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Abstract.

One of the least understood temporal scales of global carbon cycle (C–cycle) dynamics is its inter–annual variability (IAV).

This variability is mainly driven by variations in the local climatic drivers of terrestrial ecosystem activity, which in turn

are controlled by large–scale modes of atmospheric variability. Here, we quantify the fraction of global C–cycle IAV that is

explained by large–scale atmospheric circulation variability, which is quantified by spatio–temporal sea level pressure (SLP)5

fields. C-cycle variability is diagnosed from the global detrended atmospheric CO2 growth rate and the land CO2 sink from 16

dynamic global vegetation models and two atmospheric inversions in the Global Carbon Budget 2018. We use a regularized

linear regression model, a statistical learning technique apt to deal with the large number of atmospheric circulation predictors

(p≥ 800, each representing one pixel–based time–series of SLP anomalies) in a relatively short observed record (n < 60

years). We show that boreal winter and spring SLP anomalies allow predicting IAV in atmospheric CO2 growth rate and of10

the global land sink, with Pearson correlations between reference and predicted values between 0.70–0.84 boreal winter SLP

anomalies. This is comparable or higher than that of a similar model using 15 traditional teleconnection indices as predictors.

The spatial patterns of regression coefficients of the model based on SLP fields show a predominant role of the tropical Pacific

and over Southeast Asia extending to Australia, corresponding to the regions associated with the El Niño/Southern Oscillation

variability. We also identify another important region in the western Pacific, roughly corresponding to the West Pacific pattern.15

We further evaluate the influence of the time–series length on the predictability of IAV and find that reliable estimates of

global C–cycle IAV can be obtained from records of 30–54 years. For shorter time–series (n < 30 years), however, our results

show that conclusions about CO2 IAV patterns and drivers need to be evaluated with caution. Overall, our study illustrates a

new data–driven and flexible approach to model the relationship between large–scale atmospheric circulation variations and

C–cycle variability at global and regional scales, complementing the traditional use of teleconnection indices.20

1 Introduction

The global carbon cycle (C–cycle) varies at multiple time scales ranging from minutes to millennium (Ciais et al., 2013).

Quantifying and understanding the patterns of variability in the C–cycle and their drivers is crucial to better understand C–cycle
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dynamics and better constrain future climate projections (Cox et al., 2013; Friedlingstein et al., 2014). Primarily driven by the

land sink dynamics (Piao et al., 2020), inter–annual variability (IAV) is one of the most uncertain and poorly understood terms25

of the global C–cycle in the observational period (Friedlingstein et al., 2019).

A fundamental challenge is that variability in land–atmosphere carbon exchange is affected in complex ways by large–scale

atmosphere circulation modes but also land use changes, forced climate changes, direct physiological CO2 effects on ecosys-

tems, among others (IPCC, 2013). Separating these effects is difficult because of the large uncertainties associated with some

processes, for example land use change (Friedlingstein et al., 2022) or processes not directly observable at global scale (e.g.,30

photosynthesis or heterotrophic respiration) (Schimel et al., 2015; Basile et al., 2020). The second challenge is that the land

sink, as a balance of carbon uptake and release, responds differently to variations in the climatic forcing (Jung et al., 2017; Piao

et al., 2020). This makes it hard to attribute induced land sink IAV to specific drivers, which is crucial for process understand-

ing (Jung et al., 2017; Humphrey et al., 2018, 2021; Wang et al., 2022). Last, the limited length of observational records may

hamper robust statistical analysis (IPCC, 2013): the longest continuous observations of atmospheric CO2 at the South Pole and35

Mauna Loa observatory exist only since 1958 onwards (Dlugokencky and Tans, 2019).

Land biospheric CO2 uptake results from the net balance of carbon uptake from gross primary productivity, and release

from multiple respiration terms, and disturbance induced fluxes such as fires, amongst other smaller terms (IPCC, 2013). Most

of these processes are primarily driven by temperature, water and radiation availability (Jung et al., 2017). These meteoro-

logical drivers are, in turn, modulated by large–scale modes of atmospheric circulation on multiple time–scales, such as El40

Niño/Southern Oscillation (ENSO; Gu and Adler, 2011) and the Pacific Decadal Oscillation (PDO; Newman et al., 2016).

These climate variability modes are generated within the coupled atmosphere–ocean systems (Ghil, 2002) and considered ir-

reducible noise in climate projections (Madden, 1976; Schneider and Kinter, 1994; Deser et al., 2012). Because these modes

typically interact and affect weather dynamics in regions beyond those where they are emerged, such modes are collectively

referred to as teleconnections (IPCC, 2013). Bacastow (1976) showed that ENSO is highly correlated with annual variations in45

observed atmospheric CO2 measured at the South Pole and Mauna Loa, Hawaii. Keeling et al. (1995) attributed these correla-

tions to the ENSO impact on the biospheric sink. In addition to ENSO, Zhu et al. (2017) showed that the PDO and the Atlantic

Multi–decadal Oscillation (AMO; Enfield et al., 2001; Rayner et al., 2003) may also influence global terrestrial ecosystem

carbon fluxes and that other modes of variability in the Northern Hemisphere have also local impacts on carbon cycling (Zhu

et al., 2017).50

A common approach to diagnose the impacts of natural climate variability is to use ensembles of Earth system model

simulations with perturbed initial conditions to quantify the impacts of natural climate variability at decadal to millennium

scales (Frölicher et al., 2013). However, the inherently chaotic atmosphere, in combination with model structural uncertainty,

implies large uncertainties for future projections (Deser et al., 2020). Also, Earth system model projections can be compromised

by limited representation of the full complexity of physical processes involved, lack of observational constraints, and high55

computational demands when aiming to resolve high resolutions (Randall et al., 2007; IPCC, 2013).

Statistical approaches are a simplified but effective way to reveal physical processes in observations (von Storch, 1995). A

traditional approach consists of evaluating relationships between the variables of interest (e.g. CO2 time–series) and telecon-
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nection indices (Bacastow, 1976; Bastos et al., 2013; Zhu et al., 2017). As a simple representation of the large–scale atmo-

spheric circulation modes, teleconnection indices are extracted mainly from sea surface temperature or atmospheric anomalies60

(Kumar and Hoerling, 1997; IPCC, 2013). Such indices are an effective way to reduce the complexity of the spatio–temporal

variability in multiple variables (Stenseth et al., 2003; Wills et al., 2017), but may not be able to capture spatial variations in

the large–scale atmospheric circulation modes themselves.

Recently, Sippel et al. (2019) applied Ridge Regression, a regularized linear regression method (Hastie et al., 2009; Friedman

et al., 2010), to quantify the component of precipitation and temperature variability driven by atmospheric variations based on65

sea level pressure (SLP) fields, rather than teleconnection indices. Their approach allowed them to robustly infer the main

spatio–temporal patterns of atmospheric variability influencing these two climate variables. On the one hand, including a

field of circulation–based predictors, avoids considering predefined assumptions about their spatial configurations as they are

common to teleconnection indices, while compensating for relatively short historical records. The regularization approach, on

the other hand, allows to overcome overfitting and multicollinearity issues due to short time series and a very large number of70

spatial predictors.

In this study, we adopt the Ridge Regression approach in Sippel et al. (2019), aiming to quantify the fraction of global

C–cycle IAV influenced by large–scale atmospheric circulation variability. We use observation–based time–series of global

atmospheric CO2 growth rate (AGR) and land CO2 surface fluxes from atmospheric inversions and Dynamic Global Vegetation

(DGVMs), as well as the land sink estimated as a residual of other terms in the Global Carbon Budget 2018 (Le Quéré75

et al., 2018). We first evaluate and compare the predictive skill of the Ridge Regression model when using SLP as predictors

versus commonly used traditional teleconnection indices (Section 3.1). Next, we analyze and discuss how the global C–cycle

sensitivity to atmospheric circulation variability from various latitudinal domains of SLP anomaly fields (Section 3.2). Finally,

we evaluate the sensitivity of the results to the length of the time–series (Section 3.3), by comparing the fraction of C–cycle

IAV that can be explained by large–scale atmospheric circulation variability based on these datasets with that of a very long80

time–series (4000 years) of land CO2 fluxes simulated by the Community Earth System Model (CESM).

2 Data and methods

2.1 CO2 datasets for the recent past

We select the CO2 time–series datasets from the Global Carbon Budget 2018 version 1.0 (Le Quéré et al., 2018): the atmo-

spheric CO2 growth rate (AGR), the land sink from models (SLDGVMs), the residual land sink (SLResid), and the land sink85

from two atmospheric inversions.

In the Global Carbon Budget 2018 (Le Quéré et al., 2018), the global CO2 balance is calculated based on the carbon

emissions from fossil fuel (FF ) (Boden et al., 2017; UNFCCC, 2018; Peters et al., 2011b) and land use change (FLUC)

(Houghton and Nassikas, 2017; Hansis et al., 2015), the AGR (Dlugokencky and Tans, 2018), the carbon uptake by the ocean

sink (SO) and the land sink (SL) (references for individual models of SO and SL can be found in Table 4 of Le Quéré et al.90

(2018)).
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The difference of annual atmospheric CO2 in a given year and the previous year (Ballantyne et al., 2012; Dlugokencky

and Tans, 2018; Le Quéré et al., 2018) corresponds to the AGR, which is based on direct observations. The AGR is based

on the average of well–mixed CO2 measurements at multiple global stations from the US National Oceanic and Atmospheric

Administration Earth System Research Laboratory (NOAA ESRL) (Dlugokencky and Tans, 2018).95

FF emissions are based on inventories, while FLUC, SL and SO are estimated by models (SLDGVMs and SO, respectively

in Eq. (1), all of which contain uncertainties (Le Quéré et al., 2018). The total emissions from FF and FLUC minus AGR

should equal the SO and SLDGVMs (Eq. (1)). Due to uncertainties in modeled land and/or ocean sinks or in land use estimations

(Bastos et al., 2020; Hauck et al., 2020), the budget cannot be balanced and thus an imbalance term (IMB) is introduced to

the budget.100

FF +FLUC −AGR−SO = SLDGVMs + IMB = SLResid (1)

The annual land sink of CO2 (SLDGVMs) is the average net biome production (NBP) simulated by 16 dynamic global

vegetation models (DGVMs) forced with historical CO2 and changing climate (Le Quéré et al., 2018). The residual land CO2

(SLResid) is calculated from emissions, AGR, and ocean sinks, as described in Eq. (1). SLResid corresponds to the balance of

the fossil fuel and land–use change emissions and the sinks in the atmosphere and ocean and provides an alternative estimate105

of the global land sink.

The time–series of AGRR, SLDGVMs, and SLResid in Global Carbon Budget 2018 (Le Quéré et al., 2018) are provided at

annual time–steps over the period 1959–2017. In the following analysis, we invert the AGR time–series (AGRR for reversed

AGR i.e. -1×AGR) for sign consistency with the land sink datasets used (defined as a positive flux from the atmosphere to

the land).110

Additionally, we use the globally aggregated net atmosphere to land CO2 flux (positive sign as a sink in the biosphere)

estimated from two atmospheric CO2 inversions in Global Carbon Budget 2018 (Le Quéré et al., 2018): the Jena CarboScope

SLCarboScope (Rödenbeck, 2005; Rödenbeck et al., 2018), and the Copernicus Atmosphere Monitoring Service inversion

SLCAMS (Chevallier et al., 2005), which cover the periods 1976–2017 and 1979–2017 respectively. Here we use the global

annual CO2 fluxes of these two inversions adjusted for fossil fuel emissions and lateral fluxes from Bastos et al. (2020). The115

period common to the CO2 time–series (1980–2017) is selected.

2.1.1 Sea level pressure

We use global monthly mean SLP fields from ERA5 reanalysis with the spatial resolution of 0.25◦×0.25◦ (Bell et al., 2020),

at monthly time–steps and covering the period 1950–1978 (Bell et al., 2020) and 1979–present (Hersbach et al., 2019). The

period common to other datasets of 1958–2017 is selected here.120

2.1.2 Teleconnection indices

In addition to SLP fields, we select 15 teleconnection indices from the atmosphere–ocean variability, Northern Hemisphere,

and Southern Hemisphere.
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Three important atmosphere–ocean coupled variability modes influence global climate and the C–cycle: the El Niño–Southern

Oscillation (SOI), the Pacific Decadal Oscillation (PDO), and the Atlantic Multidecadal Oscillation (AMO) (Zhu et al., 2017).125

In the Northern Hemisphere, the most relevant indices are: the Arctic Oscillation (AO), the North Atlantic Oscillation (NAO),

the Pacific North American pattern (PNA), the East Atlantic (EA), the East Atlantic/Eastern Russia (EAWR), the Scandinavian

pattern (SCAND), the Polar/Eurasia (polarEA), and the West Pacific (WP). These indices are calculated and provided by the

Climate Prediction Centre (CPC) of the National Oceanic and Atmospheric Administration (NOAA), and provided by the

NOAA National climate prediction center (CPC, 2008). The detailed information on calculation procedures is described on130

NOAA CPC (2008) and Barnston and Livezey (1987).

In the Southern Hemisphere, important indices are the Antarctic Oscillation (AAO), the Tropical Atlantic Dipole (TAD), the

Dipole Mode Index (DMI) of the Indian Ocean Dipole, and the Trans Polar index (TPI).

The teleconnection indices used here have been summarized in Table 1. All the indices are provided as monthly means and

selected for the period of 1958-2017, except the AAO which is available for 1979–2017 only.135

2.1.3 Long–term pre–industrial control simulations for statistical benchmarking

Here we select the SLP fields and global net biome production fields (NBP) from simulations by the Community Earth System

Model (CESM) version 1.2.2 (in the B1850C5CN configuration), which has been used by Stolpe et al. (2019). This experiment

corresponds to a 4000-yr control run. The simulation was run at an atmospheric resolution of 1.9◦×2.5◦, using the Community

Atmosphere Model version 5 (CAM5.3; (Neale et al., 2012)) with 30 vertical levels. The model consists of fully coupled140

atmosphere, ocean, sea ice and land surface components (Hurrell et al., 2013; Meehl et al., 2013b), and did not include dynamic

vegetation. This simulation includes no external forcing, so it is ideal to analyze patterns driven by internal variability.

2.2 Data pre–treatment

For all historical datasets (CO2 time–series, SLP fields and teleconnection indices), we first remove years corresponding to

volcanic eruptions (1963, 1982, 1983, 1991, 1992). We then pre–treat the datasets as follows.145

2.2.1 Trend removal

The long–term trend of CO2 time–series is removed by locally weighted scatterplot smoothing (LOWESS) (Cleveland et al.,

1991) of the annual time–series with fixed window size of 25 % interval longer than 30 years (1959–2017) and 45 % for shorter

period (1980–2017). For monthly teleconnection indices, we first calculate the seasonal mean values of DJF, MAM, JJA, and

SON, we then remove the seasonal long–term trends by applying the LOWESS as for the CO2 time–series, and further include150

DJF and MAM combined (DJF+MAM) as treated in SLP (as described below).
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2.2.2 Spatial and temporal aggregation

The monthly mean SLP fields are area–weighted and aggregated to 2◦×2◦, 5◦×5◦, and 9◦×9◦ spatial resolution, and the

seasonal cycle removed by subtracting the monthly mean values for each pixel. We then aggregate SLP values in seasonal

means for: December of the previous year to February of each given year (DJF), March–May (MAM), June–August (JJA),155

and September–November (SON) and further consider DJF and MAM combined (DJF+MAM), so the number of pixel–based

time–series (predictors) in DJF+MAM is double of DJF. Note that a large fraction of the pixel–based time–series of seasonal

SLP anomalies show no long–term trend, and the predicted differences between LOWESS detrended and not detrended SLP

are small. Here we keep the analysis of SLP anomalies with no LOWESS detrending. Here, we refer to DJF and MAM as

boreal winter and boreal spring.160

For the CESM simulations, the SLP fields are originally provided at 1.9◦×2.5◦ spatial resolution at monthly mean time–steps,

which we then resample to 5◦×5◦ spatial resolution. Annual mean NBP is calculated from the monthly fields. NBP and SLP

fields are selected for the simulation period 1000–5000 year.

2.3 Statistical analysis

The overall goal is to characterize annual variations in the global C–cycle that can be explained by large–scale atmospheric165

circulation variability. Here, the pixel–based time–series of SLP anomalies are used as predictors (p≥ 800) of CO2 time–series

(n≤ 54 years) in a linear regression model. However, the small sample size relative to the large number of predictors (n < p)

can cause severe overfitting problems and result in unstable predictions (Hastie et al., 2009). Moreover, the existing spatial

correlations among the neighboring pixels of SLP anomalies might cause multicollinearity among the predictors (von Storch

and Zwiers, 1999). The potential multicollinearity problem results in unstable Ridge Regression coefficients in least square170

estimation, and making it difficult to diagnose the most sensitive spatial patterns of predictors (von Storch and Zwiers, 1999).

Sippel et al. (2019) applied Ridge Regression to avoid these overfitting and multicollinearity problems. Ridge Regression is

a regularized linear regression, whose the fundamental principle is to introduce a constraint (hyper–parameter λ) to regularize

the varying regression coefficients in least squares estimation (Hastie et al., 2009; Friedman et al., 2010). The regularized

variance comes with a compromise of biased predictions and is addressed as the bias–variance trade–off (Hastie et al., 2009).175

When selecting the best hyper–parameter λ, this trade–off is considered to achieve stable (low variance) while slightly biased

predictions (Hastie et al., 2009).

Model performance is evaluated by the R2, the Pearson’s correlation R, and mean squared error of the original CO2

time–series against predicted values. Pearson’s correlation R is selected as the main measure of predictability, and the sig-

nificance P < 0.05 is selected. Given the relatively short period (n < 60), here we use leave–one–out cross–validation to180

achieve optimal model training and testing. For each train and test group splitting, we select the train group as all years exclud-

ing three consecutive years and the middle year of those three is then selected as the test sample. We exclude the preceding and

following years to reduce the potential influence of temporal auto–correlation.
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Table 1. Teleconnection indices

Index Name Description Source

SOI Southern Oscilla-

tion

Monthly sea level pressure anomalies differences (based on 1981–2010 monthly mean) between

Tahiti and Darwin, Australia. (McBride and Nicholls, 1983; Ropelewski and Jones, 1987)

Downloaded from the NOAA National centers for Environmental Information (NCEI).

https://www.ncdc.noaa.gov/

teleconnections/enso/indicators/

soi/#soi-calculation

PDO Pacific Decadal

Oscillation

Monthly sea surface temperature (SST) variations in the Northeast and tropical pacific Ocean

(Mantua et al., 1997; Mantua and Hare, 2002). Using EOF and regression over 20◦–90◦ N in the

Pacific (Mantua et al., 1997). Downloaded from NOAA NCEI.

https://www.ncdc.noaa.gov/

teleconnections/pdo/

AMO Atlantic multi-

decadal Oscilla-

tion

Monthly Northern Atlantic temperature fluctuations (Rayner et al., 2003; Enfield et al., 2001).

Computed by NOAA Physical Science Laboratory (PSL) (using Kaplan SST V2 dataset) from

0◦–70◦ N (Enfield et al., 2001). The detrended and unsmoothed version is selected.

https://psl.noaa.gov/gcos_wgsp/

Timeseries/AMO/

AO Arctic Oscillation Characterized by winds circulations near the Arctic around 55◦ N. Calculated by NOAA NCEI,

using Empirical Orthogonal Function (EOF) analyzes the monthly mean 1000 millibar height

variations over 20◦–90◦ N (Higgins et al., 2000, 2002).

https://www.ncdc.noaa.gov/

teleconnections/ao/

NAO North Atlantic

Oscillation

The Subtropical High and the Subpolar Low difference in sea level pressure (Barnston and

Livezey, 1987). Downloaded from NOAA NCEI.

https://www.ncdc.noaa.gov/

teleconnections/nao/

PNA Pacific-North

America

Low–frequency Variations in the Northern Hemisphere extratropics (Barnston and Livezey, 1987;

Chen and Van den Dool, 2003). Downloaded from NOAA NCEI.

https://www.ncdc.noaa.gov/

teleconnections/pna/

EA East Atlantic North–south dipole anomalies extending from the east to west North Atlantic, with a similar

spatial structure to NAO (Barnston and Livezey, 1987).

https://www.cpc.ncep.noaa.gov/

data/teledoc/ea.shtml

EAWR East At-

lantic/Western

Russia

Distinct by four dominant anomaly centers with positive phase extending Europe and Northern

China, negative covering central North Atlantic and North Capspian Sea (Barnston and Livezey,

1987).

https://www.cpc.ncep.noaa.gov/

data/teledoc/eawruss.shtml

SCAND Scandinavia A main anomaly center over Scandinavia, and a opposite weaker sign over western Europe and

eastern Russia/western Mongolia (Barnston and Livezey, 1987).

https://www.cpc.ncep.noaa.gov/

data/teledoc/scand.shtml

PolarEA Polar/Eurasia In positive pattern, negative height anomalies in polar region, and positive anomalies in Northern

China and Mongolia (Barnston and Livezey, 1987).

https://www.cpc.ncep.noaa.gov/

data/teledoc/poleur.shtml

WP West Pacific Low frequency variability of North Pacific (Barnston and Livezey, 1987). https://www.cpc.ncep.noaa.gov/

data/teledoc/wp.shtml

AAO Antarctic Oscilla-

tion

Empirical Orthogonal Function (EOF) was applied to the monthly mean 700hPa height anoma-

lies over 20◦–90◦ S (Mo, 2000). Calculated by NOAA (CPC, 2008).

https://www.cpc.ncep.noaa.gov/

products/precip/CWlink/daily_ao_

index/aao/aao.shtml

TAD Tropical Atlantic

Dipole

Here we use TSA (Tropical Southern Atlantic Index). Obtained from NOAA Physical Sciences

Laboratory (PSL), computed from the monthly SST average anomaly from 0◦–20◦ S and 10
◦ E–30◦ W, HadISST and NOAA OI 1x1 datasets are used (Enfield et al., 1999; Reboita et al.,

2021).

https://psl.noaa.gov/data/

correlation/tsa.data

DMI Dipole Mode Obtained from NOAA PSL, based on the sea surface temperature anomaly gradient between

the western and the South eastern equatorial Indian Ocean, HadISST1.1 SST is used (Saji and

Yamagata, 2003; Reboita et al., 2021).

https://psl.noaa.gov/gcos_wgsp/

Timeseries/Data/dmi.had.long.

data

TPI Trans Polar Normalized pressure difference between stations in Hobart and Stanley, Australia (Pittock,

1980, 1984; Jones et al., 1999), data calculated by Henley et al. (2015), data from University of

East Anglia http://www.cru.uea.ac.uk/cru/data/tpi/.

https://psl.noaa.gov/gcos_wgsp/

Timeseries/TPI/

A schematic description of the workflow from model training, validation and selection with the selected interval 1959–2017

is shown in Fig. 1. In panel (a), the global maps represent an example of the spatial distribution of SLP with a resolution of185

m◦×m◦, where m varies in [2, 5, 9]. Each pixel corresponds to a time–series of SLP, so that p predictors (xi, for i in 1∼800)
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with n= 54 time–steps are defined. Each predictor is assigned a coefficient ωi to collectively predict CO2 time–series Y , with

length n= 54. The cost function (Harrington, 2012) is the sum of all the squared errors of training yi minus estimated y′i

(xT
i ω, ω represents the vector of all ωi). At the same time, the constraint function (Harrington, 2012) suppresses the coefficient

variations under a regularized range defined by the hyper–parameter λ. Panel (b) shows the model training and validation190

processes. In this study, DJF SLP is aggregated to 9◦×9◦, so p= 800. Note that to reduce the heavy computation load, when

conducting spatial and temporal sensitivity study as described in Section 2.4, the range of λ is lower and with smaller steps

than the range and step shown in the Panel (b). For example, when only selecting the tropical domain of SLP, the number of

predictors is much less than 800. So the λ is selected in range [10, 1000] with a step of 50. When using teleconnection indices

instead of SLP anomalies, the predictors are equal or less than 15, the range of λ is selected from [1, 200] with a step of 2.195

The first step is to divide datasets into train and test groups, as shown in panel (c). The grouped training datasets are then

used for model training and tune the best λ through 5–folds cross–validation, the best λ that achieves the optimal prediction

(highest R2) is then selected by the model to predict test datasets. The model then starts another iteration with train and test

grouping. Panel (c) describes the leave–one–out train and test grouping, the years before and after the selected test year are

removed for each grouping to reduce the impact of temporal auto-correlations in CO2 time–series.200

Ridge Regression leave–one–out cross–validation is performed using the Python package Scikit–learn "Ridge" and the λ is

tuned by Scikit–learn "RidgeCV" (Pedregosa et al., 2011). The global maps (Fig. 3, Fig. A4, Fig. A11, Fig. A12) are plotted

by Cartopy (Met Office, 2010–2015).

2.4 Experimental design

1. Preliminary dependency tests. To evaluate the robustness of the results for different characteristics of the datasets and205

methodological choices, we perform several preliminary tests. 1) Resolution–dependency test: evaluate the sensitivity

of results to the SLP spatial resolution under 2◦×2◦, 5◦×5◦, and 9◦×9◦; 2) Seasonality–dependency test: evaluate the

dependence of results on the definition of particular seasons, with each season being the combination of three consecutive

months (from November last year to July the given year). 3) Temporal auto–correlation of the CO2 time–series: to ensure

no significant trend remains in the detrended CO2 time–series.210

Here we directly use the results following the preliminary dependency test (Appendix A). The spatial resolution does

not influence the results considerably (see Appendix A Fig. A1), therefore we select 9×9◦ SLP spatial resolution given

its smaller number of grid points. The seasonal dependency test shows that DJF and MAM are seasonal combinations

more representative of boreal winter and spring (see Appendix A Fig. A2). JJA and SON are found to have lower or no

predictability to CO2 time–series, therefore, we limit our results to DJF and MAM. As shown in Appendix A Fig. A3, the215

temporal auto–correlation of all CO2 time–series is mostly less than 0.4 with lag ranging from 1 to 35 years. With a lag

of one year, absolute values of auto–correlation are below 0.2, so that we can exclude strong temporal auto–correlation

effects.
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2. Model training and evaluation. We evaluate the predictability of annual CO2 time–series using SLP anomalies, tele-

connection indices, and SOI independently in the DJF, MAM, and DJF+MAM seasons, using the approach described220

above. We compare Pearson’s correlation of observations and predicted values for different periods (1959–2017 and

1980–2017) (Fig. 2 b) and show the corresponding Ridge Regression coefficient distribution maps (Fig. 3 a).

3. Spatial sensitivity study. We evaluate the predictability of historical annual CO2 time–series using DJF SLP anomalies

under different spatial domains in periods of 1959–2017 and 1980–2017. Then we use a 30–yr sliding window with

annual AGRR to depict how the predictability under various SLP domains evolves in the period 1959–2017.225

4. Temporal sensitivity study. We evaluate the predictability of annual CO2 time–series AGRR, SLDGVMs, and CESM

using DJF and MAM SLP anomalies under different time intervals. Sliding windows are employed at time intervals of

15, 20, 30, 40 years for historical datasets and CESM, and 100, 500, and 2000 years for CESM only. For the interval of

100 and 500 years, we use the sliding window of a 50 year step, and a 500 year step for the 2000 years interval. The

intervals shorter than 100 years are all in 1 year step. We also evaluate the error rate of the model in each sliding window230

of 15, 20, 30, and 40 year lengths. The error rate is calculated by the number of invalid predictions that have significance

P > 0.05 divided by the number of total predictions within a given window.

3 Results and discussion

3.1 Global IAV patterns

In this section, we test the predictability of the global C-cycle IAV by using different predictors: global SLP fields by Ridge235

Regression, teleconnection indices by Ridge Regression, and the single SOI index by simple linear regression. In this context,

each detrended annual CO2 time–series (including AGRR, SLResid, SLDGVMs, SLCAMS, and SLCarboScope) is predicted

by the above predictors over DJF, MAM, and DJF+MAM separately (Fig. 2). The predictability is evaluated by the Pearson

correlation (ρ) between the original and predicted detrended annual CO2 time–series. ρSLP, ρTele, and ρSOI represent the

predictability by using different predictors of global SLP fields, teleconnection indices, and SOI respectively. Accordingly, the240

relevant Ridge Regression coefficients with above different predictors are represented as ωSLP, ωTele, and ωSOI.

First, we find the detrended annual CO2 time–series are generally consistent with each other, except the SLDGVMs shows

slight deviation (Fig. 2 a). We find two anomalous years (1987 and 1998), which show deviations larger than 2 standard

deviations in most CO2 time–series, both signifying apparent AGR increases and subsequent lower land sink (Fig. 2 a). These

two years correspond to strong El Niño events, which are usually associated with below–average land CO2 uptake (Keeling245

et al., 1995; van der Werf et al., 2004; Bonan, 2016).

Global SLP and teleconnection indices show comparable predictive skill of global C–cycle IAV in winter, while teleconnec-

tion indices have higher predictive skill in spring (Fig. 2 b). In both periods, the value of ρSLP (except SLDGVMs) is higher

in DJF (0.51–0.70) than in MAM (0.29–0.60). On the other hand, the values of ρTele are higher in MAM (0.57–0.79) than in
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Figure 1. Schematic representation of the statistical approach and model design, with an example of the selected time interval of 1959–2017.

(a) Fundamental principle of Ridge Regression. (b) Model training and validation under Ridge Regression leave–one–out cross–validation.

(c) Train and test grouping through leave–one–out.
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Figure 2. (a) Standardized annual observed/modeled CO2 time–series over period 1959–2017 (AGRR in black, SLResid in red and

SLDGVMs in yellow), and in period 1980–2017 (SLCAMS in light blue and SLCarboScope in dark blue). The CO2 time–series have all

been detrended as described in Section 2. Note that the AGRR, SLResid, and SLDGVMs in period 1980–2017 are detrended data based on

their relevant period, and compared with detrended data based on 1959–2017, the difference is negligible. (b) Pearson correlation of predicted

vs observed/modeled CO2 time–series based on the Ridge Regression with SLP fields (ρSLP) or teleconnection indices (ρTele) as predictors.

Additionally, Pearson correlation of predicted vs observed/modeled CO2 time–series by linear regression is based on the single predictor of

SOI index (ρSOI ). SLP fields, teleconnection indices, and SOI are aggregated for different seasons: DJF, MAM, and DJF+MAM. Panel (b)

shows results for 1959–2017 and panel (c) for 1980–2017. Note that in panel (c), the ρSLP of SLCAMS using MAM SLP as predictor has

significance P = 0.09, all others have significance P < 0.05.
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DJF (0.53–0.70). The relative low predictive skill of global SLP anomalies compared to teleconnection indices might result250

from: 1) limited sample size (less than 60 years) and a large number of predictors (p= 800) for Ridge Regression training with

global SLP anomalies. But for teleconnection indices and SOI, the predictability skills are much less influenced by the limited

sample size due to their limited predictors (p≤ 15 for teleconnection indices and p=1 for SOI). As we increase the sample

size to over 100 years, the predictive skill of SLP anomalies increases considerably, as is shown in temporal sensitivity study

(Fig. 6), and 2) the predictive skill of SLP anomalies in explaining global C–cycle IAV can be reduced in domains with large255

local rather than global impacts of atmospheric variations to land carbon sinks (Jung et al., 2017). In such domains, the SLP

anomalies might show strong relationship to local C–cycle variations but weaker link to global C–cycle variations. Selecting

the SLP domains with higher contribution to the global C–cycle variability could improve the predictability, as is shown by the

analyzes of sensitivity of the results to the SLP spatial domains (Fig. 4).

Compared to the predictive skill of teleconnection indices, which includes a set of 14 teleconnection indices for period260

1959–2017 and 15 for period 1980–2017 as predictors, the predictive skill of SOI is slightly lower or similar in both seasons,

with 0.53–0.67 in DJF and 0.60–0.74 in MAM (Fig. 2 b). This is consistent with the dominant role of ENSO in driving global

C–cycle IAV, with other modes showing less contributions. Such interpretation requires caution as the indices cannot fully

represent the complex atmospheric dynamics.

The predictive skill of the combined winter and spring global SLP anomalies reveal the different seasonal responses of265

global C-cycle IAV to large–scale atmospheric circulation variability (Fig. 2 b). The predictive skill of SLP and teleconnection

indices in DJF+MAM is within the values for DJF and MAM for most datasets, and slightly higher than the best performing

season for the predictive skill of SOI.

The predictive skill of SLP to SLResid is similar to SLDGVMs in MAM and slightly higher than SLDGVMs in DJF. The

difference in the predictive skill of SLP to SLResid and SLDGVMs in DJF may due to: 1) compared to SLResid, land sink270

IAV simulated by DGVMs is less sensitive to DJF climate forcing (Bastos et al., 2018), 2) SLResid implicitly includes the

variability from land use change as well as ocean sink variations (Dufour et al., 2013; DeVries et al., 2017; Friedlingstein et al.,

2019).

We next compare the spatial patterns of the Ridge Regression coefficients of SLP and teleconnection indices in the period of

1959–2017, the results of the period 1980–2017 can be found in Appendix A Fig. A4 and A5. The spatial patterns of the ωSLP275

are similar for the three CO2 time–series: positive coefficients over eastern tropical Pacific Ocean and negative coefficients

from Southeast Asia extending to Australia that together roughly consistent with ENSO, and negative from west Pacific (Fig. 3

a). In winter the positive coefficients over the eastern tropical Pacific are higher than in other regions, which are influenced

by El Niño and La Niña respectively (Monahan, 2001; Hsieh, 2004; Rodgers et al., 2004; Schopf and Burgman, 2006; Sun

and Yu, 2009; Yu and Kim, 2011): El Niño induces negative SLP anomalies over the East Pacific and positive SLP anomalies280

over the west Pacific (see King et al. (2020), Fig. 5). The results are consistent with the land sink being negatively driven by

ENSO in winter: strong El Niño, decreased land sink, strong La Niña, increased land sink. In spring, the area over the central

and western tropical Pacific also shows stronger coefficients, and likely corresponds to a mix of different modes, such as the

ENSO, West Pacific teleconnection and the Interdecadal Pacific Oscillation, all showing strong coefficients in Fig. 3 b (SOI,
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Figure 3. (a) Distribution of Ridge Regression coefficients of SLP with the time–series of AGRR (top row), SLResid (center row) and

SLDGVMs (bottom row) in DJF (left column) and MAM (right column) based on SLP fields in the period 1959–2017. (b) Distribution of

Ridge Regression coefficients of teleconnection indices with AGRR, SLResid and SLDGVMs. Both ωSLP and ωTele are the mean of the n=

54 run Ridge Regression coefficients.
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WP and TPI indices). In Fig. A11 we show the anomalies in temperature and precipitation associated to these patterns, as285

well as those in NBP from the two atmospheric inversions (Fig. A12). Generally, the temperature anomalies over the tropics

show negative correlations to annual land sink (SLP driven AGRR) in both winter (as high as –0.85) and spring (as high as

–0.73), while weaker but positive correlations are found in Eurasia. Tropical precipitation anomalies show roughly positive

correlations in winter (as high as 0.73) and in spring (as high as 0.67). This pattern indicates that AGRR is generally higher

for cooler and wetter conditions over the tropics and Southern Hemisphere semi–arid regions in both seasons, which result290

in increased NBP (Fig. A12), as well as cooler but predominantly drier conditions over Eurasia, which result in a complex

pattern of NBP anomalies (Fig. A12). These results are consistent with the strong ENSO fingerprint on the IAV of global CO2

atmospheric growth rate and global land sink, e.g. as pointed out by Piao et al. (2020) and with the importance of southern

semi-arid ecosystems (Ahlström et al., 2015), for IAV in the global land sink.

The higher Ridge Regression coefficients of teleconnection indices are consistent with the high sensitivity domains of the295

Ridge Regression coefficients of SLP corresponding to the patterns of ENSO and WP (Fig. 3 b). Our results show that C–cycle

IAV reveals a high positive sensitivity to SOI (0.18 to 0.21) and negative sensitivity to TPI (-0.24 to -0.28) and WP (-0.09 to

-0.15) in winter. High sensitivities are also found for DMI in winter (negative) and AMO in spring (negative) (Fig. 3 b). We

find that the global C–cycle IAV is very sensitive to TPI as well as SOI, which is not so obvious for the spatial patterns of

SLP Ridge Regression coefficients. TPI is a hemispheric–scale index and defined as the pressure anomaly differences between300

the locations Hobart (43◦ S, 147 ◦E) and Stanley (52◦ S, 58◦ W) (Pittock, 1980, 1984). We find the TPI to be strongly

anti–correlated with SOI in winter and spring (-0.89 and -0.85, respectively). This might indicate an amplification of ENSO

impacts on C–cycle IAV due to large–scale atmospheric circulation variability in the Southern Hemisphere.

However, the observed patterns of the Ridge Regression coefficients in teleconnection indices and SLP need to be interpreted

with caution, since these patterns are not necessarily independent from each other. For example, the area from Southeast Asia305

extending to Australia corresponds to a region influenced by several large–scale atmospheric circulation modes: ENSO, the

Indian Ocean Dipole (IOD), and the Southern Annular Mode (SAM) (Cleverly et al., 2016). Interactions between these modes

have been shown to modulate the occurrence of drought and extreme precipitation in semi–arid areas of Australia, and thus

induce large inter–annual variability in gross primary productivity in the region (Cleverly et al., 2016).

Compared to other CO2 datasets, the predictability of SLDGVMs is higher when using SLP fields in MAM as predictors,310

rather than DJF (Fig. 2 b). Moreover, ωSLP of SLDGVMs exhibits distinct spatial patterns, especially in winter, where ωSLP

for SLDGVMs show higher values in the Southern Pacific rather than over the tropical Pacific region (Fig. 3 a). Compared

to historical results, predictability of SLDGVMs is lower by using winter SLP as predictors in Ridge Regression, rather than

by using spring SLP, and the spatial patterns of the Ridge Regression coefficients for SLDGVMs are slightly different. These

differences might be an indication of shortcomings of DGVMs in simulating the sensitivity of land sink to climatic drivers.315

The general match of spatial patterns of the Ridge Regression coefficients using SLP and the teleconnection indices as pre-

dictors of global C–cycle IAV indicates that SLP can capture the spatial distribution of the atmospheric patterns that influence

IAV, with the advantage of being more flexible than teleconnection indices, since it does not require predefined definitions.

However, the short sample size and the large number of predictors for Ridge Regression training hinder the performance of
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Figure 4. Heat map of predictability with CO2 time–series over various SLP latitude domains in DJF. Each heat map contains 5×5 squares,

and each square represents one domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦ N extending

to 72◦ S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global scale SLP. ρSLP of

AGRR, SLResid, SLDGVMs, SLCAMS, and SLCarboScope in 1980–2017 are shown here.

SLP anomalies, especially the lower predictability when using SLP anomalies than teleconnection indices in spring. Reducing320

the number of predictors (smaller domains of SLP anomalies) or increasing the sample size (longer time interval) for Ridge

Regression training could improve the predictive skill of SLP anomalies. Therefore, in the next subsections, we conduct the

spatial and temporal sensitivity study of the global C–cycle to SLP anomalies.

3.2 Sensitivity to the SLP domains

Here, we test the sensitivity of the global C-cycle IAV predictability by using different spatial domains of SLP as predictors325

in Ridge Regression. The SLP domains are selected over different latitudinal bands in DJF and MAM separately (Fig. 4). We

find improved predictability in both seasons when selecting smaller spatial domains (particularly including the tropics to high

latitudes of the Southern Hemisphere) rather than global SLP anomalies. MAM fields show lower predictability in general and

are less sensitive to the spatial domain considered. In the following, we show the results for DJF, the results for MAM can be

found in Appendix A Fig. A7. Here we only show the results of the period 1980–2017. The results of the period 1959–2017330

show a similar trend (see Appendix A Fig. A6).

Consistent with previous studies (Zeng et al., 2005; Piao et al., 2020), the tropical domain corresponds to higher predictabil-

ity for all datasets, but stronger predictability are found for regions extending from the tropics to the Southern Hemisphere

15



(Fig. 4). Including Northern Hemisphere regions results in lower predictability. The domain 18◦ N–72◦ S shows the highest

predictability, with ρSLP of 0.81 for AGRR and 0.85 for SLResid in 1980–2017.335

The results for net atmosphere-land fluxes estimated by atmospheric inversions are consistent with those of AGRR, with

ρSLP of 0.70 for SLCAMS and 0.76 for SLCarboScope in the same domain of 18◦ N–72◦ S. The values of ρSLP of SLDGVMs

are systematically lower than the other datasets, independently of the domain.

The weaker values of predictability when extending SLP domains from tropics to Northern Hemisphere (Fig. 4) might be due

to the local rather than global impacts of large–scale atmospheric circulation variability in Northern Hemisphere to land sink340

IAV. Additional explanations include the fact that carbon fluxes are weaker in winter Northern Hemisphere, so that large–scale

atmospheric circulation variability exerts weaker influence in the global land sink, and that there are strong compensatory

effects of gross primary productivity versus terrestrial ecosystem respiration in the Northern Hemisphere in response to water

and temperature variations (Jung et al., 2017; Wang et al., 2022).

The increasing predictability of global C-cycle IAV when using SLP fields extending from tropics to Southern Hemisphere345

(Fig. 4) is likely due to the strong contribution of semi–arid regions in the Southern Hemisphere extratropics to the global sink

through their drought/wet anomalies (Poulter et al., 2014; Ahlström et al., 2015). The drought/wet anomalies in these regions

are controlled by large–scale atmospheric circulation variability in the Southern Hemisphere (ENSO and ENSO related modes)

and to the interactions between ENSO and other large–scale atmospheric circulation modes in the Southern Hemisphere, such

as the synergistic effects from ENSO, IOD and the SAM on Australia C–cycle variability (Cleverly et al., 2016).350

3.3 Sensitivity to the temporal domains

Because of multi–decadal variability in the climate system, it is possible that the relationships found for short intervals are

not stable. In order to investigate whether these results depend on the temporal domain considered, we additionally analyze

the influence of different temporal domains (30–yr interval sliding window) on the predictability of global C-cycle IAV by

selecting different temporal domains, and performing the Ridge Regression separately for the global and the tropical domains355

(Fig. 5).

Results show stronger predictability of AGRR confined to the tropics of SLP domains in earlier periods and an intensification

of these predictability for the SLP domains extending to the Southern Hemisphere over the study period. In some periods, the

tropics and Southern extratropics domain shows the highest values of ρSLP, for example in 1978–2011 and 1984–2015 (Fig. 5).

There is, however, high temporal variability in the predictability and of the most relevant spatial domain, with other periods360

showing higher global coherence (e.g. 1968–2001). It is unclear whether these temporal variations occur randomly due to

internal variability in the climate system, or are influenced by external forcing. Potential explanations for this pattern include

trends found in SLP variability over the Pacific and Southern Atlantic (Schneider et al., 2012; IPCC, 2013; Roxy et al., 2019),

or enhanced sensitivity of C–cycle variability to climatic drivers, particularly in semi–arid areas, under progressive climate

change (Wang et al., 2014; Poulter et al., 2014).365

Understanding and attributing these changes to given processes is beyond the scope of this study, but these results highlight

the importance of the temporal domain when analyzing IAV in the global C–cycle. Since the observed CO2 time–series are
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Figure 5. Predictability of AGRR with DJF SLP over various latitude domains. A 30–yr sliding window in the period 1959–2017 with a one

year step is created. The starting and end year of each interval is labeled on the top of each heat map. Here we only show the results of every

second starting year, the full results are in Appendix A Fig. A9.

short and cover only limited temporal domains, results are likely to be affected by multi–decadal internal climate variability,

in addition to external forcing. Moreover, the data–driven Ridge Regression method to quantify circulation–induced global

C–cycle variability uses a large number of predictors, while only relatively short time series are available for training, which370

may negatively affect the model’s performance. Therefore, we further test the sensitivity of the predictability to the length of

the time–series (Fig. 6). We test the predictability of global C–cycle IAV for different lengths of the temporal domain: 15, 20,

30 and 40 years for the datasets in Global Carbon Budget 2018 and CESM simulations and 100, 500 and 2000 years for CESM

only.

The boxplots in Fig. 6 show the distribution of predictability calculated for multiple time intervals, each time interval375

using a sliding window over the whole period of the respective time–series of AGRR, SLDGVMs and CESM. The spread of

predictability provides an indication of internal variability in the predictability of global C–cycle IAV due to the choice of

temporal domain and the uncertainty in the Ridge Regression fit for a large number of predictors and comparatively small

number of training samples.
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Figure 6. Predictability of AGRR, SLDGVMs, and CESM NBP under various time intervals. The predictability of AGRR and SLDGVMs

are both within the period 1959–2017, with a 1 year step sliding window of 15, 20, 30, and 40 year. The predictability of CESM in the period

1000–5000 and covers extra intervals of 100, 500, 2000 years. The distribution of the predictability under each sliding window with SLP in

DJF global, MAM global, DJF tropical and MAM tropical. Tropical domains are 18◦ N–18◦ S for SLP as predictors in predicting AGRR

and SLDGVMs, and 20◦ N–20◦ S for SLP as predictors in predicting CESM. Note that the mean values are in black dots.

We find that the longer the time interval the higher the mean predictability and the smaller the variation, i.e. the less dependent380

are the results on the temporal domain considered (Fig. 6). However, the mean value tends to be lower than the median for

intervals shorter than 30 years, and similar to the median for longer intervals. The lower mean is influenced by some domains

with very low or even negative predictability from invalid predictions in shorter time intervals.

The mean predictability of AGRR in winter for the global domain increases from 0.45 to 0.61 from 15–yr to 40–yr re-

spectively, while the spread (maximum ρSLP - minimum ρSLP) decreases from 1.04 to 0.18. Predictability for SLDGVMs are385

consistent with those of AGRR, with systematically lower mean predictability for DJF and higher for spring, but similar spread

in both. The mean value of predictability for CESM in SLP DJF over the global domain increases from 0.42 (15–yr) to 0.57

(40–yr) and to 0.84 (2000–yr), and the spread decreases from 1.72 to 0.72 and to 0.008, respectively.
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At global scale, the predictive skill of SLP anomalies with AGRR and with models from SLDGVMs and CESM are different

in winter and spring (Fig. 6). Predictability of AGRR is higher with winter SLP (ρSLP is 0.61 in 40–yr DJF), but predictability390

of SLDGVMs and CESM are higher with spring SLP (ρSLP in 40–yr MAM is 0.70 and 0.65, respectively).

When limiting the SLP domain to the tropics, results follow the same patterns as those at the global scale, but with better

predictive skill: AGRR shows the highest mean predictability of 0.74 for intervals of 40 years in winter (Fig. 6). SLDGVMs

shows the highest mean predictability, with ρSLP of 0.73 for 40–yr spring (Fig. 6), a result that is very similar to those of

CESM for the same temporal length (ρSLP = 0.70). We find that with different time intervals, tropical SLP in winter leads to395

higher predictability of AGRR than global SLP fields. While the spring tropical SLP only shows slightly higher predictive

skill than global SLP for SLDGVMs and CESM. AGRR is highly influenced by winter tropical SLP, while SLDGVMs and

CESM are more sensitive to spring tropical SLP (Fig. 6). This is consistent with the results of Fig. 4 even when different time

intervals are considered. This might be due to that Earth System Models, as CESM used here, have been found to not reliably

simulate the seasonal timing of ENSO occurrence (Sheffield et al., 2013). The predictive skill of SLP in seasonal and domain400

differences between observation-based data and models (SLDGVMs and CESM) could be used as an indicator to reveal their

different driving mechanisms.

We evaluate the error rate of valid predictions within each time interval sliding window in Fig. 6 (i.e., the fraction of

predictions in one time interval sliding window with ρSLP of significance P > 0.05) for AGRR, SLDGVMs, and CESM (see

Appendix A Fig. A10). We find that at least 30–year long intervals are needed for robust prediction of global C-cycle IAV.405

For periods shorter than 30 years, the rate of invalid predictions (in the sense given above) can be higher than 40 % for most

datasets and SLP domains and seasons. It is worth noting that even when predicting AGRR by using winter SLP in the tropical

domain, the error rate can still be as low as 13% in 15–yr interval. From the 15–yr to 30–yr interval, the error rate of AGRR

reduces from 0.4 to 0 in winter global and 0.13 to 0 in winter tropical. The error rate decreases to less than 0.16 in 30–yr

interval, except AGRR decreases to 0.24 in spring global, which also matches the relative low predictability of spring SLP410

anomalies in the period 1980–2017 with different spatial domains (see Appendix A Fig. A7 b). All error rates are reduced to

almost zero in a 40–yr interval.

4 Conclusions

The major objective of this study is to explore the relationship between SLP anomalies (as a proxy of large–scale atmospheric

circulation variability) and the global C–cycle IAV. Specifically, our goals are 1) to investigate the skill of SLP to predict global415

C–cycle IAV using Ridge Regression and to compare with traditional teleconnection indices, and 2) to establish statistical links

at different spatio–temporal scales between large–scale atmospheric circulation variability and global C-cycle IAV.

First, we find that boreal winter and spring SLP anomalies allow predicting IAV of atmospheric CO2 growth rate and IAV

of the global land sink, with correlations between predicted and reference values between 0.70–0.84 when using winter SLP

fields. This is comparable or higher than the predictive skill of a similar model using 15 teleconnection indices as predic-420

tors. The spatial patterns of the Ridge Regression coefficients reveal a strong influence of large–scale atmospheric circulation
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variability on global C–cycle IAV, particularly in the El Niño / Southern Oscillation and West Pacific domains. Second, the

comprehensive spatio–temporal sensitivity analysis indicates an increasing sensitivity of global C–cycle IAV to large–scale

atmospheric circulation variability during boreal winter in the Southern Hemisphere extratropics in the recent decades. This

increased sensitivity may be influenced by internal climate variability or by enhanced sensitivity of global C–cycle variability425

to externally forced changes, but requires further research. Finally, we find that time–series of at least 30 years are needed for

robust predictability of global C–cycle IAV. For shorter time–series, predictability is highly dependent on the particular period

considered, and thus largely due to statistical artifacts of random internal climate variability in the fitting process.

Overall, Ridge Regression using seasonal SLP fields as predictors of global C-cycle variability provides a novel and efficient

data-driven approach for detecting the relationship of large–scale atmospheric circulation variability to global C–cycle variabil-430

ity. Compared to teleconnection indices, this approach requires no pre–defined spatial configurations and is more flexible to the

particular domain considered and shows equal or higher predictability of global C-cycle IAV. This method allows quantifying

the contribution of atmospheric dynamical processes in driving variability in the C-cycle at global and regional scales, and may

further be useful for attributing observed changes to internal climate variability versus anthropogenic climate change.
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Figure A1. ρSLP of AGRR, SLResid and SLDGVMs under different DJF SLP resolution (2◦×2◦, 5◦×5◦, 9◦×9◦) by Ridge Regression

leave–one–out cross–validation in period of 1959–2017.
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Figure A2. ρSLP of AGRR, SLResid and SLDGVMs under different seasonal SLP (with different month combination) by Ridge Regression

leave–one–out cross–validation in period of 1959–2017. Each combination represents: NDJ (November, December, and January), DJF (De-

cember, January, and February), JFM (January, February, and March), MAM (March, April, and May), AMJ (April, May, and June).
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(a)

(b)

Figure A3. Time series auto–correlations of pre–treated CO2 time–series in period (a) 1959–2017 for AGRR, SLResid and SLDGVMs. (b)

1980–2017 included two more inversions SLCAMS and SLCarboScope. The shaded areas are the 95% confidence interval of the calculated

auto–correlation under different lags.
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Figure A4. Distribution of ωSLP with the time–series of AGRR (top row), SLResid (second row), SLDGVMs (third row), SLCAMS (fourth

row) and SLCarboScope (last row) in DJF (left column) and MAM (right column) based on SLP fields in the period 1980–2017. ωSLP are the

mean of the n= 34 run Ridge Regression coefficients. Note that ρSLP of SLCAMS MAM has P > 0.5.
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Figure A5. Distribution of ωTele with the time–series of AGRR, SLResid, SLDGVMs, SLCAMS and SLCarboScope based on teleconnection

indices in period of 1980–2017.
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Figure A6. Heat map of ρSLP with CO2 time–series over various SLP latitude domains in DJF. Each heat map contains 5×5 squares, and

each square represents one domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦ N to 72◦ S. All

latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global scale SLP. ρSLP of AGRR, SLResid,

SLDGVMs in 1959–2017.
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Figure A7. Heat map of ρSLP with CO2 time–series over various SLP latitude domains in MAM. Each heat map contains 5×5 squares,

and each square represents one specific domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦

N extending to 72◦ S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global scale

SLP. Time series is from (a) 1959–2017 for AGRR, SLResid and SLDGVMs. (b) 1980–2017 included two more inversions SLCAMS and

SLCarboScope.
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Figure A8. Heat map of ρSLP with CO2 time–series over various SLP latitude domains in DJF+MAM. Each heat map contains 5×5 squares,

and each square represents one specific domain of SLP. For example, the square 36◦ N–72◦ S is the domain of SLP extending from 36◦

N extending to 72◦ S. All latitudinal domains include the tropical area (18◦ N–18◦ S). The top right square thus represents global scale

SLP. Time series is from (a) 1959–2017 for AGRR, SLResid and SLDGVMs. (b) 1980–2017 included two more inversions SLCAMS and

SLCarboScope.
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Figure A9. Heat map of ρSLP of AGRR with DJF SLP over various latitude domains. A 30–yr sliding window in the period of 1959–2017

with a one year step is created. The starting and end year of each interval is labeled on the top of each heat map.
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Figure A10. Error rate of the sliding window in 15, 20, 30 and 40 year intervals. For each sliding window, the error rate is calculated by

the number of invalid predictions (with significance P > 0.05 in ρSLP of CO2 time–series) divided by the number of total predictions. With

SLP in DJF global, MAM global, DJF tropical and MAM tropical as predictors, the error rate of ρSLP of (a)AGRR, (b) SLDGVMs, and (c)

CESM are plotted.
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Figure A11. The spatial distribution of Pearson correlations between global SLP predicted AGRR (one time–series) to global pixel–based

land temperature/precipitation anomalies (both from CRU TS4.05 (Harris et al., 2020) monthly dataset, aggregated to annual mean tem-

perature/annual sum precipitation, and detrended by LOWESS), in the period 1980–2017. The top panel shows the spatial distribution of

Pearson correlations between pixel–based land temperature anomalies to global SLP predicted AGRR for DJF (left) and MAM (right), and

the bottom panel shows Pearson correlations of land precipitation anomalies.
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Figure A12. The spatial distribution of Pearson correlations between global DJF/MAM SLP predicted AGRR (one time–series) with

pixel–based annual sum NBP variation (LOWESS detrended) from atmospheric inversion CarboScope s76 (Bastos et al., 2020; Cheval-

lier et al., 2005; Rödenbeck et al., 2003) (upper panel) and CAMS (Bastos et al., 2020; Chevallier et al., 2005; Rödenbeck et al., 2003) (lower

panel), in the period 1980–2017.
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Appendix B: Data availability

The Global Carbon Budget 2018 dataset (Le Quéré et al. (2018)) is available at https://www.icos-cp.eu/science-and-impact/

global-carbon-budget/2018. The two atmospheric inversion datasets are available in Bastos et al. (2019). The monthly sea level

pressure is from ERA5 reanalysis available at Climate data store, for the period 1959-1978 is from Bell et al. (2020) and the

period 1979-2017 is from Hersbach et al. (2019). The download links for the 15 teleconnection indices are available in Table 1440

of Section 2.1.2, last access on August 2021. The sea level pressure and NBP from CESM1.2 is available in Stolpe et al. (2019).

Appendix C: Code availability

The Python scripts are available at https://edmond.mpdl.mpg.de/privateurl.xhtml?token=8f717b4f-aea2-4a9b-96a3-efc8487e54af
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