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Abstract. Strong hurricane winds damage power grids and cause cascading power failures. Statistical and machine learning

models have been proposed to predict the extent of power disruptions due to hurricanes. Existing outage models use inputs

including power system information, environmental, and demographic parameters. This paper reviews the existing power

outage models, highlighting their strengths and limitations. Existing models were developed and validated with data from a

few utility companies and regions, limiting the extent of their applicability across geographies and hurricane events. Instead, we5

train and validate these existing outage models using power outages from multiple regions and hurricanes, including Hurricanes

Harvey (2017), Michael (2018), and Isaias (2020), in 1,910 U.S. cities. The dataset includes outages from 39 utility companies

in Texas, 5 in Florida, 5 in New Jersey, and 11 in New York. We discuss the limited ability of state-of-the-art machine learning

models to (1) make bounded outage predictions, (2) extrapolate predictions to high winds, and (3) account for physics-informed

outage uncertainties at low and high winds. For example, we observe that existing models can predict outages higher than the10

number of customers (in 19.8% of cities with an average overprediction ratio of 5.2) and cannot capture well the outage variance

for high winds, especially above 70m/s. [..1 ]Our findings suggest that further developments are needed for power outage

models for proper representation of hurricane-induced outages.

1 Introduction

Hurricanes can cause significant damage to the power distribution systems resulting in large power failures and losses of15

billions of U.S. dollars (Smith, 2020). Strong winds from hurricanes can destroy the exposed overhead distribution lines in

a power grid and cause cascading power failures. For example, Hurricane Isaias (2020) damaged old power infrastructure

and caused more than two million power outages across the U.S. More than a million outages occurred in New Jersey (https:

//www.nytimes.com/2020/08/04/nyregion/isaias-ny.html, last access: 21 September 2022) even though Hurricane Isaias had

transitioned to a tropical storm when it hit New Jersey, reducing its sustained winds to 25 m/s (Latto et al., 2021). To address20

this issue, the U.S. Department of Energy (DOE) has prioritized investing in enhancing power infrastructure resilience (National

Academies of Sciences, Engineering, and Medicine, 2017). The Senate of the U.S. passed the Grid Research Security Research

1removed: Finally, we suggest that a Beta regression outage model could address these current shortcomings.

1

https://www.nytimes.com/2020/08/04/nyregion/isaias-ny.html
https://www.nytimes.com/2020/08/04/nyregion/isaias-ny.html
https://www.nytimes.com/2020/08/04/nyregion/isaias-ny.html


and Development Act (2020) with a budget of 573 million U.S. dollars to be spent from 2020-2025 to improve grid security to

withstand shocks and rapidly recover from disruptions (Congress.gov, 2020).

Hurricane induced power interruptions can cause billions of dollars in losses and long-lasting impacts on vulnerable com-25

munities. The power outages caused by storms can last for several hours to weeks and even months (https://www.reuters.

com/business/environment/over-397000-still-without-power-florida-after-hurricane-ian-2022-10-04/, last access: 16 Febru-

ary, 2023). Large-scale power blackouts show the vulnerability of the power grid to hurricanes, e.g., (1) 8.1 million homes lost

power during Superstorm Sandy (2012) (Sheppard and DiSavino, 2012), (2) 1.7 million consumers in the Southeast United

States lost power in the aftermath of Hurricane Michael (2018) (EIA.GOV, 2018) and (3) Hurricane Ida (2021) was responsi-30

ble for 1.2 million electrical outages (AJOT, 2021). Critical infrastructure systems such as hospitals and fire departments are

especially vulnerable since they need to have the power restored within a few hours after a power outage to respond to the

disaster (Ceferino et al., 2018, 2020).

Utilities must first assess the vulnerabilities in their power system infrastructure to enhance their resilience to hurricanes.

Researchers have developed machine learning models to help utilities evaluate their vulnerabilities to predict the extent of35

power outages from hurricanes. These outage models use inputs including hurricane winds, power systems, environmental,

and demographic information. Outage prediction models can assist utilities in planning and placing their resources before and

during an extreme event for an emergency response to rapidly recover the failed power distribution systems (Arab et al., 2016).

These models can also inform about the existing vulnerabilities so utilities can also plan for grid hardening before a hurricane

damages the power grid (Ouyang and Dueñas-Osorio, 2014).40

Liu et al. (2005) developed a Negative Binomial Generalized Linear Model (GLM) to predict the power outages in North

and South Carolina. This model used hurricane parameters such as maximum wind speeds and duration of wind speeds over

20m/s; environmental parameters including land cover, tree type, soil drainage properties, precipitation; and utility informa-

tion on the number of transformers and customers. The model included only a specific utility, which limited the use of the

outage model to other regions. The model also included a storm indicator, making the model not applicable to hurricanes with45

different characteristics than the ones in the training data. Liu et al. (2007) also presented an Accelerated Failure Time model to

estimate the power outage duration. Next, Liu et al. (2008) investigated the spatial correlation of power outages through spatial

Generalized Linear Mixed Models (GLMM) but did not observe any significant improvements in power outage prediction.

Han et al. (2009b) also developed a Negative Binomial GLM to predict outages in the Gulf Coast based on extensive

information on hurricane parameters, additional environmental indicators (e.g., precipitation, soil moisture, tree type, land50

cover), and system information (e.g., number of poles, number of transformers). This model did not include any specific utility

and storm indicators and instead used only generalizable features (e.g., wind speed, precipitation) to make the model applicable

to any hurricanes. Han et al. (2009a) also developed Generalized Additive Models (GAMs) with the same input features as

GLMs. GAMs showed an improved accuracy over GLMs in power outage predictions because GAMs can effectively model

the highly non-linear behavior of outages and the input parameters, e.g., precipitation and soil moisture can have non-linear55

effects on power outages (Han et al., 2009a).
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Guikema et al. (2010) and Quiring et al. (2011) used decision tree models, Classification and Regression Trees (CART) and

Bayesian Additive Decision Trees (BART), with additional topological and soil parameters, to better capture the variability of

power outages. Decision trees provide a flexible way to represent the non-linear relation between input parameters and outages.

More recently, researchers developed decision trees-based machine learning methods which are robust to outliers and noise,60

called Random Forest (Breiman, 2001), to predict power outages caused by storms. Random Forest regression is an extension

of decision tree methods for regression. A series of parallel decision trees are fit in the Random Forest regression method to

capture non-linearity and achieve high predictive accuracy. Nateghi et al. (2014) calibrated a Random Forest model to outage

data from the Gulf Coast. Nateghi et al. (2014) used six input parameters to capture the damaging effects of trees on power

lines. These six input parameters included 3-s gust wind speed, duration of strong winds, soil moisture at different depths,65

the number of customers served, and tree-trimming practices used to predict outages. Later, Guikema et al. (2014) used only

publicly available data to develop a hurricane outage prediction model, independent of utility-specific input parameters, with

Random Forest regression using 3-s gust wind speed, strong winds, and the number of customers served.

Maderia (2015) improved accuracy in power outage predictions with Random Forest models by including information on

tree species. Tonn et al. (2016) used Quantile Regression Forests (Li and Peng, 2011) to predict power outages at different70

confidence intervals. Guikema et al. (2014) and McRoberts et al. (2018) developed a two-stage zero-inflated power outage

prediction model to better account for zero outages. The first stage of such a model is classification to predict outages or no

outages. The second stage is the Random Forest regression to predict the count of outages on the point classified as having

an outage. Wanik et al. (2017) used a Random Forest model with Lidar-derived tree height data to predict power outages.

Shashaani et al. (2018) developed a three-stage power outage prediction model to improve the accuracy of power outage pre-75

dictions further. The first stage of the model is a binary classification to predict the location of outages; the second intermediate

stage is the clustering of outage locations into a low, moderate, and large number of outages to address high right-skewness of

non-zero outage data points; and the third stage is the prediction of the number of outages.

Previously, researchers have used more complex power outage prediction models, namely neural networks, kernel methods

such as support vector machines, and other tree-ensemble methods, such as AdaBoost, which can model non-linear rela-80

tionships between input parameters and outages (Xie et al., 2020). Kankanala et al. (2014) employed AdaBoost to predict

weather-related power outages. Kankanala et al. (2014) trained a separate model for each city for daily use, and they did not

cover extreme weather outages. Eskandarpour et al. (2018); Eskandarpour and Khodaei (2018) used power grid component-

level data with support vector machines. Rudin et al. (2012) ranked the power grid components (feeder failures, cables, joints,

terminators, and transformers) based on their vulnerability to extreme weather events. Haseltine and Eman (2017) used a neural85

network to predict the failure of the power grid components for pre-storm. Such models will require specialized high-resolution

power grid component-level data for each city which is not accessible given the data protocols of utility companies. Sun et al.

(2018) used Twitter (https://twitter.com; last accessed: 13 January 2023) data to predict real-time outages. Jaech et al. (2018)

used repair logs data employing Natural Processing with a Recurrent Neural Network to predict real-time outage durations.

However, tweets (https://twitter.com; last accessed: 13 January 2023) and repair logs are available after the hurricane made90

an impact on the city. Thus, leveraging repair logs is not possible to predict outages for pre-event planning ahead of a storm.
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Hence, data availability limits the applicability of these methods at a large scale for power outage predictions from extreme

events.

GLM (Liu et al., 2005), GAM (Han et al., 2009a), and Random Forest based power outage prediction models (Guikema et al.,

2014; McRoberts et al., 2018; Shashaani et al., 2018) provide outage predictions at a coarser level compared to predictions95

at component. However, these models are mostly based on open-source, publicly available data and can be generalized at a

larger scale to the coastal cities in the United States. Hurricane-caused outages are mostly at the transmission level, which is

responsible for city-wide outages (Brown, 2002) (poweroutage.us/faq, last accessed: 13 January 2023) rather than the customer

meter level. So, predicting city-wide outages can still guide utilities to arrange for crews and emergency backup power ahead

of a storm. Hence, for this paper, we focus on GLM, GAM, and Random Forest based power outage prediction models. As the100

power outage data is generally not made publicly available by the utilities, the previous models are primarily calibrated to data

from a few regions. For example, Liu et al. (2005, 2007, 2008) developed the outage prediction model for North and South

Carolina. Guikema et al. (2014), Nateghi et al. (2014), and Shashaani et al. (2018) developed the outage prediction models for

the Gulf Coast. This paper addresses this gap by calibrating and validating existing models to extensive outage data from New

Jersey, New York, Florida, and Texas at the city level. Thus, we investigate the generalized behavior of power outage models105

across the United States and focus on publicly available input variables to make our calibrated models widely applicable.

In this paper, Section 2 describes the input features, data sources, and data preprocessing used in the model development for

power outage prediction. Section 3 explains the selection of important and uncorrelated input features for model development.

GLM, GAM, and Random Forest power outage models are described in sections 4, 5, and 6, respectively. Section 7 describes

the results for calibrated models and compares performance with the previous models in the literature. Section 8 highlights the110

limitations of existing state-of-the-art power outage prediction models to (1) make bounded outage predictions, (2) extrapolate

for high winds, and (3) account for physics-informed uncertainties at low and high winds. Section 9 describes the framework

for future research to address the shortcomings of existing power outage models, and Section 10 summarizes the findings of

this paper.

2 Data Description115

We acquired power outage data from PowerOutage (poweroutage.us, last access: 21 September 2022), an organization that

tracks and records outages from utilities at the city level across the U.S. The automatic outage reporting points of utilities

could be hindered during hurricanes which could result in errors in outage counts (poweroutage.us/faq, last access: 13 January

2023). However, PowerOutage (poweroutage.us, last access: 21 September 2022) regularly gets updates from utilities to keep

the outage count close to actual outages. The data covered the power outages for Hurricane Isaias (2020) for 11 utilities in New120

York and 5 in New Jersey, for Hurricane Michael (2018) for 5 utilities in Florida, and Hurricane Harvey (2017) for 39 utilities

in Texas. Our dataset has about 3.6 million outages in total. Figure 1 shows outages caused by Hurricane Isaias in New Jersey

in 2020. Supplementary Figures S1, S2, and S3 present power outages across New York due to Isaias, Florida due to Michael,

and Texas due to Harvey, respectively.
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Previously, Liu et al. (2005) developed an outage model at zip code levels and smaller 1km× 1km grid cells. However, the125

final selected model was zip code level, as the aggregation of input parameters at the 1km× 1km grid level led to more errors

in outage predictions. Since then, outage models have been developed at coarser grids. For example, Han et al. (2009b, a);

Guikema et al. (2010); Quiring et al. (2011); Nateghi et al. (2014) developed the models for 2.5km× 3.7km grid cells. Tonn

et al. (2016) developed outage models at the zip code level, McRoberts et al. (2018) predicted outages at the resolution of

census tracts, and Shashaani et al. (2018) predicted outages at 5km× 5km grid cells.130

We calibrated outage models at the city level resolution, comparable to the most recent models by McRoberts et al. (2018)

and Shashaani et al. (2018). A model with finer resolution could be developed, provided higher-resolution power outage data

and input parameters. Here, we used data with reported outages for 1910 cities in New York, New Jersey, Texas, and Florida.

Following the previous literature, we use the covariates listed in Table 1. We obtained model inputs at the city level across all

covariates. Further description of the availability, resolution, and methods to obtain each variable at the city level is provided135

in the subsequent subsections. We also discuss the uncertainties in data that could inherently influence the accuracy of power

outage predictions. The total number of data points available is 1910 (cities). The dataset has been divided into train and test

datasets with a ratio of 80:20.

2.1 Response Variable

We focused on two response variables, the number of outages which is equivalent to the number of customers without power in140

a city, and the fraction of customers without power. GLM and GAM use Poisson and Negative Binomial distributions to assess

the count of outages as they model discrete and non-negative variables. Random Forests can model the fraction of households

without power in a city, which is important to compare impact levels across cities.
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Figure 1. Power Outages in aftermaths of Hurricane Isaias (2021) in New Jersey at the city level

2.2 Hurricane Parameters

The hurricane parameters considered for this study are 3-s gust wind speed and duration of strong winds over 20m/s, as in145

previous research (Liu et al., 2005; Han et al., 2009b, a; Guikema et al., 2010, 2014; Shashaani et al., 2018). The overhead

distribution system is the most vulnerable component of a power grid to high hurricane winds (National Academies of Sciences,

Engineering, and Medicine, 2017). The distribution lines and poles are often close to trees and do not have considerable

setbacks. The uprooting of trees due to strong winds often propagates damage to distribution lines. The poles are designed

to sustain wind speeds of around 20m/s (IEEE, 2007). Thus, winds above 20m/s can cause substantial damage to the electric150

poles. The 3-s gust wind speed and duration of strong winds for the three hurricanes in the dataset were calculated based on a

complete wind profile model for tropical cyclones by Chavas et al. (2015). We determined the wind speed for each city at its

centroid. Figure 2 illustrates the variation of 3-s wind gusts in New Jersey during Hurricane Isaias. However, wind speed is an

important factor causing outages, and any approximation in wind speed estimates could lead to errors in outage predictions. We

provide detailed information in Supplementary Text S1 to demonstrate that wind speeds at the city centroid can be a reasonable155

estimate in determining the city-wide outages.
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Figure 2. Distribution of 3-s wind gust at the city level (Mean: 36.95 m/s, Standard Deviation: 0.41 m/s) across New Jersey before the arrival

of Hurricane Isaias

2.3 Land Cover Data

Power grid patterns vary for different land use classes, resulting in different outage mechanisms. For example, rural areas

can suffer larger power outages since they have radial grid patterns where component failures can propagate more than in

cities with gridded patterns (Petersen, 1982). We obtained National Land Cover Data (NLCD) available from the Multi-160

Resolution Land Characteristics Consortium, which is maintained by the United States Geographical Survey (USGS) (https:

//www.mrlc.gov/viewer/, last access: 21 September 2022). National Land Cover Data has inaccuracies in the thematic pixel

classification (Wickham et al., 2021) that could introduce uncertainties in the land cover type. However, evaluating the effect of

the inaccuracies in the thematic pixel classification on power outages is not within the scope of this paper. NLCD data is avail-

able in raster format with a resolution of 30m x 30m. USGS has classified the original land cover data into 20 different classes.165

We have reclassified the NLCD data into nine to match previous power outage models. The nine different major classes of land

cover data are developed area, water area, barren land, forest area, scrub area, grasslands, pasture land, cultivated cropland, and

wetlands. We utilized the spatial analyst in ArcGIS (a tool for Geographic Information Systems) (ESRI 2019) to clip the 30m

x 30m land cover raster for each city. We used zonal analysis within ArcGIS to determine the percentage of area covered by

the nine major land cover classes.170

2.4 Precipitation and Soil Moisture Data

Precipitation and soil moisture have been extensively used in power outage models, e.g., Han et al. (2009b); Nateghi et al.

(2014); McRoberts et al. (2018). These parameters have non-linear effects on power outages, as deviations below and above
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standard values can result in more outages. The poles and overhead distribution lines in the vicinity of trees are susceptible

to falling trees due to strong hurricane winds. The wet soil conditions from high precipitation and soil moisture increase the175

likelihood of trees and electric poles uprooting from strong hurricane winds (Han et al., 2009b; Nateghi et al., 2014). Also,

persistent drought conditions, e.g., low precipitation in the months before a hurricane, can weaken the roots of trees because of

gaps in the soil layer, making trees more susceptible to strong winds (McRoberts et al., 2018).

Precipitation and soil moisture data are available from the variable infiltration capacity (VIC) model from National Land Data

Assimilation System Phase 2 (NLDAS2) (Xia et al., 2012; Xia, 2012). However, the limited temporal resolution of parameters180

required for computing soil moisture and precipitation could introduce errors in the final estimates of these variables (Wei et al.,

2013). The limitations of the variable infiltration capacity (VIC) model from the National Land Data Assimilation System Phase

2 (NLDAS2) (Xia et al., 2012; Xia, 2012) to get soil moisture and precipitation are beyond the scope of this study. Precipitation

and soil moisture have been recorded each hour since 1979 with a resolution of 0.125◦ × 0.125◦. We used nearest-neighbor

interpolation to obtain soil moisture and precipitation at the city centroid by taking the value available at the nearest point.185

Soil moisture from NLDAS2 is available for three depths, 0-10 cm, 10-40 cm, and 40-100 cm. We calculated daily soil

moisture for these depths by taking the average hourly readings. Soil moisture can vary at different geographical locations

due to different soil types in different regions. We first normalized soil moisture to compute deviations from average values

by computing percentiles. We fit Pearson Type III distributions to the daily time series of soil moisture for all three layers

to normalize the soil moisture across different geographies. We use maximum likelihood estimates (MLE) to compute the190

parameters for Pearson Type III distribution (Hosking and Wallis, 1997). Then, we evaluate the soil moisture percentile. We

denote the soil moisture percentiles for three layers of soil at 0-10 cm, 10-40 cm, and 40-100 cm depth as CDF1, CDF2, and

CDF3, respectively.

Precipitation data is represented in the form of the Standard Precipitation Index (SPI) (Wu et al., 2007; Guttman, 1998;

Casey, 2016). SPI for the months before the storm’s impact can also be used as a proxy for the dryness and wetness of the195

soil. For the current study, we calculated SPI for durations of 1 month, 3 months, 6 months, and 12 months by adding hourly

time-series data for precipitation. The following are three steps to compute SPI. First, we fit the Pearson Type III distributions

to the time series of precipitation using MLE. Second, we compute the percentile from the Pearson Type III distribution. Third,

we take the inverse of the calculated percentile using a standard normal distribution to get the SPI for each duration. Figure 3

illustrates the variation of SPI 1 month in New Jersey before the arrival of Hurricane Isaias.200

We also included the expected precipitation after the hurricane makes landfall for the next 7 days as heavy rain can lead

to flooding resulting in clustered outages (McRoberts et al., 2018). The soil moisture percentiles and SPI values are obtained

since the day before the hurricane impacts the power systems. This starting time allows for outage predictions to give an early

warning to the utilities and community members and take precautionary steps before strong hurricane winds hit the area.
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Figure 3. Distribution of SPI 1 month (Mean: 0.88, Standard Deviation: 0.93) across cities in New Jersey before the arrival of Hurricane

Isaias

2.5 Root Zone Depth205

The effective root zone depth is defined as the depth of the soil from which plants and trees can effectively extract water and

nutrients for growth (http://www.wood-database.com, last access: 21 September 2022). The more effective the root zone depth

for trees, the less likely they will fail from strong hurricane winds (McRoberts et al., 2018). We add root zone depth as an

input parameter for outage predictions because it could indicate the hazard from falling trees to the power lines. Root zone data

is available from the United States Department of Agriculture (USDA) under Gridded Soil Survey Geographic (Soil Survey210

Staff) at 30m×30m resolution as raster data. The root zone depth at the city level is calculated as the average of the root zone

in a city using the spatial analytic tool in ArcGIS. Given the resolution of available outage data at the city scale, we were not

able to consider the variations in root zone depth, which limits the ability of the power outage model to consider the variation

of tree root strength within a city.

2.6 Percentage Treed Area215

USDA created National Insect and Disaster Risk Maps (Krist Jr. et al., 2014) in 2012, with the area covered by trees at

240m× 240m as raster data. The raster tree data is used to calculate the percent of the area covered by trees at the city level

using the spatial analytic tool in ArcGIS (ESRI 2019). Figure 4 illustrates the distribution of percent treed area in New Jersey.
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Figure 4. Distribution of percent tree area (Mean: 73.45%, Standard Deviation: 23.04%) across cities in New Jersey

2.7 Elevation

Previously, researchers have found that hurricane wind speeds (and thus damages) vary with surface topography (Chapman,220

2000; Miller et al., 2013; Guikema et al., 2010; Quiring et al., 2011; McRoberts et al., 2018). Additionally, varying eleva-

tions could also introduce variations in precipitations (Napoli et al., 2019) and wind speeds (Chapman, 2000; Miller et al.,

2013) within a city. Thus, we use the median and mean elevation at the city centroid, using nearest neighbor interpolation,

as topographic variables to capture the changes in elevations across the cities. We obtained these parameters from the Digital

Elevation Model at a 30m resolution scale developed by USGS as part of DEM: Global Multi-Resolution Terrain Elevation225

Data (GMTED2010) (Danielson and Gesh, 2011). Note that the resolution of available outage data at the city-level limits our

ability to account for the varying elevations within a city. Future studies with high-resolution outage data might account for the

variations in elevation within a city.

2.8 Density Data

Demographics data is available from American Community Survey (ACS) (https://www.census.gov/programs-surveys/acs, last230

access: 21 September 2022). ACS collects different demographic data for each US census tract. ACS started data collection in

2010, and we have considered data from 2019. We obtained the population density as it indicates the number of distribution

poles and system components exposed to winds [..2 ](Brown, 2002).

2removed: (Liu et al., 2007)
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Feature Abbreviation Data Source Previous Applications

Outages Outages poweroutage.us -

3-s Gust Wind Speed Vmax* Hurricane Parameters [1] [9-18]

Duration of Strong Winds Duration

Percent Developed Area Developed National Land Cover Data [2] [9-18]

Percent Water Area Water

Percent Barren Area Barren

Percent Forest Area Forest

Percent Scrub Area Scrub

Percent Grassland Area Grassland

Percent Pasture Area Pasture

Percent Crops Cultivated Area Crops

Percent Wetlands Area Wetlands

Standard Precipitation Index 1 month SPI1 NLDAS2 [3,4] [11-16]

Standard Precipitation Index 3 months SPI3

Standard Precipitation Index 6 months SPI6*

Standard Precipitation Index 12 months SPI12

Soil Moisture 1st Layer CDF1* NLDAS2 [3.4] [11-16]

Soil Moisture 2nd Layer CDF2

Soil Moisture 3rd Layer CDF3

7 day precipitation Precip NLDAS2 [3.4] [9,10]

Root Zone Depth Rzone* Gridded Soil Survey [5] [15]

Percent Treed Area Trees* NIDRM [6] [15]

Mean Elevation Mean_Ele GTDEM 2010 [7] [15,16]

Median Elevation Median_Ele

Population Density Pop_Den* American Community Survey [8] [14,15,16]
Table 1. Parameters to build the power outage prediction models:all variables are rescaled at the city level. Parameters are grouped into

categories separated by horizontal lines. We selected one variable from each category from each group to minimize correlation across

parameters.

*-variables finally selected for model development after performing feature selection

Sources: [1] Chavas et al. (2015); [2] https://www.mrlc.gov/viewer/, last access: 21 September 2022; [3] Xia et al. (2012); Xia (2012); [5]

Soil Survey Staff; [6] Krist Jr. et al. (2014); [7] Danielson and Gesh (2011); [8] https://www.census.gov/programs-surveys/acs, last access:

21 September 2022; [9] Liu et al. (2005); [10] Liu et al. (2008); [11] Han et al. (2009b); [12] Han et al. (2009a); [13]Nateghi et al. (2014);

[14] Guikema et al. (2010); [15] McRoberts et al. (2018); [16] Shashaani et al. (2018); [17] Wanik et al. (2017); [18] Wanik et al. (2015)
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3 Model Development: Feature Selection

Machine learning models with high dimensional input data can be hard to train, especially when datasets are sparse, as in the235

case of infrastructure failures. Input features can be correlated, leading to higher generalization errors. This means the machine

learning model can fit well the training data, i.e., with small errors. However, we might observe significant errors after testing

the model with additional data. Also, correlated features can lead to a flawed understanding of the relation between input and

predicted outages (Verleysen and François, 2005).

Feature selection, also called variable selection, is an essential step in machine learning model development to select relevant240

variables and discard redundant and highly correlated ones (Cai et al., 2018). We performed the feature selection for outage

prediction in two steps. First, we performed a forward selection with a linear regression (Kohavi and John, 1997) for an initial

rank on feature importance (Figure 5). A linear model might not be the best model to forecast power outages. However, it can

provide initial insights into the dependence of an input feature on outages. We started with a set of empty features and added

features one by one. At each step, we selected the variable that led to the largest increase in the R2. Our results show that, as245

expected, wind speed and duration of strong winds affect the power outages most. We found precipitation and soil moisture are

important for outage prediction, even for linear regression, suggesting that their relevance could be even higher for non-linear

regressions. We also found that population density is critical for outage prediction, which could be explained by a positive

correlation between density and the density of transformers, as described in Liu et al. (2007).

Figure 5. Forward Selection: Selection of important input parameters based on importance to explain the variability in outage predictions.

Feature descriptions are shown in Table 1.

In the second stage, we analyzed the correlations between the input parameters. Supplementary Figure S4 shows the cor-250

relation coefficients for each pair of variables. We found that input features within the same category in Table 1 are highly

correlated. For example, the maximum wind speed and duration of strong winds, which are at the top of the ranking in forward

selection (Figure 5), has a correlation coefficient of 0.89 (Supplementary Figure S4). Hence, we kept only maximum wind
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speed as an input feature since it is better ranked than the duration of strong winds in the forward selection. We conducted a

similar analysis for the different categories listed in Table 1 to select the input variable with the strongest predictive power. Due255

to their lower importance in our results, we did not include parameters from the elevation and land cover categories, as they

contribute less than 1% to R2. Finally, we selected the following seven variables that will be used throughout the paper.

– 3-s Gust Wind Speed

– 7-day precipitation

– SPI 6 month260

– Soil Moisture 1st Layer

– Population Density

– Percent Treed Area

– Root Zone Depth

4 Generalized linear models265

Generalized Linear Models (GLMs) are a generalization of ordinary linear regression. GLMs allow us to use a flexible link

function to relate a linear model (of the input variables) to the response variable (Dunn and Smyth, 2018). Unlike ordinary

linear regressions, GLMs do not assumes homoscedasticity, i.e., when the variance of the response variable is constant across

the values of the input variables. The assumption of homoscedasticity fails for the number of customers without power since

this output variable has positive counts, and when damage to power infrastructure is negligible (e.g., little storm), the variable’s270

variance (and mean) should change and approach zero (Dunn and Smyth, 2018).

In addition, GLMs can utilize multiple statistical models to represent the data instead of the only normal distribution as in

ordinary linear regressions. Outages have a lower bound of zero counts that normal distributions cannot capture. Thus, previous

researchers have used the following distributions to represent outages with GLMs.

4.1 Poisson GLMs275

Poisson regression models, a category of GLMs, are applicable for positive count data where observations are independent.

Outages are modeled as a Poisson random variable:

P (y;µ) =
e−µµy

y!
(1)

where y is the number of outages in a city. The Poisson distribution is described by the parameter µ, the mean number of

outages in a city. A log link connects the parameter µ to the input variables, which assures that µ is greater than zero.280

ln(µ) = βX (2)
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where β is learned from the historical outages from extreme events, often through maximum likelihood estimation (MLE).

MLE finds the value of β that maximizes the probability of observing the data. Readers can refer to Dunn and Smyth (2018) for

more information on MLE estimates for GLMs. We use glm package in R studio (https://www.rdocumentation.org/packages/

stats/versions/3.6.2/topics/glm, last access: 21 September 2022) to fit the Poisson GLM to our power outage data.285

The variance in a Poisson distribution is equal to the mean, i.e., V ar(y) = µ. Thus, the variance grows as µ increases.

However, previous research has found that outage variance from historical data is significantly bigger than the mean (Liu et al.,

2005; Han et al., 2009b, a), a phenomenon that is known as overdispersion in Poisson regressions (Dunn and Smyth, 2018).

Overdispersion may arise from the interdependence of output variables, especially when they happen in clusters (Dunn and

Smyth, 2018). Poisson distributions represent counts of events, e.g., customers without power, that are independent (Liu et al.,290

2007). In contrast, multiple outages in the city can happen due to the failure of the same power grid components (Liu et al.,

2005; Han et al., 2009b). Thus, outage counts are not independent.

4.2 Negative Binomial GLMs

Negative Binomial GLM is a hierarchical model which can account for overdispersion effects in power outage count predictions

(Dunn and Smyth, 2018). Negative Binomial GLMs are based on a Poisson-Gamma mixture distribution, i.e., the outage count295

y is distributed as a Poisson random variable

P (y;µ,τ) =
e−µτ (µτ)y

y!
(3)

where µ is a factor that when multiplied by τ equals the mean of the Poisson distribution. τ is an additional random variable

to account for extra variance, with a mean equal to 1 and distributed as Gamma

P (τ ;k) =
(1/k)1/k

Γ(1/k)
τ1/k−1e−τ/k (4)300

where k is the overdispersion parameter and Γ() is the gamma function, thus, the variance of τ equals k. After marginalizing

the random variable τ ,

P (y;µ,k) =
Γ(y+1/k)

Γ(y+1)Γ(1/k)

(
µ

µ+1/k

)y(
1− µ

µ+1/k

)1/k

(5)

which is equivalent to a Negative Binomial distribution with a variance of µ+ kµ2. This variance is higher than the one in

the Poisson GLM with one term that is proportional to µ2. Thus, Negative Binomial GLMs account for significantly higher305

variances. µ is parameterized as in Eq. 2. Then, β and k are estimated through through MLE, using the glm package in R studio

((https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/glm, last access: 21 September 2022)).
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4.3 Zero-inflated GLMs

Researchers have also developed zero-inflation outage prediction models to improve statistical performance for unbalanced

data, e.g., when there are a lot of data points with no outages (McRoberts et al., 2018; Shashaani et al., 2018). The zero-310

inflation model has two levels of predictions (McRoberts et al., 2018; Shashaani et al., 2018). The first level can be a logistic

regression or a decision tree model to check if there is at least one power outage (Hall, 2000). The first level model predicts

"0" in case of no outages and "1" in case of at least one outage. The second level is the regression model predicting the number

of outages for cases where the prediction was "1" at the first level. In this paper, we do not fit zero-inflated models as our data

is balanced, i.e., we observe at least one outage in each city.315

5 Generalized additive models

GLM models assume a linear relationship between the logarithm of the mean number of outages and input parameters (Eq. 2).

However, previous research has shown that they have non-linear relationships (Han et al., 2009a), which can be modeled with

non-parametric extensions of GLMs (Yee, 2012). Generalized Additive Models (GAMs) capture non-linear relationships using

smoothing functions320

ln(µ) = β0 +
∑
j=1

βjfj(xj) (6)

where µ is the mean outages for a city, xj ∈X is the individual input parameter, β0 is the intercept, and fj(xj) are the

smoothing functions for each input parameter. Some examples of smoothing functions are regression splines, B-splines, and

P-splines. Splines of any order could be used to fit GAMs, but accuracy increases negligibly after the quartic degree (Yee,

2012). Thus, we used quartic order polynomials for all input variables except for maximum wind speeds. For this variable, we325

reduced the order of the polynomial to 1 to always obtain a monotonically increasing relationship between winds and outages,

as we would expect from the structural behavior of infrastructure against extreme loads. We used MLE to estimate GAMs’

parameters through iteratively reweighted least squares (IRLS) (Wood, 2017) using the MGCV library in R studio.

Poisson GAM assumes the Poisson distribution on the number of outages as described in Eq. 1, with link function equal

to Eq. 6. Similarly, negative Binomial GAMs assume the Poisson-Gamma distribution mixture for the number of outages as330

mentioned in Eq. 5, with link function equal to Eq. 6.

6 Random Forests

Random Forest regressions (Breiman, 2001) are non-parametric ensembles of decision trees that do not assume any underlying

probability distribution for the decision variable. Tree-based methods are easy to build and powerful machine learning tools.

Decision trees split at each node based on some criteria involving the value of a particular input variable. For regression trees,335

binary splits at each node are performed for each variable (Figure 6) (Hastie et al., 2001). The split with the largest reduction
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of squared errors is selected at each step. The splitting stops once there is no performance gain for the regression analysis. For

the prediction, the decision tree will point to a final leaf node based on the criterion for the splitting of feature space, and the

output for the decision tree is the average of the predicted variable,

ŷi = average(yi|xi ∈ Lm) (7)340

where Lm is the final leaf node. (Fig. 6).

Figure 6. Example of a simple decision tree with two input features: maximum wind speed (Vmax) and precipitation (SPI6) to predict

outages. Split at the root node (R) is done with Vmax. Thus, if the wind speed value is greater than the value V 1, the points will belong to

the right interior node (I2) otherwise they belong to the left node. Similarly, interior nodes are further divided into leaf nodes L1,L2,L3,

and L4 using values of SPI6.

Random Forest “grow” a large number of parallel decision trees and bag new samples for each decision tree (Breiman, 2001).

Bagging involves drawing new training points with replacements to fit each decision tree with a random selection of features.

The final output is the average of outputs from each decision tree modeled in parallel. The random selection of features results

in the development of uncorrelated trees, reducing the variance in predictions (Hastie et al., 2001).345

Random Forest models can generally capture the non-linear between the input parameters and output predictions. However,

a Random Forest is not easily interpretable as it is based on multiple decision trees. In this paper, we use the sci-kit learn

module in python to fit the Random Forest model. We also use the GridSearchCV module in Python (Pedregosa et al., 2011)

to tune for the parameters and select the model with the least error on out-of-bag samples.

7 Application of existing models350

In this section, we discuss the statistical performance of different outage models by first training the models on training data and

then comparing the R2 metrics on hold-out test data. We use different R2 metrics since traditional ones, like the coefficient of

determination, have many limitations for counting variables, as discussed in the Appendix. We also compare the performance
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of developed models for our generalized data covering the Southeast, Southwest, and Northeast regions in the U.S. with the

results from previous models applied to a particular region.355

7.1 Generalized Linear Models

We trained Poisson and Negative Binomial GLMs to predict the outage counts. The predictions are based on the seven input

features mentioned in the feature selection section. All the input features are significant at a p-value of 2×10−6. We compared

the statistical performance of the Poisson and Negative Binomial GLMs (Table 2). We have a total of 1,528 training data points

with seven input variables and one additional slope constant. Thus, the residual degrees of freedom for each model is 1,520.360

Model Residual Deviance R2
DEV R2

ψ

Poisson GLM 6,038,042 0.20 -

Negative Binomial GLM 1,949 0.29 0.69
Table 2. Statistical performance measurements for Generalized Linear Models

The high value of residual deviance, relative to the degree of freedom, in the Poisson GLM, shows large overdispersion (Liu

et al., 2005; Han et al., 2009b; Dunn and Smyth, 2018). Thus, using this new outage dataset, we confirm that the variance

in historical outages largely exceeds the mean value. Negative Binomial GLM has a low residual deviance value compared

to the Poisson model and is more similar to the degrees of freedom, indicating that Negative Binomial GLM can handle

overdispersion in power outage predictions more satisfactorily.365

R2
DEV in Table 2 is a measure of the deviance explained by the fitted model compared to the null model. The null model

predicts the average of observed outages (ȳ) for all the cities irrespective of the input parameters. R2
ψ quantifies the amount

of overdispersion explained by the additional variability introduced as a parameter in equations 4 and 5 for the Negative

Binomial model fitted model. The R2
DEV is higher for the Negative Binomial GLM, also suggesting Negative Binomial’s

better statistical performance. The R2
ψ for the Negative Binomial GLM is 0.69, which means the model can capture 69% of370

variability by considering the additional level of uncertainty in the form of Poisson-Gamma mixture given by Eq.5 for outage

counts. The reported value of R2
ψ for Negative Binomial GLM in this paper is comparable to the values presented by Han et al.

(2009b), i.e., ∼0.8. However, we observe a lower value of R2
DEV compared to previous literature, i.e., ∼0.6. The lower value

of R2
DEV may be due to the use of fewer parameters, e.g. seven in this study versus 20 in Han et al. (2009a), as R2

DEV always

increases with more predictors. For example, we get a value of 0.48 for R2
DEV when all the input variables in Table 1 are375

included, but we considered fewer parameters to avoid correlated features and enhance the generalization of these models. We

may also get a lower value of R2
DEV because we have a generalized dataset covering different regions in the U.S., and previous

models were applied to data from smaller regions.
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7.2 Generalized Additive Models

We also trained the Poisson and Negative Binomial GAMs. Like for GLMs, GAMs are trained with the seven input features380

mentioned before. All the input features are significant at a p-value of 2× 10−6 for both models. Like for GLMs, the residual

degrees of freedom for each model is 1520.

Model Residual Deviance R2
DEV R2

ψ

Poisson GAM 3,565,948 0.53 -

Negative Binomial GAM 1,866 0.62 0.99
Table 3. Statistical performance measurements for Generalized Additive Models

The residual deviance for Poisson GAM (Table 3) is ∼38% less than the one in Poisson GLM (Table 2), which is a minimal

improvement to overcome the large overdispersion as the deviance is still significantly higher than the degrees of freedom.

However, R2
DEV shows a more significant performance improvement as its value increases to 0.53 for Poisson GAM (Table 3)385

over a value of 0.20 for Poisson GLM (Table 2).

Negative Binomial GAM has a low value of residual deviance, which indicates that Negative Binomial GAM can handle

overdispersion. Additionally, non-linear shapes from spline functions (Eq. 6) for GAMs improve the outage predictions. The

R2
DEV for Negative Binomial GAM improves significantly to a value of 0.62 (Table 3) over the 0.29 in Negative Binomial

GLM (Table 2). The observed value of 0.99 for R2
ψ is similar to the one reported by Han et al. (2009a) in their GAM model390

development for power outage predictions. The R2
DEV for GAMs is not available in the previous literature, so further compar-

isons with previous work could not be made.

7.3 Random Forest

We calibrated the Random Forest model to predict the fraction of customers without power. We performed the hyperparameter

tuning using the GridSearch tool in Python (Pedregosa et al., 2011) with cross-validation to select the best input parameters395

for the Random Forest. The hyperparameter tuning resulted in a mean cross-validation R2 of 0.52. However, we obtained a

training R2 of 0.84 when fitting the random forest with the tuned hyperparameters on the training data. The high training R2

compared to cross-validation R2 represents potential overfitting in the Random Forest Model. We further tuned the model

parameters by reducing the maximum depth. We obtained a cross-validation R2 of 0.48 and training R2 of 0.63. Finally, we

obtained an R2 of 0.48 on the hold-out test. The number of randomly grown trees in the selected Random Forest model is 500.400

Figure 7 shows the predicted fractional outages against the observed outages using a tuned RF. RF does not generalize well to

the outages due to Hurricane Isaias, which had low wind speeds (∼ 36m/s) in New Jersey, but still caused outages to 60% of

consumers in 213 cities (out of 565) in New Jersey. This effect is visible in Figure 7, where RF underestimated the fractional

outages for severely affected cities in New Jersey.
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Figure 7. Random Forest outage predictions on the 20% holdout test data.

The R2 for Random Forest model cannot be compared to different R2 statistics calculated for GLM and GAM models as405

the output for Random Forest (fraction of outages) differs from GLM and GAM models (outage counts). Also, we cannot

calculate R2
DEV and R2

ψ statistics for Random Forest as there is no underlying probability distribution assumed for Random

Forest predictions.

We present the variable importance in the Random Forest model in Figure 8. We calculated the variable importance by

training a base model with all the input features and a permuted model resulting from training different Random Forests410

and removing one feature at a time from the base model. We ranked importance by finding the variable that leads to the

largest difference in the mean squared error between the base (full) model and the permuted (reduced) model. We present the

normalized importance factors in decreasing order of importance (Figure 8).

We found that maximum wind speed is the most important parameter in the Random Forest model (Figure 8), which co-

incides with our findings from a simple linear regression in Figure 5. Precipitation is the second important variable, with a415

relative importance of 0.33, as trees can more easily be torn out from wetter soil. Population density is the third most important

variable in outage predictions since it is a proxy for cities’ density of transformers exposed to winds.
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Figure 8. Random Forest variable importance in the decreasing order of importance. All importance factors are normalized by the highest

value, i.e., the factor for Vmax.

Random Forest and Negative Binomial GAMs show superior performance in predicting the power outages caused by a

hurricane. MSE (Wallach and Goffinet, 1989) have been used to compare the performance difference statistic models, given

as.420

MSE =
1

n

∑
(y− ŷ)2 (8)

Where y is the predicted value, ŷ is the observed value, and n is the total number of observations. Thus, we report MSE on

both Negative Binomial GAM and RF models to compare the performance of these models. We rescale the Negative Binomial

GAM predictions by the total number of customers to compare the MSE values of Negative Binomial GAM and RF models at

the same scale as fractional outages. MSE for Negative Binomial GAM is 45.13, and MSE for RF is 0.06. Researchers should425

be careful in making the direct comparison for MSE values of the fraction-based RF model and the count-based Negative

Binomial GAM model, as these models are optimized for a different set of response variables. The high MSE for the Negative

Binomial arises from overestimating outages, which we discuss next.

8 Limitations of state-of-the-art outage models

Different machine learning models discussed in previous sections can predict power outages for a hurricane-stricken city. Here,430

we discuss the limitations of state-of-the-art machine learning models for power outage predictions.
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8.1 GLM and GAM’s Predictions are Unbounded

GLM and GAM regressions can predict the mean number of outages in the city. The models have a lower bound of zero as both

Poisson, and Negative Binomial distributions predict the count of outages. However, there is no upper bound on the predicted

number of outages. Hence, GLM or GAM models can predict more outages than the number of customers, resulting in an435

overestimation of power outages.

Figure 9. Outage predictions on 20% holdout test data using Negative Binomial GAM outage model. Black dots represent the cities with

predicted outages larger than the number of customers. Grey dots represent the cities with predicted outages less than or equal to number of

customers.

For illustration, we present the power outage predictions on 20% hold-out test data for the Negative Binomial GAM (Figure

9). For 76 cities out of 382 (19.8%) in test data, predicted outages are more than the number of customers, and the over-

estimation can be significant. For example, the model predicted outages as high as 16 times that of Rockleigh, New Jersey

customers. The average ratio of predicted outages over the number of customers in the cities that experience overestimation440

was 5.2. The cities that experienced overestimation had smaller populations, with an average of 5,962, e.g., Rockleigh had

only 106 customers. In contrast, cities without overestimation had an average population of 30,058. Modelers could impose an

upper bound on the predictions using the total number of customers as the maximum possible outage. However, this adjustment

would violate the assumptions in the Poisson-Gamma mixture model (Eq. 5) and GAM link function (Eq. 6).

8.2 Random Forest’s Lack of Extrapolability for High Winds445

Random Forest predictions are an average value of the outages in the training data (Eq. 7). Thus, unlike GLMs, Random Forest

predictions are bounded by the minimum and maximum values of power outages in training data. Based on simple physics, one

would expect more damage and more outages from higher wind speeds. In order to understand the influence of wind speeds

on the power outages in the Random Forest regression, we plotted the partial dependence of the fraction of customers without
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power against wind speed. The partial dependence, g(xj) (Hastie et al., 2001; Nateghi et al., 2014) of the input variable xj is450

given by

g(xj) =
1

N

N∑
i=1

ŷi(xj ,xic) (9)

where N is the total number of observations, xic are the variables other than xj , and ŷi is outage prediction (Eq. 7) for the

ith data point. To plot the partial dependence, we varied xj (wind for this case) and kept xic (input parameters other than wind

speed) constant. We estimated outages by averaging all observations in training data plotted against the xj (wind speed).455

For this assessment, we trained the Random Forest model on a reduced dataset with only New York and New Jersey and

on a complete dataset, including Florida and Texas. We present the partial dependence of wind speed in Figure 10, also

including the distribution of wind speeds in the training data. Hurricanes of category 3 or higher bring wind speeds above

40m/s that can significantly damage electric poles (Bjarnadottir et al., 2013). However, they are significantly less observed in

inland cities, especially in the Northern United States, as storms often weaken in their transition to higher latitudes and after460

leaving the ocean. For example, only tropical storms with wind speeds of less than 33 m/s have impacted New York City for

the past 20 years (https://coast.noaa.gov/hurricanes/#map, last access: 21 September 2022). For example, Superstorm Sandy

(2012) transitioned to a tropical storm before impacting New York City (https://coast.noaa.gov/hurricanes/#map, last access:

21 September 2022). As per ASCE 7-10 wind hazard maps (https://hazards.atcouncil.org/, last access: 21 September 2022), a

wind speed of 43m/s has a return period of 100 years for New York City. Thus, it is very unlikely and evident from Figure 10465

to get outage data in New York and New Jersey for winds above 43m/s.
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Figure 10. (a) Partial dependence of wind speed on power outages. (b) Distribution of wind speed in the complete and reduced dataset.

Random Forest model does not extrapolate for the wind speeds and outages not in the range of training data.

These limited outage datasets have strong implications for the validity and extrapolability of outage models based on Random

Forest regressions. Under the reduced dataset, i.e., with only New Jersey and New York, outage predictions increase as the wind

speed increases from 20 to 40m/s. However, the fraction of outages reached a maximum of 0.58 at wind speeds of 40m/s and

does not increase with higher wind speeds. The Random Forest model cannot extrapolate for the higher winds, which limits470

the capability of Random Forest to make outage predictions for large hurricanes.

Under the complete dataset, results improve by including outages in Florida and Texas. These states experience higher winds,

e.g., their 100-year return-period winds are ∼ 70m/s in contrast to the 43m/s in New York (https://hazards.atcouncil.org/,

last access: 21 September 2022). The reduced dataset (with only New York and New Jersey) did not have any data points with

wind speeds above 40m/s. In contrast, the complete dataset (including Florida and Texas) had 88 cities (4.6% of data points)475

with winds greater than 40m/s and 29 cities (1.5% of data points) with winds above 70m/s. With the complete dataset, the

Random Forest predictions reach a maximum value of 0.76 for winds of 75m/s. While these results show improvement, they

also show that the data is still insufficient to make the Random Forest model follow the physics of infrastructure failure and

extrapolate predictions for high winds causing outages close to 100%.
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8.3 Lack of physics-based variance shapes480

In catastrophic storms, we expect large outages with higher certainty, e.g., Hurricane Ida (2021) in Louisana(Elamrouss, 2021)

and Tropical Storm Fiona (2022) in Puerto Rico (Rivera et al., 2022), close to 100%. Structural models for power poles

estimate failure probabilities close to 95% for winds of 70m/s (Ouyang and Dueñas-Osorio (2014); Bjarnadottir et al. (2013)).

Thus, the physics of infrastructure failure suggests that variance in outages should be smaller for catastrophic winds. To

evaluate if existing models follow these principles from the physics of power infrastructure failure, we quantified the variance485

in predictions for Jersey City by varying the wind speed and keeping the other input variables unchanged (Figure 11).

Figure 11. Prediction Ranges of Power Outage as a function of wind speed for (a) Negative Binomial GAM, (b) Random Forest. For GAM,

mean and standard deviations are based on Eq. 5. For Random Forest, we use Quantile Random Forest to determine percentiles and assume

Normal distribution to find comparable intervals of the mean plus and minus the standard deviation. Black lines indicate the mean outage

predictions. Blue dashed lines indicate the one standard deviation interval for outage predictions.

As discussed previously, Negative Binomial GAMs capture the variability of outages better than Poisson models. Thus, we

focus on the former models and estimate the variance according to Eq. 5. Figure 11a shows the mean and one standard deviation

interval for outage predictions with varying wind speeds. We normalized the GAM’s predictions to show fractions and compare

them to the Random Forest model. GAM’s predictions go beyond 1, as discussed previously, but we truncated the y-axis at 1490

for comparison purposes. The linear relationship in the link function ensures that the variance (function of the square of mean

outages from Eq. 5) grows with wind speed. For example, for a wind of 40m/s, we have a standard deviation of 0.02, and for

a wind of 70m/s, we have a standard deviation that is 15 times higher with a value of 0.3. Thus, the variance shows higher

values as the predicted outage fraction approaches to 1. In fact, the variance is also unbounded in Negative Binomial GAM and

goes to ∞.495

Random Forest model can only predict the mean number of outages. Thus, it cannot evaluate variances. However, Quantile

Regression Forest (QRF) (Meinshausen, 2006) can predict the outages at different confidence intervals, and we use it to quantify
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variance. The QRF uses the recorded observation at the leaf node to predict confidence intervals. These intervals are fully [..3

]data-driven as Random Forests do not assume any underlying probability distribution on predicted outages (Ahsanullah et al.,

2014). We presented Random Forest prediction intervals in Figure 11b. Random Forests had a standard deviation of 0.45 for500

high winds (> 70m/s), departing from the expected value of zero for catastrophic winds. Additional data could improve these

Random Forest variance estimates. However, as mentioned earlier, infrastructure failure data is sparse.

Moreover, structural models predict no damage to power infrastructure at wind speeds lower than 10m/s (IEEE, 2007;

Bjarnadottir et al., 2013). Thus, we expect outage predictions closer to 0 with a higher degree of certainty. Negative Binomial

(and Poisson) GAMs handle this case well as the variance is zero when the mean outage is zero (Eq. 1 and 5). In contrast, we505

found that Random Forests had a standard deviation of 0.66 for zero wind speeds, showing that they also have limitations to

represent physics-informed variance at low wind speeds.

As standard deviation is high for outages with the variation of winds and precipitation is the second most important variable

in the RF model per Figure 8, we explore the relationship between outage fraction and precipitation, based on Eq. 9, to

understand the non-linearity in outages. We [..4 ]show the partial dependence plot of precipitation in Figure 12. [..5 ]The510

partial dependence plot of precipitation (Figure 12) shows non-linearity with an increase in the fraction of outages from

0.3 to 0.4 over the range of observed precipitation for the historical storms. However, we can observe from Figure 12,

similar to 11, that precipitation also explains limited variability in the outages in this case. Also, at zero wind speed and zero

precipitation RF model predicts non-zero outages. Next, we discuss the consequences of the limitations of the state-of-the-art

power outage models.515

Figure 12. Partial dependence plot of fractional outages with precipitation.

3removed: data driven
4removed: have included
5removed: We
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9 Conclusions and Future Research

This paper summarized existing power outage prediction models; (a) GLMs and (b) GAMs based on Poisson and Negative

Binomial distributions, and (b) Random Forest regressions. Power outages depend on several factors, including hurricane,

environmental, and demographics conditions. To examine the existing models, we used power outage data with a total of

3.6 million outages for Hurricane Isaias (2020) in New York and New Jersey states, Hurricane Harvey (2017) in Texas, and520

Hurricane Michael (2018) in Florida. We combined the outages from these states to develop a generalized power outage

model across different regions, improving previous efforts that only calibrated outage models to a particular region or utility

companies in the U.S. We conducted a feature selection to avoid multi-collinearity among input variables and calibrated the

state-of-art outage models using seven input parameters: 3-s wind gust speed, 7-day precipitation after the storm, standard

precipitation index for 6 months before the storm, soil moisture for a depth between 0 and 10 cm, population density, the525

percent area covered by trees, and trees’ root zone depth.

First, we found that Poisson regressions are unsuitable for modeling outages as historical outages have larger variances

than the mean, resulting in overdispersion. The overdispersion was evident by the large residual deviances of 6,038,042 and

3,565,948 for the Poisson GLM and GAM, respectively, for 1520 degrees of freedom. We found that Negative Binomial

regressions account for these larger variances better than Poisson regressions since we obtained residual deviances of 2,078 and530

1,813 for GLM and GAM, respectively. We also showed that GAMs could better model the non-linear behavior of predictors

compared to GLMs since R2
DEV and R2

ψ significantly increased to 0.62 and 0.99, respectively, compared to values of 0.29 and

0.69 in Negative Binomial GLMs. We demonstrated that the Random Forest could also capture this non-linear behavior as we

found a value of 0.48 for the R2 in the cross-validation.

However, each model has its own merits and demerits in predicting outages. Poisson and Negative Binomial estimates are535

unbounded and can overestimate power outages. For example, the Negative Binomial regression predicted more outages than

the number of customers for 19.8% of cities in the test data with an overprediction ratio of 5.2 for predicted outages compared

to actual number of customers. Random Forest predictions are hard to calibrate for extreme winds as outage data is limited. As

a result, we found that they could not be extrapolated for high winds since we only had 1.5% observations with wind speeds

greater than 70m/s. Negative Binomial GAM failed to account for small uncertainty in outage predictions at high winds as we540

observed that instead, the standard deviation in predictions grew 15 times with increasing wind speed from 40m/s to 70m/s.

We found that Random Forest also fails to account for small uncertainty at low winds. Overestimated power outages could

result in prioritizing a less affected city, placing more resources on that city than required. Limited mobility of crews during

a disaster can lead to prolonged outages, delaying the restoration effects (National Academies of Sciences, Engineering,

and Medicine, 2017). In general, erroneous power outage estimates with high uncertainty can result in the non-optimal545

placement of resources, as optimal resource allocation algorithms will use predicted outages (Brown, 2002).

[..6 ]We suggest Beta (Ferrari and Cribari-Neto, 2010) and Binomial regressions (Dunn and Smyth, 2018) to model

power outages in future research. While testing their performance fell outside this paper’s scope, Beta and Binomial

6removed: Finally, we suggested that Beta regressions can address the shortcomings of existing power outage prediction models.
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distribution can help overcome existing limitations due to their fundamental properties. For example, Beta and Binomial

regressions are upper-bounded, unlike Negative Binomial GLM and GAM regressions. Thus, Beta or Binomial GAMs can550

model the fraction of outages in a city, i.e., directly in the case of Beta since it goes from 0 to 1, or after normalizing the total

number of outages by the maximum number of customers in the case of the Binomial regressions. Also, Beta and Binomial

GAMs can extrapolate outages for the extreme (low and high) values of winds since they can model monotonically

increasing outages as a function of environmental parameters. Finally, Beta and Binomial GAMs have variance closer to

zero at outage fraction observations values of zero and 1, representing better the physics or power infrastructure failures.555

Code and data availability. Applicable codes are available from author upon reasonable request. Authors can direct to third party for outage

data. Sources for publicly available datasets are included in this article.

Appendix A

A1 R2 Parameter560

R2 parameter, a goodness-of-fit measure, is used to compare and select among different models. The goodness-of-fit can

quantify how good predictions are by the fitted model on unseen or test data.

R2 = 1− RSS

TSS
(A1)

The R2 parameter mentioned in Eq. A1 represents the amount of variability explained by the fitted compared model to the

null model. The null model predicts the average of observed outages (ȳ) for all the cities irrespective of the input parameters.565

In the Eq. A1, TSS is the residual sum of squares, defined by the sum of squares of the difference between the true value of the

response variable and average of true values of response variable.

TSS =

N∑
i

(yi− ȳ)2 (A2)

RSS is the total sum of squares, defined by the sum of squares of the difference between the true value of the response

variable and the predicted value of the response variable from the fitted model.570

RSS =

N∑
i

(yi− ŷ)2 (A3)
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A2 R2
DEV Parameter

We quantify overdispersion by calculating if the residual deviance is larger than the degrees of freedom. Degrees of freedom is

defined as the number of data points in the training data minus the number of input parameters. We estimate

Deviance=−2(LL(sat)−LL(fit)) (A4)575

where LL(sat) is the maximum achievable log-likelihood for the saturated model, and LL(fit) is the log-likelihood for the

fitted model. Simplified versions of Eq. A4 to calculate deviance for different distributions are given below.

– Poisson: Residual deviance (Cameron and Windmeijer, 1996) for the ith observation for Poisson GLM and GAM is,

di(yi, ŷi) = sign(yi− ŷi) ·
[
2

{
yilog

(
yi
ŷi

)
− (yi− ŷi)

}]1/2
(A5)

where yi are ŷi are the observed and predicted outages for ith city. Deviance for the model is the sum of the square of580

the residual deviance for each observation.

D(y,yi) =

N∑
i=1

(di(yi, ŷi))
2; (A6)

– Negative binomial: Residual deviance for the ith observation for a Negative Binomial GLM is

di(yi, ŷi) = sign(yi− ŷi) ·
[
2

{
yilog

(
yi
ŷi

)
− (yi+1/k)ln

[
yi+1/k

ŷi+1/k

]}]1/2
(A7)

and deviance for the fitted model is estimated by Eq. A6.585

For GLMs and GAMs, a pseudo-R2, denoted as R2
DEV (Cameron and Windmeijer, 1996), is also defined to compare the

statistical performance based on model deviance. Similar to the definition R2, R2
DEV measures the reduction in deviance of

the fitted model when compared with the null model. The value of R2
DEV is given by,

R2
DEV = 1− D(y,yi)

D(y, ȳ)
(A8)

D(y,yi) is the deviance for the fitted model already defined in Eq. A4. For a null model, predictions will always be ȳ (average590

of observed outages in training data). D(y, ȳ) is the deviance for a null model, which can be obtained by replacing LL(fit) in

Eq. A4 with LL(null).

The value of R2
DEV will increase after adding more predictors as more predictors will always explain more variability in

outage counts, decreasing the residual deviance. Also, the value of R2
DEV is bounded from 0 to 1, and a value closer to 1 will

indicate a good fit of the model (Cameron and Windmeijer, 1996).595
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A3 R2
k Parameter

R2
k is defined to measure the reduction in overdispersion for the fitted model Negative Binomial regression models when

compared to the null model (Liu et al., 2005; Han et al., 2009b) .

R2
k = 1− k

k0
(A9)

k is the overdispersion factor (Eq. 5) for the fitted model, and k0 is the overdispersion factor (Eq. 5) for the null model.600

Models with low overdispersion will have a low value of k. The, R2
k will be closer to one for a model with less overdispersion.
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