Reply to Review 1.

We thank the reviewer for the constructive comments. Reviewer comments are provided below in
black with our responses in blue.

The paper is mostly well written, except for the section comparing posterior OH to ATOM results. The
main concern | have is that the method and results in this paper are not fundamentally different from
those in the Qu et al. ACP 2021 paper which also uses TROPOMI data for quantifying emissions for
essentially the same time frame. The main difference between this paper and the Qu et al. paper is the
version of the data, which is ostensibly more accurate than the data used in Qu et al. but then there is
no discussion on how this improved data set changes, or potentially improves the results over and
above the Qu et al. results.

For acceptance, the paper needs to better describe the difference from those in Qu et al, and how
these results are an improvement ; | think there are sufficient results in here for this purpose (e.g.
monthly estimates allow for attributing some components of the methane budget). In addition, you
could compare with the Qu et al. 2022 paper (methane surge) which uses GOSAT data for 2019; in
principal the improved TROPOMI data sets should result in better comparisons with the GOSAT based
results for this time period.

We have revised the manuscript as follows to better highlight the differences between our study and
that of Qu et al.

Section 2: “ Recent inverse analyses by Qu et al. (2021) likewise examined the global methane budget
using TROPOMI (and GOSAT) observations. Our study advances on that work in several ways. First, we
optimize monthly rather than annual fluxes to identify seasonal patterns of variability. Second, in
place of a traditional analytical optimization we combine 4D-Var with new inverse formalisms for
better identification of missing sources. Third, we develop a new downscaling approach to constrain
emissions at high resolution, and use this framework to elucidate flux mechanisms and missing
sources. Finally, our analysis leverages an updated TROPOMI methane product (Lorente et al., 2021)
that corrects an albedo-dependent bias present in the version used by Qu et al. (2021).”

As the reviewer suggests, we have also revised the draft to provide more details on the updated data
version employed here:

Section 2: “Relative to the albedo-corrected product, the prior TROPOMI version exhibits high biases
over North Africa, the Middle East, and the western US, and low biases over Amazonia, the eastern
US, central Africa, and eastern China (Lorente et al., 2021).”

Another issue is a lack of discussion on uncertainties; | see them reported in final estimates but its not
obvious how they are computed, are these buried in the text somewhere ?( Im pretty sure | read
through the entire text, 2.5 times + browsing). A more extensive discussion on uncertainties should be
in Section 2.

This is now explained more prominently in the text:

Section 2: “In the following, we interpret the multi-inversion mean as our base-case solution and the
range as the corresponding uncertainty estimate.”



We have also added a new analysis to further characterize the downscaled solution accuracy using the
OSSE described in-text:

Section 2: “Figure S8 shows that the downscaled OSSE solution reduces the prior bias by 17%-56% for
sources exceeding 1000 kg CHi/box/day (accounting for 99% of the domain-wide emissions) when not
subject to transport error. In the presence of transport error, the downscaling method has limited
success for the very largest sources (>2x10° kg/box/day), but nevertheless exhibits strong bias
reduction (21%-50%) for sources between 1x103-2x10° kg/box/day (96% of domain-wide
emissions).”
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Figure S8. Downscaling bias reduction as a function of emission magnitude, based on 1-month
Observing System Simulation Experiments (OSSE) over North America (see main text for details).

Note that Im not convinced that the downscaling approach described here is sufficient by itself to merit
publication as it is not (obviously) an improvement over the optimal estimation based approach
described in the un-cited Cusworth et al. 2021 paper (see subsequent comments).

We strongly disagree with this perspective. The downscaling method developed and applied here is a
novel contribution and uses an entirely different strategy from that of Cusworth et al. (2021).
Cusworth et al. (2021) combine the posterior and prior uncertainties to obtain sector-based emission
estimates. Our method takes a different approach, combining the prior error estimates directly with
the (oversampled) TROPOMI observations themselves to project emissions from coarse to fine
resolution. A unique advantage of our approach lies in this use of the sub-model-grid satellite
information (which is lost in a standard lower-resolution inversion) to inform the downscaling. Further
details are provided in our replies to the more specific comments below.

We now compare our method with that of Cusworth et al. (2021) in text as follows.

Section 2: “Compared to existing emission downscaling methods that rely on prior and posterior error
covariance estimates (Cusworth et al., 2021), or are based solely on satellite data (Liu et al., 2021), our
approach is unique in combining the prior emission information (and its uncertainty) with the
oversampled TROPOMI observations themselves. Variable weighting between these terms permits
greater influence from the observations when the prior emissions are more uncertain. The method



thus assumes robust prior error estimates, a caveat that also applies to Cusworth (2021) and similar
methods.”

Specific Comments:

Abstract, “... indicate rapid increases in Middle East”; the way this sentence is currently written implies
you base this statement on satellite observations.

We have clarified the Abstract as follows:

“Emissions from fossil fuel activities are strongly underestimated over the Middle East (+5 Tg/y),
where bottom-up inventories suggest rapid increases over the past decade, and over Venezuela.”

Abstract: state that you are estimating monthly values
We have revised the Abstract as suggested:

“We apply a new downscaling method to map the derived monthly emissions to 0.1°x0.1° resolution,
using the results to uncover key gaps in the prior methane budget.”

Abstract: You stated you used observations of CO and OH, but | don’t see any description of these data
in Section 2. Also see comments on comparisons to CO and OH to ATOM below

We have revised the abstract to clarify that the CO and OH data are used for evaluation:

“Employing remote carbon monoxide (CO) and hydroxyl radical (OH) observations with independent
methane measurements for evaluation, we infer from TROPOMI a global methane ....”

We have also added a description of the evaluation datasets to Section 2, as suggested:

“We use a large suite of independent measurements to evaluate the inversions. These include
methane columns from TCCON (2014), a global network of Fourier transform spectrometers, and
methane mole fractions from ObsPack (near-real time version v2.0; (2021)), a global compilation of
ground-based and airborne measurements. We further use CO and OH measurements from the
Atmospheric Tomography (ATom) airborne campaign (Wofsy et al., 2018) to test inversion success at
separately optimizing methane sources and sinks. ATom featured pole-to-pole profiling (0.2 to 12 km)
during four seasons over four years. The flight design is thus well-suited to determine whether the
optimized OH fields improve or degrade global model simulations of OH itself and of CO (whose
dominant sink is reaction with OH). Measurements of CO during ATom were performed using the
NOAA Picarro instrument with an estimated uncertainty of 3.6 ppb (Chen et al., 2013). OH
measurements during ATom employed the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS),
with an estimated uncertainty of 0.018 ppt (1-minute average; Brune et al., 2020).”

Section 2.1 Page 3: As stated in the general comments, the analogous paper here is from Qu et al. ACP

2021 which uses V1.03 TROPOMI data whereas you use the Lorente et al. based corrections; make that
difference clear here. Note that as far as | can tell there is fundamentally no difference between yours

and the Qu et al. results, notwithstanding the improved XCH4 data sets you are using.



Can you add discussion on this difference in Section 2.1 and then add more comparisons to the Qu et al.
2021 results in Section 4?

We have revised the text in section 2 to explain the differences between our study and that of Qu et
al., as described earlier.

We have also modified the discussion in Section 4 to include comparisons with Qu et al. (2021):

“Eight of the ten nations in Table 2 (China, India, US, Russia, Brazil, European Union, Pakistan,
Indonesia) are likewise identified by Worden et al. (2022) as among the top ten anthropogenic
emitters globally. Our inferred anthropogenic fluxes for the US and China agree well (within ~10%)
with the GOSAT-based results from Worden et al. (2022) and with the GOSAT+TROPOMI results from
Qu et al. (2021). Anthropogenic emissions derived here are likewise within 10% of the Worden et al.
(2022) results for India and the European Union, with both studies lower (20-50%) than Qu et al.
(2021). Our results for Russia and Iran are 21-28% higher than the GOSAT-based estimates, mainly
reflecting oil, gas, and coal emissions, and ~40% lower for Brazil, mainly due to livestock. Emissions for
Pakistan and Indonesia agree to within 1% for the TROPOMI- and GOSAT-based results (Worden et al.,
2022). However, we find here that anthropogenic emissions from Bangladesh (7 Tg/y versus a prior of
4 Tg/y) are 3x higher than the GOSAT estimate (2 Tg/y), while adjacent emissions from Myanmar (4
Tg/y) are half the GOSAT estimate. Worden et al. (2022) conclude that the GOSAT-derived emissions
for Myanmar are anonymously high due to impacts from their prior assumptions; we attribute much
of that flux to Bangladesh and show later that it mainly arises during the South Asian monsoon.”

We have also added comparisons with GOSAT-based inversion results to section 5 and 6, as suggested
by the reviewer in a later comment:

“Our derived global wetland fluxes are ~20% higher than previous GOSAT-based estimates (145-148
Tg/y: Ma et al., 2021; Zhang et al., 2021), with similar latitudinal distribution to that found by Ma et
al. (2021).”

and

“The 2019 global anthropogenic methane emissions obtained here are modestly (12%) higher than
GOSAT-based results for 2010-2018 (336 Tg/y; Zhang et al., 2021), with both results pointing to
higher-than-predicted biotic emissions (consistent with isotopic constraints; Nisbet et al., 2016).”

Section 2.6, page 7, Provide rationale for why you are downscaling to 0.1 degree resolution, especially
since it depends on priors which can vary considerably (uncorrelated at 0.1 degree resolution)
depending on choice of prior as you note in the text. As far as | can tell, the downscaled results are not
used thereafter in the paper, is that correct? (Note that in the Worden et al. 2022 paper, we downscaled
so that we can then upscale more accurately to each country; the other reason for the OE based
downscaling (Cusworth et al. 2021) we developed is to step us towards using top-down emissions
estimates for updating gridded inventories at this scale).

The existing text already provided some rationale for this. We have now elaborated on that, adding
the additional motivation mentioned by the reviewer regarding top-down satellite-informed emission
inventories (as indicated below). The downscaled results are in fact used later in the paper to map the
advance and retreat of East Asian emissions.



Section 2: “We present here a new method to spatially downscale the satellite-derived emissions for
potential use in models. This downscaling is necessitated by the fact that the current GEOS-Chem
adjoint model does not have global simulation capability at finer than 2° x 2.5° resolution.
Furthermore, each of the 2-year inversions performed here required >12,000 CPU hours (>80 days on
multiple processors) to converge, making higher-resolution optimizations computationally
impractical. However, the inventories employed as prior, as well as the TROPOMI observations
themselves, contain information at much finer scales (e.g., 0.1° x 0.1° and 7 x 7 km2)—and thus
contain additional high-resolution constraints that are neglected by the 2° x 2.5° inversions. We
therefore leverage this information to spatially downscale the optimized emissions to 0.1° x 0.1° ...”

As described earlier, we have added a caveat regarding the reliance on robust prior error estimates:

Section 2: “The method thus assumes robust prior error estimates, a caveat that also applies to
Cusworth (2021) and similar methods.”

How does this downscaling approach compare to the optimal estimation based approach to
downscaling discussed in Cusworth et al Earth Environ 2, 242 (2021). Can you perform a test(s) similar
to what is shown in Cusworth et al. to ensure you are preserving information from original grid and
downscaled grid? Your co-author A. Bloom designed these tests for Cusworth et al. so you could ask him
for details. Note that | would be ecstatic for an additional vetting of this OE/Cusworth approach by the
Dylan / Daven crew... we are pretty sure we got the math right as we used two different approaches to
arrive at the same result (the Cusworth / Bloom and the Bowman approach, with Worden moderating),
but given that its a 30+ equation derivation some additional vetting is desired.

Also cite Liu, M. et al. A New Divergence Method to Quantify Methane Emissions Using Observations of
Sentineld5P TROPOMI. Geophys Res Lett 48, (2021), as a potential way to use satellite data to identify
and quantify emissions at these same fine spatial scales.

This downscaling approach differs significantly from that of Cusworth et al. (2021) and we have added
a discussion of this point to the paper as described earlier.

The test mentioned by the reviewer and presented in Cusworth et al. (2021) specifically evaluates the
sectoral partitioning of that method. Our approach is purely spatial so such a test is not applicable.
Instead we performed a dedicated OSSE experiment that demonstrates the performance and
robustness of the method. This evaluation is described in the paper and we have now included the
additional evaluation shown in (new) Figure S8 and described above.

Section 3.2. As a reader | did not understand either the rationale for the comparison to ATOM, or how |
should interpret the comparison.... This section basically needs a re-write. Note that our group at JPL
also attempted to use the ATOM OH estimates but decided against it (although this was a few years ago)
because we did not have a good sense of the accuracy, especially since OH is tricky to measure; some
discussion is needed on the ATOM OH accuracy to better interpret the comparison between your
inversion results and these in situ results. Also, what did you intend to conclude from the comparison to
co?

We have added new information to Section 2 regarding both the motivation for using the ATom data
and the measurement uncertainties:



“We further use CO and OH measurements from the Atmospheric Tomography (ATom) airborne
campaign (Wofsy et al., 2018) to test inversion success at separately optimizing methane sources and
sinks. ATom featured pole-to-pole profiling (0.2 to 12 km) during four seasons over four years. The
flight design is thus well-suited to determine whether the optimized OH fields improve or degrade
global model simulations of OH itself and of CO (whose dominant sink is reaction with OH).
Measurements of CO during ATom were performed using the NOAA Picarro instrument with an
estimated uncertainty of 3.6 ppb (Chen et al., 2013). OH measurements during ATom employed the
Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), with an estimated uncertainty of 0.018 ppt
(1-minute average; Brune et al., 2020).”

We have also modified Section 3.2 to include additional statistical tests and to interpret the model-
measurement differences in the context of measurement uncertainty:

“With the exception of ATom 3, the mean model OH biases with respect to ATom observations are
~80% lower for fixOH than for optOH (mean differences are all significant based on a paired t-test at
95% confidence). These optOH results exhibit a consistent OH underestimate (averaging 0.020-0.044
ppt) that exceeds the 0.018 ppt measurement uncertainty. Biases in the simulated background CO
levels are likewise lower (by 7-87%) in the fixOH simulations, with a clear CO overestimate for optOH
(Figure S9). Again, the mean fixOH/optOH differences are all statistically significant at the 95%
confidence level, with model-measurement discrepancies for optOH (7-12 ppb) exceeding the 3.6 ppb
measurement uncertainty.”

Regarding the rationale for the ATom comparisons and the conclusions drawn from them, we believe
these are made clear in the updated version from the following statements:

Section 2: “We further use CO and OH measurements from the Atmospheric Tomography (ATom)
airborne campaign (Wofsy et al., 2018) to test inversion success at separately optimizing methane
sources and sinks.”

Section 3: “Remote observations of OH and CO (the primary OH sink) from the ATom airborne
campaign (Wofsy et al., 2018) also point to an OH underestimate in the optOH solution.”

Section 3: “When co-optimizing methane emissions and loss we thus find that the solutions can
achieve a good fit to the TROPOMI data themselves but degrade model agreement with other
observations of methane, OH and CO. We conclude that solving for global methane sources and sinks
based solely on satellite observations of methane itself remains an under-constrained problem—even
with the dense TROPOMI data coverage.”

Section 5.0, Compare against the Ma et al. 2021 and Zhang et al. 2021 wetland results which suggest
~149 Tg CH4/yr total...this again might be a TROPOMI versus GOSAT issue as TROPOMI data results in
lower livestock emissions than those from GOSAT in Brazil, which in turn would likely balance to the
wetlands, relative to the GOSAT based results. A discussion here on these differences is needed.

Section 6, again compare these totals to the GOSAT based estimates (there are several now available).
Discussion on potential TROPOMI / GOSAT differences are needed as well.

We have now added comparisons to GOSAT-based results as follows:



Section 5: “Our derived global wetland fluxes are ~20% higher than previous GOSAT-based estimates
(145-148 Tg/y: Ma et al., 2021; Zhang et al., 2021), with similar latitudinal distribution to that found
by Ma et al. (2021).”

Section 6: “The 2019 global anthropogenic methane emissions obtained here are modestly (12%)
higher than GOSAT-based results for 2010-2018 (336 Tg/y; Zhang et al., 2021), with both results
pointing to higher-than-predicted biotic emissions (consistent with isotopic constraints; Nisbet et al.,
2016).”

In addition, the paper already compared the country-level emissions with GOSAT-based estimates, as
follows:

Section 4: “Eight of the ten nations in Table 2 (China, India, US, Russia, Brazil, European Union,
Pakistan, Indonesia) are likewise identified by Worden et al. (2022) as among the top ten
anthropogenic emitters globally. Our inferred anthropogenic fluxes for the US and China agree well
(within ~10%) with the GOSAT-based results from Worden et al. (2022) and with the
GOSAT+TROPOMI results from Qu et al. (2021). Anthropogenic emissions derived here are likewise
within 10% of the Worden et al. (2022) results for India and the European Union, with both studies
lower (20-50%) than Qu et al. (2021). Our results for Russia and Iran are 21-28% higher than the
GOSAT-based estimates, mainly reflecting oil, gas, and coal emissions, and ~40% lower for Brazil,
mainly due to livestock. Emissions for Pakistan and Indonesia agree to within 1% for the TROPOMI-
and GOSAT-based results (Worden et al., 2022). However, we find here that anthropogenic emissions
from Bangladesh (7 Tg/y versus a prior of 4 Tg/y) are 3x higher than the GOSAT estimate (2 Tg/y),
while adjacent emissions from Myanmar (4 Tg/y) are half the GOSAT estimate. Worden et al. (2022)
conclude that the GOSAT-derived emissions for Myanmar are anonymously high due to impacts from
their prior assumptions; we attribute much of that flux to Bangladesh and show later that it mainly
arises during the South Asian monsoon.”

Section 6.2, Note that reports to UNFCC from Russia have varied considerably over the years, this should
be discussed here (e.g. Scarpelli et al. 2021 versus Scarpelli et al. 2022).

We thank the reviewer for pointing this out and now discuss it in-text:

Section 6: “Indeed, subsequent revisions (year-2019; Scarpelli et al., 2022) to the UNFCCC-2016
inventory used here have strongly reduced fossil fuel emission estimates for Russia (e.g., 21 Tg/y from
oil in year-2016 vs. 2 Tg/y in year-2019) due to updated emission factor assumptions.”

7.0 Conclusions (and to some extent abstract). The paper implies that missing sources can be identified
through the downscaling approach, but this is not possible if you are using prior emissions for the
downscaling. Also, how can the Venezuelan source simultaneously be lower than the prior and inline
with trend estimates? These are different quantities. | think you mean something else here.

The approach can in fact identify missing sources because it directly incorporates the downscaled
TROPOMI observations themselves. As described in the paper, it is only the sectoral partitioning that
relies solely on the prior, not the flux magnitude or location.

We have simplified the text about Venezuela for improved clarity:



Section 7: “We estimate long-standing fossil fuel sources in Venezuela at 4.8 (3.8-5.3) Tg/y, 28 (2—
41)% higher than the prior estimate (which is for year-2016).”

7.0: Line 540 Conclusions about waste and agriculture priors being too small... yes we are finding this to
be the case with all the other published TROPOMI and GOSAT based inversions, please reference these
other papers.

We added comparisons to other relevant studies in the results and discussion sections, as described in
our earlier replies.

7.0 Conclusions / Line 555: This conclusion is potentially very interesting but needs additional vetting.
For one, how much of yearly Indian and Southeast Asian underestimate is due to the underestimate in
the Monsoon seasons? In addition, how much of this is affected by smoothing error, which is not
directly calculated using your method, but you could calculate by using different priors; basically we are
finding significant impact of smoothing error, or alternatively cross-correlation of a change in one
emission onto another, for emissions and their trends in this region.

Rather than using alternative priors, we have used a suite of inversions that employ substantially
different optimization frameworks. These will be affected by smoothing to different degrees and we
interpret and discuss our results in the context of the resulting uncertainty as diagnosed from the
range across these solutions.

The reviewer’s question about how much of the Indian/SE Asian underestimate falls during the
monsoon is addressed by the following:

Abstract: “More than 45% of the global upward anthropogenic source adjustment occurs over India
and southeast Asia during the summer monsoon (+8.5 Tg in Jul-Oct).”

Section 6: “Approximately 80% of India’s annual rain falls during the summer monsoon (IPCC, 2021),
and across this Jul-Oct season we find that methane emissions from the India and Southeast Asia
boxes in Figure 2b are underestimated by 37 (15-45)%. The resulting seasonal flux increase then
accounts for over 68% of the total annual emission correction.”

References: You can peruse the Worden et al. ACP paper for missing references on GOSAT inversions
that you can then compare to in the text; this same comment was made by reviewers of our Worden et
al. paper.

We have revised the draft and cited these references accordingly, as indicated in our earlier relies.



Reply to Review 2.

We thank the reviewer for the thoughtful comments. Reviewer comments are provided below in
black with our responses in blue.

The authors utilized the latest version of TROPOMI XCH4 retrievals averaged in 2018-2019 to optimize
various sources of CH4 on a global scale. In addition, since OH and CH4 are intertwined, they added OH
to the state vectors for adjustment (optOH). Finally, the authors proposed a statistical downscaling
method leveraging both prior knowledge from bottom-up emission inventories and the oversampled
TROPOMI data to scale the optimized 2x2.5 degree emissions down to 0.1x0.1 degree. This method
enabled them to identify the missing sources better. Their primary take-home messages are i) The use of
XCH4 observations is not adequate to provide reliable constraints on OH; this is why authors gave up on
the optOH result; ii) the middle east underreports the energy-sector CH4 emissions; iii) In South and
Southasia, there is a strong degree of correlation between CH4 agriculture and waste emissions and
some hydrological variables such as more precipitation (or to be more precise, the runoff) during
Monsoon seasons; iv) the reported emissions related to the oil and gas industry over the US in the latest
bottom-emission inventory (EDGAR v6) is not too different than the top-down estimates made from this
study. In general, the paper has important implications for the CH4 budget and regulations. However,
the results are too optimistic because careful error quantification is lacking. In addition, some key
aspects of inversions need to be clarified. A major revision is required to bring this draft to a publishable
level.

We have addressed the reviewer’s comments regarding uncertainty quantification and clarification;
please see detailed responses to the reviewer’s more specific comments below.

Major comments:

Inversion: While | understand the importance of using an adjoint model for implicitly resolving the
source-receptor relationship without having to rerun the forward model multiple times, the inversion
framework comes with a significant weakness which is its inability to gauge the confidence level in the
final estimates (i.e., the posterior error). The paper should inform the readers about this major
weakness (introduction, conclusion, and Table 2) and highlights studies such as Qu et al. 2021, which
reported the AKs of the top-down estimates because they used an analytical inversion.

Our prior OSSE analyses (Yu et al., 2021a) showed that posterior error reductions calculated as the
reviewer describes for methane do not in fact correlate with more accurate flux estimates when
transport errors and spatial emission errors are present (as is generally the case). We have now added
this information to Section 2:

“Adjoint 4D-Var inversions do not directly provide posterior error estimates. Methods are available to
indirectly derive such estimates (Bousserez et al., 2015; Yu et al., 2021a). However, our previous
Observing System Simulation Experiments (OSSEs; Yu et al., 2021a) showed that for methane the
computed posterior error reductions do not correlate with more accurate flux estimates in the
presence of model transport errors and spatial emission biases.”

Because of this, we instead use an alternative strategy that combines multiple inversion frameworks
and a wide suite of independent observations (for CH4, CO, and OH) to evaluate our solutions and
their uncertainty. This is now clarified in Section 2.4:



“Here, we instead combine multiple inversion frameworks (Section 2.5) with an ensemble of
independent observations (Sections 2.1, 3) to test the robustness of our results and characterize the
associated uncertainties.”

And in Section 2.1:

“We use a large suite of independent measurements to evaluate the inversions. These include
methane columns from TCCON (2014), a global network of Fourier transform spectrometers, and
methane mole fractions from ObsPack (near-real time version v2.0; (2021)), a global compilation of
ground-based and airborne measurements. We further use CO and OH measurements from the
Atmospheric Tomography (ATom) airborne campaign (Wofsy et al., 2018) to test inversion success at
separately optimizing methane sources and sinks. ATom featured pole-to-pole profiling (0.2 to 12 km)
during four seasons over four years. The flight design is thus well-suited to determine whether the
optimized OH fields improve or degrade global model simulations of OH itself and of CO (whose
dominant sink is reaction with OH). Measurements of CO during ATom were performed using the
NOAA Picarro instrument with an estimated uncertainty of 3.6 ppb (Chen et al., 2013). OH
measurements during ATom employed the Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS),
with an estimated uncertainty of 0.018 ppt (1-minute average; Brune et al., 2020).”

To further address this comment we have now added a new OSSE-based evaluation of the flux
accuracy achieved with our 4D-Var inversion + spatial downscaling approach, as described in our
subsequent replies below.

Finally, we now highlight the differences between this study and that of Qu et al. (2021) as suggested:

Section 2: “Recent inverse analyses by Qu et al. (2021) likewise examined the global methane budget
using TROPOMI (and GOSAT) observations. Our study advances on that work in several ways. First, we
optimize monthly rather than annual fluxes to identify seasonal patterns of variability. Second, in
place of a traditional analytical optimization we combine 4D-Var with new inverse formalisms for
better identification of missing sources. Third, we develop a new downscaling approach to constrain
emissions at high resolution, and use this framework to elucidate flux mechanisms and missing
sources. Finally, our analysis leverages an updated TROPOMI methane product (Lorente et al., 2021)
that corrects an albedo-dependent bias present in the version used by Qu et al. (2021).”

For example, can we trust the optimized CH4 emissions using the TROPOMI XCH4 over water or high
SZA? are the reported top-down estimates statistically significant?

For the first point, we do not use retrievals over water or with high SZA (> 70°) and this is stated in
Section 2.1 (“We omit high-latitude (>60°) observations and require quality filter QA > 0.5 (Sentinel-5
Precursor/TROPOMI Level 2 Product User Manual: Methane, 2022) to avoid errors associated with
high solar or viewing zenith angles, low surface albedo, excessive aerosol loading, clouds, terrain
roughness, and measurement noise (Lorente et al., 2021)”) and Section 2.2 (“... over oceans (which
lack TROPOMI XCH, data)..”). For the second point, as stated in-text we use the spread across diverse
inversion frameworks to diagnose the level of confidence in the derived emissions. The associated
uncertainty ranges are shown in Tables 2 and S2. Areas where derived emissions are not
distinguishable from zero are also indicated visually as the shaded & hatched regions in the relevant
figures (6, S12, S16).



In addition, several aspects of the inversion need to be further clarified: i) It needs to be explained how
the 4D-var framework is applied when the inversion window is as wide as a 2-years average.

As requested we have now clarified the inversion time window and temporal resolution in Section 2:

“Our inversions run continuously from 01/2018 to 02/2020, optimizing monthly grid-total methane
emissions and 26-month mean hemispheric OH concentrations. To minimize any effects from initial
conditions and to allow sufficient observational constraints throughout the analysis period we focus
interpretation on the 18-month period from 05/2018 to 10/2019. Annual values discussed later are for
11/2018-04/2019 plus the mean of 05-10/2018 and 05-10/2019.”

ii) the TROPOMI full-physics algorithm relies on the prior profiles meaning the retrieved XCH4 is a piece
of information on top of an ignorant model; | do not see any mention of if TROPOMI XCH4 was
recalculated with GEOS-Chem prior profiles to ensure that only the true information from the satellite
radiance is used for the inversion (Page 39 in
http://www.tropomi.eu/sites/default/files/files/publicSentinel-5P-TROPOMI-ATBD-Methane-
retrieval.pdf). This task should be done iteratively because the GEOS-Chem profiles change after each
inversion iteration.

Yes, this is stated in Section 2.2 and we now clarify that this is done at each inversion iteration:

“For all model-satellite comparisons (and at each inversion iteration) the GEOS-Chem output is
sampled according to the TROPOMI observation operator at the overpass time and location.”

i) it is unclear if the TROPOMI data have been scaled up to the resolution of GEOS-Chem in the
inversion; if not, the difference in their spatial representativity will result in a perceived bias which can
be problematic.

We have now clarified this in the text. “For inversions on the 2° x 2.5° model grid, we first average the
TROPOMI observations to this resolution.”

iv) how do the errors associated with the vertical diffusion in GEOS-Chem impact your result? The model
error parameter is lacking in the analysis.

As described in Section 2.4, our observing system error estimates are computed from the residual
standard deviation between observations and prior simulations. This approach implicitly accounts for
non-systematic measurement errors and model transport errors , and averages 11 ppb in our case. In
separate ongoing work, we performed model simulations with an alternative vertical mixing scheme,
and this leads to discrepancies that average 4.26 ppb. Explicitly accounting for such an effect would
not appreciably change the error estimates employed here (e.g., (112 + 4.26"2)"0.5 = 11.8).

v) is the state vector the total CH4 emissions, or is it sector-based?

We optimize total emissions rather than on a sectoral level. We have now clarified this in multiple
locations.

vi) why did not the authors use the glint mode to account for off-shore emissions?

Coverage locations for the glint mode off-shore observations vary from day to day and developing a
framework to employ the sunglint data was beyond our scope.



Downscaling: Two central problems exist: i) can the two-year average TROPOMI XCH4 truly capture the
spatial variance in XCH4 at 0.1x0.1 degrees? By oversampling TROPOMI pixels, we may lose spatial
variance (a smoothing effect) more than we reduce the random noises. The authors need to prove that
a two-year averaged TROPOMI data can resolve the length scales of plumes at the resolution of 0.1x0.1
degree; if not, that resulting spatial representativity error induced by oversampling can potentially
hinder reaching a 0.1x0.1 degree information.

First, the TROPOMI nadir footprint is ~7 km, substantially smaller than the 0.1 degree grid size (~11
km) that we average to. Second, previous work has already demonstrated the ability of TROPOMI to
resolve sources at far finer than 0.1 degrees. For example, Maasakkers et al. (2022,
doi.org/10.1126/sciadv.abn9683) used other high-resolution satellites (GHGSat) and WRF simulations
(at 3 km) to identify methane point sources, and showed that the TROPOMI methane measurements
oversampled to 0.01 degrees (i.e., 10 times finer than employed in our work) can resolve these
sources. The figure below, reproduced from Maasakkers et al. (2022) clearly demonstrates the
TROPOMI ability to resolve features that are significantly smaller than 0.1 degrees. In our work we
applied similar gridding methods but employ a coarser resolution of 0.1 degrees. We have added a
citation of Maasakkers et al. (2022) to our paper.
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Figure reproduced from Maasakkers et al. (2022, doi.org/10.1126/sciadv.abn9683). TROPOMI
observations over Buenos Aires (Argentina). (A) Mean 2018-2019 TROPOMI methane concentrations
oversampled (i.e., accounting for the full footprint of the observation) on a 0.01° grid. The Norte Il
landfill is indicated by the black cross; also shown are a GHGSat window centered on the TROPOMI-
derived target (thick lines) and the Greater Buenos Aires municipalities [thin lines]. (B) A single
TROPOMI overpass on 9 June 2019 exhibiting a methane plume downwind of Buenos Aires with wind
arrows representing ERA5 10-m winds. (C) The 2018-2019 wind-rotated average giving a clear (north-
oriented) plume signal indicating a concentrated source.

ii) The proposed downscaling method (Eq2) heavily relies on assumptions about prior
errors/information. Even the observational term depends on the prior fraction of emissions (fk). As
noted by the authors, the prior CH4 emissions do not agree with other bottom-up emission inventories



(R2=0.017?), so how can one fully trust a downscaling output when it heavily relies on questionable prior
information?

The key point here is that for our approach incorrect prior emissions are acceptable provided that the
errors are appropriate: when uncertainties are high, the observational term get weighted more
heavily. Our spatial downscaling uses an error-based weighting term to balance between the prior
information and the long-term TROPOMI data:

“As shown in Figure S7, the resulting downscaling relies most frequently on the prior information,
particularly for low-emission areas, but hotspots and locations with higher prior uncertainties are
preferentially informed by the observations.”

We have now added a caveat regarding the reliance on robust prior errors, as suggested:

“The method thus assumes robust prior error estimates, a caveat that also applies to Cusworth (2021)
and similar methods.”

Third, the fk term does not impose any influence from the prior spatial distribution as the full
Yikej (fk(yzy,k - ybg,i)) term in the denominator is simply a scalar that ensures conservation of the

derived 2°x2.5° emissions.

Would it be more sensible to use the posterior error/distribution for this part (under the condition in
which the inversion framework was analytical, permitting the calculation of the posterior error)?

As described in our earlier replies, our prior OSSE work (Yu et al., 2021a) has shown that larger error
reduction does not in fact correlate with more accurate flux estimates.

As a result of these two combined complications, | challenge the authors to provide an error estimation
for this downscaling method and propagate them to the emissions maps and statistics (especially Table
2). Your study did not inform the posterior errors due to the use of adjoint; now, the lack of an
uncertainty estimation for the downscaling part (which is the most crucial selling point of the paper)
appears as an oversight.

We have already addressed the comment about posterior errors and the issues with their use. The
paper also already includes a dedicated OSSE analysis demonstrating the applicability and robustness
of the downscaling approach presented here. To further address this point we now also include a
downscaling error assessment based on the flux bias reduction achieved in the OSSE. This has been
added to the text as follows:

“Figure S8 shows that the downscaled OSSE solution reduces the prior bias by 17%-56% for sources
exceeding 1000 kg CHi/box/day (accounting for 99% of the domain-wide emissions) when not subject
to transport error. In the presence of transport error, the downscaling method has limited success for
the very largest sources (>2x10° kg/box/day), but nevertheless exhibits strong bias reduction (21%—
50%) for sources between 1x103-2x10° kg/box/day (96% of domain-wide emissions).”
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Figure S8. Downscaling bias reduction as a function of emission magnitude, based on 1-month
Observing System Simulation Experiments (OSSE) over North America (see main text for details).

Comparison to ATOM: | need clarification on this comparison. Based on the author's discussion on
optOH, they suggested that a strong El Nino year (2018-2019) led to lower-than-average OH mixing ratio
(8.27e5 molec/cm3). But then they compared their constrained model in different years (<2018) with
ATHOS OH measurements and concluded that their optOH is vastly underestimated, reinforced by the
overestimation of CO. If 2018-2019 was a unique timeframe, how could one generalize the comparison
results from other years to the 2018-2019 period?

First, the model is sampled at the time of measurements in all cases, so that each comparison employs
the same timeframe between model and observations. Second, the ATom comparisons span 2 years
and show consistent patterns. Third, we also evaluated the inverse solutions using methane
measurements for the inversion timeframe from TCCON and ObsPack. We arrive at consistent
conclusions in all cases, lending support to our interpretation.

Furthermore, | see a few issues here i) ATHOS OH can easily contain up to 30% error; have the authors
considered the measurement errors in their comparison? Given the observational errors, | encourage
applying a statistical test to know if the differences are real.

First, we have added new information to Section 2 describing the ATom measurements and their
uncertainties:

“We further use CO and OH measurements from the Atmospheric Tomography (ATom) airborne
campaign (Wofsy et al., 2018) to test inversion success at separately optimizing methane sources and
sinks. ATom featured pole-to-pole profiling (0.2 to 12 km) during four seasons over four years. The
flight design is thus well-suited to determine whether the optimized OH fields improve or degrade
global model simulations of OH itself and of CO (whose dominant sink is reaction with OH).
Measurements of CO during ATom were performed using the NOAA Picarro instrument with an
estimated uncertainty of 3.6 ppb (Chen et al., 2013). OH measurements during ATom employed the
Airborne Tropospheric Hydrogen Oxides Sensor (ATHOS), with an estimated uncertainty of 0.018 ppt
(1-minute average; Brune et al., 2020).”



Second, we now include additional statistical tests and interpret the model-measurement differences
in the context of measurement uncertainty:

“With the exception of ATom 3, the mean model OH biases with respect to ATom observations are
~80% lower for fixOH than for optOH (mean differences are all significant based on a paired t-test at
95% confidence). These optOH results exhibit a consistent OH underestimate (averaging 0.020-0.044
ppt) that exceeds the 0.018 ppt measurement uncertainty. Biases in the simulated background CO
levels are likewise lower (by 7-87%) in the fixOH simulations, with a clear CO overestimate for optOH
(Figure S9). Again, the mean fixOH/optOH differences are all statistically significant at the 95%
confidence level, with model-measurement discrepancies for optOH (7-12 ppb) exceeding the 3.6 ppb
measurement uncertainty.”

ii) have the authors looked into the measured OHR to see if there are missing sources (such as VOC) in
their model?

This is out of scope as our model runs employ tagged methane and tagged CO simulations, which are
offline and do not simulate other VOCs.

What is the implication of underestimating OH in the optOH scenario? Should we perform a multispecies
inversion with TROPOMI CO and HCHO to provide an additional constraint on OH?

Our subsequent work is indeed pursuing analyses along these lines. We made the reviewer’s point
about the potential value of multi-species inversion at the end of the conclusions:

“We address the issue in this work by employing validated OH fields from a chemical transport model,
but future methane inversions can benefit from incorporating additional datasets (e.g., CO, methyl
chloroform, formaldehyde) as constraints on the methane sink (McNorton et al., 2016; Rigby et al.,
2017; Turner et al., 2017; Wolfe et al., 2019).”

In theory, letting OH see the CH4 feedback (optOH) is suitable, but why should the ATOM analysis
discourage this meaningful practice? What if your default CO simulations are too high, and the optOH
highlights that tendency? I'm left with many questions because the authors needed to dig into the
problem more deeply.

We arrived at this conclusion not just based on the ATom analysis but rather based on multiple
consistent lines of evidence. First, independent evaluation of the posterior simulations against
ObsPack observations reveals an optOH overestimate of methane concentrations, which would be
consistent with an OH underestimate. Second, the ATom OH observations also point to an OptOH
underestimate of OH. Third, the ATom CO observations reveal an optOH CO overestimate, which is
also consistent with too-low OH. We agree with the reviewer that other factors can affect model-
measurement agreement for CO but considered together these multiple consistent lines of evidence
provide robust support for our interpretation as presented in the paper.

Specific comments:

P1.L16. I do not think you ever used CO as an observational constraint for the model. This sentence is
misleading.

We have revised this text as suggested:



“Employing remote carbon monoxide (CO) and hydroxyl radical (OH) observations with independent
methane measurements for evaluation, we infer from TROPOMI a global methane source of 587 Tg/y
and sink of 571 Tg/y for our analysis period.”

P2.L38. Does really the recent enhancement in CH4 need to be better understood? | suggest adding
more recent studies discussing the role of reduced NOx due to the lockdown on OH and CH4. There
must be a recent study from Jacob's group regarding the increases in wetlands and permafrost CH4. This
part needs more references in general.

As suggested we have now added additional citations of recent studies by Stevenson et al. (2021) and
Peng et al. (2022) discussing NOx emissions, wetland emissions, and their contributions to the recent
methane increase.

P2. L40. After reading the abstract saying that sinks and sources cannot be resolved with a high-
resolution satellite, | found this sentence regarding transformative advancement somewhat
contradictory.

We have now revised this text:

“Employing remote carbon monoxide (CO) and hydroxyl radical (OH) observations with independent
methane measurements for evaluation, we infer from TROPOMI a global methane source of 587 Tg/y
and sink of 571 Tg/y for our analysis period.”

P2. L43. Shouldn't we also have an overrepresented source? If a source is underrepresented, another
source should compensate for it.

We have now revised this text: “missing and unexpected sources”.

P2. | found the second paragraph of the introduction imbalanced. The paper utilized remote sensing
data, so | highly suggest comparing the pros and cons of using different remote sensing observations.

We thank the reviewers for the suggestion. We prefer to keep this paragraph as-is, and compare our
results with previous GOSAT-based inversions in the discussion section.

P2. L60. Who came up with this R2 value? The agreement is unsettlingly low. Please provide a reference.
We calculated this R? value directly from the cited inventories.

P2. The third paragraph needs to include the temporal representation error between different emission
inventories and the fact that CH4 emitters can vary from time to time at a relatively short temporal
scale.

We have revised this text as suggested:

“Meanwhile, current inventories also lack the ability to predict emission sporadicity (e.g., Irakulis-
Loitxate et al., 2022; Pandey et al., 2019), while temporal representation errors can also arise
between inventories due to time lags associated with their development.”

P3. L71. In the abstract, you said you had constrained CO, but here you imply that they will be used for
evaluation.



We have now revised the abstract to clarify this point.

P5.L147. Why is the regularization factor applied to So instead of Se? We are less confident in Se
compared to So. Another way (which should be the same as finding the maximum curvature in the L-
curve) to find the optimum regularization factor is to scale Se several times and find the knee point in
averaging kernels vs. the factor, although this might not be possible with the adjoint.

We apply the regularization factor to So following many previous studies (e.g., Jacob, et al., 2022,
https://doi.org/10.5194/acp-22-9617-2022). We thank the reviewer for pointing out the knee point
method.

P6.L167. How sure are you that the muted response of the model to a higher error in OH is not due to
the lack of the degree of freedom? An analytical inversion would be able to answer it.

This is indeed one of our main conclusions: “evaluation of the inverse solutions indicates that
methane sources and sinks cannot be simultaneously resolved by methane observations alone—even
with the dense TROPOMI sampling coverage”. In other words, the lack of degrees of freedom
prevents robust simultaneous optimization of both sources and sinks.

Please see our earlier replies regarding analytical versus adjoint methodologies.

P6.L177. What is the implication of this low gamma value? The prior error is too uncertain or the
observations are less noisy compared to the So?

The gamma value of 0.1 reflects the large number of observations compared to the size of the state
vector.

P7.1213. Why should we accept this ad-hoc definition as XCH4 background? Any concerete evidence?

This XCH; background definition was determined via line search of the OSSE output. Specifically, we
systematically varied the XCH, background parameters over a wide range and selected those that
resulted in the best downscaling performance (i.e., giving the strongest consistency with the true local
scale emissions). We have now revised the text to clarify this:

“This background definition was determined via OSSE analysis (described below). Specifically, the
corresponding parameters were varied systematically over a wide range to identify values yielding the
best consistency with the true underlying fine-scale emissions.”

P9. Section 3.1. How can the errors in the soil uptake by methanotroph influence these results?

Soil uptake is only estimated to account for ~6% of the total methane sink, whereas oxidation by OH
accounts for ~90% (Saunois et al., 2020). While uncertainties in other sinks can also exist, we
therefore focus on OH here as it is the dominant sink and exerts the largest influence on methane
source inversions. We have revised the text to clarify this point, as follows:

“Other minor sinks, such as soil uptake, are also uncertain but not addressed here.”

P10. In the first paragraph, | encourage using absolute numbers from Figure 3 to describe the reduction
in bias, such as (from -13.8 to 8.8 ppbv).

We have revised this text as suggested:


https://doi.org/10.5194/acp-22-9617-2022

“Ground-based methane column (XCH.) observations from the TCCON network (GGG2014 (2014))
show comparable improvements over the prior for both the fixOH and optOH solutions (and for their
individual member inversions), with 71% (from -12.9 ppb to 3.8 ppb) and 66% (to 4.3 ppb) mean bias
reductions, respectively (Figure 3, Table S1). However, global in-situ measurements from ObsPack
(near-real time version v2.0; (2021)) reveal a 93% (from -13.8 ppb to -0.9 ppb) absolute mean bias
improvement for the fixOH framework compared to just 39% (to 8.4 ppb) for optOH (Figure 3, Table
S1). Figure 3 further shows that the optOH solutions overcorrect the prior negative bias with respect
to ObsPack, providing a first piece of evidence for a methane sink underestimate in this inversion.”

P10. L299-301. I'm afraid | have to disagree with saying that TROPOMI is dense, but we cannot fully
resolve the source/sink of CH4. It would help if you had more than CH4 to get OH right (such as HCHO
and CO constraints), which has nothing to do with the densityTROPOMI XCH4 observations.

Indeed, we agree with the reviewer and have addressed this point in our conclusions section:

“We address the issue in this work by employing validated OH fields from a chemical transport model,
but future methane inversions can benefit from incorporating additional datasets (e.g., CO, methyl
chloroform, formaldehyde) as constraints on the methane sink (McNorton et al., 2016; Rigby et al.,
2017; Turner et al., 2017; Wolfe et al., 2019).”

P10. In the second paragraph, you should specifically mention what emissions are used for the
retrospective simulations.

This information has now been added to Section 2.3:

“Simulations to evaluate posterior model performance for CO and OH employ anthropogenic
emissions (for CO, NOx, and VOCs) from the Community Emissions Data System (Hoesly et al., 2018),
the 2016 EPA NEI v1 (NEIC, 2019), and the Air Pollutant Emission Inventory (APEI, 2020).
Corresponding biogenic and biomass burning emissions are obtained from the Model of Emissions of
Gases and Aerosols from Nature (MEGANv2.1; Hu et al., 2015), and QFED (Koster et al., 2015).”

P11. Is rice cultivation part of the wetland?

No, we include rice cultivation in the anthropogenic category rather than in the wetland category. We
have revised the text to clarify this.

“The TROPOMI-derived wetland fluxes (excluding rice) total 173 (155-182) Tg/y globally, representing
29 (26-31)% of the total methane source and 88 (84-91)% of the natural source.”

P12. Why talk about livestock in the wetland sections?

Because here we are discussing uncertainties in the model partitioning between livestock and
wetlands.

P12. 380. Where is the South Sudd in the figure?
It is shown as box 13 in Figure 2b and we have now clarified this in the text:

“Figure 2a shows that the South Sudd wetlands (box 13 in Figure 2b) are a major methane hotspot
that is underestimated in the prior model by a column average of 41 (21-65) ppb.”
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P13. Can you provide more physical explanations of why these wetland emission models disagree so
much? Is it due to their parameterization or the need for more information about water nitrogen
content, heat content, depth of wetland, sulfate content, etc.?

These wetland emission models are from the global carbon project and Saunois et al. (2020) describes
their schemes as well as the associated discrepancies. Rather than repeat their discussion here we
have added a citation as follows:

“Across the wetland regions examined above, Figure $14 shows that our optimized emissions fall
towards the middle of the land-surface model estimates from the Global Carbon Project (GCP); details
on these bottom-up models and their differences are provided by Saunois et al. (2020).”

P14. The second paragraph: are we so clueless about the wetland anaerobic activity to use a simple
correlation analysis? How about the soil nitrogen, water temperature, depth, oxygen content, etc.?

While other factors can indeed control wetland emissions, our aim here is to set the stage and
motivate future mechanistic studies similar to what the reviewer suggests. We now clarify this in the
text.

P14. LA21. Please add a fraction of the total for each sector.

We prefer to leave this sentence as-is, since adding all of the fractions impedes readability. The reader
can readily calculate the fractions for themselves from the numbers provided in the sentence.

P15. L444. Are they missing from other top-down emissions too? The bar is usually low for bottom-up
emission inventories, especially in developing countries.

As stated in the prior sentence we are referring here specifically to the inventories used as prior in our
analysis.

P17. L 515. Does correlation explain causation?

Not necessarily and that is why we used the word “supportive” rather than something more
definitive.

P18. L 560. It's not about the density of TROPOMI data but a piece of factual information from XCH4. We
need more compounds not denser data.

We agree, please see our earlier replies regarding the potential utility of multi-species constraints.

P16. is this number of available pixels really a lot? Please provide the percentage for a hypothetical
situation when clouds were not present.

We believe the absolute numbers stand on their own in this context.
Editorial comments:

P1.L16. What do you mean by separately resolved?

We have changed this wording to “simultaneously”.

P1.L20-21. It is vague; does the hydrological adjustment come after or before?
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We believe this wording is sufficiently clear as-is.

P1.L22. The sentence (Fossil fuel emission...) is awkward.

This sentence has been revised as requested.

P1.L23. Many -> several

We prefer to keep this wording as-is.

P2.L39. What do you mean by strong heterogeneity? Spatial or temporal?
We have clarified this sentence as requested.

P2.L42. inverse -> inversion

We have modified this sentence to “Here, we apply these data in a 4D-Var inversion + spatial
downscaling framework to quantify the 2018-2019 global methane budget and determine the
importance of missing and unexpected sources.”

P2. Please use +- for a normal range. 18+-1 is shorter and neater. Please apply this to the entire
manuscript.

The uncertainty range is not always symmetric about the mean and so we list the mean and range
separately.

P8. L242. What do you mean by "spatial source uncertainty"?

We have revised the wording to “spatially biased emissions”.

P7.Eq.2. The i->j is weird; what do you mean?

This describes the downscaling from coarse grid i to fine grid j.

Figure 4. The panels are too small.

We have modified the figure to improve visibility.

Figure 5 needs to be enlarged. This is the most critical figure, which is hard to see.
The figure has been enlarged as suggested.

Table2. The numbers in the parenthesis are just the deviation in a defined box, not an actual error.
Please inform the readers about it.

We have added a footnote to the table to explain this, as suggested.
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Reply to community comments.

We thank the reviewers for the interest in our paper and the generous comments. We are glad that
this paper has been useful for graduate coursework. Reviewer comments are provided below in black
with our responses in blue.

This review was prepared as part of graduate program course work at Wageningen University, and has
been produced under supervision of dr. Ingrid Luijkx. The review has been posted because of its good
quality, and likely usefulness to the authors and editor. This review was not solicited by the journal.

The paper by Yu et, al. entitled “A high-resolution satellite-based map of global methane emissions
reveals missing wetland, fossil fuel and monsoon sources” presents a quantification of the 2018-2019
global methane budget, based on space-borne TROPOMI observations. Methane emissions are derived
from the TROPOMI observations by coupling multiple 4D-Var adjoint inversions with a newly developed
spatial downscaling approach. This enables the identification of previously missing or underestimated
methane emissions from fossil fuel and wetland sources.

This research presents a new downscaling method that is applied to convert the GEOS-chem model
output to a 0.12 x 0.12 resolution, using combined spatial information from the TROPOMI observations
and from the prior estimates. This method enables very specific allocation of emission hotspots. In the
study, OH is used as an additional constraint in the inversions, as recommended by Saunois et al. (2020).
This advances previous studies, which often co-optimized methane sources and sinks by using methane
data alone. The results section of the manuscript is well-written and discusses all the source areas in-
depth, also suggesting possible underlying reasons for the found underestimations in prior inventories.
The research reveals some interesting results regarding emission hotspots that were missing from prior
inventories. That being said, | do have some remarks that could be addressed before publication.

We thank the reviewer again for the positive comments.

1) If  understand it correctly, the aim of the research is to quantify the 2018-2019 global methane
budget and determine missing and underrepresented emission sources. However, the authors mainly
present how much the prior estimates are underestimated compared to their findings, making the
results section an evaluation of their one specific chosen set of prior inventories. This approach results
in a high dependency of the research on the choice of the specific prior estimates. If other prior
inventories were chosen, the underestimations and hotspots that the research now revealed would
likely be very different, because for instance, as was pointed out in the introduction, two of the most
commonly used anthropogenic emission inventories (EDGAR v5 and GEPA) are uncorrelated at a 0.12 x
0.12 resolution. To overcome this issue, | would suggest to shift the focus of the results section from the
discrepancies in the specific prior to the obtained absolute values of the methane budget.

We do include discussion of the changes relative to the prior inventories as these are widely used and
their strengths and shortcomings are therefore of broad interest. However, we also already include
discussion of the absolute flux amounts as the reviewer requests. For example, Table 2 and Section 4
list and discuss the derived sectoral fluxes both globally and by specific country. Section 5 then states
the absolute wetland flux amounts for every region discussed (globe, Amazonia, central Africa, South
Sudd, North America). Absolute flux amounts are also provided at relevant points throughout Section



6. In our view this provides a balanced discussion between the derived adjustments and the fluxes
themselves.

A good addition would then be a comparison of these results to independent measurements, such as
the ObsPack or TCCON observations, or a comparison to other studies that also use inverse models to
characterize the methane budget, such as Saunois et al. (2020).

We already compare the results to ObsPack and TCCON observations, as follows:

“Ground-based methane column (XCH4) observations from the TCCON network (GGG2014 (2014))
show comparable improvements over the prior for both the fixOH and optOH solutions (and for their
individual member inversions), with 71% (from -12.9 ppb to 3.8 ppb) and 66% (to 4.3 ppb) mean bias
reductions, respectively (Figure 3, Table S1). However, global in-situ measurements from ObsPack
(near-real time version v2.0; (2021)) reveal a 93% (from -13.8 ppb to -0.9 ppb) absolute mean bias
improvement for the fixOH framework compared to just 39% (to 8.4 ppb) for optOH (Figure 3, Table
S1). Figure 3 further shows that the optOH solutions overcorrect the prior negative bias with respect
to ObsPack, providing a first piece of evidence for a methane sink underestimate in this inversion.”

We have now updated our discussion of the derived national methane budgets to include
comparisons with both Worden et al. (2021) and Qu et al. (2021):

“Eight of the ten nations in Table 2 (China, India, US, Russia, Brazil, European Union, Pakistan,
Indonesia) are likewise identified by Worden et al. (2022) as among the top ten anthropogenic
emitters globally. Our inferred anthropogenic fluxes for the US and China agree well (within ~10%)
with the GOSAT-based results from Worden et al. (2022) and with the GOSAT+TROPOMI results from
Qu et al. (2021). Anthropogenic emissions derived here are likewise within 10% of the Worden et al.
(2022) results for India and the European Union, with both studies lower (20-50%) than Qu et al.
(2021). Our results for Russia and Iran are 21-28% higher than the GOSAT-based estimates, mainly
reflecting oil, gas, and coal emissions, and ~40% lower for Brazil, mainly due to livestock. Emissions for
Pakistan and Indonesia agree to within 1% for the TROPOMI- and GOSAT-based results (Worden et al.,
2022). However, we find here that anthropogenic emissions from Bangladesh (7 Tg/y versus a prior of
4 Tg/y) are 3x higher than the GOSAT estimate (2 Tg/y), while adjacent emissions from Myanmar (4
Tg/y) are half the GOSAT estimate. Worden et al. (2022) conclude that the GOSAT-derived emissions
for Myanmar are anonymously high due to impacts from their prior assumptions; we attribute much
of that flux to Bangladesh and show later that it mainly arises during the South Asian monsoon.”

We have also added new comparisons to other prior top-down studies as suggested:

“Our derived global wetland fluxes are ~20% higher than previous GOSAT-based estimates (145-148
Tg/y: Ma et al., 2021; Zhang et al., 2021), with similar latitudinal distribution to that found by Ma et
al. (2021).”

and

“The 2019 global anthropogenic methane emissions obtained here are modestly (12%) higher than
GOSAT-based results for 2010-2018 (336 Tg/y; Zhang et al., 2021), with both results pointing to
higher-than-predicted biotic emissions (consistent with isotopic constraints; Nisbet et al., 2016).”
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2) The authors take an ensemble mean of the 4 different inversion formalisms to calculate the emission
corrections, while their previous research showed that some of them perform better for different
purposes (Yu et al., 2021a). The different allocation of emission hotspots that are found through the
different inversions are already nicely discussed in the results section, but the emission corrections are
subsequently still calculated as the multi-model mean. | would like to see a more in-depth discussion of
why the authors chose this approach, and why for instance the classical SF inversion is not left out here,
since it is highly biased towards areas where the prior estimates of the emissions are high, and therefore
likely makes the calculated underestimations of the prior estimates too small (Yu et al., 2021a). The BI
inversion approach provides the best spatial distribution of all inverse approaches, while the EE
inversion performs best in recovering large missing sources (Yu et al., 2021a). In the calculations of the
hotspot emissions that are missing from the prior inventories, it is therefore probably better to use the
EE inversion instead of the ensemble mean. Table S1 could also be used in this discussion, since it
summarizes the performance of the different inversion formalisms, while the statistics presented here
are currently not used in the text.

We thank the reviewers for the interest in our previous work (Yu et al., 2021a). We chose to use the
ensemble mean as our base-case solution as each individual inversion strategy has unique
advantages. For example, in Yu (2021a) we found that the SF inversion exhibited the best
performance for large sources already present in the prior, while the BG inversion yielded the highest
spatial correlation with the true fluxes, and the EE inversion had the best performance for identifying
missing sources. Furthermore, our previous OSSE was performed at ~25 km and the employed
inventories had large spatial disparities at that scale. In this study, our inversions were performed at
2°x2.5° (~200 km) and the spatial inconsistencies are reduced at this larger scale.

3) The section of the development of the novel downscaling method could be more extensive. Since a
new method is presented here, it’s very important that it is well-described. First of all, | would like to see
the argumentation on why there was a need for a new downscaling method, and why previous
downscaling methods were not suitable. Yu et al. (2021b) could be consulted, who present a nice review
section of related work on spatial interpolation and downscaling of airborne pollutants.

We have now added new text comparing our downscaling approach with other methodologies to
better motivate its use, as suggested:

“Compared to existing emission downscaling methods that rely on prior and posterior error
covariance estimates (Cusworth et al., 2021), or are based solely on satellite data (Liu et al., 2021), our
approach is unique in combining the prior emission information (and its uncertainty) with the
oversampled TROPOMI observations themselves. Variable weighting between these terms permits
greater influence from the observations when the prior emissions are more uncertain. The method
thus assumes robust prior error estimates, a caveat that also applies to Cusworth (2021) and similar
methods.”

Further motivation is provided earlier in Section 2.6, and this has been slightly expanded:



“We present here a new method to spatially downscale the satellite-derived emissions for potential
use in models. This downscaling is necessitated by the fact that the current GEOS-Chem adjoint model
does not have global simulation capability at finer than 2° x 2.5° resolution. Furthermore, each of the
2-year inversions performed here required >12,000 CPU hours (>80 days on multiple processors) to
converge, making higher-resolution optimizations computationally impractical. However, the
inventories employed as prior, as well as the TROPOMI observations themselves, contain information
at much finer scales (e.g., 0.1° x 0.1° and 7 x 7 km?)—and thus contain additional high-resolution
constraints that are neglected by the 2° x 2.5° inversions. We therefore leverage this information to
spatially downscale the optimized emissions to 0.1° x 0.1° via ...”

Also, since the downscaling method is presented as novel, a proper evaluation of its accuracy is very
important. | therefore wonder why the authors chose to perform the OSSE only for one area, for the
duration of one month and at a resolution of 0.252 x 0.31252, and subsequently chose to use a 0.12 x
0.12 resolution in their further research based on this OSSE. The representativeness of this one OSSE for
the whole research should be better discussed and possibly expanded, since the validity of the research
is dependent on this outcome.

This OSSE evaluation approach was selected for several reasons. First, the GEOS-Chem model does not
have global 4DVar optimization capability at 0.25°x0.3125° and does not have any optimization
capacity at 0.1°. Even if it did, the computational cost would be far too high to run a global 4DVar
evaluation at either scale. Second, the North American domain was selected as it includes all relevant
source types and because we had simulation output available from Yu et al. (2021a).

To address the comment about accuracy we have now added a new downscaling bias reduction
analysis, as follows:

“Figure S8 shows that the downscaled OSSE solution reduces the prior bias by 17%-56% for sources
exceeding 1000 kg CH4/box/day (accounting for 99% of the domain-wide emissions) when not subject
to transport error. In the presence of transport error, the downscaling method has limited success for
the very largest sources (>2x105 kg/box/day), but nevertheless exhibits strong bias reduction (21%—
50%) for sources between 1x103-2x105 kg/box/day (96% of domain-wide emissions).”

OSSE optimized emission bias reduction
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Figure S8. Downscaling bias reduction as a function of emission magnitude, based on 1-month
Observing System Simulation Experiments (OSSE) over North America (see main text for details).



4) After the results section, | would suggest to include a section where the uncertainties in both the
TROPOMI data and the prior estimates is discussed, since the research is very dependent on both, and
therefore also dependent on errors in the data. Also, the methods could be further discussed in this
section, such as implications of the downscaling of the optimized emissions, and the use of the different
inversion formalisms.

Uncertainties in the TROPOMI data are already discussed in Section 2.1 based on both instrumental
specifications and validation statistics versus GOSAT and TCCON observations. Our treatment of prior
uncertainties is then discussed in detail in Section 2.4. We prefer not to duplicate that information in a
separate section. The different inversion formalisms are already included in the discussion section
based on the fact that we are using them to define our uncertainty range and to identify areas with
consistent adjustment direction across inversions. The downscaled results are used later in the paper
to map the advance and retreat of East Asian emissions.

5) In my view, the knowledge gap could be further specified in the introduction. The novel aspect of the
methods is already highlighted well by stressing the importance of including OH constraints, which many
previous studies did not include. However, a section on prior knowledge about hotspots and emission
sources that are often underrepresented in prior estimates is missing, including how the research is still
of added value to this. Hu et al. (2018), who used TROPOMI to map methane column concentrations for
instance also observed the underestimated hotspot of the Sudd wetlands and Venezuela. Lu et al. (2021)
performed an inversion study using GOSAT data and also revealed missing spots in observational data,
but on a far coarser resolution than this study. | suppose that the authors mainly add to this because of
the far higher resolution of the TROPOMI data they use, combined with the downscaling method,
making it easier to pinpoint emissions to more specific locations.

Rather than expand the introduction (which would end up duplicating information provided later in
the paper) we have instead expanded our comparisons to previous findings in the results section, as
described above and in our replies to the other reviewers. We have added a citation of Hu et al. 2018
in the Sudd discussion as suggested.

6) The authors nicely present the main underrepresented sources and missing hotspots in the
conclusion, but a section with the further implications of these findings is missing.

We believe that the implications are sufficiently covered in the results and conclusions and that an
additional section is not necessary.

In the last section of the conclusion, some recommendations for future research are given (lines 561-
564), but the statements include no references confirming that the addition of datasets of CO, methyl
chloroform and formaldehyde would indeed improve future inversions. Also, the novel downscaling
method is not mentioned in the conclusion, while this method is probably also relevant for further
research.

We have added some references supporting the use of CO, MCF, and HCHO, as follows:
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“We address the issue in this work by employing validated OH fields from a chemical transport model,
but future methane inversions can benefit from incorporating additional datasets (e.g., CO, methyl
chloroform, formaldehyde) as constraints on the methane sink (McNorton et al., 2016; Rigby et al.,
2017; Turner et al., 2017; Wolfe et al., 2019).”

The new downscaling methodology is in fact mentioned in the first paragraph of the conclusion
section.

Minor comments

Title: The current title is appealing because it directly mentions the new findings, but in my view, it does
not cover the whole scope and innovative aspect of the research. | would consider changing the title to
something like: "A high-resolution global map of methane emissions inferred from an inversion of
TROPOMII satellite data reveals missing emission hotspots and previously underestimated sources."

We thank the reviewer for this suggestion, but we prefer our current shorter title.

Line 46: For a better overview of the previous research, | would elaborate here on what the conflicting
reasons are for methane increase apart from the emission increase over tropical regions, such as an
increase in emissions in the energy sector, an increase in wetland emissions, and a decrease in mean OH
(McNorton et al., 2018).

We thank the reviewer for this suggestion. In the introduction we are aiming to provide a robust
overview of the state of science while still being concise. We believe the current text provides a
suitable broad-level overview and does discuss the uncertainties arising from OH.

Line 89: Please include the Sentinel-5 precursor/TROPOMI Level 2 Product User Manual Methane as a
reference for requiring quality filter > 0.5:
https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-
Methane.pdf/1808f165-0486-4840-ac1d-06194238fa96

We have added this citation as suggested.

Line 96: Apart from mentioning the slope, please report the R2 as well here as a measure for agreement
(R2=0.67).

We have added these values as suggested.

Line 117 - 128: Please elaborate on why these specific prior estimates are chosen, and perhaps also
elaborate on how these datasets are constructed (by models/measurements)?

We selected these inventories as they are commonly used and represent the current state-of-the-
science. We refer the reader to the cited papers for more detailed descriptions.

Line 118: Why did the authors chose to use the UNFCCC inventory from 20167 The new version from
2019 might be more representative for the study period.

At the time we performed the inversion, that new version was not available. The global difference
between these two versions is small for gas (24 Tg/y vs. 22 Tg/y) and coal (31 Tg/y vs. 33 Tg/y)



emissions, while oil sources decreased from 42 Tg/y to 26 Tg/y, mainly due to Russia. We have now
added a discussion of this point to Section 6 as follows:

“Indeed, subsequent revisions (year-2019; Scarpelli et al., 2022) to the UNFCCC-2016 inventory used
here have strongly reduced fossil fuel emission estimates for Russia (e.g., 21 Tg/y from oil in year-
2016 vs. 2 Tg/y in year-2019) due to updated emission factor assumptions.”

Line 153: Please give a reference or explain why 50% uncertainty in the remaining sources is chosen.
We have added a citation as requested.

Line 162: It would be good to explain here how the OH sensitivity study is exactly performed, and
specifically state where in the formula of the cost function the different uncertainties are used.

We have clarified that the prior uncertainties for OH are included in Sa.

Line 187: | wonder why the authors chose the values of 10% and 90% for the weight of the prior and the
background respectively. Yu et al. (2021a) used 50% and 50% in their example of this background
increment inversion formalism. Is this determined with sensitivity simulations similar as in the OG
inversions? Please explain.

Our previous OSSE was performed on a 25 km grid. At this resolution, the spatial distribution of prior
emissions is highly uncertain. In this study, our inversions are performed at 2°x2.5° and the spatial
distribution of prior emissions have higher fidelity, justifying the reduced weighting of the flat prior.

Line 271: “Our 2019-2018 ... growth rate acceleration”: please elaborate on the implications of this
statement on the findings that are presented in this paragraph.

We have revised this text as suggested:

“Our 2018-2019 analysis timeframe also spans an El Nifio, which has been tied both to global OH
decreases and to methane growth rate acceleration (Anderson et al., 2021; Turner et al., 2018a)—
further complicating a differentiation between the fixOH and optOH solutions.”

Line 314: Could the authors further explain here why the locations in the boxes of figure 2b were chosen
for the analysis? This is probably because TROPOMI observations differ from the prior estimates in these
areas. But when looking at the map, | see that this is for instance also the case for northern Italy and the
Southeast US. Why are these areas not discussed?

We selected areas with substantial methane emissions that cover a range of source types and reveal
significant model-measurement discrepancies. In the interest of length, we are unable to examine
every global region.

Line 317: If | understand it correctly, the average yearly source and sink values for the years 2018-2019
that are presented here are not based on two full yearly cycles. The timeframe of the analysis only spans
from 05/2018 - 10/2019. However, figure 4 indicates that the sources and sinks show seasonal variation.
To retrieve yearly average values for the sources and sinks, these values can’t be just averaged over a
1.5 yearly cycle. | would recommend to take these average values over one full yearly cycle, for instance
from 10/2018-10/2019.



Thank you for the suggestions. We have now clarified in the manuscript that “annual values discussed
later are for 11/2018-04/2019 plus the average of 05-10/2018 and 05-10/2019.”

Line 412: | would move the explanation of figure 5c to line 396, since that is where the figure is first
mentioned.

We thank the reviewer for the suggestions. At line 396, we explain the emission corrections with
comparison to previous studies. In line 412, we further discuss the underlying emission drivers. We
think the current layout is more clear and have left it as-is.

Line 442: Since these missing hotspots are one of the main outcomes of the research, the authors could
consider to give their more exact locations, instead of only mentioning the countries.

We have added an additional reference to Figure S16 for a clearer view of these locations.

Line 447: | wonder how the hotspots can be missing in the UNFCCC inventory and show up in the EIA,
since it seems like the UNFCCC is based on the national activity data from the EIA (Scarpelli et al., 2020).
Is this because the authors used the UNFCCC data from 2016, and these activities were maybe still
unknown at that time? Please explain this here, or as | mentioned before, consider using the updated
UNFCCC inventory from 2019.

The precise reasons that these sources would be missing from UNFCCC but present in EIA are not
apparent to us and would need to be the subject of future work. As noted the updated UNFCCC
version was not available at the time we performed our inversions, but we have added discussion of
the UNFCCC updates to the manuscript.

Figure 4: Please consider to make figure 4a-d larger, since the dots are very hard to see. Figure 4e is
currently not referred to in the text. Also, | wonder why only the FixOH emission is shown here, and not
the loss. | would either remove the fixOH emission from this plot, or include the loss as well.

We have rotated Figure 4 to enlarge it and improve visibility as suggested. We have also added a
reference to Figure 4e as requested. The fixOH loss is shown in Figure 4e since it is the same as the
prior, this is now clarified in the figure caption.

Figure 5: Figure 5a and 5c show information from previous research, while figure 5b shows main findings
of the research. | would therefore suggest to make figure 5b a separate figure.

Figures 5b and 5c are in fact both based on findings from this research, and we included 5a to provide
context for interpretation.

Figure S9: In my opinion, this figure could also be included in the main text, since it shows well how the
outcomes of the four inversion formalism differ, and how the inversion ensemble is constructed.

Thank you for the suggestion. In the interest of length, we choose to include Figure 4 in the main text
and keep S9 in the SI.

Specific comments

Line 17: Please remove “CO” here, since CO is not used as a constraint.



We have revised this text as suggested. “Employing remote carbon monoxide (CO) and hydroxyl
radical (OH) observations with independent methane measurements for evaluation, we infer from
TROPOMI a global methane source of ...”

Line 43: “the importance of” can be left out here.

We prefer to leave the phrasing as-is.

Line 229: Write abbreviation of OSSE out in full.

It is written out in full at first use, at the start of Section 2.4.

Line 335: The total emissions of China mentioned here (60 Tg/y) is different from the number in table S2
(61 Tg/y). Please make this consistent.

This has been corrected.

Line 342: “Europe Union” > “European Union”.
Corrected.

Table 2: “Russian” > “Russia”.

Corrected.
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A list of all relevant changes

Line 16: word change

Line 17-19: word change

Line 20-22: clarification

Line 25: word change

Line 26-27: clarification

Line 43: clarification and add citations

Line 47: clarification

Line 48: word change

Line 65-67: discuss temporal representation error
Line 75: add citation

Line 82: clarification

Line 88: clarification

Line 94-96: discuss updates of the observation used in this study
Line 98: clarification

Line 101-102: add citation

Line 106-107: clarification

Line 109-111: clarification

Line 117-126: discuss independent measurements used for the evaluation
Line 133: clarification

Line 143: clarification

Line 144: clarification

Line 145: clarification

Line 152: add citation

Line 169-172: discuss model setting for the evaluation
Line 181-185: clarification

Line 191: add citations

Line 201: clarification

Line 205-206: discuss uncertainties of other methane sinks



Line 219-224: discuss the way we test the robustness of our results
Line 226-232: compare our study with previous studies
Line 234: word change

Line 250-251: clarification

Line 253-256: clarification

Line 272-274: clarification

Line 289-294: compare our study with previous studies
Line 297: clarification

Line 299: word change

Line 310: word change

Line 313-317: discuss emission uncertainty estimates
Line 344-345: clarification

Line 355-357: clarification

Line 361: word change

Line 362: revise figure index

Line 364-374: clarification and word change

Line 390: revise figure index

Line 415: revise typo

Line 416-430: compare our study with previous studies
Line 433: clarification

Line 434: revise figure index

Line 439-441: compare our study with previous studies
Line 448: revise figure index

Line 450: word change

Line 458: revise figure index

Line 461: revise figure index

Line 466-468: word change

Line 476-478: add citations

Line 488-490: revise figure index and add citation



Line 498: revise figure index

Line 501: word change

Line 513-516: word change and compare our study with previous studies
Line 526-527: word change

Line 533: revise figure index

Line 535: revise figure index

Line 544: revise figure index

Line 550: clarification

Line 553-554: clarification

Line 555: add citation and compare our results with the recent inventory
Line 565: revise figure index

Line 618: clarification

Line 626: revise figure index

Line 628: clarification

Line 634: clarification

Line 641-644: clarification

Line 656: add citations

Line 676-677: revise acknowledgement

Line 689-690, 704-706, 714-719, 726-728, 734-736, 744-745, 755-757, 773-776, 785-787, 790-792, 809-
811, 823-825, 843-846, 854-856, 883-884, 894-895, 899-902, 913-915, 925-932, 953-956, 963-965, 984-
987, 1027-1039: revise references

Figure 4 and 5: revise figure size

Table 2: add note for clarification
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