
Response to Reviewer#1

This is a comprehensive work that compares different machine learning methods. I find the methods and
presentations are solid and the authors did nice job in summarizing the substantial works they have
finished. However, I do find some critical information is missing. Namely, they need a comparison of
performances for all ML models with the separate testing data because it will show whether their models
have overfitting issues and how their performances for new data never encountered. The author also needs
more illustrations of how their model input data is obtained and possible associated uncertainties. Based
on those, I suggest a major revision for this version. Please see detailed suggestions below.

Dear Reviewer,

We thank you for your review. We are grateful for your suggestions to help us get the manuscript in a
better shape than the initial version. We have incorporated changes to the manuscript based on your
insightful comments. We have included the error statistics on models, please see the response to
comments 10 and 11. We have also included a discussion on associated uncertainties with the model input
data, please see responses to comments 2, 3, and 5. Please find the detailed response to these and other
specific comments.

Comment#1: Line 34, “including hurricane”, is it wind field or else? Please clarify.

Response#1:

Thank you for pointing this out. Hurricane parameters used in the previous power outage studies and the
current study are wind speeds and duration of strong winds. We have clarified more in L34 and modified
the test to include “hurricane winds,” so it would explicitly indicate using hurricane winds information for
developing power outage models. We have modified the text to incorporate the changes shown below in
bold.

Line 33: … These outage models use inputs including hurricane winds, power systems, environmental,
and demographic information.

Comment#2: Uncertainty in the poweroutage.us data.

Response#2:

Potential uncertainties in the outage count can arise from the hindered communication with meters and
utility monitoring points due to impacts from hurricanes. The utilities report the outages at the
transmission level during the hurricanes as automatic reporting points are hindered (poweroutage.us/faq,
last access: 13 January 2023). Another uncertainty in the outage data is the total customer count, as
utilities do not report the total customers, and poweroutage.us calculates the total customers based on the
maximum historical outage in a city (poweroutage.us/faq, last access: 13 January 2023). However,
PowerOutage (poweroutage.us, last access: 21 September 2022) regularly gets updates from utilities to
keep the outage count close to actual outages. Previous researchers obtained the data directly from
utilities which are also not perfect (McRoberts et al., 2018; Shashaani et al., 2018) because the data had
reported outages more than the number of customers. The more accurate reporting of outages and the



number of customers could improve the development of power outage predictions. To address your
comment, we mentioned in lines 93-96 that power outage data recorded by poweroutage.us is obtained
from utilities, so we assume outages reported by poweroutage.us are actual outages that happened during
a hurricane. However, actual outages occurring in the field might be less or more than reported. Given
the limited information about the outage management systems of individual utilities, we are not able to
quantify uncertainty in outages for individual cities due to potential errors in the count of outages or total
customers. For clarification, we have included in lines 93-96 these possible sources of uncertainties in
outage data. The new text shown in bold reads as follows:

L113-119: We acquired power outage data from PowerOutage (poweroutage.us, last access: 21 September
2022), an organization that tracks and records outages from utilities at the city level across the U.S. The
automatic outage reporting points of utilities could be hindered during hurricanes which could
result in errors in outage counts (poweroutage.us/faq, last access: 13 January 2023). However,
PowerOutage (poweroutage.us, last access: 21 September 2022) regularly gets updates from utilities
to keep the outage count close to actual outages. The data covered the power outages for Hurricane 95
Isaias (2020) for 11 utilities in New York and 5 in New Jersey, for Hurricane Michael (2018) for 5 utilities
in Florida, and for Hurricane Harvey (2017) for 39 utilities in Texas. Our dataset has about 3.6 million
outages in total.
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Comment#3: Line 105 to 111, what are the possible uncertainties in interpolate all covariates into the city
scale? Which interpolation method is used? Please be specific.

Response#3:

Thank you for bringing this up. We did not interpolate all the variables, so we have modified the
“interpolation” to “methods” (used to obtain each parameter at the city scale) in line 109. These methods
are later discussed in subsections (2.2-2.8) about each parameter. The modified text in lines 108 - 110 is
as below:

(L131-135) We obtained model inputs at the city level across all covariates. Further description of
the availability, resolution, and methods to obtain each variable at the city level is provided in the
subsequent subsections. We also discuss the uncertainties in data that could inherently influence the
accuracy of power outage predictions.



Following the reviewer's suggestions, we further discussed methods to obtain each parameter at the city
scale and reviewed possible uncertainties that can arise in input parameters in subsections 2.2 - 2.8. Here,
we present methods to obtain input parameters and uncertainties associated with these parameters:

(Subsection: 2.2) Wind Speed

We used a wind profile model for tropical cyclones (Chavas et al., 2015) to compute the wind speed at the
city of the centroid. Hence, we do not perform any interpolation to obtain the wind speeds. Further, We
investigated the variation in wind speeds across cities. We estimated the coefficient of variation (COV) of
wind speeds for each city in the states of New Jersey and New York during hurricane Isaias (2020),
Florida during hurricane Michael (2018), and Texas during hurricane Harvey (2017). We found that the
COV for wind gusts is low, indicating wind gusts from the wind profile model vary little within a city.
Thus, wind at the centroid of a city would be a reasonable estimate of wind gusts to determine the
city-wide outages. We have incorporated the above uncertainty in wind gusts into the supplementary
material. We have included supplementary section S1 with a discussion on uncertainty in wind gusts. The
included section S1 reads as follows:

The wind speed is an important factor causing outages, and any uncertainty in wind speed
estimates could lead to errors in outage predictions. We investigated the variation in wind speeds
across cities. We estimated the coefficient of variation (COV) of wind speeds for each city in the
states of New Jersey and New York during hurricane Isaias (2020), Florida during hurricane
Michael (2018), and Texas during hurricane Harvey (2017). To compute COV, we first compute the
3-s wind gust at points spaced based on the tropical cyclone’s wind profile (Chavas et al., 2015) at
the 0.025º x 0.025º resolution in each state. Then, we compute the mean and standard deviation of
wind gusts in each city by accounting for the points occurring within a city. Finally, the COV is
computed as the ratio of standard deviation and mean. The high value of the COV can indicate the
high variability in wind speeds. Figure S5 illustrates the 3-s wind gust in New Jersey during
hurricane Isaias (2020) for points spaced at 0.025º  x 0.025º.

We studied how COV changes for different spacing of the points. The mean COV for wind gusts
with 0.025º x 0.025º points spacing in New Jersey is 0.001, New York is 0.003, Florida is 0.02, and
Texas is 0.02. The change in COV for all states is minimal when increasing the resolution from 0.05º
to 0.025º. Thus, given the minimal change in COV, we do not compute COV for resolutions higher
than 0.025º. The low values of COV for wind gusts indicate that wind gusts at the centroid of a city
would be a reasonable estimate of wind gusts to determine the city-wide outages. Figure S6 shows
the histograms showing each state's COV distribution for wind gusts.



Figure S5. 3-s wind gust wind speeds for points spaced at 0.025º  x 0.025º



Figure S6. Distribution of Coefficient of Variation in 3-s wind gusts for (a) New Jersey (NJ) winds, (b)
New York (NYS) winds, (c) Florida (FL) winds, (d) Texas (TX) winds

Accordingly, we have modified line 125 to incorporate the findings about the wind estimates. Now, we
have included the visualizations showing the variability of a few parameters across multiple cities to give
readers a context of the resolution of final input parameters and demonstrate the spatial scale of interest in
power outage predictions.

Now, Line 151 is as follows:

… We determined the wind speed for each city at its centroid. Figure 2 illustrates the variation of 3-s
wind gusts in New Jersey during Hurricane Isaias. However, wind speed is an important factor
causing outages, and any approximation in wind speed estimates could lead to errors in outage
predictions. We provide detailed information in Supplementary Text S1 to demonstrate that wind
speeds at the city centroid can be a reasonable estimate in determining the city-wide outages.



Figure 2. Distribution of 3-s wind gust (Mean: 36.95 m/s, Standard Deviation: 0.41 m/s) across New
Jersey before the arrival of Hurricane Isaias

(Subsection: 2.3) Land Cover Data

Land cover data is available at the city scale. We used zonal statistics in ArcGIS to obtain the percent area
covered by each land cover type within a city. So, we do not interpolate for land cover data at the city
scale. Hence, no interpolation errors or potential uncertainties are introduced when obtaining land cover at
the city level. However, there may be uncertainties at the source of land cover data. National Land Cover
Data has inaccuracies in the thematic pixel classification (Wickham et al., 2021) that could introduce
uncertainty in the type of land cover (https://www.mrlc. gov/viewer/, last access: 21 September 2022).
Addressing the source-level uncertainties is not within the scope of this paper. However, reduced
inaccuracies in the future updates of input parameters could improve the outage predictions. We have
included the statement on source-specific uncertainty in Lines 159-162 (changes shown bold in subsection
2.3):

Line 155:... We obtained National Land Cover Data (NLCD) available from the Multi-Resolution 130
Land Characteristics Consortium, which is maintained by the United States Geographical Survey (USGS)
(https://www.mrlc. gov/viewer/, last access: 21 September 2022). National Land Cover Data has



inaccuracies in the thematic pixel classification (Wickham et al., 2021) that could introduce
uncertainties in the type of land cover. However, evaluating the effect of the inaccuracies in the
thematic pixel classification on power outages is not within the scope of this paper. NLCD data is
available in raster format with a resolution of 30m x 30m. USGS has classified the original land cover
data into 20 different classes. We have reclassified the NLCD data into nine to match previous power
outage models. The nine different major classes of land cover data are developed area, water area, barren
land, forest area, scrub area, grasslands, pasture land, cultivated cropland, and wetlands. We utilized the
spatial analyst in ArcGIS (a 135 tool for Geographic Information Systems) (ESRI 2019) to clip the 30m x
30m land cover raster for each city. We used zonal analysis within ArcGIS to determine the percentage of
area covered by the nine major land cover classes.

(Subsection: 2.4) Precipitation and soil moisture

We used nearest-neighbor interpolation to obtain soil moisture and precipitation at the city centroid by
assigning values of these parameters available at the closest distance to the city’s centroid. Soil moisture
and precipitation are available at a resolution similar to the resolution of cities. Thus, interpolating these
parameters at the city level would result in minimal variability. However, the limited temporal resolution
of parameters required for computing soil moisture and precipitation could introduce errors in the final
estimates of these variables (Wei et al., 2013). Addressing the limitations of the variable infiltration
capacity (VIC) model from the National Land Data Assimilation System Phase 2 (NLDAS2) (Xia et al.,
2012; Xia, 2012) to get soil moisture and precipitation is not the scope of this study. We have
incorporated the changes to reflect the interpolation method (nearest neighbor) and source of uncertainty
after Line 179 (changes shown in bold):

Line 179:…

Precipitation and soil moisture data are available from the variable infiltration capacity (VIC) model from
National Land Data Assimilation System Phase 2 (NLDAS2) (Xia et al., 2012; Xia, 2012). However, the
limited temporal resolution of parameters required for computing soil moisture and precipitation
could introduce errors in the final estimates of these variables (Wei et al., 2013). The limitations of
the variable infiltration capacity (VIC) model from the National Land Data Assimilation System
Phase 2 (NLDAS2) (Xia et al., 2012; Xia, 2012) to get soil moisture and precipitation are beyond
the scope of this study. Precipitation and soil moisture have been recorded each hour since 1979 with a
resolution of 0.125◦ × 0.125◦. We used nearest-neighbor interpolation to obtain soil moisture and
precipitation at the city centroid by taking the value available at the nearest point.

Given the limited data within a city, we could not characterize the uncertainty for precipitation and soil
moisture at this scale. However, we have now included the visualization showing the variability of the
standard precipitation index at a 1-month scale across multiple cities. We have modified Lines 196-197 to
include this figure:

(L196-197) “Figure 3 illustrates the variation of SPI 1 month in New Jersey before the arrival of
Hurricane Isaias.”



Figure 3. Distribution of SPI 1 month (Mean: 0.88, Standard Deviation: 0.93) across New Jersey before
the arrival of Hurricane Isaias

(Subsection: 2.5) Root Zone Depth

Root zone depth is available at a higher resolution compared to the city scale. We averaged the root zone
depth across the city to obtain the root zone depth as input at the city scale. Given the resolution of
available outage data at the city scale, we were not able to consider the variations in root zone depth,
which limits the ability to consider the variation of tree root strength within a city. We have mentioned the
description of data in subsection 2.5 after Line 203 (changes in bold).

Line 203:... The effective root zone depth is defined as the depth of the soil from which plants and trees
can effectively extract water and nutrients for growth (http://www.wood-database.com, last access: 21
September 2022). The more effective the root zone depth for trees, the less likely they will fail from
strong hurricane winds (McRoberts et al., 2018). We add root zone depth as an input parameter for outage
predictions because it could indicate the hazard from falling trees to the power lines. Root zone data is
available from the United States Department of Agriculture (USDA) under Gridded Soil Survey
Geographic ((dataset) Soil Survey Staff) at 30m × 30m resolution as raster data. The root zone depth at
the city level is calculated as the average of the root zone in a city using the spatial analytic tool ArcGIS.
Given the resolution of available outage data at the city scale, we were not able to consider the
variations in root zone depth, which limits the ability of the power outage model to consider the
variation of tree root strength within a city.



(Subsection: 2.6) Percent Tree Area

Raster tree data has a higher resolution than a city. We do not need to interpolate for the area covered by
the trees. Therefore, no errors or uncertainties arise from obtaining treed area at the city level. We have
included the description of the dataset and visualization of variability in the percent treed area. We have
done changes in the manuscript after line 213:

Line 213:… USDA created National Insect and Disaster Risk Maps (Krist Jr. et al., 2014) in 2012, with
the area covered by trees at 240m × 240m as raster data. The raster tree data is used to calculate the
percent of the area covered by trees at the city level using the spatial analytic tool ArcGIS (ESRI 2019).
Figure 4 illustrates the distribution of percent treed area in New Jersey.

Figure 4. Distribution of percent treed area (Mean: 73.45%, Standard Deviation: 23.04%) across New
Jersey

(Subsection: 2.7) Elevation

Similar to obtaining soil moisture and precipitation, we compute elevation at the city centroid using
nearest neighbor interpolation to assign the value of elevation available at the nearest point to the city’s
centroid to capture the variability in elevation across cities. The varying elevation could introduce
variations in precipitations (Napoli et al., 2019) and wind speeds (Chapman, 2000; Miller et al., 2013)
within a city. The resolution of available outage data at the city-level limits our ability to account for the



varying elevations within a city. Future studies with high-resolution outage data might account for the
variations in elevation within a city. We have incorporated the statement on elevation data and corrected
the resolution of elevation data after Line 217:

Line 217:...

Previously, researchers have found that hurricane wind speeds (and thus damages) vary with surface
topography (Chapman, 2000; Miller et al., 2013; Guikema et al., 2010; Quiring et al., 2011; McRoberts et
al., 2018). Additionally, varying elevations could also introduce variations in precipitations (Napoli
et al., 2019) and wind speeds (Chapman, 2000; Miller et al., 2013) within a city. Thus, we use the
median and mean elevation at the city centroid, using nearest neighbor interpolation, as
topographic variables to capture the changes in elevations across the cities. We obtained these
parameters from the Digital Elevation Model at a 30m resolution scale developed by USGS as part
of DEM: Global Multi-Resolution Terrain Elevation Data (GMTED2010) (Danielson and Gesh,
2011). Note that the resolution of available outage data at the city-level limits our ability to account
for the varying elevations within a city. Future studies with high-resolution outage data might
account for the variations in elevation within a city.

(Subsection: 2.8) Density Information

Density information is available at the city from American Community Survey (ACS). Hence, we do not
interpolate for density information, so no within-the-city variation arises for obtaining the density
information from ACS. However, Density information from ACS is based on a population sample, which
introduces sampling error in determining the population
(https://www.census.gov/programs-surveys/saipe/guidance/uncertainty.html, last access: 13 January
2023). Considering the sampling level error is outside the scope of this paper. We use the most recent
estimates of ACS to get the most accurate available population estimates. Density information is included
after Line 227.

Line 227:...Demographics data is available from American Community Survey (ACS)
(https://www.census.gov/programs-surveys/acs, last access: 21 September 2022). ACS collects different
demographic data for each US census tract. ACS started data collection, and we have considered data
from 2019. We obtained the population density as it indicates the number of distribution poles and system
components exposed to winds (Liu et al., 2007).
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Comment#4: Line 113: number of outages, is it the same as customers without power?

Response#4:

Yes, the number of outages is the same as customers without power. We have modified the text in Line
137 to describe this explicitly:

L137: We focused on two response variables, the number of outages which is equivalent to the
number of customers without power in a city, and the fraction of customers without power.

Comment#5: Line 125: Uncertainty in wind speed estimates since the sizes of cities vary.

Response#5:

Thank you for pointing this out. Following the reviewer’s suggestion, we investigated the variation in
wind speeds across cities. We estimated the coefficient of variation (COV) of wind speeds for each city in
the states of New Jersey and New York during hurricane Isaias (2020), Florida during hurricane Michael
(2018), and Texas during hurricane Harvey (2017). The low values of COV for wind gusts indicate that
wind gusts at the centroid of a city would be a reasonable estimate of wind gusts to determine the
city-wide outages. We have explained the systematic study on COV of wind gusts in comment#3. Please
see the detailed response to comment#3.

Comment#6: Line 147: Which rescaling technique is used for this one?

Response#6:

Thank you for pointing this out. We used nearest-neighbor interpolation to obtain soil moisture and
precipitation at the city centroid by taking the value available at the nearest point. Instead, we computed
the parameters at the city centroid by taking the value available at the point nearest to the city centroid.
We have changed the “rescaled” to “interpolation.” We have also mentioned this correction in
comment#3. The rest of Line 147 reads as follows:

Line 182: … “We used nearest-neighbor interpolation to obtain soil moisture and precipitation at
the city centroid by taking the value available at the nearest point.”

Comment#7: Line 175: Please fix the citation.

Response#7:

Thanks for pointing this out. We will fix the citation.

Comment#8: Table 2: how to interpret the difference between R2DEV and R2ψ?

Response#8:

Thank you for your comment. We included the interpretations of R2
DEV and R2

ψ in the appendix of the
preprint.



R2
DEV in Table 2 is a measure of the deviance explained by the fitted model compared to the null model.

The null model predicts the average of observed outages ( ) for all the cities irrespective of the input𝑦
parameters. R2

ψ explains the amount of overdispersion explained by the additional variability introduced
as an overdispersion parameter (k) in equations 4 and 5 for the Negative Binomial model fitted model.

Now, we have included the simple interpretations after line 363:

“R2
DEV in Table 2 is a measure of the deviance explained by the fitted model compared to the null

model. The null model predicts the average of observed outages ( ) for all the cities irrespective of𝑦
the input parameters. R2

ψ explains the amount of overdispersion explained by the additional
variability introduced as a parameter in equations 4 and 5 for the Negative Binomial model fitted
model”.

Comment#9: Why is random forest used only for the fraction of customers without power? Is the number
of power outages not fit the RF algorithm?

Response#9:

Thank you for pointing this out. RF can predict both the number and fraction of outages. However, we
assessed a fraction of outages in this paper to focus on the state of the art for outage prediction as it gives
better results. (McRoberts et al., 2018) previously developed RF outage prediction models based on
fractions with improved accuracy over the model predicting total outages, as fractional outages could be
more useful than total outages because of high variability in the number of total consumers (Reilly &
Guikema, 2015). For example, neighboring cities A and B have very similar input parameters (wind
speeds, precipitation) and very different numbers of customers(say 1000 and 10000). However, cities A
and B have almost the same fractional outages as both cities are hit relatively equally by hurricane winds.
Suppose we train a model using the total number of customers with training data having more instances
like city B in training. In that case, the model will overestimate the outages for city A (around 10000
outages for 1000 consumers). On the contrary, the power outage model with fractional outages will give
similar results for cities A and B. We fitted the fraction of outages for a city with the Random Forest (RF)
Model, which we have discussed in the manuscript. Just for testing purposes, we also fitted a model with
the number of customers. However, we achieved better accuracy with fractional outages because of less
variation in fractional outages compared to large variability in total outages, as already reported in
(McRoberts et al., 2018).
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Comment#10: Figure 5: what are R2 and other error statistics in the holdout test? It will be helpful to
report them in the same figure.

Response#10:

Thank you for pointing this out. We have computed the mean squared error (MSE) (Wallach & Goffinet,
1989) on the holdout test for Negative Binomial Generalized Additive Model (GAM). The R2 values are
reported as a goodness-of-fit measure for linear models (Cameron & Windmeijer, 1996). (Cameron &
Windmeijer, 1996) defined pseudo-R2 (R2

DEV and R2
ψ) to measure as a measure for goodness-of-fit for

count data models, Poisson, and Negative Binomial regression models. Previously, researchers (Han,
Guikema, & Quiring, 2009; Han, Guikema, Quiring, et al., 2009; Liu et al., 2007) have reported
pseudo-R2 for the data used to fit the model, which we reported in the original manuscript. MSE (Wallach
& Goffinet, 1989) have been used to compare the performance difference statistic models, given as

𝑀𝑆𝐸 =  1
𝑛 ∑(𝑦 −  𝑦)2 

Where y is the observed value, is the predicted value, and n is the total number of observations𝑦

Thus, we report MSE on both Negative Binomial GAM and RF models to compare the performance of
these models. We rescale the Negative Binomial GAM predictions by the total number of customers to
compare the MSE values of Negative Binomial GAM and RF models at the same scale as fractional
outages. We have included the MSE error on the holdout test and modified text from 415 to 425:

“MSE (Wallach & Goffinet, 1989) have been used to compare the performance difference statistic
models, given as.

𝑀𝑆𝐸 =  1
𝑛 ∑(𝑦 −  𝑦)2 

Where y is the observed value, is the predicted value, and n is the total number of observations𝑦

Thus, we report MSE on both Negative Binomial GAM and RF models to compare the performance of
these models. We rescale the Negative Binomial GAM predictions by the total number of customers to
compare the MSE values of Negative Binomial GAM and RF models at the same scale as fractional
outages. MSE for Negative Binomial GAM is 45.13, and MSE for RF is 0.06. Researchers should be
careful in making the direct comparison for MSE values of the fraction-based RF model and the
count-based Negative Binomial GAM model, as these models are optimized for a different set of response
variables.The high MSE for the Negative Binomial arises from overestimating outages, which we discuss
in section 8.1”

Reference:



Wallach, D., & Goffinet, B. (1989). Mean squared error of prediction as a criterion for evaluating and
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Comment#11: Do you have any prediction vs. observation plot for the RF model like Figure 5?

Response#11:

Thank you for your suggestion. We have added a new figure 3 in the text representing the predicted
fractional outages against the observed outages using Random Forest (RF).

As per your earlier suggestion, we kept a 20% holdout test data to check the out-of-sample accuracy of
models and if any overfitting issues occur in the model. We performed the hyperparameter tuning using
the GridSearch tool in Python (Pedregosa et al., 2011) with cross-validation to select the best input
parameters for the RF model. We have modified the text in line 391. The new text in the 391 reads as
follows:

We performed the hyperparameter tuning using the GridSearch tool in Python (Pedregosa et al., 2011)
with cross-validation to select the best input parameters for the Random Forest. The hyperparameter
tuning resulted in a mean cross-validation R2 of 0.52. However, we obtained a training R2 of 0.84 when
fitting the random forest with the tuned hyperparameters on the training data. The high training R2

compared to cross-validation R2 represents potential overfitting in the Random Forest Model. We further
tuned the model parameters by reducing the maximum depth. We obtained a cross-validation R2 of 0.48
and a training R2 of 0.63. Finally, we obtained an R2 of 0.48 on the hold-out test. The number of randomly
grown trees in the selected Random Forest model is 500. Figure 7 shows the predicted fractional outages
against the observed outages using a tuned RF. RF does not generalize well to the Isias, which had low
wind speeds (~36 m/s) in New Jersey, but still caused outages to 60% of consumers in 213 cities (out of
565) in New Jersey. This effect is visible in Figure 7, where RF underestimated the fractional outages for
severely affected cities in New Jersey.



Figure 7. Outage predictions on 20% holdout test with random forest regression.
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P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., &
Duchesnay, E. (2011). Scikit-learn: Machine Learning in {P}ython. Journal of Machine Learning
Research, 12, 2825–2830.

Comment#12: Section 8.2, there is a heavy discussion on how winds control the power outage from the
models. However, how precipitation is related to power outages is not shown, as it is the second most
important variable in the RF model. You have demonstrated some nonlinear relationships between wind
speed and power outage fraction. Therefore, it is worthwhile to show precipitation’s relationship to
outrage fraction or show precipitation and wind jointly with outage prediction in a separate pdp plot. That
may explain some nonlinear relationships in Figure 7b.

Response#12:



Thank you for your suggestion. We agree on exploring the relationship between outage fraction with
precipitation, as precipitation is the second most important variable in the RF model per figure 4 in the
initial manuscript. We have included the partial dependence plot of precipitation in figure 12. We can
observe from figure 12, similar to figure 7b in the original manuscript, precipitation also explains limited
variability in the outages. In the original manuscript, we mentioned that we expect outage predictions
closer to 0 at lower winds, see lines 500-502:

“Moreover, structural models predict no damage to power infrastructure at wind speeds lower than 10m/s
(IEEE, 2007; Bjarnadottir et al., 2013). Thus, we expect outage predictions closer to 0 with a higher
degree of certainty.”

However, at zero wind speed and zero predictions RF model predicts non-zero showing the limitation of
representing physics-based predictions. We have included the extended discussion in the manuscript after
line 505 as follows:

“As standard deviation is high for outages with the variation of winds and precipitation is the second most
important variable in the RF model per Figure 8, we explore the relationship between outage fraction and
precipitation to understand the nonlinearity in outages. We have included the partial dependence plot of
precipitation in Figure 12. We can observe from Figure 12, similar to 11, that precipitation also explains
limited variability in the outages in this case. Also, at zero wind speed and zero precipitation RF model
predicts non-zero outages. Next, we discuss the consequences of the limitations of the state-of-the-art
power outage models.”



Figure 12. Partial dependence plot of fractional outages with precipitation.
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Comment#13: Section 9, the author mentioned beta regression may have better performance. But no
comparison is made with the previous method. I suggest shortening the arguments after line 454 because
there is no evidence in the paper supporting them.

Response#13:

Thank you for the suggestion. While beta regression analysis was not the scope of this paper, we wanted
to suggest possible candidate methods to overcome the challenges with state-of-the-art power outage
prediction models. The authors are currently exploring the possibility of beta regression as a power outage
prediction model. Accordingly, we have modified section 10 on “Suggested future research for
“comprehensive” outage risk assessments” to point out that Beta distributions are just a suggestion (and
we are currently working on that)  as follows:

Efforts are still needed to overcome the limitations of state-of-the-art power outage prediction models. In
this paper, we suggest the study of Beta GAMs to address them (Olkin and Liu, 2003; Ferrari and
Cribari-Neto, 2010). While performing a Beta regression analysis falls outside this paper’s scope, we
argue that the fundamental properties of Beta distributions can help overcome the challenges with
state-of-the-art power outage prediction models. Beta distributions model random variables that take
values from 0 to 1. Thus, Beta GAMs can model the fraction of outages in a city, making predictions of
total outages that are bounded by the maximum number of customers, unlike Negative Binomial GLM
and GAM regressions.

In addition, similar to Negative Binomial GAM, Beta GAM can account for the high variability of the
input variables and can handle the overdispersion in power outage data (Douma and Weedon, 2019). Also,
Beta GAMs could extrapolate outages for the extreme (low and high) values of winds since Beta
predictions always go from their minimum value of 0 to their maximum value of 1. Finally, Beta GAMs
have also closer to zero variance at observations values of zero and one. Thus, Beta GAMs can also
predict the outages with low variance at low and high winds closer to the physics of infrastructure failure.
Thus, we suggest developing such Beta GAMs for improved outage prediction.
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https://doi.org/10.1080/0266476042000214501



Olkin, I., & Liu, R. (2003). A bivariate beta distribution. Statistics and Probability Letters, 62(4),
407–412. https://doi.org/10.1016/S0167-7152(03)00048-8

Douma, J. C., & Weedon, J. T. (2019). Analysing continuous proportions in ecology and evolution: A
practical introduction to beta and Dirichlet regression. Methods in Ecology and Evolution, 10(9),
1412–1430. https://doi.org/10.1111/2041-210X.13234

Comment#14: Line 469 to 470, unlike linear models, RF does not have the assumption of
non-collinearity.

Response#14:

Thanks for pointing this out. We agree that RF, GLM, and GAM do not have the assumption of
non-collinearity. We use feature selection to use only important variables and develop generalized models
with the least number of features to apply the models to all coastal cities of the United States. We have
modified Line 554 to 555 as follows:

“We conducted a feature selection to use important input variables and calibrated the state-of-art outage
models using seven input parameters…”



Response to Reviewer#2

This paper investigated the limitations of existing power outage models, including bounded prediction,
out-of-distribution prediction, and physics-aware uncertainties The authors found some of the existing
state-of-the-art models may generate unrealistic predictions, and cannot generalize well to extreme events
that are not sufficiently represented in the training datasets. The authors discuss some potential ways to
address the shortcomings of these models. I have some major comments that authors need to address
before publication:

Dear Reviewer,

Thank you for reviewing our manuscript. We are grateful for your comments that have helped to better
explain the critical aspects of power outage predictions. Please find detailed responses to your comments.

Comment#1: The problems mentioned by the authors, including limited generalization ability,
unbounded predictions, and unreasonable uncertainty variations, are common problem for general
machine learning models. Many machine learning community researchers proposed different methods to
address these problems. How unique and critical are they for power outage predictions?

Response#1:

We agree with you that paper lacked a discussion on how critical limitations are with the state-of-the-art
power outage predictions. We have included a new section 9 as “Discussion” in the manuscript:

Utilities and governments often have limited resources to deploy for emergency response pre-event and
during the event. Thus, they benefit from the power outage predictions ahead of a hurricane as it gives
them a chance for effective and efficient predisaster planning. Jersey Central Power& Light (JCPL), a
major utility company in New Jersey, serves 1.1 million consumers. Hurricane Isaias (2020) severely
impacted JCPL’s power supply, leaving 780,000 consumers without power in New Jersey (Jim 25
Giuliano, 2020). Hurricane Isaias impacted about 8,800 locations, with tree-related damages damaging
700 utility poles, 2,800 cross arms, 600 transformers, and around 80 miles of wire. JCPL mobilized
around 1800 crew members to restore services. JCPL restored power for 86% of the consumers in 72
hours (Jim Giuliano, 2020). Robust estimates of spatially distributed outages ahead of a hurricane can
assist these utilities in planning their crews and potentially requesting additional ones from other utilities
under mutual assistance agreements during disasters (National Academies of Sciences and Medicine).

Erroneous power outage estimates can result in the non-optimal placement of resources, as optimal
resource allocation algorithms will use predicted outages (Brown, 2002). Overestimated power outages
could result in prioritizing a less affected city, placing more resources on that city than required. Limited
mobility during a disaster can lead to prolonged outages, delaying the restoration effects (National
Academies of Sciences and Medicine). The limited predictability of power outage models hinders the
utilities’ ability to arrange their crews and request help from other utilities to repair the power network
effectively.

Additionally, large manufacturing companies or data centers are covered with business interruption
insurance. Power outages from hurricanes can severely impact the operations of these companies.



Insurance companies can use simulations on historical disaster data with power outage predictions to
decide the insurance premium. Insurance premiums are based on downtime, the time for which power
downtime. While calculating downtime is not the scope of this paper, the number of outages is determined
to get the downtime (Liu et al., 2007). To determine downtime, insurance companies consider the
uncertainty of the disruption, high uncertainty in predictions can lead to high insurance (Johnson, 2001).
Thus, more certain estimates can help in more fair pricing of insurance premiums. Thus, improvements
are required to make robust power outage predictions.
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https://doi.org/10.1109/TPWRS.2007.907587

Comment#2: Now there is a variety of more complex power outage prediction models [1], are there any
specific reasons for the authors to choose to evaluate traditional machine learning models? These
traditional models are known to be less representative.

[1]Xie, Jian, Inalvis Alvarez-Fernandez, and Wei Sun. "A review of machine learning applications in
power system resilience." In 2020 IEEE Power & Energy Society General Meeting (PESGM), pp. 1-5.
IEEE, 2020.

Response#2:

Thanks for pointing this out. We have included an introduction to more complex power outage prediction
models, namely neural networks, kernel methods such as support vector machines, and other
tree-ensemble methods, such as AdaBoost, which can model non-linear relationships between input
parameters and outages (Xie et al., 2020). However, data availability limits the applicability of these
methods at a large scale for power outage predictions from extreme events.

Power Outage Models by (Liu et al., 2007; Han et al., 2009; Guikema et al., 2014; McRoberts et al.,
2018; Shashaani et al., 2018) provide outage predictions at a coarser level compared to predictions at
component. However, these models are mostly based on open-source, publicly available data and can be
generalized at a larger scale to the coastal cities in the United States. Hurricane-caused outages are mostly

https://doi.org/10.17226/24836


at the transmission level, which is responsible for city-wide outages (Brown, 2002; poweroutage.us/faq,
last accessed: 13 January 2023) rather than the customer meter level. So, predicting city-wide outages can
still guide utilities to arrange for crews and emergency backup power ahead of a storm. We have also
included this discussion (in blue below) in the introduction section after Line 76:

Previously, researchers have used more complex power outage prediction models, namely neural
networks, kernel methods such as support vector machines, and other tree-ensemble methods, such as
AdaBoost, which can model non-linear relationships between input parameters and outages (Xie et al.,
2020). (Kankanala et al., 2014) employed AdaBoost to predict weather-related power outages. (Kankanala
et al., 2014) trained a separate model for each city for daily use, and they did not cover extreme weather
outages. (Eskandarpour & Khodaei, 2018 and Eskandarpour et al., 2018) used power grid
component-level data with support vector machines. (Rudin et al., 2012) ranked the power grid
components (feeder failures, cables, joints, terminators, and transformers) based on their vulnerability to
extreme weather events. (Haseltine & Eman, 2017) used a neural network to predict the failure of the
power grid components for pre-storm. Such models will require specialized high-resolution power grid
component-level data for each city which is not accessible given the data protocols of utility companies.
(Sun et al., 2016) used Twitter (https://twitter.com; last accessed: 13 January 2023) data to predict
real-time outages. (Jaech et al., 2018) used repair logs data employing Natural Processing with a
Recurrent Neural Network to predict real-time outage durations. However, tweets (https://twitter.com; last
accessed: 13 January 2023) and repair logs are available after the hurricane made an impact on the city.
Thus, leveraging repair logs is not possible to predict outages for pre-event planning ahead of a storm.
Hence, data availability limits the applicability of these methods at a large scale for power outage
predictions from extreme events.

GLM (Liu et al., 2007), GAM (Han et al., 2009), and Random Forest based power outage prediction
models (Guikema et al., 2014; McRoberts et al., 2018; Shashaani et al., 2018) provide outage predictions
at a coarser level compared to predictions at component. However, these models are mostly based on
open-source, publicly available data and can be generalized at a larger scale to the coastal cities in the
United States. Hurricane-caused outages are mostly at the transmission level, which is responsible for
city-wide outages (Brown, 2002; poweroutage.us/faq, last accessed: 13 January 2023) rather than the
customer meter level. So, predicting city-wide outages can still guide utilities to arrange for crews and
emergency backup power ahead of a storm. Hence for the scope of this paper, we focus on GLM, GAM,
and Random Forest-based power outage prediction models.
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Comment#3: It is unclear to me why beta regression should perform well in general cases. I think it also
has its own problems such as strict distribution assumption, and does not address the representativeness
issues which eventually cause the poor generalization problem. Could you provide any justifications and
performance comparison regarding why Beta regression should be used?

Response#3:

Thank you for pointing this out. While beta regression analysis was not the scope of this paper, we wanted
to suggest possible candidate methods to overcome the challenges with state-of-the-art power outage
prediction models. The authors are currently exploring the possibility of beta regression as a power outage



prediction model. Accordingly, we have modified section 10 on “Suggested future research for
“comprehensive” outage risk assessments” to point out that Beta distributions are just a suggestion (and
we are currently working on that) as follows:

Efforts are still needed to overcome the limitations of state-of-the-art power outage prediction models. In
this paper, we suggest the study of Beta GAMs to address them (Olkin and Liu, 2003; Ferrari and
Cribari-Neto, 2010). While performing a Beta regression analysis falls outside this paper’s scope, we
argue that the fundamental properties of Beta distributions can help overcome the challenges with
state-of-the-art power outage prediction models. Beta distributions model random variables that take
values from 0 to 1. Thus, Beta GAMs can model the fraction of outages in a city, making predictions of
total outages that are bounded by the maximum number of customers, unlike Negative Binomial GLM
and GAM regressions.

In addition, similar to Negative Binomial GAM, Beta GAM can account for the high variability of the
input variables and can handle the overdispersion in power outage data (Douma and Weedon, 2019). Also,
Beta GAMs could extrapolate outages for the extreme (low and high) values of winds since Beta
predictions always go from their minimum value of 0 to their maximum value of 1. Finally, Beta GAMs
have also closer to zero variance at observations values of zero and one. Thus, Beta GAMs can also
predict the outages with low variance at low and high winds closer to the physics of infrastructure failure.
Thus, we suggest developing such Beta GAMs for improved outage prediction.
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