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Abstract. Infrared (IR) and passive microwave (PMW) satellite sea surface temperature (SST) retrievals are valuable to assimi-

late into high-resolution regional ocean forecast models. Still, there are issues related to these SSTs that need to be addressed to

achieve improved ocean forecasts. Firstly, satellite SST products tend to be biased. Assimilating SSTs from different providers

can thus cause the ocean model to receive inconsistent information. Secondly, while the PMW SSTs are valuable for con-

straining the model in cloudy regions, the spatial resolution of these retrievals is rather coarse. Assimilating PMW SSTs into5

high-resolution ocean models will spatially smooth the modeled SST and consequently remove finer SST structures. In this

study, we implement a bias correction scheme which corrects the satellite SSTs before assimilation. We also introduce a special

observation operator, called the supermod operator, into the Regional Ocean Modeling System (ROMS) 4-dimensional varia-

tional data assimilation algorithm. This supermod operator handles the resolution mismatch between the coarse observations

and the finer model. We test the bias correction scheme and the supermod operator using a setup of ROMS covering the shelf10

seas and shelf break off Norway. The results show that the validation statistics in the modeled SST improve if we apply the

bias correction scheme. We also find improvements in the validation statistics when we assimilate PMW SSTs in conjunction

with the IR SSTs. However, our supermod operator must be activated to avoid smoothing the modeled SST structures of spatial

scales smaller than twice the PMW SST footprint. Both the bias correction scheme and the supermod operator are easy to

apply, and the supermod operator can be adapted for other observation variables.15

1 Introduction

Satellite-based sea surface temperature (SST) retrievals account for the majority of observations assimilated into ocean forecast

models and can be retrieved by measuring both the infrared (IR) and passive microwave (PMW) radiation emitted by the ocean

surface. In cloudy regions such as high northern latitudes, the cloud coverage reduces the number of SST retrievals by the20

IR sensors. Consequently, SSTs from PMW radiometers serve as a complementary data set as the PMW radiation penetrates
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clouds. While the spatial resolution of IR SSTs typically is similar to or finer than those of regional ocean forecast models, a

disadvantage with the PMW SSTs is their relatively coarse resolution.

Indeed, mesoscale ocean models can resolve circulation features of smaller spatial scales than those the PMW SSTs can pro-

vide. Such differences in resolved scales are commonly referred to as representation errors within the field of data assimilation25

(Janjić et al., 2018). Previous studies have considered the differences in resolved scales while assimilating coarse observations

such as those of sea ice concentration, satellite sea surface salinity, and scatterometer ocean surface winds (Buehner et al., 2013;

Martin et al., 2019; Mile et al., 2021). Furthermore, the difference between the footprint sizes of the PMW and IR SSTs has

been considered while producing global SST analyses where IR and PMW SSTs are merged using statistical methods (Donlon

et al., 2012; Brasnett and Colan, 2016). However, an attempt with regards to assimilating PMW SSTs into a high-resolution30

regional ocean forecast model has so far not been undertaken.

We implement a special observation operator, called the supermod operator, into the Regional Ocean Modeling System

(ROMS; Haidvogel et al., 2008; Shchepetkin and McWilliams, 2009) 4-dimensional variational (4D-Var) data assimilation

system (Moore et al., 2011; Gürol et al., 2014). This operator considers the resolution mismatch between the PMW SSTs and

the model by comparing each PMW SST observation with the model mean over an area similar to the observation footprint. We35

show that, compared to a traditional observation operator, the supermod operator prevents PMW SSTs from constraining the

spatial scales of the model that the PMW SSTs do not resolve properly. Thus, the supermod operator enables us to assimilate

PMW SSTs without smoothing the modeled SST structures. We test the operator using a configuration of ROMS that covers

the shelf seas and shelf break off Norway. This region is subject to high cloud coverage, meaning that there is a need for

assimilating PMW SSTs to constrain the model. Moreover, the risk of smoothing modeled SST structures is high in this region40

since the spatial scales of the SST structures typically are small at high latitudes.

To further improve the modeled SST, we take into account that satellite SSTs from different providers tend to be biased due

to differences and limitations in the SST retrieval processes and algorithms (Chan and Gao, 2005; Høyer et al., 2012; Wang

et al., 2016). Specifically, we implement a bias correction scheme which is inspired by Høyer et al. (2014) and use this scheme

to correct the assimilated satellite SST observations for biases. The scheme ensures consistency between SST observations45

from different providers, thus preventing the model from receiving inconsistent information during the assimilation of different

satellite SST products. By reducing the inconsistent information, the probability of artificial noise in the modeled SST is

hampered.

2 Data and methods

2.1 Model configuration and data assimilation setup50

We use a configuration of ROMS to model the shelf seas and shelf break off Norway (Fig. 1). ROMS is a free-surface,

hydrostatic, primitive equation ocean model using stretched, terrain-following vertical coordinates, which is beneficial for

modeling shallow, coastal waters. We present only a brief summary of the model configuration since a thorough description

can be found in Röhrs et al. (2018).
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Figure 1. Bathymetry of the model region covering the shelf seas and shelf break off Norway.

The horizontal resolution of the model is 2.4 km, and there are 42 layers in the vertical direction which are distributed so55

that the uppermost layer has a thickness of ∼ 0.2–1.2 m. Vertical mixing is parameterized using a second-order scheme for

turbulent kinetic energy and a generic length-scale (GLS) based on a setup recommended by Umlauf and Burchard (2005) and

Warner et al. (2005). The configuration differs slightly from that of Röhrs et al. (2018) with different choices for the Kmin and

Pmin parameters, which in our case are set to 1.0 × 10−8.

We force the model with three-hourly operational forecast data from the Integrated Forecast System of the European Cen-60

tre for Medium-Range Weather Forecasts (ECMWF, 2016). Air–sea fluxes for momentum and heat are calculated via the

COARE3.0 bulk flux algorithms (Fairall et al., 2003) within ROMS. Open boundary conditions consist of daily averages of all

state variables from the TOPAZ4 reanalysis (Xie et al., 2017). The sea surface elevation and currents are adjusted to include

the effect of local atmospheric pressure, as TOPAZ4 does not include the inverse barometer effect. Harmonic tidal forcing,

consisting of eight tidal constituents from the TPXO9 global inverse barotropic model (Egbert and Erofeeva, 2002), is also im-65

posed along the open boundaries. Riverine runoff is based on modeled river discharges from the Norwegian Water Resources

and Energy Directorate (Beldring et al., 2003).

The model is initialized from the TOPAZ4 reanalysis on 1 January 2017 and run with 4D-Var assimilation of satellite SST

and in situ temperature and salinity observations as described in Röhrs et al. (2018). This reanalysis is used to initialize a set of

different experiments (see Sect. 4.1), all of which assimilate only satellite SST observations and are run for the period 21 April70

2018–22 June 2018.
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The assimilation algorithm used for the experiments is the dual formulation of the ROMS 4D-Var system (RBL4DVAR;

Moore et al., 2011; Gürol et al., 2014). Generally, in 4D-Var data assimilation, the analysis is found by minimizing a cost

function in the form:

J(x) =
1
2
(x−xb)T B−1(x−xb) +

1
2

(y−H(x))T R−1(y−H(x)), (1)75

where the control vector, x, holds the control variables, which include the prognostic variables (temperature, salinity, horizontal

velocity, and sea surface height) at the model grid points. The background control vector is denoted xb, while the vector y is

the observations. In our setup, we gather the observations using a temporal spacing of 15 minutes. The observation operator,

H, returns the model equivalents of the observations by interpolating the model values to the observation locations. This

interpolation is dynamic in nature sinceH includes the nonlinear model. In case the observed quantity is not part of the control80

vector, H may also transform the model values to correspond to the observed quantity. B is the background error covariance

matrix, while R is the observation error covariance matrix. R is required to be diagonal in most operational data assimilation

systems, including ROMS, as the 4D-Var minimization algorithm involves the inverse of R (e.g., Gürol et al., 2014). With a

diagonal R, we assume the observation errors to be uncorrelated in both time and space.

The observation errors used to construct R may represent the measurement error, which is the error associated with the ac-85

curacy of the measuring instrument, and representation errors (Janjić et al., 2018). The latter is connected to errors arising from

the pre-processing and quality-control of the observations, the observation operator, and the mismatch between the resolutions

of the observations and the model grid. In this study, the standard deviation of the error attributed to an observation (σo) is

estimated as a function of the standard deviation of the background error at the observation location (σb), a factor based on the

reported quality level of the satellite products (Q), and a parameter α:90

σ2
o = α ·Q ·σ2

b . (2)

The reported quality level reflects the uncertainty of the observation and is assigned to each SST measurement by the data

creator (Donlon et al., 2007). Only quality level 4 (acceptable quality) and 5 (best quality) are used in this study. To ensure

that more weight is given to the observations with best quality during assimilation, observations with quality levels 4 and 5

are assigned a Q of 1.1 and 0.9, respectively. The parameter α varies for each satellite product (Table 1) and is chosen by95

validating a set of experiments with different choices of α against independent data sets. Notice that for the PMW SSTs we

use two different values for α: α = 0.3 when the supermod operator (see Sect. 3) is activated, and α = 2 when the supermod

operator is not activated.

2.2 Observations

Satellite SST observations from IR and PMW radiometers are used in this study, and a summary of the products is found in100

Table 1. All observations are level-2 preprocessed (L2P) products downloaded from the Physical Oceanography Distributed

Active Archive Center (PO.DAAC), the Satellite Application Facility on Ocean and Sea Ice (OSI SAF) FTP server, and the

European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) data center online ordering client.
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Table 1. IR and PMW satellite observations used in this study and their approximate spatial resolution at nadir. The factor α is used to

estimate the observation errors (see Sect. 2.1).

Satellite Sensor Data creator Method Res. (km) α

Metop-B AVHRR OSI SAF IR 1.1 2

N20 VIIRS NOAA IR 0.75 2

GCOM-W1 AMSR-2 RSS PMW 35 × 62 0.3 (2)

NPP VIIRS NOAA IR 0.75 –

Sentinel-3A SLSTR EUMETSAT IR 1 –

The IR SSTs have a spatial resolution ranging from 0.75–1.1 km at nadir and are thus capable of resolving SST structures

of similar scales as the structures captured by the model. When several of these observations fall within the same model grid105

cell during the same time interval, the observations are averaged to create superobservations.

PMW radiometers can, contrary to IR radiometers, retrieve SSTs during cloudy conditions. Challenges related to PMW SST

retrievals that require affected pixels to be discarded include rain, radio-frequency inference, sun glitter and emission from sea

ice surfaces and land (Minnett et al., 2019). The latter contamination affects PMW retrievals from regions within ∼ 100 km

from land. The spatial resolution of PMW SSTs depends on the frequency used to derive the SSTs and the antenna size and110

is significantly coarser than those of the IR SSTs. For AMSR-2 GCOM-W1, the primary band for PMW SST retrieval at 6.9

GHz corresponds to an elliptic footprint, elongated in the along-track direction of the satellite, with sizes of approximately 35

× 62 km (Imaoka et al., 2010).

All satellite SST observations are corrected by applying the single-sensor error statistics (SSES) bias, as recommended in

Donlon et al. (2007). We use quality level 4 and 5 for the assimilated IR SST products. For the PMW SSTs, we use only quality115

level 5 observations and discard the quality level 4 observations due to unwanted artifacts in the SST field.

The SLSTR instrument onboard Sentinel-3A uses a dual view technique where the swath is scanned twice through two

different atmospheric path lengths. This capability allows for more accurate SST measurements (Luo et al., 2020). Unlike the

other SST products, which provide the sub-skin temperature, SLSTR Sentinel-3A provides the skin temperature. An offset of

0.17 ◦C is added to these skin temperatures so that all of the SSTs used throughout this study represent the sub-skin temperature120

(Donlon et al., 2002; Høyer et al., 2014). Due to the higher accuracy of the SLSTR sensor onboard Sentinel-3A, we use quality

level 5 SSTs measured by this sensor to correct the other satellite products for biases (see Sect. 2.3) and for validation purposes.

Other SSTs used for validation are bias-corrected SSTs from VIIRS NPP and SSTs measured by drifting buoys from the CORA

data set (Cabanes et al., 2013). The spatial coverage of the drifting buoys is shown in Fig. 2.

Figure 3 shows time series of the number of observations inside the model domain during the chosen assimilation period in125

2018. For the satellite observations, we count only observations meeting the set minimum quality level. Cloudiness causes the

number of IR SST observations to vary. The largest number of observations is in the beginning of May, and there is a drop in
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Figure 2. Colored lines show the spatial coverage of CORA drifting buoys during the period 21 April 2018–22 June 2018. There are in total

∼ 13 000 observations of this kind. Solid black box shows the extent of the model domain, while the dashed black box shows the domain

selected for SST variance spectrum calculations (see Sect. 4.3).

the observational coverage while approaching June. The number of PMW SST observations is stable during the whole period,

which we expect since PMW SSTs can be measured in cloudy conditions. Moreover, the number of available PMW SSTs is

on average smaller than the number of available IR SSTs since the PMW SSTs are provided on a coarser grid.130

2.3 SST bias correction algorithm

High northern latitudes are recognized as challenging regions for satellite SST retrieval (Donlon et al., 2010; Wang et al., 2016;

Jia and Minnett, 2020). In situ data are used to derive the satellite SST retrieval algorithms and to correct and thus improve

the quality of the retrieved SST. However, the number of available in situ SST measurements at high northern latitudes is low

compared to equatorial and mid-latitude regions, and this data scarcity can lower the quality of high-latitude IR and PMW SST135

retrievals (O’Carroll et al., 2019).
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Figure 3. Time series of the number of observations available inside the model domain for each sensor and satellite pair and for the CORA

drifting buoys.

The SST retrieval in the IR is subject to additional challenges. First, the process of cloud screening, where cloudy and clear-

sky conditions are separated, is critical (O’Carroll et al., 2019). Any undetected clouds will result in erroneous SST retrievals.

That the high northern latitudes are exposed to frequent cloud coverage challenges the identification process. Additionally,

the brightness temperatures derived from the measured IR radiance are modified by gases, such as water vapor, and aerosols140

in the atmosphere. Atmospheric correction algorithms are thus required to retrieve accurate SSTs. At high latitudes, these

corrections tend to be problematic, hereby degrading the accuracy of the measured SSTs (Kumar et al., 2003; Merchant et al.,

2006; Vincent, 2018; Jia and Minnett, 2020).

For the PMW part of the spectrum, challenges that must be corrected for (in addition to those mentioned in Sect. 2.2, which

cause the measurements to be discarded) include sea surface roughness generated from strong winds and atmospheric effects145

such as those associated with modification of the PMW radiation by water vapor and liquid water (Wentz et al., 2000; Minnett,

2014).

SST products from various satellites and sensors are subject to regional and temporal biases due to the difficulties concerning

the SST retrieval process and the differences in applied retrieval algorithms (Chan and Gao, 2005; Høyer et al., 2012; Wang

et al., 2016). To this end, Høyer et al. (2014) developed and employed a bias correction scheme which they used to correct150

SST products from different providers. Their goal was to merge these products, and the correction was performed to avoid any

biases from affecting the final product.

We implement a similar bias correction scheme, with some modifications, to ensure consistency between the different satel-

lite SST products being assimilated into our model. The bias correction is an individual step during the preparation of ob-

servations for assimilation and is not part of the data assimilation process itself. Biases are calculated independently for all155

satellite products using SLSTR Sentinel-3A SST as reference. Figure 4 illustrates such a bias field for AVHRR Metop-B, and

the method is described in what follows.
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Figure 4. Mean bias for AVHRR Metop-B on 22 May 2018. The bias is calculated using 11 daily difference fields from 17 May 2018 to 27

May 2018.

Daily SST fields on a grid with a resolution of ∼ 25 km are produced for each satellite product, including the reference

product, by first resampling the available L2P SST products to this coarser grid and then performing a simple averaging of

the observations falling into each grid cell. To minimize the possibility of using SST observations affected by greater diurnal160

warming events (Eastwood et al., 2011; Karagali et al., 2012), we exclude observations located in regions where the wind speed

is less than 3 m s−1 during local summer daytime (defined here as May–August at 10–14 UTC). This wind speed threshold

is less strict than that recommended in Donlon et al. (2002) but was chosen to ensure sufficient spatial coverage in the daily

fields.

Daily difference fields are produced by subtracting the reference daily SST field from the daily SST fields of the other165

satellite products. We remove all of the values where the difference exceeds± 2 ◦C. This data removal is performed to exclude

unrealistic values which we detected along the coast and nearby regions affected by cloud contamination.

By aggregating 11 daily difference fields, we produce a mean bias that is valid on the central day. The aggregation is

performed as a simple temporal averaging as in Høyer et al. (2014). The bias correction scheme will thus correct for biases

persistent for approximately 11 days. Correcting for biases occurring for shorter temporal scales would require a shorter170

temporal averaging interval, and additional reference SST products would have to be included to ensure sufficient spatial

coverage. The mean biases are finally resampled to the model grid and, to avoid unwanted noise, spatially smoothed by

applying a uniform filter. This filter has the size of 40 grid points (∼ 96 km) in both horizontal directions.
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3 Supermod operator

As noted, observations with higher spatial resolution than the model are combined into superobservations. This procedure175

reduces the representation errors, as information on smaller spatial scales than what the model is able to represent is smoothed.

For the case of PMW SST, however, each observation represents an SST average over the area covered by its footprint. For

AMSR-2 GCOM-W1, this footprint is roughly 375 times larger than the area of a grid cell in our model domain. Thus, we

expect the model to contain potentially valuable information on finer spatial scales than what is present in the observations.

If observations of this type were assimilated with a traditional observation operator that does not account for the observation180

footprints, we would expect large, spatially correlated representation errors (Liu and Rabier, 2002). Such errors are particularly

problematic in operational data assimilation systems designed to handle uncorrelated observation errors.

An observation operator that ensures that each PMW SST observation is compared with a model mean over an equivalent

area as the SST footprint is implemented in ROMS to avoid corrections of finer scales. The implementation of the operator

follows a similar methodology as described in Mile et al. (2021). We will refer to this operator as the supermod operator185

hereafter.

Our implementation of the supermod operator builds on the assumption that the observation footprints are squares with sides

of length (1+2L)dx, where (1+2L) is the number of grid cells and dx is the horizontal resolution of the model. L can be set

separately for each individual observation, which makes the operator easy to apply to new observation sources and different

model configurations. As the center of the observation footprint may be located between model grid points, the supermod190

value is calculated as a weighted mean of the values in grid cells that fall completely or partially within the footprint area. This

is done to conserve the effective resolution of the supermod values and to ensure that the model footprint is centered at the

observation location. Another factor that could affect the effective resolution of the supermod values is the existence of land

points within the footprint or if the footprint extends beyond the boundaries of the model domain. The operator is designed to

reject observations with these footprint features. Figure 5 illustrates how the operator works.195

Idealized tests showed a sudden increase in the standard deviations of the innovations (observations minus background) when

the footprints were increased and became overlapping. Thus, a thinning procedure is performed on the PMW observations

prior to assimilating the observations. As the supermod operator can only represent square footprints, we have chosen L

conservatively to make sure that the square used to represent the footprint will not be smaller than the largest size of the true,

elliptic footprint of the satellite retrievals. With the grid resolution of our model being 2.4 km, L = 13 gives us footprints with200

sides of 64.8 km. The PMW observations are thus thinned during a pre-processing step to ensure a distance of at least 64.8 km

between the observation points.

3.1 Idealized experiment

An idealized scenario with no surface forcing, no land, and a flat bathymetry is applied in order to test the behavior of the

supermod operator in ROMS. A coarse grid with a horizontal resolution of ∼ 30 km is chosen to reduce the computational205
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Figure 5. Schematic figure showing the supermod operator with L = 1 for (a) an observation that falls exactly in the center of a model grid

cell; (b) an observation that is shifted towards the upper right corner of a grid cell. The orange crosses indicate the observation locations, the

mesh illustrates grid cells, and the orange squares indicate the footprint area of the observations. The colormap indicates the weight (%) by

which the grid cells contribute to the supermod value.

costs. The ocean is set to be initially at rest with a uniform temperature and salinity of 12 ◦C and 34, respectively. The standard

deviations of the background errors are also uniform for every prognostic variable, and for temperature, it is set to 0.02 ◦C.

A single PMW SST observation, with a temperature of 12.5 ◦C and a standard deviation of the observation error set similar

to the standard deviation of the background, is assimilated into the idealized setup for varying footprint sizes. Figure 6a–d show

the resulting SST increments. Increasing the footprint size causes the increment to spread laterally such that the observation210

affects a greater area. The increment amplitude decreases simultaneously. Furthermore, for each footprint size in Fig. 6a–d, we

calculate the average increment using all values greater than zero. That the average increment does not change significantly

while increasing the footprint illustrates that the inclusion of the supermod operator spreads the information from the PMW

SST observation as expected.

10

https://doi.org/10.5194/egusphere-2022-957
Preprint. Discussion started: 27 September 2022
c© Author(s) 2022. CC BY 4.0 License.



(a) L = 0

Max. value: 0.25 C
Avg. increment: 6.7×10 3 C

(b) L = 1

Max. value: 0.23 C
Avg. increment: 7×10 3 C

(c) L = 2

Max. value: 0.17 C
Avg. increment: 7.1×10 3 C
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Figure 6. SST increment for (a–d) varying sizes of L and with the observation error (σ2
o) set equal to the background error (σ2

b ); (e) L = 2

and σ2
o = 1.5σ2

b ; (f) L = 2 and σ2
o = 0.5σ2

b .

Figure 6e and f show the effects of increasing and decreasing the observation error by a factor of 1.5 and 0.5, respectively,215

when the footprint parameter is set to L = 2. Increasing (decreasing) the error decreases (increases) the increment amplitude,

which is what we would expect. Further tests revealed that the amplitude reduction with increasing L is not as pronounced

when the observation error is set much smaller than the background error. In the extreme cases of a very small observation

error, the increment might increase with increasing L.

4 Results220

4.1 Experimental design

Different experiments are set up to (1) test the effect of correcting the satellite SSTs for biases before assimilation and (2)

determine the effect of assimilating PMW SST observations with and without the application of the supermod operator. Table

2 summarizes the experiments, all of which cover the period 21 April 2018–22 June 2018.

To assess the bias correction scheme, IR SSTs are assimilated with (IR2) and without (IR1) applying a correction of biases.225

Similarly, to assess the supermod operator, we assimilate PMW SSTs by first treating the SSTs as regular point observa-
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Table 2. Summary of experiments showing the sources (sensor and satellite) of the assimilated satellite SSTs, whether the observations

are corrected for biases through the bias correction scheme, whether the supermod operator is activated, and the approximate number of

observations assimilated (Nobs).

Experiment Assimilated SST Bias correction Supermod Nobs

IR1
AVHRR Metop-B

VIIRS N20
No – 2.4 × 107

IR2
AVHRR Metop-B

VIIRS N20
Yes – 2.4 × 107

PMW1 AMSR-2 GCOM-W1 Yes No 1.7 × 106

PMW2 AMSR-2 GCOM-W1 Yes Yes 2.3 × 104

COMB1

AVHRR Metop-B

VIIRS N20

AMSR-2 GCOM-W1

Yes No 2.5 × 107

COMB2

AVHRR Metop-B

VIIRS N20

AMSR-2 GCOM-W1

Yes Yes 2.4 × 107

tions (PMW1) and then by applying the supermod operator (PMW2). Notice that PMW2 includes the process of thinning the

observations. As a consequence, PMW2 assimilates only ∼ 2 % of the observations assimilated in PMW1.

The argument for including PMW SSTs in the assimilated data set is to supplement the IR SSTs during periods of high

cloud coverage. Hence, we run two additional experiments to determine the effects of combining IR and PMW SSTs. In230

these experiments, we correct all of the observations for biases. Experiment COMB1 assimilates IR and PMW SSTs without

employing the supermod operator, i.e., the experiment is a combination of IR2 and PMW1. The final experiment, COMB2, is

a combination of IR2 and PMW2, thus assimilating IR and PMW SSTs with the supermod operator activated.

The assimilation window is set to three days in all experiments. The assimilated observations update the background pro-

duced for such a three-day cycle to produce the analysis. The ocean state at the end of the analysis is then used as the initial235

conditions for the next assimilation cycle, where a background is produced and the process repeats. Thus, the background can

be considered a forecast, and we evaluate the experiments using the backgrounds in the following. If not stated otherwise, the

evaluation period excludes the two first assimilation cycles and covers 27 April 2018–22 June 2018.
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Table 3. SST RMSE (◦C) and bias (◦C). Validation metrics are calculated using SLSTR Sentinel-3A and bias-corrected VIIRS NPP SST as

reference (left columns) and SSTs from drifting buoys as reference (right columns). Observations in coastal regions, where land emissions

contaminate PMW SSTs, are excluded from the reference data sets.

Satellites Drifting buoys

Experiment RMSE Bias RMSE Bias

IR1 0.534 −0.224 0.406 −0.173

IR2 0.470 −0.154 0.377 −0.143

PMW1 0.598 −0.177 0.402 −0.088

PMW2 0.612 −0.237 0.412 −0.121

COMB1 0.465 −0.143 0.368 −0.115

COMB2 0.468 −0.152 0.371 −0.142

4.2 Error statistics

Table 3 shows validation statistics in the SST for the background. In comparing IR1 and IR2, we find that correcting the240

observations for biases reduces the RMSE and the bias of the modeled SST. We expect improved statistics when validating

against satellite SSTs since the validating data set contains SLSTR Sentinel-3A SSTs, which were the SSTs used to correct

the observations assimilated in IR2. However, the in situ SSTs measured by drifting buoys are independent of the assimilated

observations. The improvements in the error statistics calculated using this independent data set reveal the benefits of applying

the bias correction scheme.245

The RMSE is higher in PMW1 than in IR2 both when validating against satellite and in situ SSTs. However, the bias

of PMW1 is smaller than the bias of IR2 when validating against in situ SSTs, indicating that PMW SSTs are valuable to

assimilate to reduce the model’s systematic error. When validating against IR SSTs, PMW1 has a larger bias than IR2. This

larger bias does not reflect the ability of the PMW SST data set to adjust the model but was found to be a direct consequence

of having no PMW observations in the coastal zones, causing the coastal current to be too cold during its heating phase as250

summer approaches.

Applying the supermod operator generally increases the errors, as can be seen by comparing PMW1 and PMW2. An expla-

nation is that the increments in PMW2 are relatively weak compared to the increments in PMW1, which could be caused by

both the observation thinning as well as how the supermod operator is designed to work (increasing the footprint results in a

decrease in the increment amplitude). Weaker increments cause smaller adjustments of the background and, depending on the255

capability of the PMW SSTs to represent the true state, greater errors during validation. The mean increment during the first

assimilation window in PMW1 and PMW2, where both experiments have similar initial conditions, demonstrate this increment

difference: the mean increment in PMW1 is∼ 0.48 ◦C (increment standard deviation:∼ 0.41 ◦C), whereas PMW2 has a mean
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Figure 7. SST increments during the first time step in the first assimilation window shown for a selected region in the model domain.

Increments belong to experiments (a) PMW1 and (b) PMW2. (c) shows the resulting increments if PMW1 assimilates observations thinned

in the same way as the observations used in PMW2.

increment of ∼ 0.21 ◦C (increment standard deviation: ∼ 0.15 ◦C). The difference between the SST increment amplitudes in

PMW1 and PMW2 is, in addition, visually illustrated in Fig. 7a and b, which show the increments inside a selected region in260

the model domain. Even though the observations in PMW2 are thinned, the supermod operator is able to spread the impact of

the observations over the footprint area to create an increment pattern which is similar to the pattern created in PMW1. How-

ever, the adjustments of the modeled SST are smaller in PMW2. That PMW2 is able to produce a similar increment pattern as

PMW1, only with reduced increment amplitudes, indicates that the information provided by the additional SSTs in PMW1 is

redundant. This redundancy can be a symptom of significant correlations in the PMW SSTs observation error, as demonstrated265

by Liu and Rabier (2002). Assimilating a thinned version of the PMW SSTs without applying the supermod operator is, how-

ever, not sufficient to spread the increments over the observation footprint (Fig. 7c). The thinning itself does not handle the

spatial resolution mismatch between the PMW SSTs and the model, and the supermod operator is required in order to spread

the information from each observation over an area of similar size as the observation footprint.
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Both COMB1 and COMB2 validate better than IR2, which implies that the PMW SST data set provides the model with270

information not seen by the IR SSTs and that the supermod operator is able to pass along this information. To ensure that these

better validations are statistically significant, we performed a Monte Carlo approach where we randomly selected half of the

calculated SST differences (model minus observations) for experiments IR2, COMB1, and COMB2, followed by a calculation

of the SST RMSE and bias for each experiment. This selection and the subsequent calculations were repeated 1000 times.

Our tests showed that the better validation of COMB1 and COMB2 compared to IR2 is statistically significant at the 99 %275

level. Furthermore, we find that COMB1 validates better than COMB2. This can be explained by the differences between the

magnitudes of the increments resulting from assimilating the PMW SST observations, as discussed when comparing PMW1

and PMW2. The better validation of COMB1 can also reflect that a smoothed version of a model field that resolves small-scale

features generally validates better than the model field resolving these small-scale features. Small features captured by the

model tend to have incorrect positions compared to the reference observations used for validation (Dagestad and Röhrs, 2019;280

Jacobs et al., 2021).

We perform two additional validations to test if the improved error statistics of COMB1 and COMB2 can be explained by

the additional information PMW SSTs bring to the model when IR SSTs are unavailable. First, we validate the background

during the clear-sky period 6 May 2018–16 May 2018. Then, validation is performed during the cloudy period 7 June 2018–17

June 2018. We find that the cloudy period has an RMSE of 0.443 ◦C and 0.428 ◦C in IR2 and COMB2, respectively. The bias285

is −0.110 ◦C in IR2, while it is slightly reduced to −0.098 ◦C in COMB2. Conversely, the clear-sky period validation shows

that both the RMSEs and biases are similar in IR2 and COMB2, differing only by 0.001 ◦C. Similar results are found when

comparing IR2 and COMB1; that is, the RMSEs and biases differ the most during the cloudy period.

Figure 8 illustrates how PMW observations compensate for IR SST data deficiency. SST observations assimilated in IR2

during the assimilation cycle covering 8 June 2018–10 June 2018 are shown in Fig. 8a, while the SST increments from the290

beginning of this cycle at 8 June 2018 are shown in Fig. 8b. The presence of clouds limits the IR SST coverage, particularly

in the southwestern part of the domain. A cluster of IR SST observations around the Shetland Islands causes a cooling of the

model. However, the general lack of observations in this region leaves behind a larger area with no adjustments to the SST

field. For COMB2, the assimilated observations and the increments are shown in Fig. 8c and d, respectively. We notice that

the regions without IR SST observations in Fig. 8a are now covered by PMW SSTs. This additional information to the model295

causes the SST field to adjust such that a larger area is cooled.

We suspect that the "blob" of warming between 58–59◦ N and 1–3◦ E in Fig. 8d arises from unwanted SST artifacts in

the PMW SST data set. These artifacts are likely caused by radio-frequency interference from oil platforms (Alerskans et al.,

2020). Careful consideration of the PMW SSTs revealed that it is not sufficient to discard all but the quality level 5 data to

avoid erroneous data. Thus, we will have to implement an additional quality-control which is based on the positions of oil300

platforms to use this PMW SST data set in the future.
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Figure 8. SST observations assimilated in (a) IR2 and (c) COMB2 during the assimilation cycle covering 8 June 2018–10 June 2018, and

average SST increments at 8 June 2018 in (b) IR2 and (d) COMB2.

4.3 SST variance spectra

Spectral analysis is a technique that can be used to decompose the information contained in an observed or modeled field

into different spatial scales. Specifically, spectra can be computed for modeled or observed SST fields to evaluate the spatial

resolution of the SST structures contained within the field (e.g., Reynolds and Chelton, 2010; Brasnett and Colan, 2016; Castro305

et al., 2017; Pearson et al., 2019; Schubert et al., 2019; Janeković et al., 2022). The reason for this is that a spectrum holds

information about the SST gradients at different spatial scales. A reduction in the spectral density at higher frequency scales

(i.e., shorter wavelengths) thus reflects that the SST gradients at these scales have become weaker, i.e., that the field has become

more smooth.
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Usually, the SST data are decomposed into spectral space using the discrete Fourier transform (DFT), a transformation that310

requires the data to be periodic. Periodicity can be retained by spatially detrending the data or by windowing, i.e., multiplying

the field by a function such that the interior of the domain retains its structures while the boundaries drop off and approach

zero. A disadvantage of detrending and windowing is that these methods contaminate the largest scales in the spectral analysis

(Denis et al., 2002). We use an alternative to the DFT to avoid these problems, namely the discrete cosine transform (DCT),

where the input fields are made periodic in space by mirroring the fields prior to the transformation.315

For each time step of the background, we apply the DCT to the two-dimensional SST field inside the dashed box shown in

Fig. 2. This transformation into spectral space, as well as the subsequent calculation of the two-dimensional spectral variance

array, follow the methodology described in Denis et al. (2002). The spectral variances are distributed between their correspond-

ing wavelengths using the binning process presented in Ricard et al. (2013), so we end up with a one-dimensional SST variance

spectrum. The SST variance spectra calculated for each time step are subsequently averaged in time to provide a mean SST320

variance spectrum.

Figure 9 shows the mean SST variance spectra calculated for each experiment (except IR1). For wavelengths smaller than

∼ 120 km, we find that the spectrum from PMW1 has a significantly smaller variance than the spectrum calculated from

IR2. Assimilating PMW SSTs without using the supermod operator has thus a smoothing effect on the modeled SST. This

smoothing effect is also present in the spectrum calculated from COMB1, where IR SSTs are added to the assimilated data set:325

the spectrum from COMB1 follows that of PMW1 at most wavelengths and is more or less similar to PMW1’s spectrum at

wavelengths in the range ∼ 35–120 km. This result is within expectations, as PMW SSTs represent a mean value over a large

footprint of the actual SST field. With a traditional observation operator, this mean value is compared to individual model grid

points, and any small-scale deviation from this mean value in the model is thus damped in the analysis.

The spectrum from PMW2 has more variance than that from IR2 at all scales smaller than ∼ 200 km and follows the330

spectrum of a free model run (not shown). Furthermore, the variance spectrum from COMB2 is more or less identical to that

of IR2 at all spatial scales. These findings suggest that using the supermod operator prevents the gradients present in the field

from being smoothed: as PMW SSTs are now compared to mean model values, they do not penalize variations of the SST at

spatial scales they do not resolve.

SST variance spectra were also calculated for each experiment using the last day of the analyses from each analysis cycle335

(not shown). The spectra were compared to the corresponding background spectra to examine if the assimilation changes the

spatial scales of the background SST structures within each experiment. We find that the analyses in PMW1 experience a loss

of SST structures with spatial scales of ∼ 10–100 km and that the analyses in COMB1 have less SST structures at scales of ∼
50–70 km. The other experiments’ analyses do not experience a significant loss due to the assimilation of the observations.

5 Discussion340

Our results suggest that the PMW SSTs should be assimilated in conjunction with the IR SSTs in order to lower the errors

in the modeled SST. This is verified by comparing error statistics of COMB1 and COMB2 to IR2. The comparison of error
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Figure 9. Upper panel shows SST variance spectra with wavelengths ranging from 278.4 km (length of the shortest edge of the domain used

to calculate spectra) to 4.8 km (double the grid spacing). Shading is applied to indicate the 95 % confidence interval on the mean spectrum

and is calculated using the jackknife method. Notice that the shading is hard to detect due to the smallness of the confidence interval. Inset

zoom shows the spectra at wavelengths ranging from 120 km to 30 km. The lower panel shows the ratio of the experiments’ spectra to the

spectrum from IR2. A gray dashed line is drawn at 60 km, which is approximately the size of the major axis of the elliptic PMW SST

footprint.

statistics during clear-sky and cloudy conditions imply that the error improvements in COMB1 and COMB2 originate from the

additional information given to the model in cloudy regions where there is a shortage of IR SSTs. Figure 8, which shows the

SST increments in such cloudy regions, demonstrates the supermod operator’s ability to pass along the relevant information345

seen by the PMW SSTs. The assimilated PMW SST observations cool the model SST in a region of sparse IR SST coverage.

While the few available IR SSTs in that region confirm this cooling, they are not sufficient to correct the SST of the whole

region when assimilated on their own.
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While error statistics show that COMB1 validates better than COMB2, we find that COMB1 smooths SST structures. Hence,

the smaller SST RMSE and bias of COMB1 do not reflect that this experiment is a better quality product. The smoothing of350

COMB1 is demonstrated by the calculated SST variance spectra. We find that both PMW1 and COMB1 return smoother SST

fields than IR2 at spatial scales smaller than∼ 120 km. This upper limit is approximately twice the size of the major axis of the

elliptic PMW SST footprint. Thus, the limit corresponds to the expected effective resolution of the SST structures resolved by

the PMW SST observations. It is striking that the affected spatial scales in PMW1 and COMB1 correspond to scales smaller

than or similar to this effective resolution. Furthermore, that the additional information from the IR SSTs in COMB1 does not355

prevent the smoothing reveals that the PMW SSTs greatly impact the final reanalysis product. However, assimilating the PMW

SSTs through the supermod operator, which was performed in PMW2 and COMB2, does not result in a smoothing of the SST

structures.

Finally, all of the experiments cover the local spring, which is a period when the modeled SST undergoes great changes.

Such changes make it challenging to sustain high-skilled forecasts, and we chose the period due to these challenges. However,360

the chosen period is not heavily affected by clouds. The impact of assimilating PMW SSTs is possibly greater during winter

when the oceanic regions along the Norwegian coastline experience high cloud coverage.

6 Conclusions

Correcting the satellite SSTs for biases through the implemented bias correction scheme improves the modeled SST. The bias

correction scheme is easy to implement and apply since it is separate from the data assimilation process.365

While assimilating IR SSTs reduces the modeled SST errors, an additional reduction is achieved if PMW SSTs are assim-

ilated in conjunction with the IR SSTs. This error reduction is mainly caused by the information the PMW SSTs provide in

cloudy regions. However, if we assimilate the PMW SSTs without considering their large footprint sizes, we end up smoothing

the modeled SST structures of spatial scales smaller than twice the PMW SST footprint. By introducing the supermod operator,

we have shown that the PMW SST observations can be assimilated into the ocean model without causing any spatial smoothing370

of the modeled SST. Our supermod operator is easy to implement and can be used to assimilate other observation variables

having a coarser spatial resolution than the resolution of the model.

Code and data availability. Code for implementing the supermod operator is available at: https://github.com/siljeci/ROMS_supermod. Model

output from each data assimilation experiment is available at: https://thredds.met.no/thredds/projects/supermodop.html.
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