variance is low for outage predictions at low and high winds, and it reaches its highest
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values in the transition range (20m/s to 80m/s) where the failure of poles is more uncertain (Olkin and Liu, 2003). Thus, this460

paper suggests that future research focuses on developing such Beta GAMs for outage prediction.

Figure 8. Beta Regression Concept Model: Outage Predictions are bounded, extrapolable for higher wind speeds, have smaller variance in

predictions at low and high winds. Black lines indicate the mean outage predictions. Blue dashed lines indicate the one standard deviation

interval for outage predictions.

10 Conclusions

This paper summarized existing power outage prediction models; (a) GLMs and (b) GAMs based on Poisson and Negative

Binomial distributions, and (b) Random Forest regressions. Power outages depend on several factors, including hurricane,

environmental, and demographics conditions. To examine the existing models, we used power outage data with a total of465

3.6 million outages for Hurricane Isaias (2020) in New York and New Jersey states, Hurricane Harvey (2017) in Texas, and

Hurricane Michael (2018) in Florida. We lumped the outages from these states to develop a generalized power outage model

across different regions, improving previous efforts that only calibrated outage models to a particular region or utility companies

in the U.S. We conducted a feature selection to avoid multi-collinearity among input variables and calibrated the state-of-art

outage models using seven input parameters: 3-s wind gust speed, 7 day precipitation after the storm, standard precipitation470

index for 6 months before the storm, soil moisture for a depth between 0 and 10 cm, population density, the percent area

covered by trees, and trees’ root zone depth.

First, we found that Poisson regressions are unsuitable for modeling outages as historical outages have larger variances

than the mean, resulting in overdispersion. The overdispersion was evident by the large residual deviances of 6,305,346 and

3,913,424 for the Poisson GLM and GAM, respectively, for 1520 degrees of freedom. We found that Negative Binomial475

regressions account for these larger variances better than Poisson regressions since we obtained residual deviances of 2,078 and

1,813 for GLM and GAM, respectively. We also showed that GAMs could better model the non-linear behavior of predictors
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compared to GLMs since R2
DEV and R2

ψ significantly increased to 0.81 and 0.99, respectively, compared to values of 0.33 and

0.85 in Negative Binomial GLMs. We demonstrated that the Random Forest could also capture this non-linear behavior as we

found a high value of 0.86 for the R2 in the cross-validation.480

However, each model has its own merits and demerits in predicting the outages. Poisson and Negative Binomial’s estimates

are unbounded and can overestimate the power outages. For example, the Negative Binomial regression predicted more outages

than the number of customers for 17.4% of cities in the test data. Random Forest predictions are hard to calibrate for extreme

winds as outage data is limited. As a result, we found that they could not be extrapolated for high winds since we only had

1.5% observations with wind speeds greater than 70 m/s. Negative Binomial GAM failed to account for small uncertainty in485

outage predictions at high winds as we observed that instead, standard deviation in predictions grew 15 times with increasing

wind speed from 40 m/s to 70 m/s. We found that Random Forest also fails to account for small uncertainty at low winds.

Finally, we suggested that Beta regressions can address the shortcomings of existing power outage prediction models. The

Beta regression outage prediction model can (1) make bounded outage predictions, (2) extrapolate for higher winds and (3)

model physics-informed variance in power outage predictions. Developing a Beta regression model will improve outage pre-490

dictions to better guide utilities in placing their resources before and during the hurricane for a rapid recovery of the failed

power system. This improved regression model could also inform utilities about existing vulnerabilities of the power grid for

hardening.

Code and data availability. Applicable codes are available from author upon reasonable request. Authors can direct to third party for outage

data. Sources for publicly available datasets are included in this article.495

Appendix A

A1 R2 Parameter

R2 parameter, a goodness-of-fit measure, is used to compare and select among different models. The goodness-of-fit can

quantify how good predictions are by the fitted model on unseen or test data.

R2 = 1− RSS

TSS
(A1)500

The R2 parameter mentioned in Eq. A1 represents the amount of variability explained by the fitted compared model to the

null model. The null model predicts the average of observed outages (ȳ) for all the cities irrespective of the input parameters.

In the Eq. A1, TSS is the residual sum of squares, defined by the sum of squares of the difference between the true value of the

response variable and average of true values of response variable.
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TSS =
N∑

i

(yi− ȳ)2 (A2)505

RSS is the total sum of squares, defined by the sum of squares of the difference between the true value of the response

variable and the predicted value of the response variable from the fitted model.

RSS =
N∑

i

(yi− ŷ)2 (A3)

A2 R2
DEV Parameter

We quantify overdispersion by calculating if the residual deviance is larger than the degrees of freedom. Degrees of freedom is510

defined as the number of data points in the training data minus the number of input parameters. We estimate

Deviance =−2(LL(sat)−LL(fit)) (A4)

where LL(sat) is the maximum achievable log-likelihood for the saturated model, and LL(fit) is the log-likelihood for the

fitted model. Simplified versions of Eq. A4 to calculate deviance for different distributions are given below.

– Poisson: Residual deviance (Cameron and Windmeijer, 1996) for the ith observation for Poisson GLM and GAM is,515

di(yi, ŷi) = sign(yi− ŷi) ·
[
2
{

yilog

(
yi
ŷi

)
− (yi− ŷi)

}]1/2

(A5)

where yi are ŷi are the observed and predicted outages for ith city. Deviance for the model is the sum of the square of

the residual deviance for each observation.

D(y,yi) =
N∑

i=1

(di(yi, ŷi))2; (A6)

– Negative binomial: Residual deviance for the ith observation for a Negative Binomial GLM is520

di(yi, ŷi) = sign(yi− ŷi) ·
[
2
{

yilog

(
yi
ŷi

)
− (yi + 1/k)ln

[
yi + 1/k

ŷi + 1/k

]}]1/2

(A7)

and deviance for the fitted model is estimated by Eq. A6.
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For GLMs and GAMs, a pseudo-R2, denoted as R2
DEV (Cameron and Windmeijer, 1996), is also defined to compare the

statistical performance based on model deviance. Similar to the definition R2, R2
DEV measures the reduction in deviance of

the fitted model when compared with the null model. The value of R2
DEV is given by,525

R2
DEV = 1− D(y,yi)

D(y, ȳ)
(A8)

D(y,yi) is the deviance for the fitted model already defined in Eq. A4. For a null model, predictions will always be ȳ (average

of observed outages in training data). D(y, ȳ) is the deviance for a null model, which can be obtained by replacing LL(fit) in

Eq. A4 with LL(null).

The value of R2
DEV will increase after adding more predictors as more predictors will always explain more variability in530

outage counts, decreasing the residual deviance. Also, the value of R2
DEV is bounded from 0 to 1, and a value closer to 1 will

indicate a good fit of the model (Cameron and Windmeijer, 1996).

A3 R2
k Parameter

R2
k is defined to measure the reduction in overdispersion for the fitted model Negative Binomial regression models when

compared to the null model (Liu et al., 2005; Han et al., 2009b) .535

R2
k = 1− k

k0
(A9)

k is the overdispersion factor (Eq. 5) for the fitted model, and k0 is the overdispersion factor (Eq. 5) for the null model.

Models with low overdispersion will have a low value of k. The, R2
k will be closer to one for a model with less overdispersion.
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