Changes to Machine learning based nowcasting of the Vdgelsberg deep-seated landslide: why pre-
dicting slow deformation is not so easy. [egusphere-2022-950]

We thank the reviewers for their detailed and thorough comments. We were pleased to read the re-
viewers appreciation on the quality of the work, as well as the recognition for the need to explore
the limitations of machine learning.

Here we would like to summarize the changes made based on the discussion. Where possible the
comments by both reviewers are merged and/or intertwined. Comments by Katy Burrows are
shown in blue. Comments by the anonymous reviewer are shown in

¢ Environmental conditions

Another thing that could adversely affect your model could be that small spatial scale rainfall
events might not be captured by your satellite rainfall products, which have quite a coarse reso-
lution (although unfortunately there would not really be any solution to this)

Satellite precipitation products are notoriously bad at measuring peak precipitation. However, un-
like shallow landslides, deep-seated landslides are less sensitive to short periods of intense precipi-
tation, illustrated by the 20-60 day lag time between precipitation and accelerated deformation (1.
147, now 1. 152). A bias in the precipitation data, a consistent underestimation, for example, would
be counteracted by the scaling in the neural network.

Thanks to the study by Pfeiffer et al. (2021) we know that the Vigelsberg landslide has this slow re-
sponse (1. 147, now 1. 152) and precipitation higher up in the catchment is relevant to the landslide
as well (1. 526, now 1. 536). Therefore, infiltration is a catchment wide rather than a slope limited
process, approaching the lower resolution of the satellite precipitation measurements.

We agree that the spatial-temporal resolution of the satellite observations is not optimal. However,
these products are operational globally, and the necessary foundation for an operational nowcasting
system.

¢ Deformation data



In May 2016 a permanent automatic tracking total station (ATS; Leica TC1800) was installed on the
opposite valley flank. Within the active landslide and in the surrounding area assumed stable, 53
retroreflecting prisms were installed on buildings and other man-made structures in a range between
600 and 1700 m. With this setup hourly measurements were conducted automatically, aggregated to
daily means. However, the resulting displacement time series showed a drift towards north-west,
owing to a minor movement of the installed ATS itself. This drift was removed assuming that re-
flectors at locations around the actively moving landslide did not move (no signs of damage owing
to ground movement were observed). For each epoch a transformation matrix was derived by
matching the coordinates of the respective measurements at stable locations to their initial positions
at the beginning of the monitoring (arithmetic mean of first five measurements) based on the
closed-form solution for rigid body transformation provided by Horn et al. (1988). By applying
these transformation matrices to all measurements of each epoch, including the reflectors in the ac-
tive landslide area, the observed pseudo-movements at stable reflectors were corrected in all dis-
placement time series. The finally achieved accuracy of the displacement time series is in the order
of £0.54 cm/a (Pfeiffer et al. 2021).

The text of §3 (1. 148) has been expanded to reflect this.

* Previous work (Table C.1)

Table C1 This is a comprehensive table, but since not all the studies were included in the origi-
nal table from Van Natijne (2020) there is no definition of some of the acronyms e.g. GRNNS.

In section 2 we provided a concise introduction in now casting of deep-seated landslide focused on
machine learning. This is, in our opinion, important to provide the reader a broader perspective of
our work on landslide nowcasting and explain our findings later on. Except for one, all methods in
the table are some form of machine learning. We did not look into the model or optimizer that was
used as we did not compare results. Therefore, we have removed the column with methods. We pre-
fer to keep the table, as it contains the expected references to earlier work. Most of these studies
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were on deep-seated landslides, that did not undergo catastrophic collapse. This has been added to
the text and table caption.

All the cited papers that claim to be successful either had a strong driver (. 72, now 1. 73), or split
the signal in some way. In that case they typically subtract a trend from the data and apply a com-
plex machine learning model to capture the smaller deviations from that trend. In Figure 10 we
show that the mean/trend is already a very good predictor.

Minor comments
The title has been changed to “Machine learning based nowcasting [...]”.

To support colorblind readers symbols were added to the color-coded lines in Figures 10 and 12.

This statement was not intended as a claim, but as a ‘vision’ for the paper. It was reformulated as
such.

The data of all benchmarks is featured in Pfeiffer et al. (2021), Figure 3. A more explicit reference
has been added to the text for the curious reader.

Line 157-158 “Furthermore the amplitude of the filtered signal lags behind the original defor-
mation signal” Why is this? Is it a side-effect of the filtering or have you done it deliberately?

This is an unintended consequence of the filtering. This line has been removed to emphasize the
previous, more important, statement that the onset of acceleration is severely dampened by this fil-
ter.

Our model was designed to work in the absence of recent deformation measurements, and work on

environmental conditions only. This sentence has been rewritten to clarify this.

A four day prediction would demonstrate the model’s ability to predict a tipping point based on the
environmental conditions (acceleration, peak, deceleration). Furthermore, a four day prediction
would give sufficient time for further investigation as part of an early warning system. This has
been clarified in the text.

The mean and maximum correlation have been added to the text.

Agreed. However, in our perception the redundancy is desirable for consistency.
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The deformation nowcasting model. This has been clarified in the text.

Line 209 Is API calculated from the ERA5 or GPM datasets? Does it make any difference
which one you use?

Although better performance may be expected from the re-analysis in ERAS, the API time series is
based on the GPM data, as this is an operational system that has data available with limited latency.
This has been added to the text.

Indeed, the trained model will be sensitive to uncontrolled scaling of the input data. It has been clar-
ified in text that the scaling of the data should be consistent with the scaling used during training.

For the sake of brevity, we prefer to limit ourselves to giving a suitable reference here. We have
added a reference to Jian et al. (1996) as it is easily readable and complete on the workings and pos-
sibilities of such networks.

The text has been expanded to clarify that this was done to reduce the number of parameters. The
later model 1stm3-32 uses three memory cells, increasing the number of parameters required by a
factor of three for the simplest combination of input parameters.

The reviewer is right that this paragraph is not clear. The conclusion, that from a parameter perspec-
tive a more information rich variable should be preferred over a more complex model, was missing
and has been added to the text.

All studies in Table C.1 were conducted at slope level. Studies featuring multiple slopes often apply
the same methodology to multiple slopes within the same catchment or along the same reservoir.
We are unaware of regional studies that feature an automated analysis of many slopes with diverse
drivers, as we mention in our outlook (1. 543, now 1. 555).

Figure 6 The shaded areas for lines 1-4 begin before the deformation measurements. Is this a
mistake?

Figure 7 Like my comment for figure 6, I wonder why the shaded area starts before your defor-
mation dataset. Is this the “warm-up time” you describe in your figure caption? Or is that the
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part starting from early June 2016 where you have deformation data but no prediction? Maybe
you could label this warm-up time on the time series with a box or shaded section?

This is not a mistake. The deformation training data is only available after the first set of 32-days of
total station observations is available to the moving average filter. After that the model needs an-
other 32-days to warm-up the memory in the LSTM-nodes. Theoretically these periods could have
overlapped, at the cost of complicating the model.

This explanation has been added to the captions of figures 6 and 7, and the period has been marked
in the figures as well.

Section 5, line 274-292 In the end, your model does not contain any snowmelt input, although
you expected this to be relevant for the landslide. Could this be why your model only predicts
the training data well in Summer and Autumn? Does a model including one of your snowmelt
inputs (V3 or V4) predict Spring and Winter better (even if it’s worse over all 4 seasons com-
bined?)

This is an interesting hypothesis, that touches upon the information content of the variables, as well
as the performance metric. However, evaluation of the performance over individual seasons would
further reduce the length of the already short validation data set. We have added this suggestion to
§6.1.1.

Agreed, the goal of the reduction of the number of parameters have been briefly restated in this sec-
tion of the text.

Traditional least squares would be the obvious solution. Given the resemblance of the da-32 model
to the least squares solution, it was mentioned for reference.

The average deformation rate was calculated over the training period, and used as a prediction for
the remainder of the time series. This mean squared error of this parameterless ‘model’ is shown in
Figure 10. The text has been expanded to clarify this.

Section 6.1.1 Lines 360-365 Your R” value (0.31) seems low, but interpreting a single R* value
is difficult. I’'m not sure it’s useful to include this metric when you have nothing to compare it
to.

Agreed. We have removed this whole paragraph.

Section 6.1.2 I think I would have put this subsection in your methods section as it contains
similar information to Sections 4.1 and 4.2



Indeed, the first paragraph replicates most of the considerations in §4.2 and has limited value for the
discussion. We have removed this first paragraph of §6.1.2 and renamed section §6.1.2 to ‘derived
variables’.

Lines 409-413 If you separate the two benchmarks in the model, would this result in them no
longer being connected in space? (So one could accelerate independently of the other). I would
have thought that since one part of a landslide moving is likely to destabilise another part, sepa-
rating them would be a disadvantage.

Actually, I think I have misunderstood what you mean to say in these lines, can you find another
way to write this?

Although no spatial relationship is provided to our model, the relationship is found during training
as two realizations of the same slope process, represented by the shared LSTM-node. This has been
clarified in the text.

Figure 2.6 shows the training periods used by the machine learning model. Figure 2.11 shows the
accelerations periods as previously identified by Pfeiffer et al. (2021). The annotation is the main
purpose of the figure, not the deformation time series. Therefore, no amplitude (y-axis) is shown in
Figure 2.6. Figure 2.11 could be integrated into Figure 2.6, although the acceleration periods by
Pfeiffer et al. (2021) are not introduce until §6.1. Therefore, we prefer not to merge the two figures.

Lines 480-486 I would specify Sentinel-1 since the temporal resolution of SAR satellites varies.
Also, it is not clear here whether you are suggesting the use of InNSAR as an input variable for
the model, or if you are suggesting that maybe for other landslides where you don’t have such
detailed deformation data, deformation time series derived from InSAR could be used to train a
similar model.

The first part of this paragraph is generic: INSAR may be used to train to train a similar model. The
second part is specific to Vogelsberg and Sentinel-1. This has been clarified in the text.

This sentence was a remnant of an old paragraph and has been removed.

Lines 522 For landcover changes as an input, won’t you run into the same problem of temporal
resolution as you found in the SAR data? And if your landcover product was derived from e.g.
Sentinel-2, it could actually be worse because of cloud cover.

Indeed, the timing of fast changes can be difficult to capture by (optical) remote sensing. This reser-
vation has been added in text.

The assumption that, given the low spatial resolution of the remote sensing data, a single pixel rep-
resents the conditions of the higher part of the catchment as well. This has been clarified in the text.



Lines 543-547 Here, with the EGMS product, it is based on Sentinel-1 data so you would only
have a 12-day temporal resolution (Especially following the failure of Sentinel-1B), which
would result in the same temporal resolution problem you discussed in Section 6.3.1

The temporal resolution between April 2016 and December 2021 was at the original 6-day interval.
The current EGMS data set runs till the end of 2021, the same time as the failure of Sentinel-1B,
and still has an approximately weekly frequency.

Indeed, the figure is superfluous in relation to Figure 10 and has been removed.

* Textual corrections

We thank both reviewers for their detailed textual corrections. These textual comments and minor
comments have been addressed without further discussion.



