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Abstract. Fire is an integral part of the Earth system, interacting in complex ways with humans, vegetation and climate. Global

fire activity is an important element of the carbon cycle, and understanding its role in the context of climate change is crucial.

In order to represent the transient fire-climate-vegetation interactions and to integrate these in the long term climate projections

of climate models, coupling these three components is necessary. Global fire models have been coupled to climate-vegetation

models with complex atmosphere modules but these models are computationally intensive. In this research, we use the Uni-5

versity of Victoria Earth System Climate Model 2.9 (UVic ESCM), an ESCM of intermediate complexity to which we couple

a process based global fire model, in order to develop a computationally efficient means of studying long term fire-climate-

vegetation interactions. The fire model used simulates burned area based primarily on relative humidity, soil moisture and

biomass density. The UViC ESCM’s simulated relative humidity is improved by parameterizing it according to the simulated

precipitation, and observational variability is added to the simulated climatology to improve the variability of simulated burned10

area. The best parameterization achieves a moderate spatial agreement of simulated burned area with observational data. Trop-

ical rainforests in South America and Africa, however, display very high burned fractions, due to the poorly simulated relative

humidity input; indeed, when we used observed relative humidity to simulate fire activity, the pattern of burned area in the

tropics improved substantially. This research demonstrates the importance of variability and regional patterns of climatology

for global wildfire activity and the corresponding limitations of ESCMs that simplify atmospheric circulation. This suggests15

that using pattern scaling of climate variables as an input to fire models could provide such ESCMs of intermediate complexity

with the ability to integrate global fire activity.

1 Introduction

1.1 Importance in the Earth System

Fire is a crucial component of the global carbon cycle via its interaction with global vegetation distribution and structure, and20

is deeply intertwined with climatic and weather conditions and anthropogenic activities (Bowman et al., 2009). About 3% of

global vegetated land surface burns annually (Giglio et al., 2013; Ding et al., 2020), generating fire-caused carbon emissions

(i.e. gross carbon emissions to the atmosphere due to fire, including deforestation fires) equivalent to 20% of anthropogenic
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CO2 emissions (Yang et al., 2015; Van der Werf et al., 2010). The net CO2 effect of burning biomass on the climate, however,

differs from the effect of CO2 emissions from fossil fuel burning, because of vegetation regrowth and decomposition (Landry25

and Matthews, 2016) and long term carbon sequestration in pyrogenic carbon (Landry and Matthews, 2017; Jones et al., 2019).

Through these processes, between 50%-80% of 20th century fire-caused carbon emissions have returned to the terrestrial carbon

pool (Li et al., 2014; Yue et al., 2014; Yang et al., 2015). Global fire activity also significantly contributes to other greenhouse

gas (Van der Werf et al., 2010; Ciais et al., 2013) and aerosol (Andreae and Merlet, 2001) with aerosol cooling effects (Ward

et al., 2012) emissions and to land surface albedo changes (Landry and Matthews, 2016). Driven by climate change, long fire30

weather season now affects significantly more fire-susceptible land globally and occurs much more frequently (Jolly et al.,

2015). End-of-century projections generally agree that global yearly burned area and fire-caused emissions will increase with

warming (Moritz et al., 2012; Kloster et al., 2012; Pechony and Shindell, 2010). Fire could have a small but non-negligible

warming (Tosca et al., 2013; Knorr et al., 2015) or a greater cooling (Ward et al., 2012; Landry et al., 2015) feedback on the

climate.35

Global burned area datasets derived from satellite observations in the past 25 years have allowed to identify the drivers of fire

activity for finer spatial and temporal scales (e.g. Bistinas et al., 2014; Kelley et al., 2019), and to develop process-based models

with varying levels of complexity which, when coupled to Dynamic Global Vegetation Models (DGVMs), are able to represent

the observed patterns and trends and identify and quantify feedbacks between fire, vegetation and climate (Hantson et al., 2016).

The Fire Model Intercomparison Project (FireMIP) has assessed, for several benchmarks, state-of-the-art global fire-vegetation40

models with varying levels of complexity, parameterization and structure (Hantson et al., 2016, Hantson et al., 2020). Some

of these fire-vegetation models have been coupled to climate models and used in the Climate Model Intercomparison Project

6 (CMIP6) to assess global fire-caused carbon emissions under different climate change scenarios (Kasoar et al., 2021). The

atmospheric modules of these coupled fire-vegetation-climate models are General Circulation Models (GCMs), which largely

contribute to making CMIP6 simulations computationally intensive.45

However, Earth system Models of Intermediate Complexity (EMIC; Claussen et al., 2002) offer a more computationally

efficient approach to simulate century-scale Earth system dynamics. Many EMICs have a simplified atmosphere component

coupled to comprehensive representations of the carbon cycle and of ocean circulation, which allows them to simulate century-

scale temperature responses to greenhouse gas emission scenarios at a relatively low computation cost (e.g. a few days at most

using a common desktop computer; Mengis et al., 2020). To the best of our knowledge and despite the potential importance of50

fire for long term temperature projections, there currently exists only one EMIC with an interactive fire model (see Wu et al.,

2021). Fire activity patterns are highly sensitive to fire weather conditions, and thus it is not clear to which degree it is possible

to simplify the representation of atmospheric processes without sacrificing the main patterns of global fire activity.

In this study, we address the absence of interactive fire models coupled to EMICs by coupling a process-based fire model

to the University of Victoria Earth System Climate Model (UVic ESCM, Weaver et al., 2001). The UVic ESCM has been55

used to demonstrate the irreversibility of CO2-induced warming (Matthews and Caldeira, 2008; Eby et al., 2009) and the

proportionality of emissions to global temperature change (Matthews et al., 2009; Zickfeld et al., 2009) and has also been

included in the sixth phase of the Coupled Model Intercomparison Project (CMIP6). The goal of this study is to simulate the
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spatial patterns of fire in an EMIC so as to allow the study of fire-climate-vegetation interactions in the context of climate

change.60

In the following sections, we first summarize the various components of the model we used and how they are coupled. We

then describe how we modified the UVic ESCM’s climatology and the fire model to improve their coupling. We follow with

the main results offered by the coupled model and then discuss the limitations of this approach and possible improvements

toward a more viable approach.

2 Methods65

2.1 UVic ESCM

The UVic-ESCM (Weaver et al., 2001) is a 3.6° X 1.8° Earth system Model of Intermediate Complexity (EMIC) (Claussen

et al., 2002). EMICs are well suited to predict long-term temperature change and the interaction of various components of the

ocean, land and atmosphere over this time period (Claussen et al., 2002). The UVic ESCM contains a 19 layer ocean general

circulation model coupled to a thermodynamic/dynamic sea-ice model, a single layer thermo-mechanical land ice model and70

a single layer reduced complexity vertically integrated energy-moisture balance atmospheric model. All modules are coupled

together every 5 model days and the simulated climate variables exhibit variability at a monthly timestep. Present-day winds are

prescribed in the atmosphere model and a dynamical wind feedback is added to allow a first order approximation of wind stress

changes in a changing climate. Precipitation occurs when relative humidity reaches 85%. Simulated globally-averaged annual

precipitation is in good agreement with observations, but the agreement is less able to accurately simulate spatial patterns and75

temporal variability (Mengis et al., 2020).

2.2 MOSES-TRIFFID land surface - vegetation modules

The UVic ESCM is coupled to a land surface scheme (Meissner et al., 2003), a simplified version of the Met Office Surface

Exchange Scheme (MOSES); and a Dynamic Global Vegetation Model (DGVM), the Top-down Representation of Interactive

Foliage and Flora Including Dynamics (TRIFFID) (Cox, 2001). The MOSES is a single layer which describes the land module80

in terms of lying snow, skin and soil temperature and soil moisture content. TRIFFID explicitly models five plant functional

types (PFT): broadleaf trees, needleleaf trees, C3 grasses, C4 grasses and shrubs, which are recognized by MOSES. Inputs from

the climate module influence vegetation structure, distribution and growth, which change land-surface parameters and affect

atmospheric CO2 concentration. The areal coverage, leaf area index and canopy height of each PFT are calculated for each

grid cell based on carbon availability in the land surface scheme and a Lotka-Volterra competition model. Carbon fluxes, the85

difference between photosynthesis and plant respiration, depend both on climate and atmospheric CO2 concentration. Carbon is

transferred to the soil in the land surface scheme by litterfall. From the soil, carbon is transferred to the atmosphere by microbial

respiration, which depends on soil moisture and temperature. Carbon and water fluxes are coupled with the atmosphere every

five days, and with the TRIFFID DGVM every month. The TRIFFID model then passes vegetation information to the land
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Figure 1. Aboveground vegetation carbon density, simulated using prescribed GFED4 burned area, simulated without fire and observed.

Observed data from Spawn et al. (2020).

surface scheme which updates its vegetation-dependent parameters. The TRIFFID explicitly describes vegetation in detail but90

it is less complex than other DGVMs in terms of PFT diversity. For example, the Community Land Model (CLM; Levis et al.,

2004) used in fire modeling by Li et al. (2012b) and Kloster et al. (2010) has 10 PFTs instead of the 5 PFTs of TRIFFID

in the UVic ESCM. The simulated vegetation structure (the proportion of each PFT per gridcell) is spatially correlated with

observations at r=0.635 (Meissner et al., 2003), which is comparable to when TRIFFID has been coupled to atmospheric

general circulation models. However, specific areas show low correlation due to complex physiological responses not captured95

by global vegetation models and because of climate biases simulated by the UVic ESCM. Moreover, vegetation carbon density

(kgCm−2) per gridcell, an important driver of fire activity, correlates moderately well with observations at r=0.33 (Fig. 1b)

in a simulation with the default biomass mortality parameterization (constant loss rate attributed to disturbance independent

of climate and vegetation), and r=0.30 (Fig.1a) with prescribed burned area dataset from observations (GFED4, Giglio et al.,

2013).100
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Figure 2. Fire parameterization diagram of the present study. Dotted arrows represent a transient simulation using different GHG emission

scenarios. The current study looks at an equilibrium climate scenario.

2.3 Fire parameterization

The fire parameterization used in this study models fire as a mechanistic process (Fig. 2; adapted from Li et al. (2012b)) with

three mains steps: (1) fire occurrence (sect. 2.3.1), (2) fire spread (sect. 2.3.2) and (3) fire impacts (sect. 2.3.3). For steps

(1) and (2), our parameterization draws from Li et al. (2012b) and for step (3) we use the parametrization by Landry et al.

(2015). Our fire model calculates the number of ignitions per gridcell based on prescribed observed lightning frequency and105

population density, as ignitions that have the potential to lead to vegetation fires are both natural and anthropogenic. The

agriculture fraction (crop + pasture) is prescribed in the UVic ESCM and is treated as if it were natural vegetation by the fire

parameterization. The Li et al. (2012b) parameterization makes the same assumption. Based on ignition counts, anthropogenic

fire suppression rates, climate variables (relative humidity and soil moisture) and vegetation characteristics (carbon density and

PFT), fire counts are estimated. Average fire spread rate is also estimated based on simulated climate and vegetation variables.110

Combined with a prescribed average fire duration, average fire spread rate and fire counts are used to calculate burned area

per grid cell. The fire impacts module calculates how much of this burned area remains alive after the fire and the resulting

emissions impacts, based on the type of vegetation that burns. The following sects. 2.3.1-2.3.3 describe the fire model and the

modifications brought to the UVic ESCM atmospheric module. The parameters used in the formulas are described in Table 1.

5
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2.3.1 Fire occurrence115

The number of ignitions Ni in a grid cell is

Ni = In + Ia (1)

where In is the number of natural ignitions and Ia the number of anthropogenic ignitions.

The number of natural ignitions is120

In = Il · Iratio · γ (2)

where Il is the total number of lightning flashes, Iratio is the ratio between the number of cloud-to-ground flashes and the

number of lightning flashes and γ is the ignition efficiency of cloud-to-ground lightning (Latham and Schlieter, 1989).

Iratio is given by125

Iratio =
1

5.16 +2.16 · cos(3 · lat)
(3)

where lat is the latitude in degrees (Prentice and Mackerras, 1977).

The number of anthropogenic ignitions Ia (countmonth−1) is

Ia = 0.026452 ·D0.4 (4)130

where D is the population density (nopeoplekm−2) (Li et al., 2012b).

Fire counts Nf (i.e. the number of ignitions that start a fire) are

Nf =





0 if snow > 0.

Ni · fb · fm · (1− fs) if snow = 0.
(5)

where snow is the amount of lying snow, fb is the fuel availability, fm is the fuel combustibility and fs is the fire anthropogenic135

suppression (Li et al., 2012b). The three f functions vary between 0 and 1.

Fuel availability fb is a function of biomass surface density and is given by

fb =





0 if Bact < Blow.

Bact−Blow

Bup−Blow
if Blow ≤Bact ≤Bup.

1 if Bact > Bup.

(6)
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where Bact is the actual biomass density (gCm−2), Blow is the minimum biomass density at which a fire can start and Bup is140

the biomass density over which fuel availability no longer limits ignitions from starting fires (Li et al., 2012b).

Fuel combustibility fm is

fm = fRH · fθ (7)

where fRH is a function of relative humidity (RH) and fθ is a function of soil moisture (Li et al., 2012b). Both functions vary145

between 0 and 1.

fRH is given by

fRH =





1 if RHact ≤RHlow.

RHhigh−RHact

RHhigh−RHlow
if RHlow < RH < RHhigh.

0 if RHact ≥RHhigh.

(8)

where RHact is the actual relative humidity, RHlow is the RH below which ignitions are not limited by RH and RHhigh is150

the maximum RH over which a fire cannot start.

fθ is calculated from the soil moisture θ

fθ = e

[
−π( θ

θe
)2

]
(9)

where θ is the soil moisture (SM ) relative to the saturation soil moisture SMSAT and θe is the extinction coefficient of soil155

wetness (Li et al., 2012b). The choice of θe determines a threshold soil moisture level at which the success of ignitions is very

small.

Fire suppression fs by humans is a function of population density D and is applied to fire counts by the following relationship:

fs = ϵ1− ϵ2 · e(−α·D) (10)160

where ϵ1 and ϵ2 and α are constants (Li et al., 2012b; Pechony and Shindell, 2009).

2.3.2 Fire spread

In Li et al., 2012b, the average fire duration is assumed to be 1 day which is an underestimate of large scale wildfires which

last many days. This value is still a good estimate of fire duration, as it corresponds to the mathematical expectation of an

empirically-derived exponential distribution of fire duration (Venevsky et al., 2002).165
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Fire parameter Description Value by model Units

Precip proxy

(rhsim)

Prescribed RH

(rhobs)

Base

(rhsimBase)

Other

literature

γ cloud-to-ground lightning ignition efficiency 0.046 0.046 0.251 dmnl

θe extinction coefficient of soil wetness 0.556 0.692 0.692 0.34/0.353 dmnl

SMSAT saturated soil moisture 4582 4582 4582 kgm−2

Θw wilting soil moisture content 0.136 0.136 0.1363 dmnl

Θc critical soil moisture content 0.346 0.346 0.2423 dmnl

g(0) constant 0.052 0.052 0.052 dmnl

Blow min. biomass density for fuel availability 906 906 1552 gCm−2

Bup max. biomass density for fuel availability 10502 10502 10502 gCm−2

RHlow min. relative humidity for fuel combustibility 0.32 0.46 0.32 dmnl

RHhigh max. relative humidity for fuel combustibility 0.72 0.96 0.72 dmnl

ε1 fire suppression constant 0.992 0.992 0.992 0.955 dmnl

ε2 fire suppression constant 0.982 0.982 0.982 0.905 dmnl

α fire suppression constant 0.0252 0.0252 0.0252 0.055 dmnl

umax maximum fire spread rate (BT/NT/S/C3/C4) 0.11/ 0.15/ 0.17/ 0.2/ 0.2 2 ms−1

Ω burned area factor 16 26 16 dmnl

Climate parameter

PRmin min. precipitation threshold (RHsim) 1e-076 na 1e-076 mms−1

PRmax max. precipitation threshold (RHsim) 1e-056 na 1e-056 mms−1

Table 1. Fire and climate parameters values used. Plant Function Types (PFTs) are Broadleaf trees (BT), needleleaf trees (NT), shrubs (S),

C3 grass (C3) and C4 grass (C4).
1Latham and Schlieter (1989), 2Li et al. (2012b), 3Arora and Boer (2005), 4Thonicke et al. (2010), 5Pechony and Shindell (2009), 6own work

Every fire counted spreads in an elliptical shape where the longest axis is in the downwind direction. The length-to-breadth

ratio LB is estimated by

LB = 1 + 10 · (1− e−0.06w) (11)

where w is the wind speed in ms−1 (Arora and Boer, 2005).170

The head-to-back ratio HB is given by

HB =
LB + (L2

B − 1)1/2

LB − (L2
B − 1)1/2

(12)
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(Li et al., 2012b).

175

Fire spread rate in the downwind direction uw (ms−1) is

uw = 2umax,i · fRH · froot · g(w) (13)

where umax,i is the maximum fire spread rate in natural vegetation regions for vegetation type i and froot and g(w) are func-

tions of soil moisture and wind speed respectively and vary between 0 and 1 (Li et al., 2012b). froot is a surrogate for vegetation

moisture content (Arora and Boer, 2005). The 2x factor comes from the corrigendum of Li et al., 2012a. In Li et al., 2012b,180

froot is dependent on the water content of the different soil layers associated with different vegetation types. Since the land

surface scheme of the UVic model is single layered (Meissner et al., 2003), froot will be constant among plant functional types.

froot is given by

froot = 1− tanh

(
1.75βroot

βe

)2

(14)185

where βroot is the availability of water in the soil and βe is an extinction wetness constant above which the probability of fire

is negligible (Arora and Boer, 2005).

betaroot is given by

βroot = max

[
0,min

(
1,

θ− θw

θc− θw

)]
(15)190

where θw is the wilting soil moisture content (the volumetric soil moisture concentration below which stomata close) and θc

is the critical soil moisture content (the volumetric soil moisture concentration above which stomata are not sensitive to soil

water) (Arora and Boer, 2005).

g(w) is given by195

g(w) =
2LB

1 + 1
HB

g(0) (16)

(Li et al., 2012b), where g(0) is a constant.

The fire spread rate perpendicular to the wind up is

up = umax · g(0) · froot · fRH (17)200

(Li et al., 2012b).
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The average burned area Ba (km2) of a single fire is then defined according to the formula for the area of an ellipse, namely,

Ba =
Π ·u2

w · t2
4LB

· (1 +
1

HB
)2 ·Ω · 10−6 (18)

(Li et al., 2012b), where t is the average fire duration in seconds, Ω is an adjustment factor and 10−6 converts m2 to km2.205

The burned area BA (km2) in the grid cell is then the product of the number of fires with the average burned area per fire,

BA = Nf ·Ba (19)

where Nf is the number of fires.

2.3.3 Fire impacts210

Once the burned fraction has been calculated, it is applied to the vegetation fraction for each PFT taking into account that woody

PFTs will not burn completely because of islands of vegetation that remain unburned (Landry et al., 2015, Supplementary

material). This amounts to a 5% difference between modelled gross and net burned area. Fire-caused emissions, consisting of

CO2, non-CO2, aerosols and pyrogenic carbon emissions, are then calculated and allocated to the other modules (Landry et al.,

2015).215

2.4 Improvements to the UVic ESCM climatology

To improve the simulated climatology of the UVic ESCM, we created a proxy for the simulated relative humidity based on

simulated precipitation and we added observationally-derived variability to the two main climate variables used by the fire

model, relative humidity and soil moisture. We also performed simulations using prescribing observational relative humidity

as input to the fire model, to assess the degree of adequacy of our precipitation proxy.220

2.4.1 Relative humidity

Relative humidity simulated in the UVic ESCM is almost perfectly homogeneous spatially and temporally because of the use of

a constant relative humidity threshold of 0.85 to generate precipitation in the model (Fig. 3a). To improve its spatial variability,

we used the more variable simulated precipitation to derive a relative humidity field as follows:

RHsim =





0 if PRsim ≤ PRmin

PRsim−PRmin

PRmax−PRmin
if PRmin < PRsim < PRmax

1 if PRsim ≥ PRmax

(20)225

where RHsim is the relative humidity field used in the fire model, PRsim is the simulated precipitation, PRmin and

PRmax are arbitrary precipitation value thresholds determining the null and saturated relative humidity. These two values
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Figure 3. Relative humidity for the month of August (a) simulated by the UVic ESCM (constant at 0.85 over most land surface and every

month), (b) estimated using the simulated precipitation as a proxy and (c) based on observation. For all months, see Fig.4.

(Table 1) correspond to annual extremes of a desert climate (PRmin) and a semi-arid climate (PRmax). They were chosen

to optimize the seasonal and spatial variability of the relative humidity field generated by the simulated climatology (Fig. 4).

The precipitation-proxied relative humidity (Fig. 3b) greatly improves on the default UVic simulated relative humidity (Fig.230

3a) in terms of spatial pattern and variability and in terms of seasonal variability (Fig. 4). The discrepancy with observation-

based relative humidity (Fig. 3c, Fig. 4) is however still important. We therefore also included simulations using monthly

observational relative humidity, as input to the fire model.

2.4.2 Natural variability

The monthly simulated soil moisture (SMsim) and relative humidity (RHsim) display significantly less variability than ob-235

servational variability (Fig. 4 & Fig. 5, respectively). We included simulation runs where the standard deviation of observed

precipitation and soil moisture products were added to the simulated values (Fig. 4 & Fig. 5, respectively). A visual analysis of

histograms showed that both monthly-averaged precipitation and soil moisture were generally normally distributed across the

observation periods, validating the use of the observational standard deviation. Every fire step, when variability was added, the

precipitation and soil moisture used in the fire model in a grid cell were given by240

PRsimsd = PRsim + SDPR · rndnum ; PRsimsd ≥ 0 (21)
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Figure 4. Relative humidity, precipitation-proxied and observed. Precipitation-proxied relative humidity is based on simulated precipitation.

Figure 5. Soil moisture, simulated and observed. Simulated soil moisture has added observational variability.
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Variable units
averaging

period
source

Prescribed

Lightning rate flashes km−2month−1 1995-2013 Cecil et al. (2014)

Population density people km−2 2000 Jones and O’Neill (2016)

Precipitation variability mmmonth−1 1901-2013 Schneider et al. (2014)

Soil moisture variability kgm−2 1948-2016 Fan and Van Den Dool (2004)

Crop and pasture lands fraction of gridcell 2005 UVic ESCM default

Model validation

Fire counts no of fires km−2month−1 2001-2006 Giglio et al. (2006)

Burned fraction fraction of gridcell month−1 2001-2012 Giglio et al. (2013) (GFED4)

Relative humidity unitless 1948-2014 Kalnay et al. (1996)

Soil moisture kgm−2 1948-2016 Fan and Van Den Dool (2004)

Aboveground biomass density kgCm−2
1960-2000

period
Olson et al. (2001)

Table 2. Description of datasets used for forcing and validation.

SMsimsd = SMsim + SDSM · rndnum ; SMsimsd ≥ 0 (22)

where PRsimsd and SMsimsd are the simulated precipitation and soil moisture with added observational variability, sd their

respective monthly standard deviation and rndnum is a random normal number, identical for precipitation and soil moisture245

pairs and taken from a standard normal distribution (mean = 0, standard deviation = 1).

We also added observational variability to the prescribed relative humidity simulations the same way as for precipitation

(eq.(21))

RHobssd = RHobs + SDRH · rndnum ; RHobssd ≥ 0 (23)

where RHobssd is the relative humidity with added variability prescribed to the fire model, RHobs is the monthly observational250

relative humidity and SDRH is the monthly relative humidity observational standard deviation.

2.5 Parameter optimization

In order to accomodate the monthly timestep and coarser resolution of the UVic ESCM relative to the original parameterization

(Li et al., 2012b), we adjusted the fire model parameters from the literature (Table 1) to optimize, step by step, the simulated

ignitions, then fire counts and finally the burned area. We performed this optimization process for a model using the simulated255

precipitation relative humidity proxy (rhsim) and a model using prescribed relative humidity (rhobs). The base model (default
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parameterization) and the parameterized models are described in Table 1. Based on this preliminary optimization, we then

tested the effect of adding variability to relative humidity and soil moisture, as well the effect of multiplying the final burned

area by a constant factor Ω, leading to a multi-model comparison.

2.6 Simulation settings260

Each simulation ran for up to 2000 years with constant forcings, until the models had reached equilibrium in terms of burned

area versus vegetation regrowth. We used pre-industrial atmospheric CO2 concentration and other climate forcings, but con-

temporary agricultural fractions (year 2005) and population density (beginning of the 21st century) (Table 2). As a benchmark

to evaluate the fire parameterizations, we used the burned fraction product from the version 4 of the Global Fire Emissions

Database (GFED4) (Giglio et al., 2013), which spans the 2001-2010 period. The global burned area of GFED4 amounts to265

350Mha/yr, 4Mha/yr of which corresponds to deforestation fires (based on Van der Werf et al., 2010). GFED4 does not

detect small fires that have been estimated to affect 120Mha/yr, mostly (80%) from croplands, savannahs and grasslands

(Randerson et al., 2012). To compare the different model versions, we used the monthly burned fraction and above-ground

vegetation carbon and the yearly global totals for burned area and aboveground vegetation carbon for the last 20 years of each

simulation.270

3 Results

The fully coupled model, using simulated precipitation as a proxy for relative humidity (rhsimSmRh in Fig.8, hereafter

rhsim), simulates burned fraction with a moderate global agreement with GFED4 (Fig. 6a) (r=0.39) and underestimates global

burned area by about 50%. The model generally overestimates the spatial extent and underestimates the spatial variability of

burned fraction (Fig. 6b). The equatorial region of Northern Hemisphere Africa and Southern Hemisphere Africa, Northern275

South America and Equatorial Asia (for map of regions, see Fig.9c) are particularly affected by this bias; there the model

strongly overestimates burned fraction. This over-burning pattern is a direct consequence of the precipitation-proxied relative

humidity input, which, while it definitely improves on the default relative humidity simulation, does not quite reproduce the

permanently water saturated atmosphere of those tropical rainforest regions (Fig.4). The model using observation-based relative

humidity (rhobsX2SmRh in Fig.8, hereafter rhobs) corrects this bias and confirms the predominant role of relative humidity280

in these regions (Fig.6c).

The simulated vegetation reflects the model simulated fire patterns, with a complete burn down of the vegetation in the

equatorial African rainforest region and the significant reduction of vegetation density in Northern South America (Fig. 7b).

In other regions, the rhsim model partially reproduces the higher burned fractions in North and South Africa savannas and in

Southern South America, and more correctly the high burned fraction in northern Australia, but not always quite to the same285

order of magnitude as observations (Fig. 6, note the log-transformed axis). The strong discrepancies in North and South Africa

can be explained, again, partly by the lack of variability of the model’s precipitation-proxied relative humidity across these

regions, which limited the potential to increase the effect of low relative humidity (RHlow) and low soil moisture (θe) on fire
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activity during the optimization phase (see Table 1 for differences in parameterization between the rhsim and rhobs models).

In Boreal North America and Boreal Asia, burned area is underestimated following an overestimate of soil moisture in the290

warm season (Fig. 5).

Other notable simulated burned area biases can be attributed to biases in the simulated vegetation of the UVic ESCM. The

most important of these vegetation-induced biases is in Temperate North America, where both models overestimate fire activity,

rhsim more in terms of spatial extent and rhobs more in terms of intensity. There are two reasons for this. First, vegetation

and precipitation are overestimated by the UVic ESCM-TRIFFID in this region (see Fig. 5 & 7 in Mengis et al., 2020, see also295

Fig.1b vs. c in this paper); this leads to higher fuel loads in a relatively still dry (in relation to the parameterization of the models)

region, the perfect conditions for biomass burning. Moreover, in the rhobs model, the prescribed relative humidity informing

the fire model is even drier (Fig.4), while the TRIFFID vegetation model receives an overestimated simulated precipitation

input, creating an environment that is very arid for fire yet highly productive for vegetation, a virtual haven for high burned

fractions to occur (Fig. 6c). The second reason is that a lot of the vegetated area in Temperate North America is flammable300

cropland, which is treated as natural vegetation by the current fire parameterization, leading to an overestimation of burned

area (see Li et al. (2013) for a parameterization of agriculture fires). In western Central Asia high burned fractions occur due to

agriculture, a large part of which is not captured by our model because the UVic ESCM simulates no or very little vegetation

in this area.

In summary, the main discrepancies between the simulated and observed burned area are due to seasonal and regional biases305

and low variability of the simulated climate and vegetation in the UVic ESCM.

3.1 Effect of improvements

The results presented in Fig.6-7 were made possible by several modifications to the simulated climatology and the fire model

parameters. The modification of the simulated relative humidity by using the more variable simulated precipitation field as

a proxy greatly improved the variability of the simulated burned fraction (Fig.8, rhsimBASE vs. rhUV IC ). The spatial310

correlation of fire activity was significantly increased by optimizing the parameterization of the fire model, though at the cost

of losing a lot of variability (Fig.8, rhsimNOSD vs. rhsimBASE).

Our results from the previous section indicate that using monthly simulated climatology rather than the daily to subdaily

timestep the current fire model was designed for (Li et al., 2012b), still allows to capture many broad patterns of fire activity.

This requires emulating temporal variability with the use of natural variability, which significantly improves the simulated315

burned fraction, both in terms of spatial correlation and spatial variability relative to observations (Fig. 8, rhsimSmRh vs.

rhsimNOSD). Natural variability, however, is only a partial substitute for fine-scale temporal variability, bringing the nor-

malized standard deviation from about 0.1 to 0.25.

Soil moisture natural variability alone brought significant improvements to the model (Fig.8, rhsimSm vs rhsimNOSD)

while relative humidity variability decreased (Fig.8, rhsimRh vs rhsimNOSD) or did not improve (Fig.8, rhsimRhX2 vs320

rhsimNOSD) the performance of the model at simulating burned area. In conjunction with soil moisture variability, however,
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Figure 6. Final models with (a) fully simulated climatology (relative humidity is proxied with simulated precipitation) and (b) prescribed

relative humidity. (c) Benchmark using prescribed observational dataset for burned fraction.

relative humidity variability further improved the model (Fig.8, rhsimSmRh vs rhsimNOSD). This highlights fire activity

as dependent on the interaction of both these climate drivers.

In the selection process for the best models, both for the fully simulated climatology (rhsim) and the prescribed relative

humidity (rhobs) ensembles, one of the main tradeoffs that guided our choice was the ability of the model to preserve the325

simulated vegetation relative to the simulation with prescribed observational burned fraction (GFED4). The final rhsim

model (rhsimSmRh in Fig.8) , which had its climatology inputs complemented by both relative humidity and soil moisture

natural variability, displays a burned fraction pattern and variability that mostly preserves the simulated vegetation. This model

was retained instead of the rhsimX2SmRh, which represents more spatial variability for burned fraction but not in the correct

locations, as can be attested from the large decrease it brings to the agreement of simulated vegetation with observations (Fig.330

8). The final rhobs (rhobsX2SmRh in Fig.8) model also benefited from the addition of both relative humidity and soil

moisture natural variability, as well as having its output burned fraction multiplied by two. We understand the relevance of

Ω = 2 factor as an indication that the spatial pattern of burned area is in better agreement with observational data when relative

humidity is prescribed. Since the addition of natural variability for climate inputs only partially substitutes for their lack of

fine-scale temporal variability, Ω further contributes as a substitute. Given the higher spatial agreement, this improves the335
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Figure 7. Final models with (a) fully simulated climatology (relative humidity is proxied with simulated precipitation) and (b) prescribed

relative humidity. (c) Benchmark using prescribed observational dataset for burned fraction.

simulated global burned area (Fig.9a) without increasing the spatial bias of the simulated vegetation (Fig.8). rhobs, however,

does not reach a spatial correlation of burned area with observations higher than rhsim (Table 3). This can be attributed to the

discrepancy mentioned earlier in the rhobs model set; relative humidity driving the simulated vegetation is not the same as the

one which drives fire activity, the former is simulated and biased while the second is prescribed, leading to potential bias in the

simulated fire activity.340

4 Discussion

The goal of this study was to assess the feasibility of the fully coupled and spatially explicit simulation of annual burned

area in an earth system model of intermediate complexity. Our results demonstrate that it is possible to partially substitute for

the limited temporal variability of the simulated climatology by complementing relative humidity and soil moisture with their

natural variability. This method does not however address the spatial variability or the spatial bias of the simulated climatology.345

In particular, relative humidity as simulated by using UVic-simulated precipitation as a proxy lacks spatial variability in the

African tropics, leading to a strong overestimation of fire activity in the central African rainforests. This demonstrates that
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Figure 8. Taylor Diagram (Taylor, 2001) of simulated Burned Fraction (purple/red/brown), correlation uses log-transformed values) and

Aboveground Carbon Biomass Density (green/blue/light blue) for simulated and prescribed relative humidity model sets. Data is normalized

to standard deviation. GFED4: benchmark burned fraction observation-based dataset; rhUVIC: default parameterization and constant rela-

tive humidity function FUNRH=0.5 as per the default relative humidity simulated by the UVic ESCM; BASE: default parameterization (all

other models except rhUVIC have been parameterized to optimize burned fraction); rhsim[...]: precipitation relative humidity proxy mod-

els; rhobs[...]: prescribed relative humidity models; NOSD: no natural variability; Rh: relative humidity natural variability added (monthly

standard deviation); Sm: soil moisture natural variability added (monthly standard deviation); X2: preceding term multiplied by 2 (X2 after

rhsim or rhobs means that final burned area has been multiplied by 2).

relative humidity plays a key role in maintaining tropical rainforests fire-free. When relative humidity is prescribed, clear

improvements occur in particular with regards to the contrasting fire activity between the adjacent African savannas (high

burned area) and rainforest (fire-free) regions (see Fig.6). Global burned area, which is largely controlled by African vegetation350
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Model

global

burned

area

(MHayr−1)

r (log)
GVC

(PgC)
r

rhsim 167 0.39 (0.46) 322 0.69

rhobs 275 0.24 (0.45) 385 0.73

obs 330 1 (1) 404 1
Table 3. Main results for the fully coupled model rhsim, using simulated precipitation as a proxy for relative humidity, the model rhobs

using prescribed relative humidity, and the model using prescribed burned fraction observations based on GFED4. GBA: Global Burned

Area; GVC: Global Vegetation Carbon (aboveground); r: spatial correlation with observations; (log) designates spatial correlation of the

log-transformed burned area.

fires (66%; 1997-2004; van der Werf et al., 2006), is then much more in line with observations (Fig.9), generally without

sacrificing spatial agreement elsewhere (see rhobsX2SmRh vs. rhsimSmRh in Fig.8).

4.1 Comparison with other studies

Albeit one exception (Wu et al., 2021), we are not aware of any other EMICs coupled to a fire model. Before making compar-

isons, we can approximate the potential spatial correlation of burned area with observations that can be achieved by our model355

based on the simulated vegetation, on which fire activity largely depends. The vegetation carbon density simulated by the

vegetation module TRIFFID when burned area is prescribed, is in moderate agreement with observations (r=0.30, Fig.1a). The

present study yields a global spatial correlation of burned area close to this value (r=0.39). The original fire parameterization of

this study, using prescribed observation-based daily to sub-daily climate inputs that informed the simulated vegetation at equi-

librium, yielded a higher global spatial correlation (r=0.60; Li et al., 2012b). Moreover, Li et al., 2012b are able to reproduce360

the main features of global burned area, in particular the high fraction in tropical savannas and very low fraction in tropical

rainforests (see Fig.8 of their paper). An earlier parameterization using an hybrid statistical-process approach and prescribing

monthly climate inputs yielded similar results to our study; a moderate global spatial correlation for burned fraction and mixed

per-region agreement (Glob-FIRM in Thonicke et al., 2010; r=0.39). The current model obtains a global burned area closer to

observations at 167 Mha/yr or 50% underestimation of GFED4, instead of 54 Mha/yr for Glob-FIRM, while Li et al., 2012b365

underestimate GFED3 (Giglio et al., 2010) by <15%.

4.2 Limitations

Generally, integrating modules by coupling them increases the complexity of the model and the uncertainty of its outputs, and

when temporal and spatial scales differ, this can affect the parameterization and require a more difficult calibration (Voinov and

Shugart, 2013). In the present study, we coupled a daily timestep fire model to a monthly timestep climate-vegetation model.370
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Figure 9. (a) Simulated annual burned area; (b) Simulated aboveground vegetation carbon; (c) Map of the 14 regions used in this study at

the model resolution (100x100), after Giglio et al. (2006), van der Werf et al. (2006) and Van der Werf et al. (2010).

Our final fully coupled model rhsim is the best version of the model given the limitations of model-simulated climate and

vegetation variables.

An important limitation to note is the ability of the UVic ESCM to simulate present day vegetation carbon density patterns.

It appears that the UVic ESCM was calibrated to simulate vegetation potential in the absence of fire, given that its simulation

of vegetation in the absence of fire correlates slightly better with observed vegetation (r=0.33, Fig.1b) than its simulation of375

vegetation with prescribed observed fire (r=0.30, Fig.1a)

To demonstrate the importance of the spatial pattern of relative humidity in determining fire activity, especially in the carbon

rich tropical rainforests, we used prescribed relative humidity. Other than this direct influence of the simulated climate, biases

in terms of spatial pattern and intensity of simulated burned area can be attributed to the indirect influence of climate on

simulated vegetation and the limited ability of the vegetation model to represent global vegetation patterns.380

One area of improvement that could be implemented in future model versions is to differentiate between fires in agricultural

regions and those in natural vegetation areas. Agriculture biomass burning, deforestation and peat fires, account for less than

10% of global annual burned area but nearly 40% of emissions (Li et al., 2013). Deforestation in particular is common in

carbon-dense tropical regions and thus contributes disproportionately to fire-caused emissions.

Another notable limitation to our study that could be improved upon is fire duration. Although vegetation fires last on385

average one day (Venevsky et al., 2002), savanna fires in particular are very long-lived (Andela et al., 2019). A fire duration
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parameterization (e.g. Pfeiffer et al., 2013; Le Page et al., 2015) could correct for the underestimation bias of burned fraction

in these regions.

5 Conclusions

The main objective of this study was to assess the feasibility of coupling a global fire model in an EMIC, with the goal of390

improving its century-scale temperature projections by the inclusion of fire-caused emissions in its carbon cycle. We used a

fire model parameterized to represent fire activity variability at the decadal to centennial scales, due to its focus on precipitation-

related inputs (Pechony and Shindell, 2010), namely relative humidity and soil-moisture (Li et al., 2012b; Fig.2). Our study

is unique in that we used the simplified atmospheric module of the UVic ESCM, which simulates atmospheric processes with

monthly variability, to drive the fire-DGVM model, while other fire models prescribed daily (Thonicke et al., 2010) or sub-395

daily (Li et al., 2012b) climatology data to drive their fire-DGVM. Our results suggest that temporal variability is crucial to

inform the fire model, and that adding natural variability to data at longer timesteps can serve as a substitute for the variability

intrinsic to shorter timesteps. However, this does not address issues that arise from poor accuracy of regional patterns. The

UVic ESCM as it stands has many biases in terms of its simulated climate that have direct effects on simulated fire and indirect

effects through vegetation.400

Our success in improving simulated fire patterns using prescribed relative humidity points to one promising solution: using

pattern scaling to emulate climatology based on the linear relationship of climate variables with the EMIC-simulated temper-

ature. Wu et al. (2021) use IMOGEN, an EMIC that emulates monthly climatology using pattern scaling based on CMIP5

climatology data, to which they couple a fire-DGVM model. This solution not only improves the simulated climatology inputs,

but also indirectly the simulated vegetation. Pattern scaling would greatly improve the current model, however it is no panacea;405

linear scaling only explains (in IMOGEN) 15% of precipitation variability as simulated by CMIP5, and relative humidity has

the highest uncertainty of all variables in terms of the magnitude of change (Zelazowski et al., 2018). It would also be pos-

sible to simply pattern scale relative humidity, but the issues with vegetation biases propagating in the simulated fire activity

would partially remain due to biases in other climate variables related to relative humidity, such as precipitation. Nevertheless,

pattern-scaling as described by Wu et al. (2021) is a promising way to achieve a sensible representation of the global fire410

activity patterns in EMICs.

Code and data availability. The code modifications and additions to the UVic ESCM 2.9 model, the input, calibration and validation datasets,

the simulation output files as well as the code used for analysis and to produce the figures are available at https://www.doi.org/10.20383/103.

0647. The references for the data used as input and for calibration and validation are detailed in Table 2. The code for the UVic ESCM 2.9

model can be found at http://terra.seos.uvic.ca/model/.415
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