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Abstract. The Nash-Sutcliffe efficiency (NSE) is a widely used score in hydrology but is not common in the other 

environmental sciences. One of the reasons for its unpopularity is that its scientific meaning is somehow unclear in the 

literature. This study attempts to establish a solid foundation for NSE from the viewpoint of signal progressing. Thus, a 

forecast is viewed as a received signal containing a wanted signal (observations) contaminated by an unwanted signal 10 

(noise). This view underlines an important role of the error model between forecasts and observations. 

 

By assuming an additive error model, it is easy to point out that NSE is equivalent to an important quantity in signal 

processing: the signal-to-noise ratio. Moreover, NSE and the Kling-Gupta efficiency (KGE) are shown to be equivalent, at 

least when there are no biases, in the sense that they measure the relative magnitude of the power of noise to the power of 15 

variation of observations. The scientific meaning of NSE explains why it is reasonable to choose NSE=0 as the boundary 

between skilful and unskilful forecasts in practice, and this has no relation with the benchmark forecast that is equal to the 

mean of observations. Corresponding to NSE=0, the critical values of KGE is given approximately by 0.5. 

 

In the general cases, when the additive error model is replaced by a mixed adaptive-multiplicative error model, the 20 

traditional NSE is shown not to be a well-defined notion. Therefore, an extension of NSE is derived, which only requires to 

divide the traditional noise-to-signal ratio by the multiplicative factor. This has a practical implication: if the multiplicative 

factor is not considered, the traditional NSE and KGE underestimate (overestimate) the generalized ones when the 

multiplicative factor is greater (smaller) than one. In particular, the benchmark forecast turns out to be the worst forecast 

under the view of the generalized NSE. 25 

1 Introduction 

In hydrology, the Nash-Sutcliffe efficiency (NSE) is one of the most widely used similarity measures for calibration, model 

comparison, and verification (ASCE, 1993; Legates and McCabe, 1999; Moriasi et al., 2007; Pushpalatha et al., 2012; Todini 

and Biondini, 2017). However, Schaefli and Gupta (2007) pointed out a noticeable fact that NSE is not commonly used even 

in environmental sciences despite the fact that calibration, model comparison and verification are also employed in such 30 

scientific fields. Does this mean that NSE is a special metric that is only relevant for hydrological processes? If this is not the 
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case, what causes this limited use outside of hydrology? One of the reasons can be traced back to the lack of consensual 

scientific meaning of NSE in literature. 

 

NSE was firstly proposed by Nash and Sutcliffe (1974) by approaching verification from a viewpoint of linear regression 35 

(Murphy et el., 1989) 

��� = 1 −
∑(�����)�

∑(�����)� = 1 −
(���)�����������

(����)�������������, (1) 

where ��, ��  denote forecasts and observations, respectively, ( )���  denotes the expectation, and �� = �̅  is the mean of 

observations. The authors noted the analogy between NSE and the coefficient of determination �� in linear regression. Since 

�� measures goodness-of-fit in linear regression, NSE should yield a similarity measure for our verification problem. This 40 

use of �� implies that NSE regresses observations on forecasts 

� = �� + �, (2) 

where �, � are the linear regression coefficients, then uses the residual sum ∑(�� − ��)� , which they called the residual 

variance, and the total sum ∑(�� − ��)�, which they called the initial variance, in the definition of NSE. In general cases, the 

residual sum should be ∑(�� − ��� − �)� . This points out that the underlying regression model implicitly assumes the 45 

unbiased regression line (� = 1, � = 0), which is rarely satisfied in reality. 

 

Identifying NSE to �� in linear regression was soon replaced by identifying NSE to skill scores in verification (ASCE, 1993; 

Moriasi et al., 2007; Schaefli and Gupta, 2007; Ritter and Munoz‐Carpena, 2013). Here a skill score measures a relative 

performance between a score and its benchmark or baseline (Murphy, 1988). This benchmark score is obtained by using a 50 

benchmark forecast, which is usually an easily accessible forecast that does not require complicated computation. The most 

common benchmark forecasts are long-term or climatological forecasts and persistent forecasts. Thus, applying to NSE, the 

nominator ∑(�� − ��)� is simply the familiar mean squared error score (MSE), while the denominator ∑(�� − ��)� is now 

reinterpreted as the MSE of the benchmark forecast given by the mean of observations �� = ��. Equivalently, NSE can also 

be viewed as a normalized MSE with the normalizing factor ∑(�� − ��)� (Moriasi et al., 2007; Lamontagne et al., 2020). 55 

 

However, the special choice of �� as the benchmark forecast does not somehow conform with the purpose of using skill 

scores. Here the problem is that, the mean of observations can only be accessed after all observations are realized. This is not 

available at the time we issue forecasts, and therefore cannot be compared with our forecasts at that time. This subtle 

problem was noticed by several authors (Legates and McCabe, 1999; Seibert, 2001) and seasonal or climatological means 60 

were suggested as benchmarks instead of the mean of observations. However, Legates and McCabe (2012) showed that the 

appropriate choice of benchmark forecasts depends on hydrological regimes, leading to a more complicated use of NSE in 

practice. Therefore, they suggested to stick with the original NSE. 
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In recent years, starting with the work of Gupta et al. (2009), NSE has been recognized as a compromise of different criteria 65 

that measures an overall performance by combining different scores for means, variances and correlations. The 

decomposition form of NSE in terms of the correlation �, the ratio of standard deviations � = ��/��, and the ratio of means 

� = ��/�� is given by (Lamontagne et al., 2020) 

��� = 2�� − �� −
(���)�

(��/��)�. (3) 

Given this unintuitive form of NSE, Gupta et al. (2009) suggested a more intuitive score named the Kling-Gupta efficiency 70 

(KGE) 

��� = 1 − �(� − 1)� + (� − 1)� + (� − 1)�. (4) 

Note that KGE is only one of many potential combinations of �, �, � that yield an appropriate verification score. In this 

multiple-criteria framework, the scientific meaning of a score depends on the skills that we put more weights in 

consideration. However, unlike KGE, NSE defined by (3) is not a linear combination of the individual scores related to 75 

�, �, �, therefore, the scientific meaning of NSE is even more obscure in this context. In other words, we can simply explain 

that NSE measures overall performances, but we cannot separate the contribution from each individual score.  

 

One of weak points of the multiple-criteria viewpoint is that it explains the elegant form (1) by the unintuitive form (3). We 

suspect that there exists a more profound explanation for the elegant form (1) which also gives us the scientific meaning of 80 

NSE. In pursuing this explanation, we will come back to the insight of Nash and Sutcliffe (1974) when they first proposed 

NSE as a measure. This insight was expressed clearly in Moriasi et al. (2007) when they understood NSE as the relative 

magnitude of variances of noise and variances of informative signals. This suggests us to approach NSE from the perspective 

of signal processing. We will show that NSE is indeed a well-known quantity in signal processing. 

 85 

This paper is organized as follows. In Sect. 2, we revisit the traditional NSE from the viewpoint of signal processing on 

forecasts and observations. Only with an additive error model imposing on forecasts and observations, the nature and 

behaviour of NSE in practice can be established. Since the additive error model excludes all forecasts with variances less 

than variances of observations including the mean forecast, Sect. 3 extends the error model in Sect. 2 by introducing 

multiplicative biases besides additive biases. Then an extension of NSE in these general cases is derived. Finally, Sect. 4 90 

summarizes the main findings of this study and discusses some implications of using NSE in practice. 

2 Specific cases: additive error models 
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2.1 The scientific meaning of NSE 

From now on we will consider forecasts and observations from the perspective of signal processing. According to this view, 95 

observations form a desired signal that we wish to faithfully reproduce whenever we issue a forecast. Of course, at the time 

when the forecast is issued, the observations are unknown, and this forecast is the only available signal. This situation is 

common in signal processing when desired signals are usually unknown and can only be probed through received signals. 

Therefore, this signal (the forecast) is assumed to be the wanted signal (the observations) contaminated by a certain 

unwanted signal (noise). This means that we can still get useful information on the observations from the forecast when the 100 

noisiness is small. In this section, we assume a simple additive error model for forecasts 

� = � + � + �, (5) 

where � denotes constant systematic errors, and �~�(0, ��
�) denotes random errors with the error variance ��

�. The two 

random variables � and � are assumed to be uncorrelated. 

 105 

Using the error model (5), it is easy to calculate two expectations in the formula of NSE 

��� = (� − �)������������ = �� + ��
�, (6) 

(� − ��)������������� = ��
�, (7) 

leading to the following form of NSE 

��� = 1 −
�����

�

��
� . (8) 110 

The reciprocal of the ratio (�� + ��
�)/��

� in (8) recalls the signal-to-noise ratio (SNR) in signal processing 

��� =
�������

������
=

������

(���)����������� =
��

����
�

�����
�, (9) 

where �������, ������  are the power of the desired signal and noise, respectively. The greater SNR, the better the received 

signal. 

 115 

In order to see the relationship between NSE and SNR, we notice that the error model (5) is preserved under the translations 

(�, �) → (� + Δ, � + Δ) where Δ is an arbitrary real number. This is easy to verify since the same error model is obtained 

when we add the same value Δ to �, � on both sides of (5). A robust score should reflect this invariance, and therefore is 

required to be invariant under those translations. If this condition is not satisfied, we will get a different score every time we 

change the base in calculating water levels for example. It is clear that NSE is translation-invariant while SNR is not. Indeed, 120 

we can easily increase SNR by simply increasing �� 

���(Δ) =
(����)����

�

�����
� . (10) 
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This is because when a large Δ is added to the desired signal, its magnitude is almost dominated by Δ  and the noise 

magnitude becomes negligible. This suggests that we can use the lower bound of ���(Δ), i.e., the SNR in the worst case, as 

a score to impose the translation-invariant condition 125 

���� =
��

�

�����
�. (11) 

This value is attained when Δ = −��, which indicates the ratio of the power of variation o − �� to the power of noise. It is 

worth noting that the translational invariance is violated in the case of KGE since the ratio 
����

����
 can vary considerably with 

Δ. 

 130 

Since the reciprocal of ���� determines NSE in (8), it is more appropriate to define NSE in terms of the noise-to-signal ratio 

(��� =
������

�������
): 

��� = 1 −
�

����
= 1 − ����, (12) 

where we add the subscript u to NSR to emphasize that this is the upper bound of NSR corresponding to the lower bound of 

SNR. Thus, under our additive error model, (12) points out that NSE is equivalent to the upper bound of NSR. More exactly, 135 

NSE measures the relative magnitude of the power of noise (the unwanted signal) and the power of variation of observations 

(the wanted signal with its mean removed). 

 

This new interpretation of NSE supports for the choice of the value NSE=0 as the boundary between skilful and unskilful 

forecasts in practice. In the context of skill scores, NSE of zero indicates the forecasts that yield the same MSE as the mean 140 

forecast � = ��. A good forecast is therefore required to yield a MSE less than that of the mean forecast. Here in the context 

of NSR, NSE of zero corresponds to ���� = 1 or equivalently ��
� = �� + ��

�. Thus, when NSE tends to go to zero, the 

background noise tends to have the same power as variation of the desired signal, and consequently corrupts the desired 

signal. In other words, at NSE=0, we cannot distinguish variation of the observations from noise, and the forecast therefore 

is useless. Thus, there exist many forecasts yielding the threshold NSE=0, which are not necessarily the mean forecast. 145 

2.2 Random noise-to-signal ratio 

Recall that NSE is invariant under the translations along the vector (1,1)� (�, �) → (� + Δ, � + Δ). However, for general 

translations (�, �) → �� + Δ�, � + Δ�� where the translation vector �Δ�, Δ��
�

 is an arbitrary vector, NSE can take any value 

��� = 1 −
(�������)����

�

��
� . (13) 

Consequently, we can increase NSE simply by choosing appropriate Δ�, Δ� . In practice this approach is known as bias 150 

correction with the choice of Δ� ≈ −�, Δ� = 0. Since NSE is not invariant under the general translations, misinterpretation 
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on forecast performances can be easily committed. For example, let us consider two forecasts: one with a systematic error 

and another with a random error 

�� = � + �, (14a) 

�� = � + �, (14b) 155 

where we assume σ� = � = σ� . Then both ��, ��  have ���� = ���� = 0 , indicating that both forecasts are unskilful. 

However, it is clear that two forecasts are not equal. A forecaster from his experience knows that the first forecast is better 

since an almost perfect forecast can be easily obtained from �� just by subtracting from �� the bias estimated from past 

observations. In contrast, the performance of �� cannot be improved by any translation. 

 160 

In order to avoid the misjudgement as above, it is desirable to have a score that is invariant under any translation. From (13), 

it is easy to see that the bias term causes NSE to vary with different displacements of �, �. This motivates us to decompose 

���� into two components: 

���� =
�����

�

��
� =

��

��
� +

��
�

��
� = ����� + �����, (15) 

where ����� denotes the systematic ���� which changes with the general translations, and ����� denotes the random 165 

����  which keeps constant regardless of translations. Thus, �����  is an irreducible component of ����  under any 

translation and acts as a lower bound of ����. Similar to (12) we define a generally invariant version of NSE in terms of 

�����  

���� = 1 −
��

�

��
� = 1 − �����. (16) 

Here the subscript u is added to emphasize that this NSE is indeed the upper bound of the original NSE, i.e., the highest NSE 170 

can be reached just by translations. ���� is identical to NSE when there are no biases in forecasts. For the two forecasts 

��, �� in (14a) and (14b), the new score yields ����� = 1, ����� = 0, which reflect our subjective evaluation. As we shall 

see shortly, ����� will help to ease our analysis on the behaviour of NSE considerably. 

 

We now show an interesting result: ����� can be expressed in terms of a more familiar quantity, the correlation coefficient 175 

�. This is easy to prove by making use of (5) in the definition of �  

� =
������(����)���������������������

����
=

(������)(����)������������������������

����
=

��
�

����
=

��

��
, (17) 

and in the definition of ��
�  

��
� = �� − ���

��������������
= (� − �� + �)������������������ = ��

� + ��
�. (18) 

By plugging (18) into (17), we obtain a one-to-one map between �� and ����� 180 

�� =
��

�

��
� =

��
�

��
����

� =
�

�������
, (19) 
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which reveals a profound understanding on �, i.e., the correlation reflects noisiness under the error model (5). This is 

illustrated in Fig. 1 with the joint probability distributions of �, � for different values of �. 

2.3 Relationships between NSE, KGE, and � 

The identity (19) enables us to express ���� in terms of � 185 

���� = 1 − ����� = 2 −
�

��, (20) 

which is more desirable in mathematical treatment since ��  has support on the finite interval [0,1]. Furthermore, the 

correlation � is a more popular quantity. From (20), it is easy to find the lowest correlation at which a forecast is still 

considered skilful 

���� = 2 −
�

�� ≥ ��� ≥ 0 ↔ � ≥
�

√�
≈ 0.7. (21) 190 

This value can also be deduced from (19) when ����� = 1 entails � = 1/√2. It is worth noting that this critical value of � 

is unknown in the literature. 

 

Similar to ����, we disregard the contribution from the means ��, �� to KGE in (4) and define its upper bound 

���� = 1 − �(� − 1)� + �
��

��
− 1�

�

= 1 − �(� − 1)� + �
�

�
− 1�

�

, (22) 195 

where we have made use of (17) to get the last expression. Recall that although KGE is not invariant under the translations 

(�, �) → (� + Δ, � + Δ), by excluding the bias term, its upper bound ����  now becomes invariant under any translation. It 

is usually accepted that NSE and KGE do not have a unique relationship, and therefore are not comparable (Konner et al., 

2019). However, by focusing on their upper bounds, we can easily compare the two scores on the same plot as depicted in 

Fig. 2. Several important findings can be drawn from this figure.  200 

 

Firstly, both scores are monotonic functions of �. This is the consequence of the fact that their functional forms are one-to-

one maps from � to these scores. These bijections ensure that any score �, ���� or ����  can be used as an indirect measure 

of �����. In this sense, ����, ���� , and � are only different sides of the same �����, i.e., they are interchangeable in 

measuring noisiness in forecasts. This points out that KGE has the same scientific meaning as NSE, which indicates the 205 

relative magnitude of the power of noise to the power of variation of observations. Although, KGE has been proposed in the 

multiple-criteria framework, it is interesting to see that the signal processing approach reveals it scientific meaning. 

 

Since we can make any new score simply by assigning any monotonic function of � over [0,1] to a score, we illustrate this 

process for the simplest one that we call correlation efficiency (CE) which is also plotted in Fig. 2 210 

��� = �. (23) 

Using (19), we rewrite (23) as 
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��� =
�

��������
. (24) 

Then replacing ����� by ����, we reintroduce the bias term back into (24) and get the final version 

�� =
�

�������
=

��

���
�������

�
. (25) 215 

It is easy to verify that skilful forecasts are indicated by the CE values in the range [0.7,1]. Similarly, we can deduce the 

translation-invariant form of KGE from (22) by writing � in terms of �����, and then replace ����� by ���� 

��� = 1 − ��
�

�������
− 1�

�

+ ��1 + ���� − 1�
�
. (26) 

Recall that the original KGE (4) is not even invariant under the specific translations (�, �) → (� + Δ, � + Δ). With the new 

KGE (26) the translational invariance is satisfied. However, replacing ����� by ���� is not the only way to enforce the 220 

translational invariance, adding a new bias term such as 
��

��
� under the square root in (22) also works here. 

 

Secondly, the choice of an appropriate score in practice can be determined by its magnitude and sensitivity. In this sense, 

Fig. 2 explains why modelers tend to favour KGE in practice. This is because ����  is always greater than ����, and at the 

same time ����  is less sensitive to � than ���� since the derivatives of ����  are always smaller than the derivatives of 225 

����. However, in terms of the magnitude and sensitivity of a score, the most appropriate candidate is clearly CE in (25) 

when ��� is greater than both ����  and ���� while its derivatives are constant and smaller than those of ����  and ����. 

 

Thirdly, the smaller the correlation, the more sensitive NSE and KGE. This is the consequence of the non-linear dependence 

of ����� on � as expressed in (19). As a result, estimations of KGE and NSE are expected to have high uncertainties when 230 

correlations decrease. In contrast, the sensitivity of CE is unaffected with decreasing �. 

 

Finally, at the critical value � = 1/√2  the value of ����  is approximately 0.5 (the exact value is 1 −

��1/√2 − 1�
�

+ �√2 − 1�
�
), which is the lowest ����  at which unbiased forecasts are still considered skilful. It is also the 

lower bound for the modified KGE (26), which considers all forecasts whether they are biased or not, due to the way it is 235 

constructed where ���� ≤ 1 entails ��� ≥ 0.5. For the traditional KGE (3), the lower bound for good forecasts is not a 

well-defined concept since this KGE is not just determined by ����. This threshold ���∗, if exists, has to be equal or 

greater than 0.5 because otherwise we get a contradiction for unbiased forecasts satisfying ���∗ < ���� < 0.5. As a result, 

we come to the necessary condition for a good forecast is that ��� ≥ 0.5 for any form of KGE. 

   240 
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Similar to the minimum of � = 1/√2 for a good forecast, this minimum of KGE is unknown in the literature. In particular, 

this value is much greater than the corresponding minimum of ����, which is zero. This relatively large gap can lead to 

misjudgement on forecast performances in practice since similar to NSE, modelers tend to consider KGE=0 as the boundary 

value between skilful and unskilful forecasts (Anderson et al., 2017; Fowler et al., 2018; Siqueira et al., 2018; Sutanudjaja et 

al., 2018; Towner et al., 2019). Thus, all forecasts with KGE between [0,0.5] are wrongly classified to be good forecasts 245 

while they are indeed unskilful forecasts. It is worth noting that Rogelis et al. (2016) assigned the value KGE=0.5 to be the 

threshold below which forecasts are considered to be “poor”.  

  

The critical value KGE=0.5 is much larger than the KGE value calculated for the case of the mean forecast, which is 

approximately -0.41 as shown in Knoben et al. (2019). They guessed that -0.41 is the lower bound of KGE for a good 250 

forecast. However, we have already seen that both the mean forecast � = �� and the forecasts with ���� = 1 yield the same 

NSE=0. How can we explain the different values of -0.41 and 0.5 in the case of KGE? The reason is that the mean forecast 

does not follow the model error (5). It is clear that the regression line � = � dictated by (5) is very different from the 

regression line � = �� in the case of the mean forecast. Furthermore, (5) entails that �� is always greater than �� as shown in 

(18), which is not the case for � = ��. As a result, the error model (5) excludes all forecasts with their variances less than the 255 

observation variances, which is expected to commonly occur in practice. This raises the question whether the additive error 

model holds in reality. If this error model is not followed in reality, can we still use NSE? Another important question is how 

we introduce the mean forecast into the framework developed so far to examine NSE and KGE? These problems require an 

extension of the error model (5) and will be further pursued in next section. 

3 General cases: mixed additive-multiplicative error models 260 

3.1 Validity of the traditional NSE 

In order to extend the additive error model to the general cases, we first notice that the error model (5) indeed gives us the 

conditional distribution of forecasts on observations. Since all information on forecasts and observations is encapsulated in 

their joint probability distribution, we can seek the general form of this conditional distribution from their joint distribution 

in the general cases. For this purpose, we will assume that this joint probability distribution is a bivariate normal distribution 265 

p �
�
�

� = � ��
��

��
� , �

��
� �����

����� ��
� ��. (27) 

If the joint distribution is not Gaussian, we need to apply some suitable transformations to �, � such as the root squared 

transformation (�, �) → ���, √��, the log transformation (�, �) → (log (�), log (�)), the inverse transformation (�, �) →

(1/�, 1/�), … (Pushpalatha et al., 2012). When the joint distribution has the Gaussian form, the conditional distribution also 

has the Gaussian form (see Chapter 2 in Bishop (2006) for the proof) 270 
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p(�|�) = � ��� +
���

��
(� − ��), (1 − ��)��

��. (28) 

This implies the following form of the error model 

� =
���

��
� + ��� −

���

��
��� + � = �� + � + �, (29) 

where � =
���

��
, � = �� −

���

��
�� , and �~�(0, ��

�) with ��
� = (1 − ��)��

� . In other words, forecasts in the general cases 

contain both multiplicative and additive biases besides additive random errors. It is easy to verify that (5) is a special case of 275 

(29) when � = 1. 

 

It is worth noticing that the nature and behaviour of NSE in Sect. 2 is constructed solely relying on the additive error model 

without any assumption on the joint probability distribution of (�, �). Therefore, in this section, we again only assume that 

the error model is described by (29), i.e., a mixed additive-multiplicative error model. The joint distribution is no longer 280 

assumed to be a bivariate normal distribution, although (29) is derived from this assumption. This means that the marginal 

distribution of observations is not restricted to be Gaussian, and can be any probability distribution. However, two important 

identities obtained with the Gaussian assumption still hold 

� =
������(����)���������������������

����
=

(��������)(����)����������������������������

����
=

���
�

����
=

���

��
, (30) 

��
� = �� − ���

��������������
= (�� − ��� + �)���������������������� = ����

� + ��
� → ��

� = (1 − ��)��
�. (31) 285 

 

Can we now proceed by plugging the error model (29) to the formula (1) of NSE as in Sect. 2? The answer is definitely no 

because it makes no sense to plug (29) to (1) without first verifying the relevance of the traditional NSE under the error 

model (29). The most important question is, of course, whether NSE still measures the noise-to-signal ratio. Let us consider 

three forecasts: two with multiplicative biases and another with a random error 290 

�� = 2�, (32a) 

�� = 0.5�, (32b) 

�� = � + �, (32c) 

where we assume ��� = ��� = ��� = �� = 0, and σ� = σ� . Applying the traditional NSE we obtain ���� = 0, ���� =

0.75, ���� = 0, indicating that �� is much better than both �� and ��, and the latter have the same skill. But the same in what 295 

sense? In the case of �� we know that the power of the noise is the same as the power of the observations, rendering ���� =

0. Therefore, does the statement that �� is as good as �� mean that the noise level of �� is the same as that of ��? But �� 

indeed magnifies � by a factor of 2 without any phase error or random error. Furthermore, under the log transformations of 

�� and ��, these two forecasts show the same magnitude of the additive bias of log2. However, according to NSE, �� is much 

more skilful than ��. This simple example is enough to show that the scientific meaning of the traditional NSE becomes 300 

questionable when we introduce multiplicative biases into the error model. 
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We show a further argument for the irrelevance of the traditional NSE under the error model (29) by proving that NSE (1) is 

not invariant under the translations that preserve the error model (29). In the case of the error model (5) we have shown that 

this additive error model is preserved under the translations (�, �) → (� + Δ, � + Δ). Geometrically, these translations move 305 

the joint distribution along the regression line � = � + �. In the general cases (29), the regression line becomes � = �� + �. 

This suggests that the error model (29) is preserved under the translations (�, �) → (� + �Δ, � + Δ), which indeed holds 

since 

� + �Δ = �(� + Δ) + � + �. (33) 

When � ≠ 1, these transformations cause NSE (1) to vary with Δ, and therefore the traditional NSE is no longer a robust 310 

score under the error model (29). 

3.2 An extension of the traditional NSE 

In order to seek an appropriate form of NSE in the general cases, we rely on the nature and behaviour of the traditional NSE 

examined in Sect. 2 by imposing three conditions on the generalized NSE: (1) it measures the noise level in forecasts; (2) it 

is invariant under the translations (�, �) → (� + �Δ, � + Δ); and (3) its random component, equivalently its upper bound, is 315 

invariant under all affine transformations (�, �) → �α�� + Δ�, α�� + Δ��, where α�, Δ�, α�, Δ�  are arbitrary real numbers. 

Note that we use affine transformations here due to the presence of both multiplicative and additive biases in the error model 

(29). We proceed by choosing a special transformation, i.e., the bias-corrected transformation (�, �) → ((� − �)/�, �). This 

results in an additive error model without biases 

��� =
���

�
= � +

�

�
, (34) 320 

which suggests that we can define a new NSE in terms of the following upper bound of RNSR 

����� =
��

�

����
�. (35) 

 

We now prove that (35) is indeed invariant under the transformations (�, �) → ��� = α�� + Δ�, �� = α�� + Δ��. In terms of 

���, ���, the error model (29) becomes 325 

�� = α�� + Δ� = α� ��
�����

��
+ � + �� + Δ� =

���

��
�� + α� �� −

���

��
� + Δ� + α��. (36) 

Denoting �� = α��/α�, �̃ = α��, we recalculate (35) for the updated error model (36) with the updated parameters ���
� =

α�
���

�, ��� = α�
���/α�

�, ���
� = α�

���
� 

����� =
���

�

������
� =

��
�

����
�. (37) 

Thus, (35) is invariant under any affine transformation, which enables us to define the upper bound of the generalized NSE 330 

similar to (16) 
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���� = 1 − ����� = 1 −
��

�

����
�. (38) 

This upper bound entails the desired form of the generalized NSE 

��� = 1 −
�����

�

����
� = 1 − �

�

��
−

�

�

�

��
�

����������������
, (39) 

where the last expression shows its practical form in comparison with the traditional form (1). We only need to check the 335 

invariant property of (39) under the translations (�, �) → (� + �Δ, � + Δ). Since these translations do not alter the bias term 

�, and are a subset of the affine transformations (�, �) → �α�� + Δ�, α�� + Δ��, they preserve (39).  

 

In the introduction we have noticed that the decomposition form (3) of NSE is relatively unintuitive even though it is derived 

from the elegant form (1). From Sect. 3.1 we know that (1) is indeed only relevant under the additive error model (5). It 340 

becomes irrelevant when multiplicative biases are introduced into (5). Therefore, if we continue to use the traditional NSE in 

the general cases, an unintuitive form of NSE will be expected as verified by (3). The appropriate NSE in such cases is the 

generalized NSE (39). 

 

What is the scientific meaning of the generalized NSE (39)? Clearly, it measures the relative magnitude of the power of 345 

noise to the power of variation of observations when the multiplicative factor is removed. Thus, similar to the traditional 

NSE, the NSE value of zero still marks the boundary between skilful and unskilful forecasts. It also attains the maximum 

equal to one when forecasts do not have additive biases and random errors. However, there exists a subtle difference in the 

general cases: the perfect score ��� = 1 includes not only the perfect forecast � = �, but also all forecasts with only 

multiplicative biases � = ��. This means that this generalized score does not measure the impact of multiplicative biases. In 350 

evaluating forecast performances, therefore, we should consider both NSE (39) and the multiplicative factor � although NSE 

should have a higher priority. 

3.3 Behaviour of the generalized NSE 

We now prove a surprising result: the upper bound of NSE in the general cases is the same as in the cases of the additive 

error model, which is given by (20). By making use of the two identities (30), (31) on (38) we have 355 

���� = 1 −
��

�

����
� = 1 −

��������
�

����
� = 2 −

�

��. (40) 

Thus, in the general cases, correlations still reflect noisiness in forecasts. This is illustrated again in Fig. 3 for the joint 

probability distributions of �, � with the same � = 0.9 and different multiplicative factors �. From Fig. 3, it is seemingly 

counter-intuitive to realize that the noise levels are the same among all forecasts given the same correlations 0.9. Clearly, all 

the points (�, �)  tend to spread wider when increasing � , which implies the noisiness increases. However, this 360 
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misinterpretation results from our implicit assumption on the additive error model (5) for all the forecasts, i.e., � = 1 for all 

the cases. 

 

A further simple argument will show why this is the case that the noise levels are the same in Fig. 3. Let us consider a 

forecast � = � + �. Thus, the simplest way to reduce the magnitude of the random error � is to multiply � with a very small 365 

multiplicative factor �. By doing this, we have a new forecast �� = �� with a new random error �̃ = ��. Does this mean that 

�� is less noisy than �? Of course, this is not true at all since the noisiness is measured by the relative magnitude between the 

power of noise and the power of variation of observations, but not by the absolute magnitude of noise. When we multiply � 

with �, at the same time we multiply � with �, and as a result the relative magnitude is unaltered. This points out further that 

noisiness of all forecasts � = �� + �� for any value of � should be considered to be equivalent. The generalized NSE (39) 370 

just reflects this fact. 

 

Since the upper bound of the generalized NSE is invariant when we introduce multiplicative biases into the additive error 

model (5), all conclusions in Sect. 2.3 still hold. Thus, it is legitimate to use the upper bounds of KGE and CE expressed by 

(22) and (23), respectively, in the general cases. This implies that the critical values ��� ≈ 0.5 and � ≈ 0.7 remain to 375 

indicate the thresholds below which all forecasts are considered to be unskilful. The generalized CE and KGE can be derived 

using the same procedure to obtain (25), (26) with the generalized ���� =
�����

�

����
�  in place of the traditional ���� =

�����
�

��
� . 

We derive the generalized CE for illustration 

�� =
�

�������
=

���

�����
�������

�
. (41) 

It is worth noting that the form (22) of ����  when rewritten using the error model (29) will replace the variance term 380 

�
��

��
− 1�

�

 in the traditional KGE by �
��

���
− 1�

�

 

���� = 1 − �(� − 1)� + �
�

�
− 1�

�

= 1 − �(� − 1)� + �
��

���
− 1�

�

. (42) 

Combined with the generalized ���� (38), we see that in practice if � is not taken into account, i.e., the traditional NSE and 

KGE are still used, we underestimate (overestimate) NSE and KGE when � > 1 (� < 1). 

 385 

With the generalized NSE, it is now possible to deal with the case of the mean forecast � = ��. We exclude the trivial case 

� = � = �� and always assume �� ≠ 0. The mean forecast is equivalent to the following model error 

� = 0 ∗ � + �� + 0, (43) 

which implies � = 0, � = ��, �� = 0 in (29). This specific error model highlights a problem that we have omitted when 

defining the generalized NSE: ����� (35), and therefore NSE (39), can only be defined for the cases � ≠ 0. When � = 0, 390 
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forecasts and observations are two uncorrelated signals (� = 0), and it makes no sense to state that the received signal 

(forecasts) is the true signal (observations) contaminated by noise. 

   

In order to assign an appropriate value of NSE for the cases � = 0, we rely on the continuity of ���� with respect to � as 

shown in (40). Let � approach zero in (40), we get the limit ���� = −∞. Since ����  is the upper bound of NSE, this 395 

entails ��� = −∞ . The same argument also yields ��� = −∞  under the limit � → 0 . In other words, all forecasts 

uncorrelated to observations, which include the mean forecast, should be classified to the worst forecast with ��� = −∞. It 

can be justified by noticing that information on variation of observations is totally unknown if only available is an 

uncorrelated forecast. The generalized NSE therefore provides a new interpretation of the mean forecast. Rather than a 

benchmark marking the boundary between skilful and unskilful forecasts, the mean forecast is indeed the worst forecast 400 

which can be beat by any forecast correlated to observations. 

4 Conclusion 

The Nash-Sutcliffe efficiency is a widely used score in hydrology but is not common in the other environmental sciences. 

One of the reasons for its unpopularity is that its scientific meaning is somehow unclear in the literature. There exist many 

attempts to establish a solid foundation for NSE from several viewpoints: linear regression, skill scores, multiple-criteria 405 

scores. This study contributes to these studies by approaching NSE from the viewpoint of signal progressing. Thus, a 

forecast is viewed as a received signal containing a wanted signal (observations) contaminated by an unwanted signal 

(noise). This view underlines an important role of the error model between forecasts and observations, which is usually 

implicit in our assumption. 

 410 

By assuming an additive error model, it is easy to point out that NSE is equivalent to an important quantity in signal 

processing: the signal-to-noise ratio. More precisely, NSE measures the relative magnitude of the power of noise to the 

power of variation of observations. Therefore, NSE is a universal metrics that should be applicable in any scientific fields. Its 

scientific meaning explains why it is reasonable to choose NSE=0 as the boundary between skilful and unskilful forecasts in 

practice. This is because when NSE goes below zero, the power of noise starts dominating the power of variation of 415 

observations, meaning that noise distorts the desired signal and make it difficult to extract the useful information. This 

choice has no relation with the interpretation that NSE=0 corresponds to the benchmark forecast that is equal to the mean of 

observations, and all good forecasts need be better than this simple benchmark. 

 

Since NSE can be easily increased simply by adding some appropriate values into forecasts and observations, we seek its 420 

upper bound ���� under all such translations. ���� is pointed out to correspond to the random component of NSR, and is a 

useful concept in analysing the behaviour of not only NSE but also KGE. It turns out that ���� and ����  are different 
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measures of the same RNSR, which can be mapped one-to-one. More surprising, it is found that ���� and ����  in their 

turn can be expressed in terms of a more familiar quantity: the correlation. This implies that ����  and ����  do not 

introduce any new score, and can equivalently be replaced by �. In this sense, any new score can be constructed from � with 425 

any monotonic function of �. This leads to an important finding: corresponding to NSE=0, � ≈ 0.7 and ��� ≈ 0.5 (not 

KGE=0) mark the boundary between skilful and unskilful forecasts, which has a practical implication on the use of KGE 

since modelers usually identify KGE=0 as this boundary similar to NSE=0. Thus, forecasts with KGE between 0-0.5 can be 

wrongly classified as good forecasts in practice.  

 430 

Since the additive error model disregards all forecasts with their variances less than observation variances including the 

mean forecast, we need to work with a more general error model to deal with such cases. By assuming a bivariate normal 

distribution between forecasts and observations, the general error model is found to be the mixed additive-multiplicative 

error model. Then under the general cases the traditional NSE is shown not to be a well-defined notion. Therefore, an 

extension of NSE need be derived. By requiring that the generalized NSE is invariant under affine transformations of 435 

forecasts and observations induced by the general error model, it is found to be the traditional one adjusted by the 

multiplicative factor. Again, this has a practical implication on the use of NSE and KGE: if the multiplicative factor is not 

taken into account and the traditional ones are used instead, both the scores are underestimated (overestimated) when the 

multiplicative factor is greater (smaller) than one. The critical values NSE=0, ��� ≈ 0.5 , � ≈ 0.7  still hold with the 

generalized NSE and KGE. 440 

 

Finally, we summarize here some profound explanations that the signal processing approach to NSE proposes 

 Despite their different forms, NSE and KGE are equivalent, at least when there are no biases, in the sense that they 

measure the noise-to-signal ratio between the power of noise and the power of variation of observations. 

 The critical value NSE=0 that marks the boundary between skilful and unskilful forecasts has no relation with the 445 

mean forecast � = ��. Its choice is dictated by the fact that at this value the power of noise starts dominating the 

power of variation of observations. 

 Corresponding to NSE=0, the critical values of KGE and the correlation coefficient are given approximately by 0.5 

and 0.7, respectively. 

 The traditional form of NSE only reflects the noise-to-signal ratio under the additive error model. It no longer 450 

reflects this when multiplicative biases are introduced, and as a result has an unintuitive form in the general cases.  

 It is necessary to adjust the traditional NSE in the general cases to take into account the effect of multiplicative 

biases on the noise-to-signal ratio. If this effect is not considered and the traditional one continues to be used, NSE 

is underestimated (overestimated) when the multiplicative factor is greater (smaller) than one. 
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 All forecasts uncorrelated to observations are considered to be the worst forecast when measured by NSE or KGE 455 

because no information on variation of observations can be retrieved in these cases. The mean forecast � = �� 

belongs to this class of forecasts. Therefore, in the view of NSE the mean forecast should not be used as a 

benchmark forecast. 
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Figure 1: Joint probability distributions of forecasts and observations with different values of � under the additive error model. 

Here we assume � = �, �~�(�, �), then the error model yields �� = �
�

��
− ���. 520 
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Figure 2: The upper bounds of NSE and KGE as the functions of �. The solid line without symbols marks the boundary between 

unskilful forecasts on the left, and skilful forecasts on the right if forecasts have no biases. If there exist biases in forecasts, this 

boundary will shift to the right. 525 
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Figure 3: Joint probability distributions of forecasts and observations with the same � = �. � and different values of � under the 

multiplicative and additive error model. Here we assume � = �, �~�(�, �), then the error model yields �� = �
�

�� − ����. The 

noise levels as measured by the generalized NSE indicate the same noisiness for all forecasts, even though the noisiness seemingly 530 

increases with increasing �. 

 

https://doi.org/10.5194/egusphere-2022-955
Preprint. Discussion started: 23 September 2022
c© Author(s) 2022. CC BY 4.0 License.




