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Reply to Referee #1 

 

We would like to thank the reviewer for your constructive comments to the manuscript. Here are 

our explanations for the unclear points that the reviewer concerned. But at first, we would like to 

reproduce the reviewer’s comments in a black font: 

 

The paper deals with a novel interpretation of the NSE score measure starting from the observation 

that it is mostly used in hydrology and poorly exploited in other sciences.  

 

This interpretation is based on a signal processing viewpoint. 

 

While the paper is interesting and useful the following concerns are at the hand. 

 

The NSE interpretation provided is based on a model error for forecast which is given in eq 5 and is 

basically driven by a Gaussian random error being it equal to noise in the signal processing 

viewpoint. This basic foundation provides by itself a lack of generality with respect to application 

of NSE to other sciences included hydrology. In hydrology the NSE is intended as a model 

performance metric where the difference between model and observation is not limited to noise. 

Differences between model and observation but also differences between observation and reality 

and also differences between different models can be analyzed by means of NSE or KGE whose 

meaning is quite clear and leaves no doubts in my personal opinion. 

 

In a hydrologic model, but also in other earth sciences, different models may arise because different 

processes are modelled in a stochastic or determinist way and/or because some processes are 

described or neglected following the fact that they can be more or less important according to the 

time-space scale of application and modeling purpose. Hence the difference between model output 

and observations may be very different from what given in eq 5, It can be deterministic or stochastic, 

and affected by deterministic or stochastic (or both) variability. 

 

As a consequence, it seems that the proposed analysis, while interesting and well founded in the 

context of the signal processing field (or any other fields where only noise provides difference 

between model output and observation). In the same light one may not accept the "general case" 

version of NSE which is obtained by considering the multiplicative error, beside the additive error, 

defined in eqs (32). Even in this case the "general case" should be addressed as relative to which 

field of application, besides the field of signal processes or affine methods. 

 

I believe the authors should strongly address this issue in a revised version of the manuscript. 

 

Reply: First of all, we totally agree with the reviewer on the point that the additive error model that 

we consider in Section 2 is relatively limited and cannot cover all complicated relationships 
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between models and observations in reality. Our purpose when using this additive error model is to 

show that the scientific meaning of NSE is truly revealed under this error model, which turns out to 

be the well-known signal-to-noise ratio in signal processing. 

 

Due to the limit of the additive error model, in Section 3 we consider more general cases which can 

be described by joint probability distributions of model simulations and observations. Although the 

reviewer mentioned that general cases have not been dealt, we believe that our mixed 

multiplicative-additive error model addressed a wide range of cases of model-observation fitting. 

We would like to emphasize here that any relationship between model simulations and observations 

can always be analyzed through their joint probability distributions. Then we assume that such 

distributions are bi-variate normal distributions, which is usually observed in reality. Again, we 

would like to emphasize that we do not assume the mixed multiplicative-additive error model for 

the general cases. Rather than that, this multiplicative-additive error model is a consequence of the 

bi-variate normal distribution of model simulations and observations. 

 

Of course, if this joint distribution is not Gaussian, we cannot expect to see the mixed 

multiplicative-additive error model and the relationship between model simulations and 

observations may be even more complicated as the reviewer commented. However, we believe that 

there are some suitable transformations to make observations and forecasts follow Gaussian 

distribution in most cases including hydrological applications. The generality of our error model 

described above has already been discussed in the current manuscript: 

Since all information on forecasts and observations is encapsulated in their joint probability 

distribution, we can seek the general form of this conditional distribution from their joint 

distribution in the general cases. For this purpose, we will assume that this joint probability 

distribution is a bivariate normal distribution. If the joint distribution is not Gaussian, we need to 

apply some suitable transformations to �, � such as the root squared transformation (�, �) →

���, √��, the log transformation (�, �) → (log (�), log (�)), the inverse transformation (�, �) →

(1/�, 1/�), … (Pushpalatha et al., 2012). 

 

We have shared the same opinion with the reviewer that the meanings of NSE and KGE “is quite 

clear and leaves no doubts” until we have come up with a counterexample based on the mixed 

multiplicative-additive error model. Let us consider a model simulation with a random error 

�� = � + �, (1) 

where we assume ��� = �� = 0, and σ� = σ�. This simulation in deed gives us the boundary 

between “good” and “bad” simulations from the viewpoint of NSE as we have examined in Section 

2. Then it is easy to calculate its NSE and KGE: ���� = 0, ���� ≈ 0.5. It is very clear that we 

cannot improve this simulation since the power of random noise is equal to the power of 

observations. But this is not true if we measure model performance by NSE or KGE. Constructing a 

new simulation which is half of ��  

�� = 0.5�� = 0.5� + 0.5�, (2) 
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and calculating its NSE and KGE we obtain 

���� = 1 −
(�−��)2����������

��
� = 1 −

(�.����.��)2������������������

��
� = 1 −

�.���
�

��
� = 0.5, (3) 

���� = 1 − �(� − 1)2 + (�2/�� − 1)2 = 1 − ��1/√2 − 1�
2

+ �1/√2 − 1�
2

= 2 − √2 ≈ 0.6. (4) 

 

Suddenly, both NSE and KGE indicate that �� is better than �� considerably, although all we do is 

just halving ��. However, Eq. (2) in nature is equivalent to Eq. (1), and we should not improve any 

simulation by just scaling the observations and the random error.  

 

We have tried to find a remedy for this problem in Section 3 when we explore extended versions of 

NSE and KGE in the general cases. If the extension is applied, we will see that ���� = 0, ���� ≈

0.5, which show consistency with the evaluation of ��. Our motivation to build the new scores is 

somehow unclear in the original version of the paper. Therefore, in the revised version of the paper, 

we intend to add this example into the revised manuscript to make our approach more rigorous. 

 

Sincerely, 

On behalf of the authors, 

Le Duc. 

 


