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Abstract. We interpret space-borne observations from the TROPOspheric Monitoring Instrument (TROPOMI) in a multi-

inversion framework to characterize the 2018–2019 global methane budget. Evaluation of the inverse solutions indicates that 15 

methane sources and sinks cannot be simultaneously resolved by methane observations alone—even with the dense 

TROPOMI sampling coverage. Employing remote carbon monoxide (CO) and hydroxyl radical (OH) observations with 

independent methane measurements for evaluation, we infer from TROPOMI a global methane source of 587 Tg/y and sink 

of 571 Tg/y for our analysis period. We apply a new downscaling method to map the derived monthly emissions to 0.1°×0.1° 

resolution, using the results to uncover key gaps in the prior methane budget. The TROPOMI data point to an underestimate 20 

of tropical wetland emissions (+13%; 20 Tg/y), with adjustments following regional hydrology. Some simple wetland 

parameterizations represent these patterns as accurately as more sophisticated process-based models. Emissions from fossil 

fuel activities are strongly underestimated over the Middle East (+5 Tg/y), where bottom-up inventories suggest rapid 

increases over the past decade, and over Venezuela. The TROPOMI observations reveal many fossil fuel emission hotspots 

missing from the prior inventory, including over Mexico, Oman, Yemen, Turkmenistan, Iran, Iraq, Libya, and Algeria. 25 

Agricultural methane sources are underestimated in India, Brazil, the California Central Valley, and Asia. More than 45% of 

the global upward anthropogenic source adjustment occurs over India and southeast Asia during the summer monsoon (+8.5 

Tg in Jul–Oct), likely due to rainfall-enhanced emissions from rice, manure, and landfills/sewers, which increase during this 

season along with the natural wetland source.  

 30 

Short Summary. We combine satellite measurements with a novel downscaling method to map global methane emissions at 

0.1°×0.1° resolution. These fine-scale emission estimates reveal unreported emission hotspots and shed light on the roles of 

agriculture, wetlands, and fossil fuels for regional methane budgets. The satellite-derived emissions point in particular to 
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missing fossil fuel emissions in the Middle East and to a large emission underestimate in South Asia that appears to be tied 

to monsoon rainfall. 35 

1 Introduction 

Methane (CH4) has a 20-year global warming potential 85 times that of carbon dioxide (CO2) and is an important driver of 

decadal climate changes (IPCC, 2021). Global mean methane mole fractions reached 1879 ppb in 2020, 2.6× pre-industrial 

levels, with a recent growth rate acceleration (+10–15 ppb/y in 2019–2020) whose cause is not well understood (NOAA, 

2022; Peng et al., 2022; Saunois et al., 2020; Stevenson et al., 2021). Strong spatial and temporal heterogeneity in methane 40 

emissions and limited observational coverage have historically challenged our ability to explain such trends in terms of 

underlying sources. However, the recent availability of high-resolution, near-global and daily methane measurements from 

the TROPOspheric Monitoring Instrument (TROPOMI) provides a transformative advance in this area. Here, we apply these 

data in a 4D-Var inversion + spatial downscaling framework to quantify the 2018–2019 global methane budget and 

determine the importance of missing and unexpected sources. 45 

 

The atmospheric methane burden increased by an average of 18 (17–19) Tg/y during 2008–2017 (Saunois et al., 2020), with 

conflicting explanations proposed. Top-down studies have inferred a ~30 Tg/y emission increase over tropical regions 

between 2000–2006 and 2017 (Bergamaschi et al., 2013; Lunt et al., 2019; Jackson et al., 2020). However, such inferences 

can be highly sensitive to even modest uncertainties in the atmospheric hydroxyl radical (OH, the main methane sink)—50 

particularly over the tropics with their sparse observations (Mcnorton et al., 2016; Rigby et al., 2017; Turner et al., 2017). 

Some top-down studies have approached this problem by co-optimizing methane emissions and sinks (Lu et al., 2021; 

Maasakkers et al., 2019; Qu et al., 2021; Turner et al., 2017; Zhang et al., 2018). Unfortunately, these terms may be 

insufficiently resolved for robust inverse analysis when using methane data alone, leading to aliasing between the optimized 

source and sink terms (Lu et al., 2021). Isotopic analyses invoke increased biogenic sources (Nisbet et al., 2016; Schaefer et 55 

al., 2016) to explain the post-2016 13C depletion, whereas ethane-based constraints indicate a fossil fuel emission 

underestimate (Franco et al., 2016; Kort et al., 2016; Peischl et al., 2016; Xiao et al., 2008). Unfortunately, the latter 

approach is limited by the large variability in methane-to-ethane emission ratios. 

 

Bottom-up inventories also point to substantial uncertainties in the spatial distribution of methane sources. For instance, the 60 

two most commonly-used anthropogenic inventories for the US (EDGAR v5 (2019) and GEPA (Maasakkers et al., 2016)) 

are essentially uncorrelated (R = 0.1) at 0.1°×0.1° resolution. Meanwhile, current inventories also lack the ability to predict 

emission sporadicity (e.g., Irakulis-Loitxate et al., 2022; Pandey et al., 2019), while temporal representation errors can also 

arise between inventories due to time lags associated with their development. Such biases, when coupled with sparse 

observations, model transport errors, and source/sink ambiguity, degrade the accuracy of observation-based (top-down) 65 



3 
 

emission estimates—which as a consequence often arrive at inconsistent emission allocations (Alexe et al., 2015; Bruhwiler 

et al., 2014; Jackson et al., 2020; Lu et al., 2021; Maasakkers et al., 2019; Mcnorton et al., 2018; Monteil et al., 2013; Qu et 

al., 2021; Yu et al., 2020; Yu et al., 2021a; Yu et al., 2021c; Zhang et al., 2021).  

 

TROPOMI provides an unprecedented observational expansion for addressing these science gaps, offering sub-10 km global 70 

monitoring of total column methane concentrations with dense overland coverage (Bousserez et al., 2016; Jacob et al., 2016; 

Maasakkers et al., 2022; Turner et al., 2018b). Here, we interpret two years of TROPOMI data in an analysis framework that 

couples multiple 4D-Var adjoint inversions with a novel spatial downscaling approach to derive emissions at 0.1° × 0.1° 

horizontal resolution. This yields a suite of candidate solutions for the 2018-2019 methane budget, which we evaluate a 

posteriori against independent observations of methane, carbon monoxide (CO), and OH. In this way we identify the most 75 

robust solution set based on the ensemble of observational constraints, and use this new spatial information to better 

understand regional and sectoral contributions to the methane budget and the underlying drivers of those emissions.  

2 Data and Methods 

Figure 1 summarizes our inversion framework. We employ TROPOMI measurements from 01/2018–02/2020 with the 

GEOS-Chem adjoint model in a suite of 4D-Var inversions to optimize monthly total methane emissions at 2° × 2.5° 80 

(latitude × longitude) resolution. These derived emissions are then spatially downscaled to 0.1° × 0.1°.  We omit the first and 

final 4 months from interpretation to further minimize initial condition errors and to ensure that all derived fluxes are 

adequately informed by subsequent observations. Our final analysis timeframe thus spans 18 months from 05/2018 through 

10/2019. 

2.1 TROPOMI observations and independent evaluation datasets 85 

TROPOMI was launched in 10/2017 onboard the Copernicus Sentinel-5 Precursor satellite into a low-Earth polar orbit, and 

monitors greenhouse gases and air pollutants with daily near-global coverage at ~13:30 LT (equator overpass) on the 

ascending node (Hu et al., 2018). We use the SRON corrected retrieval described in Lorente et al. (2021), which is based on 

the S5P-RemoTeC full-physics algorithm with albedo correction and updated regularization scheme, spectroscopic 

information, and surface treatment. This updated algorithm mitigates the albedo bias that affected earlier versions (Qu et al., 90 

2021). Relative to the albedo-corrected product, the prior TROPOMI version exhibits high biases over North Africa, the 

Middle East, and the western US, and low biases over Amazonia, the eastern US, central Africa, and eastern China (Lorente 

et al., 2021).  

 

The TROPOMI total column (XCH4 in ppb) retrievals employ combined solar backscatter measurements in the near-infrared 95 

(NIR; 0.8 μm) and shortwave-infrared (SWIR; 2.3 μm), and have 5.5/7 × 7 km2 nadir resolution on a 2600 km swath. The 
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data have <1% nominal bias, 0.6% instrument noise, and an estimated 0.8% forward model error (Hu et al., 2016). We omit 

high-latitude (>60°) observations and require quality filter QA > 0.5 (Sentinel-5 Precursor/TROPOMI Level 2 Product User 

Manual: Methane, 2022) to avoid errors associated with high solar or viewing zenith angles, low surface albedo, excessive 

aerosol loading, clouds, terrain roughness, and measurement noise (Lorente et al., 2021). Figure 2 shows the resulting 100 

TROPOMI XCH4 data for 03/2018–02/2020, gridded to 0.1°×0.1° using the method described by Sun et al. (2018). In total, 

91 million retrievals during 05/2018–10/2019 pass quality filtering and are available for analysis, an average of 31,000 per 

2°×2.5° GEOS-Chem grid cell (Figure S1). For inversions on the 2° × 2.5° model grid, we first average the TROPOMI 

observations to this resolution. 

 105 

For the data used in our inversion timeframe, figure S2 shows that the TROPOMI measurements agree well with 

independent measurements from the Total Carbon Column Observing Network (TCCON; 2014) and the Greenhouse Gases 

Observing Satellite (GOSAT; 2021), with major axis regression slopes of 1.02 (R = 0.82) and 0.99 (R = 0.88), respectively. 

The inter-dataset mean biases are -7.1 ppb (0.4%, TROPOMI - GOSAT) and -5.4 ppb (0.3%, TROPOMI - TCCON; see Text 

S1). Our initial condition optimization further ensures that the model and TROPOMI are unbiased with respect to each other, 110 

so that mismatches arising during the simulation timeframe reflect source-sink disparities rather than any systematic 

observational bias. 

 

We use a large suite of independent measurements to evaluate the inversions. These include methane columns from TCCON 

(2014), a global network of Fourier transform spectrometers, and methane mole fractions from ObsPack (near-real time 115 

version v2.0; (2021)), a global compilation of ground-based and airborne measurements. We further use CO and OH 

measurements from the Atmospheric Tomography (ATom) airborne campaign (Wofsy et al., 2018) to test inversion success 

at separately optimizing methane sources and sinks. ATom featured pole-to-pole profiling (0.2 to 12 km) during four seasons 

over four years. The flight design is thus well-suited to determine whether the optimized OH fields improve or degrade 

global model simulations of OH itself and of CO (whose dominant sink is reaction with OH). Measurements of CO during 120 

ATom were performed using the NOAA Picarro instrument with an estimated uncertainty of 3.6 ppb (Chen et al., 2013). OH 

measurements during ATom employed the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), with an estimated 

uncertainty of 0.018 ppt (1-minute average; Brune et al., 2020). 

2.2 Forward model and initial conditions 

We use the GEOS-Chem adjoint model (v35), on a 2° × 2.5° grid with 47 vertical layers, to perform the global 4D-Var 125 

inversions. The model uses GEOS-FP meteorological fields from the National Aeronautics and Space Administration 

(NASA) Global Modeling and Assimilation Office (GMAO, 2013), with 5- and 10-minute timesteps for transport and 

emissions, respectively. Transport employs fully instantaneous boundary layer mixing (Wu et al., 2007), a relaxed Arakawa-

Schubert convection scheme (Moorthi and Suarez, 1992), and a multi-dimensional Flux-Form Semi-Lagrangian (FFSL) 
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treatment for advection (Lin and Rood, 1996). For all model-satellite comparisons (and at each inversion iteration) the 130 

GEOS-Chem output is sampled according to the TROPOMI observation operator at the overpass time and location. 

 

We optimize the model initial conditions for 01/01/2018 in three steps, first starting with a 25-year global spin-up to achieve 

a globally representative methane field. We then apply a latitude-dependent correction based on the TROPOMI-model 

difference for 11/2017–01/2018 to speed up the optimization process in the next step. Correction over land employs the 135 

median TROPOMI-model difference by latitude; over oceans (which lack TROPOMI XCH4 data) we use the 0.1 quantile 

difference. Finally, we optimize the resulting fields in a 4D-Var inversion based on TROPOMI data for 01–02/2018. The 

optimized global methane burden is 0.99× that in the original 25-year spinup, and the north:south hemispheric (NH:SH) 

XCH4 ratio increases from 1.11 to 1.13.  

2.3 Prior model sources and sinks 140 

Global anthropogenic methane emissions in the prior model use the gridded United Nations Framework Convention on 

Climate Change (UNFCCC) inventory for fossil fuels (year-2016; GFEI (Scarpelli et al., 2020)) and EDGAR v5 for other 

sources (year-2015; (Crippa et al., 2019; Crippa et al., 2020)). These are superseded by the 2012 GEPA inventory for US 

anthropogenic emissions (Maasakkers et al., 2016), the CanMex inventory for Canadian (year-2013) and Mexican (year-

2010) oil and gas emissions (Sheng et al., 2017), and Sheng et al. (2019) for Chinese coal mine emissions (year-2011). 145 

Wetland emissions use the 2018–2019 WetCHARTs ensemble mean flux (Text S2; (Bloom et al., 2017)), scaling the total to 

149 Tg/y to match the 2008–2017 global methane budget from Saunois et al. (2020). We apply Fung et al. (1991) and 

Maasakkers et al. (2019) for termite and geological seep emissions, respectively, and employ biomass burning emissions for 

2018–2019 from the Quick Fire Emissions Dataset (QFED (Darmenov and Silva, 2015; Koster et al., 2015)). Figure S3 maps 

these prior emissions, which total 535 Tg/y and include 356 Tg/y from anthropogenic sources (119 Tg/y livestock + 101 150 

Tg/y fossil fuel + 80 Tg/y waste + 37 Tg/y rice + 19 Tg/y other), 165 Tg/y from natural sources (149 Tg/y wetlands + 16 

Tg/y geological seeps and termites), and 14 Tg/y from biomass burning. Emissions from EDGAR v5 vary monthly based on 

national and sub-national sectoral activity levels. GEPA includes monthly emission profiles for US rice and manure 

management, and we assume aseasonal emissions for indoor animal husbandry following Crippa et al. (2020). The 

WetCHARTs emissions are monthly, reflecting temporal changes in wetland extent, respiration, and temperature. QFED 155 

emissions are daily with an hourly diel profile applied.  

 

Atmospheric methane removal by OH (87% of the total sink, 494 Tg/y) in the prior model uses archived monthly oxidant 

fields from GEOS-Chem (v5) benchmark simulations (Wecht et al., 2014), which have an annual tropospheric air-mass-

weighted mean of 1.03 × 106 molecules/cm3 and 1.04 NH:SH ratio. Other minor sinks include stratospheric oxidation (6%, 160 

33 Tg/y) based on NASA Global Modeling Initiative monthly loss frequencies (Murray et al., 2013), soil uptake (6%, 34 

Tg/y) following Fung et al. (1991), and tropospheric oxidation by chlorine (2%, 10 Tg/y) using 3-D monthly Cl fields from 
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Sherwen et al. (2016). The above sinks total 571 Tg/y (Figure 2e) and yield a 9.1-year methane lifetime in our prior 

simulations.  

 165 

Simulations to evaluate posterior model performance for CO and OH employ anthropogenic emissions (for CO, NOx, and 

VOCs) from the Community Emissions Data System (Hoesly et al., 2018), the 2016 EPA NEI v1 (NEIC, 2019), and the Air 

Pollutant Emission Inventory (APEI, 2020). Corresponding biogenic and biomass burning emissions are obtained from the 

Model of Emissions of Gases and Aerosols from Nature (MEGANv2.1; Hu et al., 2015), and QFED (Koster et al., 2015). 

2.4 Inversion frameworks and sensitivity to OH 170 

Optimizations are performed in the GEOS-Chem adjoint model (Henze et al., 2007) through iterative minimization of the 

Bayesian cost function 𝐽𝐽(𝒙𝒙): 

𝐽𝐽(𝒙𝒙) = (𝒙𝒙 − 𝒙𝒙𝒂𝒂)T𝐒𝐒𝐚𝐚−1(𝒙𝒙 − 𝒙𝒙𝒂𝒂) + 𝜸𝜸�𝒚𝒚 − 𝐹𝐹(𝒙𝒙)�T𝐒𝐒𝐎𝐎−1(𝒚𝒚 − 𝐹𝐹(𝒙𝒙)) (1) 

The first right-hand term imposes a penalty based on the deviation of 𝒙𝒙 (the state vector to be optimized) from 𝒙𝒙𝒂𝒂 (the prior 

estimates), weighted by the prior error matrix 𝐒𝐒𝐚𝐚. The state vector 𝒙𝒙 includes monthly 2° × 2.5° grid-level emissions and (in 

some cases) the 2-year-mean hemispheric loss to OH. This penalty is counteracted by the second right-hand term, which 175 

reflects the mismatch between the observations 𝒚𝒚 and model predictions 𝐹𝐹(𝒙𝒙) sampled in the same manner, weighted by the 

observing system error matrix 𝐒𝐒𝐨𝐨. The regulation parameter 𝛾𝛾 is applied to balance the influence of the above two terms in 

the overall cost function 𝐽𝐽(𝒙𝒙). Our inversions run continuously from 01/2018 to 02/2020, optimizing monthly grid-total 

methane emissions and 26-month mean hemispheric OH concentrations. To minimize any effects from initial conditions and 

to allow sufficient observational constraints throughout the analysis period we focus interpretation on the 18-month period 180 

from 05/2018 to 10/2019. Annual values discussed later are for 11/2018–04/2019 plus the mean of 05–10/2018 and 05–

10/2019. 

 

The prior error covariance matrix 𝐒𝐒𝐚𝐚 for methane emissions is constructed as follows. We use the Maasakkers et al. (2016) 

scale-dependent uncertainties for anthropogenic emissions over the GEPA and CanMex domains, and the Sheng et al. (2019) 185 

province-level error estimates for Chinese coal mine emissions. For other global anthropogenic emissions we use the gridded 

fossil fuel uncertainty estimates from Scarpelli et al. (2020) and assume 50% uncertainty in the remaining sources 

(Maasakkers et al., 2019; Yu et al., 2021c). Uncertainties for wetland emissions are derived as one standard deviation across 

the WetCHARTs ensemble, averaging 105% at the grid level. Other sources employ a prior error standard deviation of 50%, 

consistent with earlier studies (Maasakkers et al., 2019; Sheng et al., 2018; Turner et al., 2015; Wecht et al., 2014; Yu et al., 190 

2021c). The diagonal of the prior error matrix combines the above flux-weighted terms in quadrature and averages 66%. We 

find that the spatial covariance in the total prior emissions decreases by 50% over a mean distance of approximately 300 km, 
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and we populate the exponentially decaying off-diagonal elements of 𝐒𝐒𝐚𝐚 accordingly. This is comparable to the 200–500 km 

correlation length scales applied in previous methane studies (Monteil et al., 2013; Wecht et al., 2014; Yu et al., 2021c).  

 195 

We test the impacts of OH on our results through three separate inversion treatments: the first uses the prior OH with no 

optimization, while the second and third optimize methane loss to OH on a hemispheric basis with an assigned uncertainty 

(included in 𝐒𝐒𝐚𝐚) of either 1% or 10% (Prather et al., 2012; Saunois et al., 2020). We find that both the 1% and 10% 

uncertainty assumptions for OH give effectively identical inversion solutions: in both cases the optimization has sufficient 

OH flexibility to correct a global mean budget imbalance on that basis, with the remaining spatial errors resolved through 200 

grid-level emission adjustments (Figure S4). We therefore mainly discuss results from the 1% optimization (referred to as 

optOH), along with those from the fixed OH (fixOH) inversion. Other minor sinks, such as soil uptake, are also uncertain but 

not addressed here. 

 

Observing system errors combine measurement errors and forward model errors. Building on Heald et al. (2004), we 205 

compute the elements of 𝐒𝐒𝐨𝐨 (which is diagonal) from the residual standard deviation between the observations and the prior 

simulations within a 2° × 2° moving window, further imposing a lower bound of 56 ppb2 (0.25 quantile of the overall 

results). The resulting observing system errors average 11 ppb, mainly reflecting instrument noise, and are comparable to 

previous estimates for GOSAT and TROPOMI (11–13 ppb; (Maasakkers et al., 2019; Zhang et al., 2020)). 

 210 

The regulation parameter 𝛾𝛾  is defined through sensitivity inversions for 01/2018 with 𝛾𝛾  varying from 10-5 to 103. The 

optimal monthly value is selected based on the resulting L-curve and total error reductions (Figure S5), and then scaled to 

the number of observations for the full 2-year inversion period. The result (𝛾𝛾 = 0.03) is consistent with previous TROPOMI 

inversions by Qu et al. (2021) (𝛾𝛾 = 0.002) given their optimization of annual rather than monthly emissions.  

 215 

Adjoint 4D-Var inversions do not directly provide posterior error estimates. Methods are available to indirectly derive such 

estimates (Bousserez et al., 2015; Yu et al., 2021a). However, our previous Observing System Simulation Experiments 

(OSSEs; Yu et al., 2021a) showed that for methane the computed posterior error reductions do not correlate with more 

accurate flux estimates in the presence of model transport errors and spatial emission biases. Here, we instead combine 

multiple inversion frameworks (Section 2.5) with an ensemble of independent observations (Sections 2.1, 3) to test the 220 

robustness of our results and characterize the associated uncertainties. 

 

Recent inverse analyses by Qu et al. (2021) likewise examined the global methane budget using TROPOMI (and GOSAT) 

observations. Our study advances on that work in several ways. First, we optimize monthly rather than annual fluxes to 

identify seasonal patterns of variability. Second, in place of a traditional analytical optimization we combine 4D-Var with 225 

new inverse formalisms for better identification of missing sources. Third, we develop a new downscaling approach to 
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constrain emissions at high resolution, and use this framework to elucidate flux mechanisms and missing sources. Finally, 

our analysis leverages an updated TROPOMI methane product (Lorente et al., 2021) that corrects an albedo-dependent bias 

present in the version used by Qu et al. (2021). 

2.5 Inversion ensemble to explore sensitivity to missing sources 230 

Our previous OSSE-based work (Yu et al., 2021a) demonstrated that classical SF-based inversions have limited ability to 

recover missing sources. Here, we apply multiple inversion formalisms to diagnose and address this issue.  

1. Classical scaling factor (SF) inversions, employing the bottom-up inventories described earlier as prior. These 

inversions solve for scale factors 𝒔𝒔 in 𝒙𝒙 = 𝒔𝒔 ∘ 𝒙𝒙𝒂𝒂. 

2. Background increment inversions (BI). BI inversions employ a revised prior consisting of the above inventories scaled 235 

by 90% plus the remaining 10% as a uniform overland flux. This revised prior is then subjected to SF optimization.  

3. Observational guess inversions (OG). OG inversions employ a revised prior informed by long-term TROPOMI data for 

better recovery of missing sources. Specifically, we find from sensitivity simulations that adding 75 Tg/y to the bottom-

up emissions results in a globally unbiased simulation across 2018–2020. We distribute this 75 Tg/y spatially based on 

the observation-model enhancement mismatches, where the grid-level enhancements are computed as the local XCH4 240 

value minus the zonal mean (2° bins). Figure S6 shows the resulting grid-level emission increments. 

4. Emission enhancement inversions (EE). EE inversions solve for absolute flux increments rather than scale factors via 

𝒙𝒙 = 𝒔𝒔 ∘ 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 +  𝒙𝒙𝒂𝒂. We define 𝒙𝒙𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃 as 2600 kg/box/timestep, which is the mean emission for grid cells exceeding 1 

kg/box/timestep. We showed previously that this approach has better performance for missing sources than the above 

three SF inversions (Yu et al., 2021a). 245 

In the following, we interpret the multi-inversion mean as our base-case solution and the range as the corresponding 

uncertainty estimate. 

2.6 Emission downscaling 

We present here a new method to spatially downscale the satellite-derived emissions for potential use in models. This 

downscaling is necessitated by the fact that the current GEOS-Chem adjoint model does not have global simulation 250 

capability at finer than 2° × 2.5° resolution. Furthermore, each of the 2-year inversions performed here required >12,000 

CPU hours (>80 days on multiple processors) to converge, making higher-resolution optimizations computationally 

impractical. However, the inventories employed as prior, as well as the TROPOMI observations themselves, contain 

information at much finer scales (e.g., 0.1° × 0.1° and 7 × 7 km2)—and thus contain additional high-resolution constraints 

that are neglected by the 2° × 2.5° inversions. We therefore leverage this information to spatially downscale the optimized 255 

emissions to 0.1° × 0.1° via: 
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𝑥𝑥𝑗𝑗′ =  𝜔𝜔𝑖𝑖𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖→𝑗𝑗𝑠𝑠𝑖𝑖𝑥𝑥𝑎𝑎,𝑗𝑗
′ + (1 −𝜔𝜔𝑖𝑖) �1 + 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖→𝑗𝑗(𝑠𝑠𝑖𝑖 − 1)� 𝑥𝑥𝑎𝑎,𝑗𝑗

′  (2) 

Equation (2) downscales the original optimized emissions from a given 2° × 2.5° parent grid cell i to the subgrid scale (𝑥𝑥𝑗𝑗′ at 

0.1° × 0.1°) by combining spatial information from the observations (first right-hand term) and the prior (second right-hand 

term). Here, 𝜔𝜔𝑖𝑖 is a weighting factor to balance these two terms,  𝛽𝛽𝑂𝑂𝐵𝐵𝐵𝐵,𝑖𝑖→𝑗𝑗 and 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖→𝑗𝑗 are spatial downscaling operators 

representing the observational and prior information, respectively, 𝑥𝑥𝑎𝑎,𝑗𝑗
′  represents the 0.1° × 0.1° prior emissions for subgrid 260 

j, and 𝑠𝑠𝑖𝑖 is the 2° × 2.5° scale factor derived for parent grid cell i. 

 

The observational downscaling operator 𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖→𝑗𝑗 spatially allocates the subgrid-level emissions according to the distribution 

of column enhancements over the regional background: 

𝛽𝛽𝑂𝑂𝑂𝑂𝑂𝑂,𝑖𝑖→𝑗𝑗 = �𝑦𝑦2𝑦𝑦,𝑗𝑗 −  𝑦𝑦𝑏𝑏𝑏𝑏,𝑖𝑖� ��𝑓𝑓𝑘𝑘�𝑦𝑦2𝑦𝑦,𝑘𝑘 −  𝑦𝑦𝑏𝑏𝑏𝑏,𝑖𝑖��
𝑘𝑘∈𝑗𝑗

�  (3) 

where 𝑦𝑦2𝑦𝑦,𝑗𝑗 is the 2-year mean (03/2018–02/2020) TROPOMI methane column sampled to 0.1° × 0.1° (Sun et al., 2018) 265 

and 𝑦𝑦𝑏𝑏𝑏𝑏,𝑖𝑖 is the methane background defined as 95% of the 𝑦𝑦2𝑦𝑦,𝑗𝑗 0.1 quantile across the parent 2° × 2.5° grid cell i. This 

background definition was determined via OSSE analysis (described below). Specifically, the corresponding parameters 

were varied systematically over a wide range to identify values yielding the best consistency with the true underlying fine-

scale emissions. 𝑓𝑓𝑘𝑘 quantifies the prior fraction of total 2° × 2.5° emissions contained in each subgrid 𝑘𝑘 ∈ 𝑗𝑗.  

 270 

The prior downscaling operator 𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖→𝑗𝑗 spatially allocates the derived flux enhancement 𝑠𝑠𝑖𝑖 − 1 based on the prior emission 

magnitudes and their uncertainties:  

𝛽𝛽𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝,𝑖𝑖→𝑗𝑗 = ε𝑎𝑎,𝑗𝑗
′ 𝑓𝑓𝑗𝑗 ��𝑓𝑓𝑘𝑘2ε𝑎𝑎,𝑘𝑘

′ �
𝑘𝑘∈𝑗𝑗

�  (4) 

where ε𝑎𝑎,𝑗𝑗
′  is the prior emission error estimate at 0.1° × 0.1°. In this way larger corrections are preferentially assigned to 

locations with higher prior emissions and uncertainties.  

 275 

When summed to 2° × 2.5°, both the prior and observational downscaling terms maintain the original adjoint-derived 

emissions. Weighting between these terms is computed as:  

𝜔𝜔𝑖𝑖 = ε𝑎𝑎,𝑖𝑖𝜎𝜎�𝑎𝑎,𝑖𝑖 max𝑙𝑙∈𝑖𝑖(ε𝑎𝑎,𝑙𝑙𝜎𝜎�𝑎𝑎,𝑙𝑙)⁄  (5) 

where ε𝑎𝑎,𝑖𝑖 is the prior emission error estimate at 2° × 2.5°, and 𝜎𝜎�𝑎𝑎,𝑖𝑖 is the log-transformed standard deviation of all 0.1° × 

0.1° prior emissions contained in that parent grid cell (with an imposed zero lower bound). As shown in Figure S7, the 

resulting downscaling relies most frequently on the prior information, particularly for low-emission areas, but hotspots and 280 

locations with higher prior uncertainties are preferentially informed by the observations. 
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Compared to existing emission downscaling methods that rely on prior and posterior error covariance estimates (Cusworth et 

al., 2021), or are based solely on satellite data (Liu et al., 2021), our approach is unique in combining the prior emission 

information (and its uncertainty) with the oversampled TROPOMI observations themselves. Variable weighting between 285 

these terms permits greater influence from the observations when the prior emissions are more uncertain. The method thus 

assumes robust prior error estimates, a caveat that also applies to Cusworth (2021) and similar methods. 

 

We tested the effectiveness of this downscaling approach in a 1-month OSSE analysis over North America (which features 

all relevant source types and a computationally tractable model domain). These synthetic inversions follow Yu et al. (2021a) 290 

in prescribing true and prior emissions from distinct inventories (true: Gridded EPA + WetCHARTs ensemble mean; prior: 

EDGAR v5 + a single WetCHARTs member) that differ by 76 Gg/d domain-wide and have spatial R = 0.51 at 0.25° × 

0.3125°. The OSSEs were performed at 2° × 2.5° by sampling the true-state model according to the TROPOMI coverage for 

08/2018 (with measurement noise applied), followed by 4D-Var optimization as detailed by Yu et al. (2021a). The 2° × 2.5° 

adjoint solution was then spatially downscaled to 0.25° × 0.3125° following Eq. (2) and compared to both the true fluxes and 295 

to the adjoint solution performed directly on the fine-scale grid. Tests were performed both in the presence and absence of 

model transport error (Yu et al., 2021a). 

 

Table 1 shows that in the absence of transport error our downscaling approach outperforms the coarse-grid solution and 

approaches the skill of the native fine-scale inversion in representing the true fluxes. The benefits of the 4D-Var + 300 

downscaling approach are even more pronounced when accounting for transport error. Specifically, our previous OSSE 

analyses showed that high-resolution 4D-Var inversions failed to improve methane emission estimates at 25 km for scenarios 

with both transport error and spatially biased emissions (Yu et al., 2021a). Our tests here show that spatial downscaling of 

the 2° × 2.5° adjoint solution strongly mitigates these effects (Table 1), yielding a larger bias reduction (98% versus just 

16%) and more accurate flux distribution (R = 0.70 versus 0.60) than the native fine-grid 4D-Var solution. Figure S8 shows 305 

that the downscaled OSSE solution reduces the prior bias by 17%–56% for sources exceeding 1000 kg CH4/box/day 

(accounting for 99% of the domain-wide emissions) when not subject to transport error. In the presence of transport error, 

the downscaling method has limited success for the very largest sources (>2×105 kg/box/day), but nevertheless exhibits 

strong bias reduction (21%–50%) for sources between 1×103–2×105 kg/box/day (96% of domain-wide emissions). Given 

these results and the finer-scale information available here, for the present work we apply Eq. (2) to spatially downscale our 310 

inversion solutions to 0.1° × 0.1°.  
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3 Derived Global Methane Budget and Sensitivity to OH 

3.1 Methane source-sink ambiguity 

The set of inversion configurations includes multiple formalisms for emission adjustment and two separate treatments for 

methane loss: fixOH inversions use the prior OH as a fixed constraint, while optOH inversions optimize both OH 315 

concentrations (as a 2-year hemispheric mean) and methane emissions. Figure 2 shows that the fixOH and optOH multi-

model means yield similar atmospheric methane distributions, with the strongest enhancements over central Africa, South 

and East Asia, the Middle East, Amazonia and the southern US, and the lowest column concentrations over high southern 

latitudes in Australia, South America, and Africa. The two approaches also provide comparable improvement with respect to 

the TROPOMI observations, with >97% mean bias reduction and >45% root-mean-square-error (RMSE) reduction.  320 

 

Despite the above patterns of agreement, the fixOH and optOH inversions lead to opposing methane emission changes 

relative to the prior budget. The fixOH multi-model mean provides a global methane source of 587 Tg/y (10% higher than 

the prior) and a sink of 571 Tg/y. The optOH multi-model mean yields a 514 Tg/y source (4% below the prior) and a 492 

Tg/y sink; the latter is driven by updated OH fields with an air-mass-weighted NH:SH ratio of 0.98. Figure 2e shows that the 325 

fixOH and optOH solution sets adhere closely to a linear relationship between global sources and sinks, in all cases with a 

~20 Tg/y growth rate in the atmospheric methane burden.  

 

While mutually inconsistent, the fixOH and optOH global methane sink terms are each physically tenable, falling 

respectively towards the high- and low-end estimates of the Saunois et al. (2020) top-down budget assessment for 2008–330 

2017 (501–574 Tg/y). The OH fields dominating methane removal in these two scenarios are likewise physically viable 

based on available independent constraints. If we attribute the optOH methane loss correction entirely to OH, we arrive at 

global-mean [OH] = 8.27 × 105 molecules/cm3, placing the fixOH (1.03 × 106 molecules/cm3) and optOH solutions near the 

middle and lower end of the range indicated by prior assessments (0.85–1.30 × 106 molecules/cm3; (Krol and Lelieveld, 

2003; Li et al., 2018; Montzka et al., 2011; Naik et al., 2013; Patra et al., 2021; Prinn et al., 2001; Prinn et al., 2005; Rigby et 335 

al., 2017; Zhao et al., 2019)). Our 2018–2019 analysis timeframe also spans an El Niño, which has been tied both to global 

OH decreases and to methane growth rate acceleration (Anderson et al., 2021; Turner et al., 2018a)—further complicating a 

differentiation between the fixOH and optOH solutions.  

 

Additional ambiguity arises from the fact that the optOH methane sink adjustments could partly reflect uncertainty in the 340 

CH4 + OH rate coefficient, which here follows Burkholder et al. (2020). While the rate at 298 K has been verified to within 

1% across many lab experiments, uncertainties increase for higher and lower temperatures (up to 13% within 273–313 K 

(Burkholder et al., 2020)). Given all of the above considerations, we turn to independent measurements of methane, CO, and 

OH to assess the fixOH versus optOH solution fidelity. 



12 
 

3.2 Independent model assessments to discriminate between conflicting methane budgets 345 

Ground-based methane column (XCH4) observations from the TCCON network (GGG2014 (2014)) show comparable 

improvements over the prior for both the fixOH and optOH solutions (and for their individual member inversions), with 71% 

(from -12.9 ppb to 3.8 ppb) and 66% (to 4.3 ppb) mean bias reductions, respectively (Figure 3, Table S1). However, global 

in-situ measurements from ObsPack (near-real time version v2.0; (2021)) reveal a 93% (from -13.8 ppb to -0.9 ppb) absolute 

mean bias improvement for the fixOH framework compared to just 39% (to 8.4 ppb) for optOH (Figure 3, Table S1). Figure 350 

3 further shows that the optOH solutions overcorrect the prior negative bias with respect to ObsPack, providing a first piece 

of evidence for a methane sink underestimate in this inversion. 

  

Remote observations of OH and CO (the primary OH sink) from the ATom airborne campaign (Wofsy et al., 2018) also 

point to an OH underestimate in the optOH solution. Figure S9 compares the ATom observations for these species with 355 

predictions from supplemental GEOS-Chem simulations (configured as in Gonzalez et al. (2021)) constrained to the fixOH 

and optOH oxidant fields. With the exception of ATom 3, the mean model OH biases with respect to ATom observations are 

~80% lower for fixOH than for optOH (mean differences are all significant based on a paired t-test at 95% confidence). 

These optOH results exhibit a consistent OH underestimate (averaging 0.020–0.044 ppt) that exceeds the 0.018 ppt 

measurement uncertainty. Biases in the simulated background CO levels are likewise lower (by 7–87%) in the fixOH 360 

simulations, with a clear CO overestimate for optOH (Figure S9). Again, the mean fixOH/optOH differences are all 

statistically significant at the 95% confidence level, with model-measurement discrepancies for optOH (7–12 ppb) exceeding 

the 3.6 ppb measurement uncertainty. While the ATom timeframe (2016–2018) is distinct from that of the TROPOMI 

inversions (2018–2019), the model is sampled at the time of measurement for both comparisons. We therefore expect the OH 

and CO biases highlighted above to likewise manifest for 2018–2019—an expectation that is supported by the ObsPack 365 

comparison.  

 

When co-optimizing methane emissions and loss we thus find that the solutions can achieve a good fit to the TROPOMI data 

themselves but degrade model agreement with other observations of methane, OH and CO. We conclude that solving for 

global methane sources and sinks based solely on satellite observations of methane itself remains an under-constrained 370 

problem—even with the dense TROPOMI data coverage. In the same way, previous studies using methane data to optimize 

OH alongside emissions are likely subject to strong error correlations between the derived sources and sinks (Lu et al., 2021; 

Maasakkers et al., 2019; Qu et al., 2021; Zhang et al., 2018; Zhang et al., 2021). On the other hand, the comparisons here 

provide robust support for the fixOH inversion solutions based on their fidelity against independent atmospheric 

observations. 375 
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We thus focus the remainder of this paper on the fixOH results, and treat the corresponding multi-model mean as our base-

case solution. The fixOH constituent inversions (Scale Factor - SF, Background Increment - BI, Observational Guess - OG, 

and Emission Enhancement - EE) each employ an alternative framework for spatial emission correction, as described earlier. 

Figure S10 shows that these individual members converge closely (within 0.5%) in terms of the total derived methane flux, 380 

with a high degree of spatial similarity in their derived emissions. Differences in adjustment magnitudes emerge, with the 

OG and EE frameworks generally yielding the largest and smallest emission corrections, respectively. Overall, the derived 

grid-level emissions agree to within 30% for 42% of the emitting model grid cells, with consistent adjustment direction over 

areas encompassing 65% of the total optimized emissions. In what follows we focus discussion on these areas of 

consistency, and use the multi-model spread to draw insights into some of the key disparities. 385 

4. Global Methane Sources and Top Emitting Countries 

We infer from the TROPOMI observations an optimized global methane flux of 587 (586–589) Tg/y for 2018–2019, 

including 375 (367–387) Tg/y from anthropogenic sources, 197 (185–207) Tg/y from natural sources, and 15 (14–15) Tg/y 

from biomass burning. Values listed reflect the fixOH multi-model mean and range, with emissions partitioned to individual 

sources according to the prior grid-level sectoral fractions. Our derived natural source falls at the low end of the 2017 Global 390 

Methane Project estimates (GMP; 194–489 Tg/y), whereas we infer a larger source from agriculture and waste than does 

GMP (253–262 versus 198–246 Tg/y) (Jackson et al., 2020). The TROPOMI-derived methane emissions from fossil fuel and 

industry of 118 (112–127) Tg/y lie between the GMP top-down (91–121 Tg/y) and bottom-up (121–164 Tg/y) estimates for 

that sector. Jackson et al. (2020) attributed the global methane emission increase between 2000–2006 and 2017 mainly to 

anthropogenic sources, with similar contributions from agriculture/waste and fossil fuel. Here, we find that emissions from 395 

agriculture and waste are even larger than estimated by GMP.  

 

Table 2 lists the top ten national contributors to global anthropogenic methane emissions (see Table S2 for natural and total 

emissions). Together, we find that these contributors account for 58% of the global anthropogenic flux, and they similarly 

represent 60% of the global population. However, within this group there are large differences in per capita emissions, which 400 

are 72–286% higher than the global average in Brazil, the US, Russia, and Iran, but 17% lower in China and 45% lower in 

India. Table 2 also includes three of the five countries with the largest natural methane emissions, largely from wetlands: 

Brazil (39 Tg/y), the US (16 Tg/y), and Russia (12 Tg/y). Together with the Republic of the Congo (22 Tg/y) and Canada 

(15 Tg/y) these countries account for 53% of natural methane sources globally. This places Brazil (59 Tg/y) and the US (43 

Tg/y) as the second and third methane emitters in terms of total flux, after China (61 Tg/y, 94% anthropogenic; Table S2). 405 

 

Eight of the ten nations in Table 2 (China, India, US, Russia, Brazil, European Union, Pakistan, Indonesia) are likewise 

identified by Worden et al. (2022) as among the top ten anthropogenic emitters globally. Our inferred anthropogenic fluxes 
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for the US and China agree well (within ~10%) with the GOSAT-based results from Worden et al. (2022) and with the 

GOSAT+TROPOMI results from Qu et al. (2021). Anthropogenic emissions derived here are likewise within 10% of the 410 

Worden et al. (2022) results for India and the European Union, with both studies lower (20–50%) than Qu et al. (2021). Our 

results for Russia and Iran are 21–28% higher than the GOSAT-based estimates, mainly reflecting oil, gas, and coal 

emissions, and ~40% lower for Brazil, mainly due to livestock. Emissions for Pakistan and Indonesia agree to within 1% for 

the TROPOMI- and GOSAT-based results (Worden et al., 2022). However, we find here that anthropogenic emissions from 

Bangladesh (7 Tg/y versus a prior of 4 Tg/y) are 3× higher than the GOSAT estimate (2 Tg/y), while adjacent emissions 415 

from Myanmar (4 Tg/y) are half the GOSAT estimate. Worden et al. (2022) conclude that the GOSAT-derived emissions for 

Myanmar are anonymously high due to impacts from their prior assumptions; we attribute much of that flux to Bangladesh 

and show later that it mainly arises during the South Asian monsoon.  

5. Wetland Sources are Underestimated in the Tropics 

The TROPOMI-derived wetland fluxes (excluding rice) total 173 (155–182) Tg/y globally, representing 29 (26–31)% of the 420 

total methane source and 88 (84–91)% of the natural source. Figure S3, S11 and Figure 4e show that global wetland 

emissions are lowest during Oct–Feb (12–13 Tg/month) and highest in July (17 Tg/month) due to strong northern-

hemisphere seasonality. We find through the inversions that global wetland fluxes are 24 Tg/y higher than the prior estimate, 

with the increase mainly originating in the tropics (82% within ±23.5° latitude). The tropics thus account for 70 (68–72)% of 

our optimized wetland emissions. Northern temperate wetlands contribute most of the remainder (46 Tg/y from 23.5°N–425 

66.5°N) with a magnitude that is in-line with the prior bottom-up estimate (44 Tg/y). Our derived global wetland fluxes are 

~20% higher than previous GOSAT-based estimates (145-148 Tg/y: Ma et al., 2021; Zhang et al., 2021), with similar 

latitudinal distribution to that found by Ma et al. (2021). 

 

Over Amazonia (box 5 in Figure 2b), we obtain wetland fluxes of 51 (44–54) Tg/y, 29% of the global wetland total. These 430 

fluxes are underestimated in the WetCHARTs prior inventory by 9 (2–11) Tg/y; the true disparity is likely larger than this 

since the inversions do not fully mitigate the prior regional XCH4 bias (Figure 2c). Low observation density due to clouds 

(Figure S1) leads to some ambiguity in the spatial distribution of these derived fluxes: the SF and BI inversions allocate the 

upward corrections according to the prior spatial patterns over Amazonia, while the OG inversion identifies broader sources 

extending to northern Brazil (Figure 4 and S10). Upward corrections occur mainly during the wet season (Dec–Apr) and are 435 

temporally correlated with runoff (mean monthly R = 0.85 (ERA5, 2019)). This finding is consistent with the 2010–2018 

flux increase (1 Tg/y2) that has been inferred over Amazonia based on GOSAT and linked to increased flooding with 

strengthening Walker circulation (Barichivich et al., 2018; Zhang et al., 2021). However, eastern Brazil is also an 

agricultural frontier with forests transitioning to agricultural lands (Nepstad et al., 2019; Zhang et al., 2021), and our 

inversions point to a 9 (5–15) % underestimate of Amazonian livestock sources. Bottom-up calculations suggest a 33% 440 
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increase in this source from 2010–2018 (EDGAR v6, 2021); if such trends are in fact underestimated then our prior-based 

partitioning would imply an even larger livestock contribution to the derived regional emission corrections.  

 

The inversions also point to a substantial (26 [5–36]%) upward correction for central African wetlands (box 12 in Figure 2b) 

that is concentrated during Dec–May (Figure S12). The optimized regional emissions are then 33 (28–36) Tg/y, 19% of the 445 

global wetland total. However, while these adjustments effectively correct the prior model bias for this latitude band, there is 

a clear XCH4 over-correction for the Democratic Republic of the Congo (DRC; Figure 2c). Here, the modeled XCH4 

enhancement over the background (Figure S13) is degraded from a prior model-observation mismatch of +3 ppb to +11 ppb. 

The low data density over central Africa and Amazonia (Figure S1) thus appears to cause some tropical flux mis-

attribution—with the DRC overcorrection offset by under-corrections over Amazonia (as discussed above), Nigeria, and the 450 

nearby Sudd wetlands (Figure 2c). The latter region is examined further below.  

 

Figure 2a shows that the South Sudd wetlands (box 13 in Figure 2b) are a major methane hotspot that is underestimated in 

the prior model by a column average of 41 (21–65) ppb. Despite this, we derive a regional upward emission correction of 

just 13% (optimized flux: 1.3 [1.2–1.4] Tg/y). This yields a residual underestimate (Figure 2c) reflecting the aliasing 455 

discussed above and showing that the optimized South Sudd fluxes are still too low. Anomalous hydrology may contribute to 

these elevated Sudd fluxes: wetland extent for this area was ~10% higher in 2019 than the 2010–2019 mean (Jensen and 

Mcdonald, 2019), and ERA5 reanalysis (2019) points to elevated precipitation over central Africa during Sep–Nov (22% 

above the 2010–2019 mean). This interpretation is consistent with a previous study by Lunt et al. (2021) linking anomalous 

East Africa rainfall during the 2018 long rains (Mar–May) and 2019 short rains (Oct–Dec) with 10–40% methane emission 460 

increases over South Sudd. Over longer timescales, GOSAT analysis has pointed to a 3 Tg/y emission increase over the 

broader Sudd region caused by increased inflow from the White Nile and Sobat rivers (Lunt et al., 2019; Maasakkers et al., 

2019; Parker et al., 2020). Previous SCIAMACHY and TROPOMI-based analyses have likewise identified concentration 

hotspots over this area (Hu et al., 2018; Frankenberg et al., 2011).   

 465 

North American wetlands in Alberta, Saskatchewan, and the US Upper Midwest are revised downward (by -1.6 [-0.7 – -2.6] 

Tg/y for box 1 in Figure 2b), with most of the adjustment occurring during early summer (-18% for Jun-Jul vs. -1% for Aug–

Sep; Figure 4). We thus obtain optimized regional wetland emissions of 16 [15–17] Tg/y, 9% of the global flux from this 

source. Wetland emissions over this area are highly sensitive to soil temperature and surface water extent (R > 0.7 and R > 

0.4, respectively; Figure 5). The stronger Jun–Jul adjustment derived here suggests that the post-thaw onset of northern 470 

wetland fluxes occurs too early in WetCHARTs, which uses surface skin rather than soil temperatures to predict emissions. 

Similar downward emission corrections have been inferred from GOSAT (Zhang et al., 2021), aircraft, and long-term eddy 

covariance measurements (Yu et al., 2021c).  
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Across the wetland regions examined above, Figure S14 shows that our optimized emissions fall towards the middle of the 475 

land-surface model estimates from the Global Carbon Project (GCP); details on these bottom-up models and their differences 

are provided by Saunois et al. (2020). Among the GCP bottom-up estimates, we see in Figure S14 that simple model 

parameterizations can obtain comparable agreement with the TROPOMI-optimized emissions as more complete process-

based models. For example, LPJ-WSL, a parsimonious model that predicts net emissions based on soil characteristics 

without explicitly representing oxidation, transport, or wetland plant types, achieves similar fidelity (in terms of bias and 480 

RMSE versus the optimized values) as JSBACH (Kleinen et al., 2020), which features more sophisticated treatment of soil 

carbon, roots, and plant-mediated processes. Many simple wetland models rely on reanalysis-based wetland extent estimates 

such as the Global Lakes and Wetlands Database (GLWD) (Lehner and Döll, 2004); within the WetCHARTs ensemble we 

find here that GLWD-based flux predictions  overestimate emissions in northern North America while underestimating those 

in central Africa (Figure S15). 485 

 

Figure 5c explores the environmental sensitivities of the TROPOMI-derived wetland sources to gauge how future rainfall or 

temperature changes may alter emission magnitudes, and to motivate further analyses. We see that the optimized tropical and 

subtropical wetland methane emissions exhibit only modest sensitivity to soil temperature (0–7 cm (ERA5, 2019)), but have 

strong (R > 0.7) correlation with surface water extent (SWAMPS (Jensen and Mcdonald, 2019)) for key areas of India, 490 

Bangladesh, Brazil, Bolivia, Mexico, and Africa. Conversely, northern temperate wetland emissions in the US Upper 

Midwest and southeastern China respond more directly to temperature changes, while those in Canada and Russia show 

strong sensitivity to both hydrology and temperature. Projected precipitation increases for mid-to-high latitudes and 

decreases for the sub-tropics (IPCC, 2021) may thus increase the importance of temperate and boreal wetland fluxes in 

coming years. 495 

6. Anthropogenic sources and emission hotspots 

We derive global anthropogenic methane sources of 375 Tg/y, with 132 (127–136) Tg/y from livestock, 98 (93–104) Tg/y 

from fossil fuel, 83 (79–87) Tg/y from waste, 42 (40–45) Tg/y from rice, and 20 (19–23) from other sources. This represents 

a 19 Tg/y increase over the prior flux that on a global basis is mainly driven by upward corrections for livestock (+11%) and 

rice (+15%). The 2019 global anthropogenic methane emissions obtained here are modestly (12%) higher than GOSAT-500 

based results for 2010–2018 (336 Tg/y; Zhang et al., 2021), with both results pointing to higher-than-predicted biotic 

emissions (consistent with isotopic constraints; Nisbet et al., 2016). Since our prior anthropogenic emissions are based on 

inventories for 2010–2016, the derived flux corrections could reflect inventory errors, temporal changes between 2010 and 

2019, or some combination of the two. Below, we employ the spatially-downscaled TROPOMI-derived emissions to 

elucidate key anthropogenic sources and to identify missing and underreported flux hotspots.  505 
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6.1 The Middle East and North Africa: Missing and underestimated emission hotspots from fossil fuel activities 

The largest fossil fuel emission corrections occur over the Middle East, where total fluxes increase throughout the year by 48 

(34–60)% over the prior (+12 [9–16] Tg/y, box 9 in Figure 2b). These upward corrections successfully reduce the mean 

regional model bias from -29 to 0 ppb and are attributed to a combination of fossil fuel (41%), livestock (23%) and waste 

(20%). The Middle East possesses approximately ~50% of global oil reserves and ~40% of global natural gas reserves, with 510 

increasing production over the past three decades (BP, 2021; Schneising et al., 2020; UNFCCC, 2021). Bottom-up 

information (EDGAR v6, 2021) accordingly points to a significant increase in methane hotspots for this area over the recent 

decade (Figure 5a) and to an overall 26% regional emission increase from 2010 to 2018. The 1.8× larger adjustment revealed 

here by the TROPOMI observations points to both temporal increases and inventory underestimates for this area.  

 515 

Middle East methane emissions are highly localized, with just 5% of model grid cells (at 0.1°×0.1°) accounting for 70% of 

the prior regional emissions and 60% of the derived adjustments. Our multi-model inversion results point to consistent prior 

underestimates for high emitters in Azerbaijan, Turkmenistan and Iran, supporting previous satellite-based analyses 

(Buchwitz et al., 2017; Lauvaux et al., 2022; Schneising et al., 2020; Varon et al., 2019). However, TROPOMI also reveals a 

large number of hotspots (over Oman, Yemen, Saudi Arabia, Iraq, Turkmenistan, and Iran; Figures 2a, 5b, and S16) that are 520 

entirely missing from the prior inventory. Many of these missing emission hotspots are consistent with facilities on the 

ground. For example, missing sources in Oman identified through the OG inversion (Figure S10 and S16) match the location 

of the Khazzan gas field—one of the Middle East’s largest natural gas fields producing ~1–1.5 billion cubic feet/day of 

natural gas and ~35,000 barrels/day of light oil (NS Energy, 2022). Other detected hotspots correspond to the Masila Basin 

in Yemen (EIA, 2022), oil fields in Saudi Arabia (e.g, the Ghawar Field, (Maps Saudi Arabia, 2022)) , and super-emitters in 525 

Iraq (Lauvaux et al., 2022). 

 

Over northern Africa, TROPOMI identifies large XCH4 enhancements extending from the Libyan coast to Algeria (box 8 in 

Figure 2b). These sources are not well-represented in the prior inventory but correspond to oil fields in Libya and to part of 

the Greenstream pipeline system. The OG inversion is partially able to identify these sources, but the attribution is limited to 530 

a single 2°×2.5° grid cell (Figure S10).  

6.2 Western Russia and North China Plain: An overestimate of fossil fuel emissions 

We find from the TROPOMI data that emissions are overestimated in northern Asia, mainly reflecting fossil fuel sources. 

Specifically, fossil fuel methane emissions are overestimated by 27 (11–40)% over western Russia (box 6 in Figure 2b) and 

by 17 (1–29)% over the North China Plain (box 7), with these downward corrections reducing the regional model bias to <6 535 

ppb. On the other hand, bottom-up information for 2010–2018 points to temporal increases for both areas (+36% over 

western Russia, +9% over the North China Plain; Figure 5a). The UNFCCC-2016 emissions used as prior account for 
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accidental and intentional methane releases not considered in previous inventories (Scarpelli et al., 2020), leading to a >2-

fold increase over western Russia compared to EDGAR v5. Our results indicate that these emission pathways may be 

overestimated in UNFCCC-2016, and that the actual fossil fuel methane source from Russia for 2018-2019 lay between the 540 

UNFCCC-2016 and EDGAR v5 values. Indeed, subsequent revisions (year-2019; Scarpelli et al., 2022) to the UNFCCC-

2016 inventory used here have strongly reduced fossil fuel emission estimates for Russia (e.g., 21 Tg/y from oil in year-2016 

vs. 2 Tg/y in year-2019) due to updated emission factor assumptions. 

 

Methane emissions in the North China Plain are primarily from coal mines; prior work suggests that these facilities have 545 

lower emission factors than in South China and that their emissions have been declining since 2012 (Sheng et al., 2019). 

Satellite-based and in-situ measurements have pointed to EDGAR v4.3.2 and GFEI emission overestimates for this area 

(Alexe et al., 2015; Lu et al., 2021; Maasakkers et al., 2019; Monteil et al., 2013; Qu et al., 2021; Turner et al., 2015; Zhang 

et al., 2021). Here, we use a detailed new inventory for China coal emissions (Sheng et al., 2019) that has >50% lower fluxes 

than EDGAR v4.3.2 over the North China plain—but find that these are still overestimated. By contrast, upward adjustments 550 

are derived over other regions in China such as Xinjiang, where TROPOMI XCH4 enhancements are attributed by the OG 

and EE inversions to underestimated fossil fuel sources (Figure S10). Recent work by Lorente et al. (2022) points to some 

erroneous emission hotspots for this area associated with surface reflectance; we therefore restrict our interpretation here to 

the regional scale. Positive corrections are also derived for fossil fuel sources in South China, but their emissions are difficult 

to isolate from those of nearby rice fields. 555 

6.3 South and Southeast Asia: Major methane emissions during summer monsoon  

Methane emissions from South and Southeast Asia are dominated by agriculture (livestock, rice) and waste. The largest 

emission correction for this area occurs over India, where we find a 23 (10–30)% underestimate (mainly due to those two 

sources) and derive total national emissions of 61 [55–64] Tg/y. India contains over 35% and 20% of the world’s cattle and 

water buffalo, respectively, with both populations increasing over the past decade (Sonavale et al., 2020). Such changes are 560 

reflected in both the EDGAR bottom-up inventory (+0.4 Tg/y annual livestock+waste emission increase for 2010–2018 

(EDGAR v6, 2021)) and in analyses based on GOSAT observations (+0.2–0.7 Tg/y inferred annual increase for Indian 

livestock (Maasakkers et al., 2019; Miller et al., 2019; Zhang et al., 2021)). Our prior estimate employs EDGAR v5 for year-

2015; the inferred +23% (11 Tg/y) correction is too large to be explained solely by such trends and thus indicates an 

emission underestimate for this source. 565 

 

Over 90% of the world’s rice production occurs in India and Southeast Asia, and we find that the associated methane 

emissions are underestimated by 39 (7–53)% and 17 (7–28)% respectively (boxes 10 and 11 in Figure 2b). Bottom-up 

statistics from FAOSTAT (2021) indicate an 8% increase in crop production over these areas for 2010–2019 due to a 10% 

yield increase combined with a 2% cropland area decrease. Such trends cannot fully explain the TROPOMI observations, 570 
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which therefore indicate that the EDGAR v5 prior emissions for this source are too low. The emission corrections mainly 

occur during the Jul–Oct rice growing season that coincides with the summer monsoon. The TROPOMI data reveal several 

other connections between the East Asian summer monsoon and the regional methane budget, which we explore next based 

on our monthly downscaled top-down emissions. 

 575 

Approximately 80% of India’s annual rain falls during the summer monsoon (IPCC, 2021), and across this Jul-Oct season 

we find that methane emissions from the India and Southeast Asia boxes in Figure 2b are underestimated by 37 (15–45)%. 

The resulting seasonal flux increase then accounts for over 68% of the total annual emission correction. While clouds reduce 

the TROPOMI sampling coverage during this time, we still obtain >370,000 and >9,000 observations per monsoon season 

over India and Southeast Asia, respectively, after applying the data quality filters described in Section 2.1. The above 580 

emission corrections strongly reduce the prior model biases (from -28 to 3 ppb over India and from -41 to -7 ppb over 

Southeast Asia), with the individual inversions pointing to consistent spatial adjustments. Prior work using GOSAT and in-

situ measurements has also identified a peak in Indian emissions during Jul–Oct that was not well-captured by bottom-up 

predictions (Palmer et al., 2021). 

 585 

Figure 6 shows that the TROPOMI-derived South Asian emission corrections are spatially and temporally coherent with the 

summer monsoon onset and withdrawal. Strong upward adjustments are first derived over Bangladesh and East India 

following monsoon arrival over these areas (early June 2018; late June 2019). As the monsoon advances, these emission 

corrections then extend more broadly over northern India during Jul–Sep. In concert with the monsoon, the upward 

corrections subsequently withdraw south and east to Bangladesh in October. Only minor emission adjustments are derived 590 

for this region outside of the summer monsoon.  

 

The above patterns likely reflect hydrologic influences on methane emissions from biotic sources such as wetlands, rice 

fields, manure, landfills, and sewers. The derived emission corrections exhibit a strong temporal correlation with runoff (R = 

0.82 in eastern India; R = 0.62 in western India), supporting the underlying role of hydrology. Baker et al. (2012) similarly 595 

concluded on the basis of aircraft measurements that 64% of Indian methane emissions during this season reflect monsoon-

driven biogenic sources. Increases in Indian summer monsoon precipitation that are projected over the 21th century 

(Katzenberger et al., 2021) thus raise the strong possibility of enhanced regional methane emissions in the years to come.  

6.4 North and South America: Increases for fossil fuel sources 

We turn next to key oil and gas production fields in North and South America. This includes the US Permian, Barnett and 600 

Eagle Ford region (box 2 in Figure 5b), previously shown to be the largest US oil and gas-related methane source (Zhang et 

al., 2020). Here we infer methane fossil fuel emissions for 2018–2019 that are 2% lower than the prior GEPA estimate for 

year-2016. This is in-line with bottom-up information from EDGAR v6, which finds no significant trend over this area for 
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2016–2018. Over northern Venezuela (box 4 in Figure 5b), we derive a 28 (2–41)% upward correction for fossil fuel 

exploration activities that is consistent across the year, in agreement with the +32% bottom-up increase for that source that is 605 

estimated to have occurred between the prior inventory and inversion timeframes (2016–2018; (EDGAR v6, 2021)).  

 

Extensive TROPOMI XCH4 enhancements are seen over southern Mexico (Figure 2b, box 3), and our inversions reveal a 15 

(9–25)% emission underestimate for this area (optimized flux 10 [9–10] Tg/y). Trend information from EDGAR v6 (2021) 

suggests a regional 25% emission increase for 2016–2020, which could in theory fully explain the derived upward 610 

adjustments. However, the observed hotspot locations are largely missing in the prior inventory, and as a result the SF 

inversion falsely attributes the corrections to upwind waste/landfill sources in Sinaloa. The OG inversion solution aligns 

more closely with the actual locations of these sources based on the oversampled TROPOMI data (Figure S10), and is 

supported by previous regional-scale TROPOMI inversions (Shen et al., 2021) that point to a >2× emission underestimate of 

onshore/offshore oil and gas production in the UNFCCC-2016 inventory used here. Aircraft measurements in 2018 also 615 

revealed substantial (29,000 kg/h) methane emissions in the same general region (Zavala-Araiza et al., 2021). 

7. Conclusions 

A suite of two-year 4D-Var inversions using satellite-based data from TROPOMI places new constraints on global methane 

sources. We obtain in this way optimized global emissions of 587 (586–589) Tg/y for 2018–2019. Compared to the most 

recent GCP estimates (Jackson et al., 2020), our 2018–2019 results point to a larger role for anthropogenic sources, mainly 620 

tied to agriculture and waste. We further develop a new framework to map the derived monthly emissions to 0.1° × 0.1° 

resolution, enabling the identification of key missing and underestimated sources as highlighted below. 

 

We derive a +24 Tg/y increase in wetland emissions over the prior estimate of 149 Tg/y that mainly (82%) occurs over the 

tropics and appears to be related to positive hydrologic anomalies in Amazonia and the Sudd. Meanwhile, fossil fuel 625 

emissions in the Middle East (which have been increasing strongly over the past decade) are underestimated by 47 (23–57)%  

and reached 15.7 (13.2–16.8) Tg/y during our analysis period. Our inversions further uncover missing emission hotspots 

over Turkmenistan, Iran, Oman, Yeman, Iraq, Libya, Algeria, and Mexico. We estimate long-standing fossil fuel sources in 

Venezuela at 4.8 (3.8–5.3) Tg/y, 28 (2–41)% higher than the prior estimate (which is for year-2016).  

 630 

Inversions point to underestimated agricultural sources in India (where there has been an increasing trend over the past 

decade), the Amazon Basin (where forest is transitioning to agriculture), central Africa, the US California Central Valley, 

and Asia. However, more than 45% (8.5 [3–11] Tg) of the global anthropogenic source adjustment derived here occurs over 

India and southeast Asia during the summer monsoon (Jul–Oct). We postulate that this reflects the influence of monsoon 
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rainfall on methane emissions from rice, manure, waste, and landfills. Given the projected increase in monsoon precipitation 635 

over the coming century (IPCC, 2021), better understanding of these effects is crucially needed. 

 

Finally, our analyses show that even the dense TROPOMI data coverage does not fully resolve variability in methane 

sources from that in its sinks. We address the issue in this work by employing validated OH fields from a chemical transport 

model, but future methane inversions can benefit from incorporating additional datasets (e.g., CO, methyl chloroform, 640 

formaldehyde) as constraints on the methane sink (McNorton et al., 2016; Rigby et al., 2017; Turner et al., 2017; Wolfe et 

al., 2019). Quantitative evaluation of the influence of the 2018–2019 El Niño and the 2021 Hunga Tonga–Hunga Haʻapai 

eruption on OH variability will also help to advance the accuracy of contemporary methane budget estimates. 

Code and data availability 
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https://doi.org/10.13020/g5xc-nj81 (Yu et al., 2021b). 
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Figure 1. Flow chart showing the TROPOMI methane inversion methodology. 
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Figure 2. Observed and simulated methane distributions for 03/2018–02/2020. a) TROPOMI methane column (XCH4) 1060 
observations oversampled to 0.1° × 0.1°. b) Methane column distribution predicted by the prior model sampled according to the 
TROPOMI observation operator with numbered regions described in-text. c) Same as panel b but for the fixOH optimized 
ensemble mean. d) Same as panel b but for the optOH optimized ensemble mean. e) Prior and optimized methane budgets. Prior 
probabilities (orange) equate one standard deviation to 25% of the bottom-up range from Saunois et al. (2020), following Hozo et 
al. (2005). Black line shows a linear fit to the solution, emission = 0.93 × loss + 55.26 (units: Tg/y). Symbol sizes indicate the mean 1065 
bias reduction against ObsPack independent measurements. Annual values are for 11/2018–04/2019 plus the average of 05–
10/2018 and 05–10/2019. 
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Figure 3. Evaluation of the prior and optimized methane simulations (05/2018–10/2019) against a) TROPOMI XCH4 observations, 1070 
b) ObsPack in-situ methane measurements, and c) TCCON ground-based methane column observations. Numbers inset indicate 
the mean model-observation bias (unit: ppb). 
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Figure 4. a) Optimized global methane emissions based on the fixOH inversion ensemble. b)–d) Seasonal fixOH emission corrections. Dots indicate 1075 
missing sources where the EE and BI inversions point to positive corrections that the SF inversion misses. e) Time series of prior and optimized methane 
sources and sinks. 
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Figure 5. a) Methane emission increases during 2010–2018 estimated from bottom-up information (EDGAR v6, 2022). b) Methane 
source hotspots (>200 kg d-1 km-2) and their TROPOMI-derived emission corrections (blue: >30% overestimate; green: accurate 1080 
to ±30%; red: >30% underestimate). c) Correlations between the optimized wetland emissions, soil temperature (0-7 cm; ERA5 
2019), and surface water extent (Jensen et al., 2019).   
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Figure 6. TROPOMI-derived emission corrections over South and East Asia based on the fixOH ensemble mean. Shading 
indicates areas where corrections are not distinguishable from zero (i.e., inversion ensemble includes both positive and negative 1085 
adjustments). 
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Table 1. Downscaling performance evaluation via OSSE1  

Without transport error 

 Downscaled 

solution 

Fine-grid 

prior 

Fine-grid 

adjoint 

Coarse-grid 

prior 

Coarse-grid 

adjoint 

Domain-wide bias reduction 68%  78%  68% 

RMSE2 15790 13830 11489 13236 12976 

R 0.67 0.57 0.74 0.45 0.50 

Slope of least squares fit 0.97 0.61 0.84 0.28 0.42 

With transport error 

Domain-wide bias reduction 98%  16%  98% 

RMSE2 15461 13830 19292 13236 12917 

R 0.70 0.57 0.60 0.45 0.51 

Slope of least squares fit 1.04 0.61 1.01 0.28 0.45 
1.Observing system simulation experiments performed for one month over North America 
2.Root-mean-square-error, units: kg d-1 box-1 
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Table 2. Top 10 contributors to global anthropogenic methane emissions1,2  1090 

  

Total 
anthropogenic 

emissions 
(Tg/y) 

Change 
from 

prior (%) 

Per capita 
anthropogenic 

emissions  
(kg/y/person) 

Sector emissions (Tg/y) 

Wetland Agriculture & 
waste Fossil fuel  Other 

China 57 (52–61) -4 40 2 (2–2) 34 (32–36) 18 (16–21) 6 (6–6) 
India 36 (34–38) 16 26 2 (2–3) 32 (30–33) 2 (2–2) 3 (3–3) 

US 27 (26–28) -5 82 15 (14–15) 16 (15–17) 11 (10–11) 2 (1–2) 
Russia 26 (22–29) -21 184 10 (8–12) 5 (5–6) 21 (17–24) 2 (2–4) 
Brazil 20 (20–21) 6 102 35 (31–37) 20 (19–20) < 0.2 4 (4–4) 

European 
Union 17 (15–17) -9 38 2 (1–2) 14 (12–14) 2 (2–2) 2 (2–2) 

Pakistan 10 (9–10) 28 44 < 0.1 9 (8–9) 1 (1–1) 1 (1–1) 
Indonesia 10 (9–10) 15 37 9 (8–10) 8 (8–8) 1 (1–1) 2 (2–2) 

Iran 9 (7–9) 70 103 < 0.2 2 (2–3) 6 (4–7) 1 (0–1) 
Bangladesh 7 (5–8) 60 43 1 (1–1) 7 (4–8) < 0.1 <0.4 

Others 157 (151–168) 13 50 97 (87–103) 111 (108–118) 37 (36–38) 37 (30–46) 
1Based on the fixOH inversion ensemble mean and range. 
2Values in parentheses indicate the range in emission estimates across the suite of inversions. 
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