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Abstract.

Landslides are one of the major weather related geohazards. To assess their potential impact and design mitigation solutions, a

detailed understanding of the slope processes is required. Landslide modelling is typically based on data-rich geomechanical

models. Recently, machine learning has shown promising results in modelling a variety of processes. Furthermore, slope

conditions are now also monitored from space, in wide-area repeat surveys from satellites. In the present study we tested if use5

of machine learning, combined with readily-available remote sensing data, allows us to build a deformation nowcasting model.

A successful landslide deformation nowcast, based on remote sensing data and machine learning, would demonstrate effective

understanding of the slope processes, even in the absence of physical modelling. We tested our methodology on the Vögelsberg,

a deep-seated landslide near Innsbruck, Austria. Our results show that the formulation of such machine learning system is not

as straightforward as often hoped for. Primary issue is the freedom of the model compared to the number of acceleration events10

in the time series available for training, as well as inherent limitations of the standard quality metrics. Satellite remote sensing

has the potential to provide longer time series, over wide areas. However, although longer time series of deformation and slope

conditions are clearly beneficial for machine learning based analyses, the present study shows the importance of the training

data quality but also that this technique is mostly applicable to the well-monitored, more dynamic deforming landslides.

1 Introduction15

Landslides make up for 6% of the weather related disasters globally (WMO, 2019). To protect the public, landslides have

been a major research topic for the last decades. For local landslide mitigation by geotechnical intervention an up-to-date

understanding of these hydro-meteorological phenomena, their feedbacks and impact is desired. This understanding may then

be leveraged for the design of landslide hazard mitigation measures.
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Where the installation of effective remediation concepts is not possible, Early Warning Systems may help to reduce the land-20

slide risk. Such system should quickly adapt to changing conditions, both on the slope and global (e.g. climate change).

Moreover, such a system should be fast to adapt and implement to assess as many slopes as possible.

Existing local systems typically provide early warning based on in-situ slope monitoring (Guzzetti et al., 2020). An example

of a satellite based, global Early Warning System is the LHASA model (Kirschbaum and Stanley, 2018; Hartke et al., 2020;

Stanley et al., 2021) that provides a global nowcast of acute landslide susceptibility. However, these systems typically focus on25

sudden, fast, and shallow landslides. Such catastrophic events change the landscape, and as a consequence the situation before

and after the collapse are no longer comparable. Therefore, the landslide process preceding the collapse can only be studied if

data from before the landslide is available.

We focus on slow moving, reactivating, deep-seated landslides on natural slopes, for which the deformation pattern is controlled

by hydro-meteorological forcing. These deep-seated landslides are estimated to comprise 50% of the landslides globally (Her-30

rera et al., 2018; Novellino et al., 2021). The deep-seated landslides we focus on rarely evolve into catastrophic collapse and

often entail a complex response to hydro-meteorological conditions controlling the landslide’s pore pressure (Bogaard and

Greco, 2015). They are characterised by gradual, non catastrophic, deformations that can be responsible for extensive infras-

tructure damage (Mansour et al., 2011). Deformation rates typically vary from millimeters to decimeters per year, whereas

phases of acceleration or deceleration often correlate time-delayed with hydrological conditions (Intrieri et al., 2018).35

Monitoring systems only supported by the detection of currently emerging acceleration events (e.g. Carlà et al., 2017), may only

be used to detect already ongoing acceleration. As a consequence, adequate early warning is only possible if the deformation

can accurately be predicted beforehand. Therefore, the deformation should be predicted from the predisposing conditions on

the slope, combined with dynamic factors such as infiltrating precipitation and snowmelt that lead to higher pore pressures,

instability and subsequent deformation. However, the deformation behaviour of such slow, deep-seated landslides is ‘extremely40

difficult’ to model (Van Asch et al., 2007).

Past landslide deformation events are indicative of the future behaviour, as landslides are likely to display similar behaviour

in similar situations (Fell et al., 2008; Guzzetti et al., 1999). Unlike to catastrophic landslides, where the landslide dynamics

change permanently, slow moving landslides are not single, catastrophic incidents. Therefore, analysis of the monitoring data

of deep-seated landslides are expected to reveal causal factors in landslide deformation, which allow for a continuous cycle of45

forecast and validation of the relation between deformation and the conditions on the slope.

Deformation nowcasting could be considered an intermediate option between monitoring and modelling, integrating sensor

data to estimate the current situation (the system state) and extrapolate on a short timescale. New data and data integra-

tion methods, ‘machine learning’, offer new possibilities for such data-driven landslide forecasting (van Natijne et al., 2020).

Furthermore, these techniques offer new capabilities to continuously track the system state without extensive, in-situ sensor50

networks and physics-based modeling. Such data-driven model will ‘learn’ the landslide dynamics and the interplay of hydro-

meteorological factors from the deformation signal of the landslide.
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In the last decades satellite observations have increased in quantity, shortening the time between subsequent acquisitions, as

well as increasing the variables observed (Belward and Skøien, 2015). These acquisitions provide us with a global overview of

the status of the earth at local scale, often with weekly to daily updates. More recently there is the tendency to make the data55

freely available, a development that lowered the barrier for innovations (Zhu et al., 2019), and especially benefits experiments

that require long time series, like this study. Even though their coverage is often limited to the surface, the repeated monitoring

of the slope conditions may reveal the slope processes (van Natijne et al., 2020).

Here we present a data-driven nowcasting model with a four day lead time of the deformation of the Vögelsberg landslide, near

Innsbruck, Austria. We use readily available, remotely sensed, data and products, and test various similar remote sensing prod-60

ucts to assess their relative performance in the nowcasting model. We discuss the complications encountered during modelling:

over-parametrization, the impact of optimization metrics, and the challenges due to the deep-seated landslide inertia compared

to the highly dynamic forcing of the slope.

First, we introduce the modelling options, and study area. Second, we present the resources available to us, and our modelling

approach, followed by the results and an extensive discussion on the insights gained during the modelling exercise. Last, we65

provide recommendations for future data-driven landslide nowcasting exercises.

2 Data-driven modelling approaches

In the present study we interpret data-driven modeling as a form of naive modelling, that is unaware of the physics behind the

landslide process. For data-driven models, the deformation of the slope is merely a signal to be reproduced from a collection of

observations by empirical relations, in contrast to traditional, landslide geomechanical modelling, that is rooted in physics. In70

recent years, data-driven landslide deformation nowcasting has gained popularity, as illustrated by the abundance of studies in

Table C.1. Various examples come from landslides around the Three Gorges Dam that are strongly controlled by the reservoir

water level. However, this is not the most common type of deep-seated landslide, where instead deformation is driven by the

water storage in the deeper subsurface controlled by a long-term water balance of precipitation and snowmelt input, evaporation

losses and regional groundwater input and drainage (Bogaard and Greco, 2015).75

Therefore, indirect transfer from precipitation and snowmelt to storage has to be captured. For example, by including recent

observations in a bucket model (Nie et al., 2017), that typically simplifies the subsoil as a storage that is replenished by pre-

cipitation and emptied by drainage and evaporation. Furthermore, changes to the storage may involve a time delay, depending

on complex infiltration processes. This process may be dependent on the precipitation type, duration and intensity. Moreover,

deformation may not be governed by a short and single precipitation event. For example, a short, extreme precipitation event80

or three days of consecutive drizzle may introduce similar amounts of water to the system, but will be represented differently

in storage changes due to different infiltration abilities of the soil. All in all, modelling of deep-seated landslides will likely

require some form of storage modelling, where these dynamics are either resolved by the model or in advance by an expert.
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Two distinct modelling approaches can be distinguished. Modelling is either based on classification of the environmental

conditions and associated deformation response, or calculates the expected deformation response from the conditions on the85

slope. In either case the model parameters are tuned on historic observations such that they best reproduce the deformation

signal from the conditions observed previously at the slope. Both will be introduced briefly.

2.1 Classification methods

Based on the assumption that similar conditions trigger a comparable deformation response (Fell et al., 2008; Guzzetti et al.,

1999), conditions and responses may be categorized. The current slope conditions are then matched against historic conditions,90

and the deformation response is assumed to be the same. Extrapolation of the response to previously unencountered conditions

is typically impossible via this method. However, the system will therefore also not yield unrealistic results, and could be

considered bound to the previously encountered deformation signal.

2.2 Continuous models

The simplest, linear, model is the weighted sum of the quantified conditions at the slope. However, the slope response may not95

be linear and is typically not instant. Neural networks make may be used to estimate any signal by the formation of a network

of interlinked nodes that ingest and combine the conditions on the slope in subsequent layers of nodes (Hornik et al., 1989;

Hill et al., 1994). A time series passed to a single input neuron is equal to a weighted sum of the time series, plus a bias.

As more hidden layers of neurons are introduced to the system, the direct link to the (time series) input is lost, as combinations

are made. Furthermore, an activation function may be applied to scale the output of each node, especially to normalize the100

response and filter outliers, at the cost of introducing non-linearity to the system. The number of parameters, degrees of

freedom of the model, are associated with the number of input variables. When historic observations are supplied as additional

observations, they will each require their own model parameters, and increase the degrees of freedom in the model.

State aware models, such as Recurrent Neural Networks (Connor et al., 1994), maintain a track record of the state of the

landslide instead, and iterate over the input time series in successive model runs. Individual observations are fed into the system,105

with the system maintaining track of their contribution to the current state of the landslide. These models resemble a bucket

model, a simplified representation of the water storage in the subsoil. However, unlike in a traditional (soil moisture/ground

water) bucket model, all variables are taken into account, even if they do not directly represent water. Furthermore, unlike

regular neural networks, the number of trainable parameters is not dependent on the length of the history supplied to the

model, but on the number of memory cells and time series.110

Models based on Recurrent Neural Networks suffer from computational difficulties during optimisation, where gradients may

vanish (Bengio et al., 1994; Hochreiter and Schmidhuber, 1997; Hochreiter, 1998). Therefore, they are typically replaced by

models based on Long Short-Term Memory (LSTM) nodes (Hochreiter and Schmidhuber, 1997), that do not suffer from this

due to built-in normalisation. Each LSTM ‘bucket’ is capable of weighting, retaining and clearing a memory of previous inputs,

and as such tracks the system state.115
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The challenge specific to forecasting and nowcasting is the absence of information on the future slope conditions. The latest

information available to the system are the current conditions and the last estimation of the system state. Auto-regressive models

predict these conditions as well, so that subsequent forecasts may use these environmental conditions in their models. However,

especially precipitation is governed by external influences and may not be predictable from the other forcing parameters in

the system. As an alternative, forecasts may be included into the model. However, this would require forecasts for all input120

variables. Therefore, such system was deemed not suitable for this application.

Special attention should be paid to the robustness of the model. Even ten years of daily observations will result in less a time

series of less than 4 000 epochs, much less than desirable for use in machine learning (Cerqueira et al., 2019). If too few

training data is provided, the abundance of input data creates unique combinations of conditions and outputs. This will lead to

excellent performance during training, but reduced performance during testing and application, and is known as over-fitting.125

There are infinite data-driven modelling possibilities and the generic character of many data-driven models suits the diversity

in available remote sensing variables. However, due to the limited length of the time series, in comparison to typical machine

learning studies, one should stay close to the physics and processes, to limit the freedom of the model towards a solution.

Therefore, one has to ensure a balance between the number of parameters to be estimated and the training/validation data

available.130

3 Case study: the Vögelsberg

The Vögelsberg is a deep-seated landslide, located in the Wattens basin, near Innsbruck, Austria (Figure 1). Its north-east facing

slope covers approximately 4.6 km2, and ranges between 750 m and 2200 m above sea level. A nearby weather station reports

an average yearly precipitation of 896 mm, of which 13% is in the form of snow. The lower, active part of the landslide is only

about 0.2 km2 and is covered by pasture fields, sparse forests and few houses and farm buildings. The shearzone was identified135

via inclinometer measurements to be at 43–51 m below the surface, although strongly disintegrated soil up to 52–70 m indicates

a long history of activity (Pfeiffer et al., 2021).

In 2016 an Automated Total Station (ATS) was installed in Wattenberg, opposite to Vögelsberg, by the Division of Geoinfor-

mation of the Federal State of Tyrol. The system surveyed each of the fifty-three benchmarks every hour. Extensive corrections

to the measurements were necessary, due to the instability of the monument the total station is located on, as well as atmo-140

spheric disturbances due to the Alpine conditions. Measurements were provided by the Division of Geoinformation of Tirol

as a series of pre-processed range measurements relative to the start of the measurements. The time series of the displacement

rate at the two benchmarks are shown in Figure 2.

The deformation of the Vögelsberg landslide is a complex response to the hydro-meteorological conditions in the catchment, in

particular precipitation and (delayed) infiltration from snowmelt. A binary prediction of stability/instability or acceleration/de-145

celeration is insufficient for the Vögelsberg, as the slope is undergoing continuous deformation. Pfeiffer et al. (2021) conducted

a full assessment of the hydro-meteorological drivers and found a 20–60 day time lag between rainfall and acceleration and
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©	EuroGeographics

Figure 1. Overview of the landslide catchment (white) and active region of the Vögelsberg landslide (red). The northern subsection of

the slope (red) and southern (yellow) section and overlapping area are marked in the detail map. Dashed contour lines are shown every

100 meters of elevation change. Out of a total 53 retroreflecting prisms, the 29 benchmarks with the longest time series (2016–2020) are

shown. Benchmarks on the landslide are shown in red, stable, reference benchmarks in green. The time series of benchmarks ‘D_WS_1’

and ‘D5_1’ are shown in Figure 2. The location of the total station on the opposite slope is marked by a yellow triangle. (Backgrounds:

Eurostat/EuroGeoGraphics; Federal State of Tyrol, Austria)

a 0–8 day time lag between snowmelt and acceleration. Noteworthy is the difference in behaviour between the northern and

southern sections of the slope, represented by benchmarks ‘D_WS_1’ and ‘D5_1’ respectively (Figure 2). The northern section

of the slope (‘D_WS_1’) shows a higher variability in the deformation signal, with stronger accelerations than the southern,150

inhabited, section of the slope (‘D5_1’). We focus on these two benchmarks, as a balanced representation of the two landslide

sub-systems.

The deformation rate, derived from the total station range measurements, was smoothed by a moving average filter till few,

noise induced, negative (up-slope) deformations remained, while maintaining the highest possible temporal resolution (Fig-

ure B.1). A moving average of the most recent 32 days was necessary to remove most of the noise. As a consequence, the155

onset of acceleration will be only 1/32 of the signal, stressing the need for an acceleration prediction rather than extrapolation
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Figure 2. Daily deformation rate of the Vögelsberg at benchmarks ‘D5_1’ and ‘D_WS_1’ (Figure 1), as measured by the automated total

station and smoothed by a moving average filter over the last 32-days.

of deformation measurements as warning signal. Furthermore, the amplitude of the filtered signal lags behind the original de-

formation signal, as only historic observations may be used in an operational system. Moreover, signals shorter than the filter

length will be reduced in amplitude.

4 Methodology160

Our model aims to predict the landslide deformation, based solely on the current conditions at the slope. No (precursory)

deformation data or prior defined geomechanical model is used during prediction. The main model constraints are that we

have a relatively limited amount of data points (1 482 samples) and will work with readily available remote sensing data and

products. Furthermore, we set the objective to model with daily time steps and a forecast lead time of 4 days.

With these constraints in mind, a system was designed based on a parsimonious recurrent neural network. First, we will165

introduce the data available. Second, an overview is provided of the pre-processing applied to the input variables. Third, we

provide the specifications of our model. Last, the training and validation of the model are discussed.

4.1 Model variables

The model variable selection is based on the analysis of factors of influence (Pfeiffer et al., 2021), and are mainly of data-driven

nature. Pre-disposing or causal factors, such as topography, that are necessary for a landslide to form, are considered static in170

this study. Therefore, the focus is on the dynamic conditions leading up to landslide instability and deformation, and triggering

factors. The selection of variables is listed in Table 1.
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Our method is designed with the intent to be generally applicable. Therefore, where possible, remote sensing products were

used, as they are likely to be available elsewhere as well. Where available, redundant products, that represent the same or

similar quantities, were included to assess their relative performance in the nowcasting model. The correlation between the175

products is limited (Figure A.1), indicating differences between the products of the same quantity. Effects that may not be

observed directly, such as soil moisture under snow, require some form of modelling or re-analysis. These quantities, not

directly available from remote sensing, are taken from re-analysis models ‘ECMWF Re-Analysis, version 5’ (ERA5) and the

‘Global Land Evaporation Amsterdam Model’ (GLEAM).

The desired output of our model is a daily, four days ahead prediction of the landslide deformation rate at benchmarks180

‘D_WS_1’ and ‘D5_1’. Reference, training and validation samples are provided by the automated total station located on

the Wattenberg, opposite to the Vögelsberg (Figure 1). Deformation measurements were performed hourly from 2016-05-04

to 2020-06-28, and aggregated to 1 482 daily averages to reduce noise. The noise in the signal was further reduced by a 32-day

moving average filter, of which the results are shown in Figure 2. The time series at the 51 other benchmarks (Figure 1) were

not used in the modelling.185

Daily precipitation information is provided by the Integrated Multi-satellitE Retrievals for GPM (IMERG) algorithm of the

Global Precipitation Measurement mission (GPM) (NASA, 2018). ‘Early’ results are provided with sub-day delay, and are

therefore especially suitable for an operational nowcasting model. For comparison daily precipitation from the ECMWF ERA5

Land re-analysis is included as well (ERA5, 2019). Snow properties are covered by two products of the ERA5 Land re-analysis:

snow water equivalent, and snowmelt.190

Soil moisture, especially at depth, cannot be observed directly from space at a high enough resolution for this application. The

operational products from the Copernicus Land Service, Soil Water Index and Surface Soil Moisture, are frequently unavailable

either due to unfavourable slope topography or due to snow cover. Alternatives are provided by SMAP (Entekhabi et al., 2010);

a re-analysis from ‘Global Land Evaporation Amsterdam Model’ (GLEAM) (Martens et al., 2017; Miralles et al., 2011); and

ERA5 Land (ERA5, 2019). Evaporation estimates are taken from GLEAM as well. Air temperature, a proxy indicator of195

evaporation and snowmelt, is included from ERA5 Land (ERA5, 2019).

4.2 Variable preparation

The model is fed with the eleven variables defined in §4.1 (Table 1). Except for the deformation time series, all sources consist

of gridded products, with wide area coverage. In this study only the data point closest to the Vögelsberg was used. To match the

time resolution of the deformation measurements the model is run at daily intervals. Observations available at shorter intervals200

are aggregated to daily means first. Where data is missing, for example due to sensor failure, the values are filled with the data

from the previous day (forward filling), as would be possible in an operational scenario. Furthermore, two modelled time series

were added to the system: an antecedent precipitation index (API) as basic hydrological model and a random, seasonal noise

signal.
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Figure 3. Overview of the variable space (Table 1). The values are offset to a zero mean and scaled by their standard deviation. A single

iteration of the seasonal noise (fake/fake) is shown as an example.

9

https://doi.org/10.5194/egusphere-2022-950
Preprint. Discussion started: 4 October 2022
c© Author(s) 2022. CC BY 4.0 License.



Table 1. Selection of time series considered for integration into the model. Deformation variables are marked ‘D’, while slope conditions,

input variables to the model, are marked ‘V’. Observations are marked ‘S’ for directly observed variables processed and available within the

time frame of a nowcasting system; ‘R’ for re-analysis variables, and ‘M’ for variables modelled within this study (see §4.2). References to

the various sources are provided in the main text. The internal identification is derived from the variable as referenced by the source, and is

used throughout the figures to refer to the various time series. From rasterized products, only the time series closest to the Vögelsberg was

used.

Variable Source Type Spatial res. Temp. res. Int. identification

D1 Deformation ‘D_WS_1’ ATS (local) S point daily ATS/D_WS_1

D2 Deformation ‘D5_1’ ATS (local) S point daily ATS/D5_1

V1 Precipitation ERA5 R 0.1◦ (≃ 10 km) hourly ERA5/tp

V2 Precipitation GPM S 0.1◦ (≃ 10 km) 30 min. GPM/precipitationCal

V3 Snow water equivalent ERA5 R 0.1◦ (≃ 10 km) hourly ERA5/swe

V4 Snowmelt ERA5 R 0.1◦ (≃ 10 km) hourly ERA5/smlt

V5 Soil moisture, full profile SMAP S 0.1◦ (≃ 10 km) 3 hrs. SMAP/sm_profile

V6 Soil moisture, root zone GLEAM R 0.25◦(≃ 25 km) daily GLEAM/SMroot

V7 Soil moisture, 100–289 cm ERA5 R 0.1◦ (≃ 10 km) hourly ERA5/swvl4

V8 Evaporation GLEAM R 0.25◦(≃ 25 km) daily GLEAM/E

V9 Air temperature ERA5 R 0.1◦ (≃ 10 km) hourly ERA5/t2m

V10 API M point daily API/API

V11 Sesonal noise M point daily fake/fake

The Antecedent Precipitation Index (API, API/API, V10) was designed to estimate the water present in the watershed (Kohler205

and Linsley, 1951; Heggen, 2001). The API is included to determine if such variable could support the model. The parameters

were chosen based on trial and error. Precipitation less than 0.1 mm was ignored, in addition a 10% direct evaporation loss,

and a 4% daily storage loss is assumed. That is, the API at time step t is calculated as

APIt = max(0,p− 0.1) · 0.9 +0.96 ·APIt−1, (1)

with p the daily precipitation sum. The API is shown in Figure 3.210

A random variable with seasonal characteristics is added to the variable selection to analyze the effect of spurious correlation

on the model. The random variable, fake/fake (V11), based on Brownian motion, is tuned to match a typical seasonal

characteristic in the 32-day history relevant to the model. The auto-correlation behaviour is illustrated in Figure 4, and closely

resembles the dynamics of the surface temperature as provided by ERA5 for the first 2–3 months. Longer correlation periods

are not relevant for our model.215
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Figure 4. Autocorrelation of one of the generated signals compared to the autocorrelation of the temperature as taken from ERA5 and the

soil moisture estimate from SMAP. The length of the history as used by the model, 32 days, is indicated by the dashed line.

All variables are offset to become zero-mean and scaled by the standard deviation. Therefore, all input variables are on ap-

proximately equal scale and represented as deviations from their average condition. The normalization parameters, mean and

standard deviation, should be kept fixed while new data is added, as not to disturb the model. The data set is fed to the model

as a time stamped collection of daily observations, illustrated in Figure 3.

4.3 Model configuration220

Our model is based on a shallow neural network around a single Long Short-Term Memory (LSTM) node (Hochreiter and

Schmidhuber, 1997), that resembles a bucket model for the water storage in the subsoil. The model is supplied with a thirty-

two day history of observations, equal to the length of the moving average filter, longer than the lag time for snow (0–8 days)

and sufficient to cover most of the 20–60 day lag time for rainfall at the Vögelsberg found by Pfeiffer et al. (2021). From a

pre-defined, optimized initialisation, the model is cycled for each day of preceding observations, feeding the observations into225

memory, before a prediction is made based on the final bucket values (m). The model is illustrated in Figure 5, as function of

environmental conditions (x, Table 1), at each of the n = 32 days preceding the nowcast, the LSTM node and four neurons

of a single benchmark, one for each prediction day. This last, output, layer is repeated for both benchmarks (‘D_WS_1’ and

‘D5_1’) to be predicted, while the LSTM memory (m) is shared between the benchmarks.

In total, for a network configuration with a single memory cell (m), 68 parameters have to be estimated. The LSTM node, with230

one hidden state, requires 52 parameters to be estimated for the eleven variables (Table 1). Sixteen parameters are required for

the output, eight for each time series: per day one bias and one scaling parameter for the final state of the LSTM node. The

number of parameters to be estimated is independent of the history length.

Four parameters are added per extra prediction day (two benchmarks, one bias and weight each). An extra memory cell requires

8h+4x+1 extra parameters, with h the current number of hidden nodes and x the number of input variables. While only four235
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Figure 5. Simplified schematic of the model. From left to right: the hydro-meteorological conditions (xt) on the slope at the current (t) and

n preceding time steps; the LSTM layer, including its internal feedback and memory cells (m1..k); the output layer ŷt, which combines the

k memory-cells m of the LSTM node to four predictions; the observations yt, as available for comparison during training and validation.

During initialisation, the conditions on the slope are fed to the system on a day-by-day basis, starting at the oldest observations. The output

layer is only invoked at the last iteration, with the final values of the LSTM memory. The parameters of the LSTM layer are optimized on

both deformation time series in parallel, the output nodes are tuned individually for each benchmark.

parameters are added for each additional input variable. Hence, extra memory always requires more parameters than extra input

variables.

An interpretation of the network is that the development of the slope state in the last 32-days is described by the LSTM

node. The state is scaled, and otherwise matched to the individual benchmarks, by the output neurons. The four days are an

extrapolation of the current state of the system, no prediction of the conditions on the slope is made.240

The ‘mean squared error’ was chosen as the loss function. This function, that quantifies the difference between the predicted

and observed deformation, is to be minimized during training. The quality of the prediction is measured on the period not used

for training. This function assures the cumulative deformation over time is realistic, as errors are balanced between over- and

underestimation. Therefore, the predictions will not show a bias towards acceleration or deceleration.

The TensorFlow machine learning framework was chosen to implement the model (Google, 2022). The LSTM model is im-245

plemented in a stateless fashion: the warm-up phase is repeated for every nowcast. The model was run on a workstation based

on an Intel Xeon W-2123 (4 cores, 8 threads, 3.6 GHz) with 32 GB RAM, while model variations were tested on the high

performance computing cluster of the Delft University of Technology. Given the limited size of the region of interest, as well

as the limited number of parameters, the full model fits into 1 GB of memory.

4.4 Model training & validation250

During training the model parameters are tuned such that the final model state best describes the deformation prediction. The

model is optimized with the Adam optimizer (Kingma and Ba, 2017). The model is trained on the loss, after 50 training passes
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2016-05-04 2017-05-04 2018-05-04 2019-05-04 2020-05-04

 1) days 0-330
 2) days 0-695
 3) days 0-1060
 4) days 0-1426

 5) days 330-695
 6) days 330-1060
 7) days 330-1426

 8) days 695-1060
 9) days 695-1426

 10) d. 1060-1426

Figure 6. Training periods as supplied to the model. The data outside the training period is used for validation. Note that with the longest

training period (4), there is very limited validation data left. The deformation pattern (Figure 2) is shown in the background for reference. As

there is no clear seasonality in the deformation signal, the data set was split in approximate years from the start of the measurements.

that do not lower the training loss, model parameters are fixed. If this steady state is not achieved after 25 000 passes, the

training is stopped anyway and the model parameters used as-is.

Due to temporal correlation training and validation cannot be divided over random chunks or batches, according to the ‘tra-255

ditional’ 30%–70% chunks (Gholamy et al., 2018). Therefore, the training data is split into equal years instead, as shown in

Figure 6. Data outside the training period is used for validation. This includes the period before the training period, when

available.

The robustness of the model to the selection of the training data is assessed from the stability of the results when training

over the subsequent periods (Figure 6), a variation on cross-validation (Krkač et al., 2020). Each model iteration starts with the260

same (random) initial weights, but is trained independently from the start. The quality of fit is assessed by evaluation of the loss

function, the mean squared error, on the periods not used for training. Finally, the model performance is compared between the

training periods. Large deviations of the model quality suggest there are dynamics the system is not capable to describe.

To assess the impact of irrelevant data on the system, as well as the effect of over-fitting, the additional, correlated random

variable (fake/fake) is used. Over-fitting will make the model prone to spurious correlation with this variable, that results in265

poor performance in the validation stage. Furthermore, to ensure there is no accidental correlation between the seasonal noise

and the deformation signal during training and/or validation, the signal was re-rendered for every model run.

All possible combinations of the eleven input variables were tested on the model. With eleven variables this results in 211−1 =

2047 combinations, as each of the time series may be used or not (2 options), expect for the case where no input is used.

Furthermore, the model was trained and validated on each of the ten combinations of training and validation year(s). Each270
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sequence of model training and validation was repeated at least three times, to account for the ‘luck’ introduced by the random

initialization of each model. In total 147 984 model runs were performed.

5 Results

The best solution out of all model runs, judged on the minimal mean squared error on validation, is based on a single LSTM-

node and only four of the eleven input variables available: precipitation from GPM (V2); soil moisture from SMAP (V5) and275

ERA5 (V7); and evaporation from GLEAM (V8), where the numbers refer to Table 1. The minimal mean squared error on

validation was achieved when the model was trained over period 3 (Figure 6, 2016-05-04–2019-05-04), the mean squared

error of this model run was 1.03 cm2

year2 , below the average of 3.15 cm2

year2 (σ ≈ 1.3 cm2

year2 , from 1718 samples) for this model

configuration.

The full nowcast is shown in Figure 7, including the training period shaded in gray. Although, based on visual inspection,280

reasonable results are achieved in summer and autumn, the nowcasting model is unable to predict the deformation rate in winter

and spring in the training period. Especially surprising is the jump in the winter of 2018/2019, where a strong acceleration is

predicted which does not occur until early summer. The validation period, from 2019-05 onwards, shows little variation. The

deceleration in the summer and autumn of 2019 is overestimated and shifted, likewise the acceleration in the December 2019

is predicted correctly, but too early. Overall the predictions show long-term stability (Figure 8) as enforced by the choice of the285

mean squared error as loss function.

The modelling results are overall unsatisfactory: the acceleration and deceleration are typically not predicted timely, or not at

all. This is surprising in the light of the success reported by others (Table C.1). Although we designed our model to match our

understanding of the interplay of hydro-meteorological conditions and deformation, the physics behind slope processes at the

Vögelsberg, the model was unable to capture this relation. The deformation at the Vögelsberg is driven by a complex interplay290

of hydro-meteorological conditions, unlike most of the examples in Table C.1, that often includes a strong, stable driver, such

as a reservoir. This lack of such a single, strong, driver complicates the working of our data-driven model.

5.1 Contribution of individual variables

Due to the complexity of the operations applied to the input signal in the LSTM layer, it is not straightforward to analyze the

contribution of the individual components to the final model outcome. As all model variations were tested (§4.4), it is possible295

to analyze the influence of the presence of a variable by comparing the quality of the model variations. For this analysis only

model iterations with a training period (Figure 6) that left at least one year left for validation were used. Furthermore, all model

variations were run multiple times to assess the robustness of the outcome to the random initialisation.

Figure 9 shows the results of this analysis, and illustrates the mean squared error over the validation period for all models

including each variable. For each variable the minimum and average mean squared error for the validation period are shown,300
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Figure 7. Result of the deformation nowcast, run of the full time frame of the available deformation time series. The shaded time span was

used for training. Shown as thin lines are the subsequent, daily, nowcasts for benchmarks ‘D5_1’ and ‘D_WS_1’. Per day four deformation

nowcasts are shown, with the start of each line being the day after the day the nowcast was issued. Note the warm-up time at the start,

without predictions, that is required to fill the memory of the LSTM-node. The final nowcast ends four days after the end of the reference

measurements.
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Figure 8. The cumulative deformation, as predicted by the consecutive, individual model runs closely matches the observed deformation

over the full four years of deformation measurements. The difference is calculated as ‘modelled - observed’ (ŷ−y) cumulative deformation.

while the maximum mean squared error is often out of range. The thickness of the line indicates the density of results for that

mean squared error, where thicker lines at lower mean squared error indicate a concentration of models with high quality of fit.

Models based only on SMAP/sm_profile (V5) score the poorest (highest mean squared error) on average, but with the

widest distribution, including many solutions with a low mean squared error. The difference in performance between the

variables vanishes as more variables are introduced into the model, however, the models including the SMAP soil moisture (V5)305

time series show a consistently larger range in performance, including models with a low mean squared error. Remarkable is the

approximately equal performance between API/API (V10) and fake/fake (V11), where the latter contains no information

on the hydro-meteorological processes and is only marginally outperformed by the Antecedent Precipitation Index (API, V10).

For models with more than four variables, there is no significant difference in model quality for any of the variables.

6 Discussion310

We believe the unsatisfactory performance of the model has three root causes: i) the inability of the model to capture the com-

plex dynamics of the system; ii) the limited quantity of training data available to this type of problem; and iii) the limited, noisy

representation of the slope dynamics in the available remote sensing data. Most natural deep-seated landslides are characterized
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Figure 9. Violin plots of the mean squared error for model variations with one to four variables, including the variable listed. For more than

four variables the relative importance of the individual variables to the model quality becomes insignificant.
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Table 2. List of reference models tested for comparison to lstm1-32. Their performance is shown in Figure 10. To calculate the number

of model parameters: n the length of the time series provided to the model, k the number of input variables, m the number of memory cells,

and h the number of hidden nodes. A single hidden layer is assumed. The number of parameters includes the final, output layer of four nodes

for each of the two deformation time series.

Model Hidden layer Activation History Parameters

lstm1-32 LSTM (1 memory cell) tanh 32 days 4(k + m +1)h +2(4 ·m +4)

lstm3-32 LSTM (3 memory cells) tanh 32 days " "

rnn1-32 RNN (1 memory cell) tanh 32 days h(k + m +1)+ 2(4 ·m +4)

rnn3-32 RNN (3 memory cells) tanh 32 days " "

rnn3lin-32 RNN (1 memory cell) none 32 days " "

da-32 8 cells none 32 days h · k +2(4 ·h +4)

Lin. Least Sq. none none 2(n · k · 4+4)

by a complex interplay of causal (antecedent) and triggering conditions: this is also true for the Vögelsberg landslide. However,

we believe that it is exactly these challenges that we should aim to tackle with a machine learning model approach.315

6.1 Model configuration

The possibilities for data-driven modelling are infinite: our model is only a single realisation of the possible combinations of

variables and operations. This raises three questions regarding the model selection: i) how to match model and process; ii) how

to validate and quantify the quality the nowcast; and iii) how to tune the model implementation.

Major challenge for the model of a deep-seated landslide is the discrepancy between the sub-daily variations of the input320

(especially precipitation and snowmelt), and a delayed, daily output (accelerated deformation). Therefore, non time-aware

models show erratic behaviour, as the consequence of sudden changes to conditions such as snow cover and as well as (extreme)

precipitation, that, in reality, do not translate into immediate acceleration. Traditionally, the addition of groundwater physics,

smoothing the hydro-meteorological signal, circumvents these peaks. However, the addition of groundwater physics requires

knowledge of the geohydrology of the specific slope.325

An LSTM-node resembles a bucket model, and was chosen such to capture the delay between precipitation and deformation,

by modelling the build-up of water in the model. Our results showed that our model was unable to fully capture these hydro-

meteorological dynamics. For reference five alternative models were implemented (Table 2), that were designed to better

address the diversity of the slope, and/or lower the number of parameters required by the model.

The lstm3-32model contains two additional memory cells (buckets) in the LSTM-node, compared to the lstm1-32model330

previously used. The concept is that the memory cells may represent different systems or layers in the subsurface, potentially

interacting with each other. For each subsequent time step, all states are included in the calculation of the new states, and
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Figure 10. Relationship between the number of model parameters and the quality (mean squared error) of training and validation as extracted

from the 147 984 model runs. The number of parameters is related to the number of input variables. For LSTM based networks, for example,

there are four parameters per input variable per LSTM memory cell required. Note the logarithmic scale on the x-axis. See also Figure 13,

on the relationship to the number of parameters. On the left, the mean squared error is shown would the mean deformation rate be used to

nowcast, based on all nine training periods (Figure 6).

could therefore also model interactions between layers in hydrology, such as the transfer of between layers. The rnn1-32

and rnn3-32 models based on a traditional Recurrent Neural Network are similar to their LSTM counterparts, with one and

three memory cells respectively. However, unlike an LSTM-node, they are unable to ‘forget’ their state on command, and are335

more susceptible to unstable behaviour. The rnn1lin-32 did not incorporate an activation function and is comparable to a

moving average filter with interaction between the variables. For all three models the number of parameters is less than for the

equivalent LSTM based models.

The da-32 model resembles a linear least squares model. Variables are first summarised as their average over their 32-

day history, and included in eight nodes without bias in the hidden layer of the network. The final predictions are a linear340

combination of the node values. In a ‘traditional’ linear least squares solution, a direct combination of all input variables, the

number of parameters will often outnumber the number of observations available, and was therefore not tested.

The performance of each model is shown for comparison in Figure 10, as function of the parameters required. Model perfor-

mance is typically optimal for models with only a single parameter, and is comparable between the models. Like the original

model (lstm1-32), each model was re-run multiple times with a random initialisation of the seasonal noise (V11) and model345
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parameters, to verify the consistency of the output. Most alternative models do not outperform the average deformation rate as

predictor for the future deformation rate, as shown in Figure 10.

6.1.1 Performance metric

For early warning systems, prediction of the onset of acceleration (Figure 11) is more important than the deformation quantity.

However, false alarms, triggered by insignificant accelerations, may undermine confidence in the early warning system. At this350

stage of development, we would rely on professional interpretation by an expert to limit the number of false alarms. However,

the system should warn the expert for potentially bad predictions, for example due to previously not encountered conditions.

The timing of the nowcast should allow for further analysis of the prediction without jeopardising precautionary measures for

accelerated deformation.

This leads to five desired properties for the nowcasting system: the system should i) predict onset of acceleration; as well as355

ii) the maximum deformation velocity; iii) four or more days ahead that deformation will begin; iv) predict when the slope is

‘stable’ again; and v) quantify the certainty in the prediction. Unlike most estimation problems, the timing and not only the

quantity of the predicted deformation is important to the user. An acceleration phase predicted too early or slightly late may

still trigger the desired alertness, and still serve a purpose, even though the predicted amplitude on that day is wrong.

Performance indicators typically used in landslide studies, such as the ROC curve (Corsini and Mulas, 2017), are not applicable360

to deformation velocity estimates as our nowcast is not a binary classifier, nor is there a single deformation event. Studies on

deformation nowcasting typically rely on the correlation coefficient (R2), that serves as an indication of how well the nowcast

predicts the excursions of the deformation rate from the mean. For the nowcast presented, the correlation coefficient R2 ≈ 0.31,

and is approximately equal for all four days. The correlation coefficient, however, neglects the amplitude and the non-zero

average deformation of the slope.365

A ‘standard’ error metric, e.g. the mean squared error, is sensitive to the mean as local optimum, but is unbiased and therefore

stable in the long term. As an alternative such error metric could be evaluated at ‘peaks & valleys’, the peaks of the deformation

rate, only, emphasizing extremes and disregarding their onset. With this method there are less samples, only the extremes,

but they are less correlated and include the amplitude of the event. Although this captures the timeliness of the extremes, it

disregards timing of the onset and pattern of the acceleration phase. Moreover, this approach requires information on the peaks370

and valleys, and that those are correctly identified beforehand.

Due to the lack of information on the extremes of the deformation, we chose to use the mean squared error as error metric. This

metric ensured a long term stability, and connected stability of the deformation nowcast, as demonstrated by the cumulative

deformation (Figure 8). As a consequence, the system preferred ‘average’ solutions, overestimating the deformation rate in

stable periods and underestimating the deformation rate in periods of accelerated deformation.375
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6.1.2 Variable pre-processing

All time series of the input data, compare Table 1, were offset to be zero-mean and scaled such that the standard deviation was

equal to 1. As linear scaling of the variables is applied within the LSTM-nodes, scaling of the input variables should not be

necessary. However, the scaling creates a level playing-field for the random variations in the initialisation and therefore may

benefit network training. Moreover, by offsetting the data to the average, the values are represented as deviations from their380

average condition, in the absence of a per variable offset in the network’s LSTM-nodes.

Additional variables may be derived from the direct observations. In our model, the Antecedent Precipitation Index (API)

is such derived observation, and was chosen to enhance the information content of the hydro-meteorological observations to

the model (i.e. provide higher predictive power to the model). This ‘feature generation’ is an important component of more

traditional machine learning techniques, where the system is not expected to derive those relations autonomously. Derived,385

additional features were extensively used by Krkač et al. (2020, 2017), for example, who created additional features to capture

the conditions on the landslide, or Miao et al. (2022) who derived ten features from only two sources (rainfall, reservoir level).

Drawback of the addition of large quantities of such derived variables to the system is that each additional time series requires

additional model parameters to be optimized.

6.1.3 Handling unencountered conditions390

Given the limited availability of deformation measurements, most of the data is required to train the model. Moreover, the

variation in conditions is limited to the variation in those five years. It is therefore likely that the model will encounter conditions

in operation that it had not encountered before. The continuous nature of the model proposed, and the alternatives discussed in

§6.1, the output for such conditions is not bound to the previously encountered conditions.

For simple combinations of variables, i.e. of a single or a few variables, the response may be tested empirically. Note that the395

full 32-day history has to be included in this simulation. However, the response may not be so straightforward: a warm summer

day combined with hail from a thunderstorm may trigger an unrealistic ‘path’ in the model. Therefore, for more variables, the

number of potential combinations increases drastically and may no longer be feasible to simulate.

Predictions of extraordinary responses are not necessarily undesirable, an unbound acceleration, i.e. landslide collapse, predic-

tion should be possible. However, the model would preferably warn for a potential unstable state of the nowcasting system.400

This could be achieved by an ensemble of models, either based on the same model, or model variations. Especially models

with different time series lengths may be able to help pinpoint the source of the discrepancy.

6.1.4 Spatial distribution

Our model of the Vögelsberg is based on two benchmarks, that are on two distinct sections of the slope (Figure 1) that have

shown to exhibit different deformation behaviour. The southern, inhabited, part of the slope exhibits constant deformation, with405

limited acceleration in wet periods. In contrast, the benchmark on the northern part of the slope, shows strong accelerations
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Figure 11. Three acceleration events (#1, #2 & #3) at the Vögelsberg, as identified by Pfeiffer et al. (2021). The fourth acceleration period

(#4) was identified in the data acquired after Pfeiffer et al. (2021).

and deceleration as a delayed response to strong precipitation (Pfeiffer et al., 2021). The location of the benchmarks on the

slope is not provided to the model, and the two benchmarks are treated as two parallel results of the same LSTM-node.

As an alternative, a location index could be specified, for example as binary indicator of the landslide section, or as continuous

signals such as a distance to the centre. Instead of two or more predefined outputs from the same model, a single model may410

handle different benchmarks differentiated by additional input variables encoding their position within the system. However,

given the shallow model design, care should be taken to design the model such that this index works as a scaled multiplier of

the hydro-meteorological conditions.

6.2 Limited number of distinct events

Over the full time span of the measurements, four distinct acceleration periods can be identified (Figure 11). Especially these415

acceleration periods are of interest to an Early Warning System, as they mark the start of a period of accelerated deformation

and associated hazard. Although the periods of accelerated deformation are comparable in length to the periods of continued,

but reduced, deformation, the acceleration events are much shorter (Figure 11). Therefore, these periods are underrepresented

in error metric during training and validation. However, training on these four periods alone leave insufficient variability to

describe the system and reliably fit the required model parameters. Furthermore, the episodic deformation behaviour poses a420

challenge to the prediction system since the forcing variables on the slope do not reflect such sudden changes observed in the

deformation behaviour, as shown in Figure 3.
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Figure 12. Length of the training region, aggregated to (approximate) years, compared to the quality of fit of the model, measured as the

mean squared error. An increase in model fit is visible with the increase in training length, however, most models are outperformed by the

mean deformation rate as a predictor.

6.2.1 Length of training

The deformation data and nowcast results are strongly correlated: a forecast three days ahead describes the same day as a

prediction two days ahead the next day. Given there is more than a single degree of freedom in the model, without prior425

knowledge of the process, there is no predictive power in a single acceleration event. Hence, multiple events are required

to properly train complex models, in the absence of constraints on the process/model. As a consequence, due to the limited

variety of events in the training data, the predictive power of the nowcasting system may be reduced, due to over-fitting on the

characteristics of these events only.

To test the effect of the training length on the models, the models were trained on nine of the ten training periods identified in430

Figure 6 that had a least a year left for validation. The mean squared error, measured on the training as well as validation period,

is shown in Figure 12. The results are consistent between the models: all models show that as the training period increases,

the quality over the training period decreases (dashed line, increasing mean squared error) due to the increased variability of

the events therein. Likewise, the quality over the validation period increases (solid line, decreasing mean squared error), as

the model generalizes better. This is also reflected in the lower standard deviation for validation over longer training periods.435

Hence, a longer training period makes the system more robust against the variations encountered by the system.

To train and validate the nowcasting system, the time series was subdivided in calendar years measured from the start of the

measurements. An alternative, common subdivision would be in hydrological years or water years, that are typically defined

to be from October 1 to September 30 and divided by the precipitation minimum (Lins, 2012). This subdivision is typically
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applied to cut the data in a hydro-meteorologically quiet period of the year. However, the strong deformation events in period 1440

and 2 overlap with this subdivision. Furthermore, with this subdivision, only three periods would be available, instead of four.

Moreover, Parajka et al. (2009) show that the period of minimum precipitation cannot be pinpointed to a single winter month.

Therefore, the decision was made to align the training years with the measurements instead.

6.2.2 Noise reduction of the deformation signal

Essential to the success of the nowcast are the properties of the signal to be predicted. The effect of noise in the deformation445

signal on the modelling is twofold: first, random perturbation complicates the training by masking the best solution, and,

second, leads to an underestimation of the final quality of the model during validation. Hence, the noise in the deformation

signal defines the upper limit for the quality of the deformation estimate. Up-slope deformation, present in the raw deformation

time series, was considered to be unrealistic and therefore noise by definition. Under the assumption that the noise is unbiased,

the noise will be reduced in averaged samples. Therefore, a moving average filter was applied to the deformation time series450

with increasing length until no negative deformation remained.

The model was developed with the requirements for an operational system in mind, restricting the system to only use historic

observations at any point in the process. Inclusion of future samples would require the system to react to future conditions that

have not (yet) been observed on the slope: any filtering, such as smoothing, should not drag future observations back in time.

Therefore, the moving average filter cannot be centered, and averaging is applied to the preceding 31-days, rather than ±15455

days around the current time step as would be possible in re-analysis.

The variation in the deformation signal at the Vögelsberg is relatively small, in deviation from a long term trend. Due to the

milimeter-scale measurement uncertainty in the deformation measurements, the deformation signal is dominated by noise on

the short time scale of days to weeks, the relevance of a deformation prediction on a daily basis is doubtful. Furthermore, due

to the inertia of the landslide body, as well as smoothing of the deformation measurements, accelerations and decelerations are460

spread over adjacent days (Figure 6) and the amplitude of the acceleration is lost. For a successful, daily application, a clear

separation between events and noise is required (higher SNR), either due to a faster process, or due to reduced noise in the

deformation observations.

6.3 Input variables

The variable selection in Table 1 was compiled based on our knowledge of the physics behind the landslide process, as well465

as the availability and continuity of the data. With the ambition for a future, regional implementation in mind, the variables

preferably come from satellite remote sensing observations rather than local, field sensors. However, we did not succeed in

a fully remote sensing driven operation, due to the limited availability of such operational products. Especially deformation

observations from space (‘InSAR’) were found to be promising but we were unable to replace our local deformation time series

with the noisier satellite deformation data.470

24

https://doi.org/10.5194/egusphere-2022-950
Preprint. Discussion started: 4 October 2022
c© Author(s) 2022. CC BY 4.0 License.



6.3.1 Availability of variables

The model was designed under the assumption that data from all sources is continuous and readily available to the system.

Traditionally, local weather and groundwater monitoring stations provide timely, local, high quality observations. However,

such monitoring stations are not available everywhere. Out of the variable selection (Table 1) only GPM (V2) and SMAP (V5)

satisfy this condition and provide operational data products, that could be integrated in a nowcasting solution.475

For a successful integration of satellites observations in an operational nowcasting system, a high, sub-weekly, update frequency

is required. However, most remote sensing products were available at a delay of days to weeks, still too late for integration in

a nowcasting system. As a consequence, the variable selection in Table 1 contains variables that are only available in yearly

iterations (e.g. GLEAM).

Satellite radar interferometry (InSAR) is a proven method for landslide deformation monitoring (Colesanti and Wasowski,480

2006; Hilley et al., 2004). However, especially mountainous environments create a complex interplay of local atmospheric

effects and topography (Hanssen, 2001). A feasibility study showed that the slope orientation and topography would allow for

the application of satellite radar deformation measurements at the Vögelsberg (van Natijne et al., 2022). Further processing

demonstrated the presence of persistent scatterers on and around the houses at the slope, the objects of primary interest.

However, the use of satellite based InSAR as source of the deformation measurements was not feasible, due to the low temporal485

resolution, as well as the noise in the deformation signal (Zieher et al., 2021).

6.3.2 Data continuity

Temporal continuity of input data is required to provide the model with consistent samples of the slope conditions. Short

periods of missing data, e.g. days, may be forward filled, but will reduce the data quality for the full integration length (i.e.

32 days). Observations received late may still be updated in later iterations, to mitigate this effect. However, what to do with490

missing data: a single day or a whole season, or the termination of a data source, for example due to satellite failure? As a

fallback one could model and train systems with different variable combinations in advance, and nowcast based on the best

model available for the variable combination available in the 32 days prior.

The LSTM-nodes may be implemented in a stateful fashion, where the state of the hidden nodes is retained after each predic-

tion. Such implementation is more computationally efficient, as each subsequent nowcast will require only a single pass over495

the most recent data. In such implementation, however, discontinuous or erroneous variables may have a lasting effect on the

model memory. Therefore, the system was based on continuous re-initialisation with a 32-day observation history instead. The

computational drawback is limited, given the small scale of the model, and is acceptable in the light of the greater operational

flexibility.
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6.3.3 Variables not related to the hydro-meteorological cycle500

Indirect observations of the hydro-meteorological cycle may still prove valuable to the nowcasting system. The temperature, for

example, may serve as a proxy indicator for evaporation. Temperature is related to the seasons in most climates, and therefore

there will be a correlation with the season (day-of-year) as well. However, extra care should been taken including variables that

describe the typical/average condition, such as the season. Such variables do not capture the current dynamics of the system

and may only describe average conditions, and constrain the system in extraordinary circumstances. The Vögelsberg landslide505

is known to be sensitive due to changes in the ground water level, irrespective of the season.

6.3.4 Input variable selection

The success of a data-driven model lies in the (expert) selection of the input data. Unrelated variables make the system prone

to spurious correlations, especially with limited training data compared to the degrees of freedom in the model or if the method

is unable to discard or otherwise ignore sources with low information content. Furthermore, unrelated input variables, or even510

just noise, should not yield sensible results: “garbage in, garbage out”.

The effect of noise in the conditions was tested by the inclusion of a Brownian motion signal (see §4.4), that does not have

a relation to the system, except for basic properties (i.e. mean, standard deviation, autocorrelation period) similar to the input

variables. Any model run including this signal should not outperform an otherwise comparable model without this variable.

However, many of the models did, especially when many (≥ 5) variables were included, where it helped to create unique515

variable combinations and allowed the model to over-fit.

Parameters on geology and topography were left out of the selection, and assumed static. However, neither were land cover

changes included. In the case of the Vögelsberg, it was known that little changes were to be expected over the time frame of the

measurements available. An alternative to the inclusion of such variables is to frequently re-train the model on a recent section

of the time series only to adapt to changes. However, although the system will adapt to changing dynamics, re-learning will520

mask the drivers behind long term effects, and/or adapt too swiftly, for example to seasonal differences, reducing the overall

model quality. Land cover changes will not be uniform across slopes, and act on different time scales (e.g. neglected pasture

fields versus forest fires). Moreover, especially in regional studies, the land cover and land cover change may not be comparable

between slopes.

To limit the number of variables, only the observation or modelling result closest to the Vögelsberg was used from regional525

products. However, as Pfeiffer et al. (2021) found, precipitation and snow-melt higher up in the catchment is relevant for

the system (Figure 1). Based on the typically low (≃ 10 km) spatial resolution of the variables (Table 1), we deemed this

assumption justified for this selection of variables. When higher resolution observations are added, this should be reconsidered,

and additional points may be added as extra variables.
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Figure 13. Relationship between the number of input variables and the quality (mean squared error) of the training and validation as

extracted from the 147 984 model runs. The mean squared error on validation increases slightly as more input variables and associated

model parameters are introduced, likely due to over-fitting of the model on the training period facilitated by the extra complexity of the

model.

6.4 Outlook530

Our results show that deformation nowcasting is an open challenge. Although well monitored, the Vögelsberg landslide is a

complex system, and therefore not a straightforward test case. Our results are inconclusive whether our method could work

on other deep-seated landslides. More direct dynamics, and/or stronger and more frequent acceleration periods would help

constrain the system. The inclusion of field data, such as groundwater level (Krkač et al., 2020), might be another approach to

bypass modelling of the most volatile hydrological processes. The ideal slope to further develop a machine learning based now-535

casting method has the following characteristics: i) a dynamic deformation behaviour; ii) is controlled by hydro-meteorological

conditions, with limited delay; and iii) has field monitoring data for reference and training.

For short time series machine learning methods are known to be outperformed by basic statistical methods (Makridakis et al.,

2018). Therefore, our current challenge to nowcast deformation time series may be partially solved in the near future by the

natural extension of time series. Furthermore, continued development of the (satellite) data products by their providers may540

enable new possibilities. Desirable improvements include timeliness of delivery of data products, as well as their precision and

spatio-temporal resolution.

Notable is the recent publication of the first version of the European Ground Motion Service data set (Crosetto et al., 2020),

a pan-European InSAR product. This data set will allow for experimental, regional, weekly nowcasting systems based on a

replay of historic observations. Regional applications will enhance training possibilities and may help overcome the hurdle545
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of limited deformation time series, as multiple slopes are monitored simultaneously. However, to ‘learn’ from the differences

between slopes, and enlarge variation in training data, events have to be largely uncorrelated.

7 Conclusions

Although the Vögelsberg is a well monitored landslide, the number of recorded acceleration events, within the available four

years of daily deformation measurements, is limited compared to other machine learning problems. A simple, time series550

capable, model with limited parameters was required, therefore, we designed an LSTM-based machine learning algorithm to

nowcast the deformation of the Vögelsberg deep-seated landslide from the conditions on the slope. The algorithm was trained

on maximum three years of deformation observations and satellite observations of relevant hydro-meteorological conditions

at the slope. The best model configuration and variable combination was determined by cross-validation with 147 984 model

variations.555

Although rooted in the landslide dynamics, even our best model was incapable of capturing the versatility of responses on

the Vögelsberg, and convincingly predict the landslide deformation rate at the Vögelsberg four days ahead. Especially the

four acceleration events were not predicted timely, although the overall amplitude of the prediction was successfully enforced

by the mean squared error as loss function. The Vögelsberg landslide showed versatile dynamics, where the full range of

slope dynamics and responses to the hydro-meteorological conditions were not present in the available data. Therefore, the560

slope processes were too complex to model the landslide deformation from satellite surface observations, given the limited

observations of acceleration events. Hence, the machine learning model was incapable of ‘understanding’ the relation between

conditions and deformation.

Deformation nowcasting will be a necessity for regional or even continental landslide monitoring and early warning systems.

Satellite remote sensing has the potential to provide longer time series, over wide areas. This leads us to the general recom-565

mendation for the application of machine learning to reactivating, deep-seated, landslides: improve data quality, and lengthen

the deformation time series. The ideal landslide for further development of deformation nowcasting: is highly dynamic (many

events to train on), has a limited delay between forcing conditions and deformation, is well monitored, and is not catastrophic.
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Appendix A: Data800

See Figure A.1.
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Figure A.1. Correlation between variables.

Appendix B: Total Station

See Figure B.1.
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Figure B.1. Smoothed deformation signal, shown for an increasing length (in days) of the moving average filter. The filter only includes

historic observations, and is not ’centred’, to match the properties of an operational system. The increasing time lag is visible for the

subsequent filter lengths by the right shifting of the velocity peaks. For initial observations, a filter length of half the final length of the filter

was accepted.
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Appendix C: Models

C1 State-of-the-art805

See Table C.1.
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