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Abstract. Autonomous and expendable profiling float arrays such as deployed in the Argo Program re-

quire the transmission of reliable data from remote sites. However, existing satellite data transfer rates

preclude complete transmission of rapidly sampled turbulence measurements. It is therefore necessary to

reduce turbulence data onboard. Here we propose a scheme for onboard data reduction and test it with ex-

isting turbulence data obtained with a newly developed version of a SOLO-II profiling float. The scheme5

invokes simple power law fits to (i) shear probe voltage spectra and (ii) fast thermistor voltage spectra

that yield a fit value plus a quality control metric. At roughly 1 m vertical interval resolution, this scheme

reduces the necessary data transfer volume 240-fold to approximately 3 kB for every 100 m of a profile

(when profiling at 0.2 m s−1). Turbulent kinetic energy dissipation rate ε and thermal variance dissipation

rate χ are recovered in post-processing. As a test, we apply our scheme to a dataset comprising 650 pro-10

files and compare its output to that from our standard turbulence processing algorithm. For ε , values from

the two approaches agree within a factor of two 87% of the time; for χ , 78%. These levels of agreement

are greater than or comparable to that between the ε and χ values derived from two shear probes and two

fast thermistors, respectively, on the same profiler.

1 Introduction15

Measurements of oceanic turbulence have been made since the 1950s using platforms and sensors of

various shapes and sizes (Lueck et al. 2002). Complete resolution of the turbulence requires measuring

temperature and velocity gradients at millimeter-to-centimeter scale. Hence, sampling turbulence is data

intensive. Whereas conventional profiling measurements of temperature, conductivity, and pressure are
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typically sampled at 1 Hz (e.g., Argo floats; Roemmich et al. 2019a), a turbulence profile involves sam-20

pling multiple sensors at 100–1000 Hz. A relatively minimal requirement of five separate signals sampled

at 100 Hz and recorded at 16-bit resolution equates to 1 kB s−1, or 500 kB per 100 m of profiling range at

0.2 m s−1 profiling speed. For floats, this is not a trivial volume of data. For example, transmitting only

3 kB of data from a Deep SOLO float takes 100–200 s (Roemmich et al. 2019b). Extended surfacings also

present a danger from surface vessels and vandals. Ultimately, raw turbulence profiles are two-to-three25

orders of magnitude too large to transmit in a reasonable amount of time.

One approach to reducing turbulence data is given by Rainville et al. (2017) who use it for multi-month

glider missions. Onboard the glider, they calculate spectra of raw voltage signals reported by the shear

probes and fast thermistors and then band average each of these spectra into 12 bins. After transmis-

sion, these binned values are calibrated and fit to model spectra. Although we will share this strategy of30

postponing calibration, our scheme differs from Rainville et al. (2017). Instead, we more closely follow

Becherer and Moum (2017) who designed a scheme to reduce moored χpod data by more than four orders

of magnitude. Overall, our goal is to minimize the file size to be transmitted, and yet also minimize the

amount by which we manipulate and process the data onboard.

Becherer and Moum (2017) showed that, for a given segment, turbulence quantities can be reconstituted35

from voltage quantities (means, variances, and power law fits). We adapt their approach so that it works

for a vertical profiler (Sect. 2). First, we document the necessary calibration details (Sect. 3). Next, we

compress raw shear voltages by way of simple power law fits (Sect. 4). A test of the scheme employing

650 profiles demonstrates that little accuracy is sacrificed in return for a large reduction in data volume

(Sect. 5). A similar method and test is given for fast thermistor measurements (Sect. 6 and 7). Adapting40

the scheme to a different profiler requires minimal modification (Sect. 8). For our particular profiler, the

scheme reduces the dataset size by a factor of ∼240: only 3 kB for each 100 m of a profile (Sect. 9).

2 The Flippin’ χSOLO (FCS)

We intend our data reduction scheme to be sufficiently general to be portable to all vertical turbulence

profilers. It can also be used with gliders if a measure of flow speed past the sensors is available (e.g.,45

Greenan et al. 2001; Merckelbach and Carpenter 2021). In a general sense, some of the values specified
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herein ought to be considered variables (Sect. 8). However, we do have a particular platform for which

we are developing the scheme: the Flippin’ χSOLO (FCS), and the values used here are chosen for the

objective of detailed upper ocean profiling.

FCS is a conventional SOLO-II profiling float (Roemmich et al. 2004) with the addition of a turbulence50

package plus extra functionality. The turbulence package includes two shear probes (Osborn 1974) to

measure small-scale velocity gradients from which ε is computed, two fast thermistors to measure small-

scale temperature fluctuations from which χ is computed, as well as a pitot tube (Moum 2015), pressure

sensor, three-axis accelerometer, and compass. The pressure sensor yields a measure of profiling speed

used in our scheme. The pitot tube, accelerometer, and compass data are not used in the turbulence data55

reduction scheme but have other purposes such as measuring the surface wave field. When changing its

buoyancy to switch profiling direction, FCS also flips (via internal shifting of the battery pack) so that the

turbulence sensors always point into undisturbed fluid. Flipping therefore permits profiling on both ascent

and descent including sampling of the upper 5 m on the upward profile. FCS and its measurements will

be described more completely in a future paper.60

As a prototype, a SOLO float without flipping capability but with a modified χpod (Moum and Nash

2009) attached was deployed in the Bay of Bengal to measure the suppression of turbulence by salinity

stratification (Shroyer et al. 2016). Two units with flipping capabilities and fully integrated turbulence

packages were subsequently built and vetted over four days in May 2019 off the Oregon coast. During

this period, each unit profiled from the surface to∼120 m and back at a typical speed of 0.2 m s−1. Adding65

time at the surface, each dive cycle took ∼30 minutes and we obtained 650 profiles in total.

In this 2019 experiment, one of the shear probes on one of the two units malfunctioned. Hence, the

dataset for this paper contains approximately 25% fewer shear data than fast thermistor data.

3 Conversion of measured voltages to physical units

The core of our data reduction scheme uses power law fits of voltage spectra that are calculated onboard,70

and subsequently converted to meaningful turbulence quantities in post-processing. Additional voltage

quantities are also recorded to determine temperature, pressure, and profiling speed.
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3.1 Nomenclature and conventions

– All quantities measured by FCS that are discussed in this paper are sampled at 100 Hz.

– All voltage spectra are frequency spectra and denoted Ψx( f ) (where x is a label such as s for shear)75

with units of V2 Hz−1.

– Physical spectra of shear and temperature gradient are wavenumber spectra and denoted Φx(k) with

units of s−2 cpm−1 and K2 m−2 cpm−1, respectively. Figure 4 is an exception in which shear spectra

are frequency spectra: Φs( f ).

– Wavenumber k has the unit cycles per meter (cpm). Expressions quoted from other papers may80

differ by factors of 2π for wavenumbers in radians per meter.

– The Kraichnan model spectrum ΦKr primarily depends on the dissipation rates of turbulent kinetic

energy and temperature variance (ε and χ), but it also depends on the molecular viscosity ν and

molecular thermal diffusivity DT . For brevity, we write ΦKr(k,ε,χ) rather than the more complete

ΦKr(k,ε,χ,ν ,DT ). Similarly, the Nasmyth spectrum is written ΦNa(k,ε) rather than ΦNa(k,ε,ν).85

In cases where the arguments are unambiguous or unimportant, we simply write ΦNa and ΦKr.

– A pair of angle brackets, ⟨·⟩, denotes the mean value over a segment of length Nseg = 512 data

points. This equates to ∼1 m at our nominal profiling speed of 0.2 m s−1.

– To calculate spectra for a given 512-element voltage segment, we first remove the linear trend, then

use three half-overlapping, Hamming-windowed, 256-element subsegments (i.e., Nfft = 256,Noverlap =90

128).

In general, the values of Nseg and Nfft are variables. Our choices are based on the 100 Hz sampling

(∼500 cpm) and the goals of FCS, which include obtaining high-vertical-resolution turbulence data, es-

pecially near the surface. For different turbulence profilers or different scientific goals, longer segments

and/or more overlapping subsegments may be more appropriate (see Sect. 8).95
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3.2 Shear calibration

The voltage reported by the shear probe Vs is linearly proportional to shear:

uz =
α

W 2Vs (1)

α = 1/(2
√

2ρGsTsSs) (2)

where W is the flow speed past the sensor. The overall engineering calibration α includes the seawater100

density ρ , the analog circuit gain Gs (equal to 1 for FCS circuitry), the probe sensitivity Ss (∼0.25×
10−3 V m2 N−1) and the differentiator time constant Ts (∼1 s).

The linearity in Vs admits a simple link between the physical and voltage spectra:

Φuz(k) =
1

H2
s (k)

α2

W 3 Ψs( f ). (3)

where H2
s (k) is the transfer function that accounts for (i) spatial averaging by the shear probe of high-105

wavenumber motions and (ii) analog and digital filtering of the raw voltage signal (see Appendix A).

Note also the use above of the following relation:

Ψ( f ) = Ψ(k)
dk
d f

=
Ψ(k)

W
. (4)

3.3 Temperature and temperature gradient calibration

Two voltage signals are recorded for each fast thermistor. VT is the voltage output directly related to T and110

VTt is the differentiated output, which improves resolution at high frequencies (≳10 Hz). Temperature is

related to VT through a quadratic calibration:

T = C1T +C2TVT +C3TV 2
T (5)

⟨T ⟩= C1T +C2T ⟨VT ⟩+C3T
〈
V 2

T
〉

(6)

where C1T , C2T , and C3T are coefficients determined from lab calibrations. Note how ⟨T ⟩ depends on the115

means of both VT and V 2
T because of the quadratic calibration.

The gradient of this calibration is

∂T
∂VT

= C2T +2C3TVT ≈C2T +2C3T ⟨VT ⟩ . (7)
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Over 5 s time scales, we consider VT to be constant. Consequently, the small-scale vertical temperature

gradient Tz is linearly proportional to the differentiated voltage VTt . To demonstrate, we first rewrite Tz in120

terms of more directly measured quantities:

Tz =
∂T
∂ z

=
∂T
∂VT

∂VT

∂ t
∂ t
∂ z

. (8)

The first quantity on the right-hand side is Eq. (7), the last is 1/W , and the second is

∂VT

∂ t
=

VTt

CTt
(9)

where CTt is the gain of the analog differentiator.125

Rewriting Eq. (8), the aforementioned linear relationship between Tz and VTt becomes

Tz =
(

C2T +2C3T ⟨VT ⟩
CTtW

)
VTt . (10)

The relationship between physical and voltage spectra is therefore

ΦTz(k) =
(

C2T +2C3T ⟨VT ⟩
CTt

)2 1
W

ΨTt( f ). (11)

Again, we have invoked Eq. (4).130

3.4 Pressure and profiling velocity calibration

Pressure has a linear calibration:

P [dbar] =
C1P +C2PVP

1.45psidbar−1 − patm. (12)

In our usage, the coefficients C1P and C2P are recorded in units of psi and psi V−1, respectively, and

calibrated under total pressure. Subtracting atmospheric pressure makes P = 0 at the sea surface. The135

constant C1P must account for the vertical position of the pressure sensor on the instrument relative to the

shear probes and thermistors. Hence, C1P differs between upcasts and downcasts. For the reduced dataset,

we want ⟨P⟩, which is simply Eq. (12) with ⟨VP⟩ in place of VP.

The flow speed past the sensors, denoted W , is derived from the pressure voltage rate of change. Over a

segment of length N, the mean of W is a scaled version of the difference between the first and Nth voltage140
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values:

⟨W ⟩=
〈

∂P
∂ t

〉
=

C2P

1.45
|∆VP|

(N−1)∆t︸ ︷︷ ︸
Calculate onboard

(13)

where ∆t is the sampling period (here 0.01 s), and ∆VP is VP(N)−VP(1). No smoothing is necessary before

calculating ∆VP because its magnitude is so much larger than the quantization of the signal (this being the

limiting factor for precision of pressure recorded by FCS). In physical units, P is precise to 0.003 dbar,145

which is O(300) times smaller than ∆P.

Wave orbitals can introduce variability when W is small (≲0.15 m s−1). As a diagnostic we calculate

and record the minimum value of W for each segment. This also helps to identify the beginning and end of

profiles as shown in Appendix B. In standard processing, we would derive W (t) from the pressure signal

low passed at 2 Hz. To avoid the need to low-pass filter the signal onboard, we instead make 10 estimates150

of W (t) per segment and take the minimum of these:

Wmin =
C2P

1.45
min

( |∆VP(ti)|
50∆t

)

︸ ︷︷ ︸
Calculate onboard

(14)

where ti = 1,51,101, . . . ,501. Even with this sampling of every 50th element, which follows from sub-

sampling a 100 Hz signal at 2 Hz, ∆VP(ti) is large enough that smoothing is unnecessary.

In this paper, we immediately discard all segments in which Wmin < 0.05ms−1. This threshold is155

reached only at the top and bottom of profiles, if at all. Note, however, that this does not imply that a

segment with Wmin > 0.05 m s−1 is trustworthy. Even segments with Wmin closer to 0.15 m s−1 should be

treated with particular caution. Signs that a segment is questionable are that ⟨W ⟩ and Wmin differ by more

than ∼20% or that spectral fit scores are low (see Sect. 4.3 and 6.3).

4 Reduction of shear data160

4.1 Summarizing Nasmyth spectra with f 1/3 fits

Shear measurements ideally capture both the inertial and viscous subranges and hence use a wide band of

the measured spectrum to derive values for ε . In practice, noise and sensor resolution limit how well the
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true environmental spectrum is resolved. Conventional work-arounds exploit the Nasmyth model spec-

trum ΦNa(k,ε) (Nasmyth 1970; Oakey 1982). One approach is to iterate toward a solution in which the165

integral of ΦNa over a specific wavenumber band matches that of the measured spectrum Φuz (e.g., Moum

et al. 1995). Another is to find the best fit of Φuz to ΦNa by using maximum likelihood estimation together

with a model of the expected statistical distribution of the spectral coefficients being fitted (e.g., Bluteau

et al. 2016).

Here we develop a new and simpler two-stage approach to fitting shear spectra to ΦNa. In the first stage,170

we use an f 1/3 power law fit over a fixed frequency range of fl to fh = 1–5 Hz, where f 1/3 follows from the

assumption that we are fitting over the inertial subrange. In this subrange, shear spectra are proportional

to k1/3 and hence also f 1/3 since f = Wk. With Nfft = 256 and 100 Hz sampling (Sect. 3.1), spectral

coefficients are separated by frequency increments of 100 Hz/256 = 0.39 Hz, so there are 10 coefficients

between 1 and 5 Hz. (Our processing code will actually use bounding frequencies of 0.98 and 4.88 Hz as175

these are half-integer multiples of 0.39 Hz, but for brevity we will write these as 1 and 5 Hz throughout.)

Our choice of fl = 1Hz is dictated by a requirement that we avoid low frequency contamination induced

by (i) advection by wave orbital motion and (ii) pitch and roll motions of the profiler. Together, these

dominate below 0.3 Hz. Setting fl = 0.5 Hz would add only one more spectral coefficient. Our choice of

fh = 5Hz is a trade-off between maximizing the bandwidth of the fit and minimizing how much measured180

spectra are subject to either noise or viscous roll off. Other profilers may benefit from different frequency

bounds (see Sect. 8).

Our inertial subrange assumption is often false. Indeed, ‘assumption’ is perhaps a misnomer as we

do not expect it to be true; we know that viscous roll off will often occur at frequencies lower than 5 Hz

(25 cpm for a nominal value of W = 0.2 m s−1). However, because there exists an analytical expression for185

the viscous roll off, we are able to derive an exact expression that quantifies how much ε is underestimated.

This is the second stage of our approach. We derive an expression for the correction function FNa in such

a way that it can be calculated in post-processing. The benefits of this approach are that (i) we can fit

uncalibrated (i.e., voltage) spectra and (ii) it simplifies the actual onboard fitting routine (Sect. 4.2).

8

https://doi.org/10.5194/egusphere-2022-944
Preprint. Discussion started: 23 September 2022
c© Author(s) 2022. CC BY 4.0 License.



The full Nasmyth spectra and its inertial range approximation are as follows (Lueck 2013):190

ΦNa(k,ε) =
ε3/4

ν1/4
8.05(kη)1/3

1+(20.6kη)3.715 (15)

ΦNa(k ≲ 0.02/η ,ε) = 8.05k1/3ε2/3 (16)

where η = (ν3/ε)1/4 is the Kolmogorov length scale.

Consider an f 1/3 fit of the Nasmyth spectrum over fl– fh = 1–5 Hz for two values of ε: 1× 10−9 and

1×10−6 W kg−1 (Fig. 1a). With our nominal value of W = 0.2 m s−1, we get kl–kh = 5–25 cpm. For ε =195

10−6 W kg−1 the f 1/3 fit lies on top of ΦNa. Conversely, the f 1/3 fit for the smaller ε value is seemingly

meaningless: the f 1/3 fit (dashed line) does not even match the sign of the slope of ΦNa. Worse yet, naively

inverting this initial (or ‘init’) fit produces the underestimate εinit = 1.2×10−10 W kg−1, six times smaller

than the true value of ε . However, by adjusting by a factor of 1/FNa, defined in the following paragraph,

the fit (dotted line) now looks like a hypothetical extrapolation of the inertial subrange. Equivalently, εinit200

is corrected to the true value of ε as

ε = εinit/F3/2
Na . (17)

In our example, 1× 10−9 W kg−1 = 1.2× 10−10 W kg−1 / 0.2383/2. The value of 0.238 is the solution to

an implicit equation derived below that depends on εinit and W . For clarity, our demonstration starts by

assuming we know ε rather than εinit.205

Nasmyth spectra can be flattened to unity over the inertial subrange with the normalization 8.05k1/3ε2/3

(Fig. 1b). Values of FNa are based on the mean of these flattened spectra over the wavenumber range kl–kh

(= fl/W– fh/W ):

FNa =
1

kh− kl

kh∫

kl

ΦNa(k,ε)
8.05k1/3ε2/3 dk. (18)

To remove the dependence of the true value of ε , we substitute using Eq. (17). Further, to account for the210

H2
s (k) factor in Eq. (3), we make the substitution

ΦNa(k,ε)→ H2
s (k)ΦNa(k,ε). (19)

Think of this substitution as inverting the conventional way that H2
s (k) is invoked. Usually, a measured

shear spectrum is amplified at high wavenumbers by 1/H2
s (k) and then fit to the model spectrum ΦNa.
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(a)

εinit: 1.2×10−10 W kg−1

Figure 1. Calculation of the correction function FNa for two values of ε . For ε = 1× 10−6 W kg−1, a k+1/3 power

law is a good approximation of the Nasmyth spectrum over the frequency range fl– fh (1–5 Hz) for a profiling speed

of W = 0.2 m s−1. Although the same is not true for ε = 1× 10−9 W kg−1, we can account for the roll off with a

factor of FNa. FNa can be defined in terms of either ε (Eq. (18)) or εinit (Eq. (20)). Panel b takes the former approach.

In practice, we must take the latter approach since we do not know ε until after it is derived from εinit and FNa.

Here, instead of amplifying the measured spectrum, we reduce the model spectrum. With this latter ap-215

proach, H2
s (k) is calculated and applied only during the post-processing stage. (It changes FNa by only

∼5% since we fit over relatively low wavenumbers.) Altogether, the substitutions result in an implicit
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Figure 2. The correction function FNa for ν = 1×10−6 m2 s−1 and fl– fh = 1–5 Hz.

function for FNa, which can be solved numerically:

1
kh− kl

kh∫

kl

H2
s (k)ΦNa(k,εinit/F3/2

Na )

8.05k1/3ε2/3
init /FNa

dk−FNa = 0. (20)

Note how the two forms of FNa (Eqs. 18 and 20) are defined with different arguments. For our exam-220

ple, FNa(ε = 1×10−9 W kg−1) = FNa(εinit = 1.2×10−10 W kg−1) = 0.238. Hereafter, we use the latter:

FNa(εinit).

With fl and fh fixed, FNa is a function of three variables: εinit, W , and ν . FNa is closer to one (less of a

correction) for larger values of εinit (Fig. 1). It is also closer to one for higher values of W (Fig. 2) since kl

and kh decrease with increasing W (i.e., kl–kh moves closer to the inertial subrange).225

4.2 Obtaining εinit from shear voltage spectra

Since ε can be reconstructed from εinit, we require an expression linking εinit to the shear voltage spectrum

Ψs. Equating Eq. (3) and Eq. (16) gives

α2

W 3 Ψs( f ) = 8.05k1/3ε2/3
init (21)
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where we have left out H2
s (k) since it has been incorporated into FNa. Rearranging and substituting k =230

f /W gives

ε2/3
init f 1/3 =

α2

8.05W 8/3 Ψs( f ). (22)

Then, to solve for εinit, we use a least-squares fit (see Appendix C):

ε2/3
init =

α2

8.05W 8/3

∑ f f 1/3 Ψs

∑ f f 2/3
︸ ︷︷ ︸

Calculate onboard

(23)

where the sums are understood to be over the range fl– fh. The quantities α , W , and εinit are calculated in235

post-processing.

4.3 Quality control of the shear spectral fits

Measured shear spectra are often quality controlled either by manual visual inspection or, more objec-

tively, by quantifying the level of mismatch between them and their associated model. Possible mismatch

quantities include the mean absolute deviation or the variance of the ratio Φuz/ΦNa (e.g., Ruddick et al.240

2000; Bluteau et al. 2016). We cannot calculate such quantities with our reduced scheme because we do

not know what each spectrum should look like until we calculate its ε value in the post-processing stage.

(Recall that ΦNa is a function of ε .) By this stage, we have lost information about the spectral shape

through the summing operation in Eq. (23).

To retain at least some information about the shape of each voltage spectrum, we will split the 1–5 Hz245

range and compute two fits rather than one. Doing so allows for a first-order check that the spectrum over

the 1–5 Hz range approximately follows the expected shape.

Mathematically, there is nothing special about our choice fl– fh = 1–5 Hz. In theory, we can split the

1–5 Hz range into two (1–3 Hz and 3–5 Hz) and obtain a value of εinit for each. These values will differ,

but so will the associated values of FNa. For a measured spectrum that conforms to a Nasmyth spectrum,250

the two values of ε calculated with Eq. (17) will not differ (Fig. 3). We therefore calculate onboard the

sums in Eq. (23) over both fl– fm and fm– fh, where the mid frequency fm = 3 Hz. (In our code, fm is

actually 7.5×0.39 Hz = 2.93 Hz for the reason given in Sect. 4.1.) Hence, for each spectrum we are able

to post-process to recover two independent estimates of ε , denoted εl–m and εm–h. The mean of these
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two provides a single, final value for ε , and their ratio quantifies the match of a measured spectrum to a255

Nasmyth spectrum over the range fl– fh:

ε = mean(εl–m,εm–h) (24)

ε fit score =
min(εl–m,εm–h)
max(εl–m,εm–h)

. (25)

The best possible fit score is 1; the lower the score, the poorer the fit (Fig. 4). In practice, we expect a

range of ε fit scores: instantaneous and unaveraged spectra differ from the Nasmyth spectrum because260

they are derived from a limited sampling of a statistical process, and they can also deviate because of

non-stationarity, anisotropy, and inhomogeneity of the turbulence.

When ε is small (≲10−9 W kg−1), the fit score may be consistently low if spectral coefficients in the

fm– fh range are affected by noise and consequently εm–h ≫ εl–m. For such cases, we choose to use only

the lower-frequency fit. We would rather have a more accurate estimate of ε and forgo the fit score than265

have a biased-high ε value with a biased-low fit score. (Either way, the small values of ε in question will

have minimal effect on any averages given that turbulence is approximately lognormal.) Specifically,

ε = εl–m

ε fit score = —



 if 0.1W

(εl–m

ν3

)1/4
< fm, (26)

where the threshold is equivalent to k < 0.1/η with η the Kolmogorov length scale estimated from εl–m.

For reference, ΦNa peaks at k = 0.026/η and rolls off to 11% of its maximum by k = 0.1/η (see Eq. (15)).270

5 Test of the reduction scheme for ε

To test the accuracy of the shear reduction scheme described in the previous section, we apply it retro-

spectively to the dataset from the 2019 test cruise (Sect. 2). We compare the results to those obtained

with the standard processing scheme. This standard scheme (Appendix D) features a more sophisticated

despiking routine than used for our reduced scheme, which employs a three standard deviation threshold275

filter (Appendix E).

A profile-by-profile comparison of the two schemes is shown in Fig. 5. The comparison is then extended

to all 650 profiles (>77 000 segments of shear), where we find that ε from the reduced scheme (εinit/F3/2
Na )
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Figure 3. A visual demonstration of how the ε fit score (Eq. (25)) characterizes better and worse fits. For all three

examples, ε values from the two fits (1–3 and 3–5 Hz) average to ε = 1×10−8 W kg−1. Only in panel a, however,

does the measured spectrum agree well with the Nasmyth spectrum for this ε value. In practice, the initial fits would

be undertaken on voltage spectra. Here, we are using physical units for simplicity.

is within a factor of two of that from the standard scheme 87% of the time over the full range of measured

values, 10−10 < ε < 10−4 W kg−1 (Fig. 6a–b). For comparison, in only 72% do we obtain a factor-of-280

two agreement between the two independent values of ε measured on the unit with two working shear

probes (not shown). Further, to obtain this 87% agreement, we clearly need the correction function FNa:

Fig. 6c shows that the uncorrected values εinit only have 1:1 agreement with ε from the standard scheme

if ε ≳ 10−7 W kg−1. For the lowest values of ε , the ratio is closer to 1:30.

To demonstrate the ability of the ε fit score to characterize spectra, we show two-dimensional his-285

tograms of non-dimensionalized spectral coefficients from all 77 000 measured shear spectra separated

into three classes based on their ε fit score: 0.67–1.00, 0.33–0.67, and 0.00–0.33. Only the lowest scoring

class fails to collapse to the Nasmyth spectrum (Fig. 7c).
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6 Reduction of fast thermistor data

The scheme to reduce fast thermistor data to enable measurement of χ is much like the scheme to reduce290

shear data. As in Sect. 4, we first show how we summarize a model spectrum in terms of a power law fit

and a correction factor. Then we derive the implementation in terms of voltages and calculate a spectral

fit metric.

6.1 Summarizing Kraichnan spectra with f 1 fits

Here we take the Kraichnan spectrum ΦKr (Kraichnan 1968) as our model and for its low-wavenumber295

approximation we use the viscous–convective subrange, which scales as k+1. In units of K2 m−2 cpm−1,

ΦKr and its approximation are as follows (e.g., Peterson and Fer 2014):

ΦKr(k,ε,χ) = 4π2kχq
√

ν/ε exp
(
−

√
6q2πkλB

)
(27)

ΦKr(k ≪ λ−1
B ,ε,χ) = 4π2kχq

√
ν/ε. (28)

where the Batchelor length scale λB = (νD2
T /ε)1/4 and q is a constant taken to be 5.26. This expression300

does not include a k+1/3 inertial–convective subrange, which we ignore here as it increases the integral of

the temperature gradient spectrum from k = 0 to k = ∞ by less than 1% and therefore has negligible effect

on our results.

A fit against Eq. (28) can be rearranged to give χinit, which is related to χ through the correction

function FKr as305

χ = χinit/FKr. (29)

FKr is not raised to a power like FNa (Eq. (17)). For small values of k, ΦKr ∝ χ whereas ΦNa ∝ ε2/3.

The derivation of FKr is equivalent to FNa. We therefore present only the result:

1
kh− kl

kh∫

kl

H2
Tt(k)ΦKr(k,ε,χinit/FKr)
4π2k(χinit/FKr)q

√
ν/ε

−FKr = 0. (30)

Note that FKr(ε,χinit,W ) depends on the underestimate χinit, but the ‘true’ or ‘corrected’ value of ε calcu-310

lated in Sect. 4.
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6.2 Obtaining χinit from fast thermistor voltage spectra

Like we did for εinit in Sect. 4.2, we derive the expression for χinit in three steps. First, equate the right

hand sides of Eqs. 11 and 28:
(

C2T +2C3T ⟨VT ⟩
CTt

)2 1
W

ΨTt( f ) = 4π2kχq
√

ν/ε. (31)315

Then, rearrange while substituting k = f /W to get

χinit f 1 =
1

4π2q
√

ν/ε

(
C2T +2C3T ⟨VT ⟩

CTt

)2

ΨTt . (32)

Finally, solve for χinit using a least-squares fit (Appendix C):

χinit =
1

4π2q
√

ν/ε

(
C2T +2C3T ⟨VT ⟩

CTt

)2 ∑ f f ΨTt

∑ f f 2
︸ ︷︷ ︸

Calculate onboard

. (33)

6.3 Quality control of the temperature gradient spectral fits320

The approach to quality controlling the fast thermistor data is the same as that for shear (Sect. 4.3). That

is, we fit ΨTt over fl– fm and fm– fh (1–3 and 3–5 Hz). This ultimately provides two estimates of χ for

each spectrum, which are combined as follows:

χ = mean(χl–m,χm–h) (34)

χ fit score =
min(χl–m,χm–h)
max(χl–m,χm–h)

. (35)325

We do not apply a low χ threshold equivalent to Eq. (26).

7 Test of the reduction scheme for χ

Profiles of χ from the reduced scheme compare well to the standard processing, albeit with a small bias

in one direction for low values and in the other direction for high values (Fig. 8). Across all values, the

two approaches agree within a factor of two 78% of the time (Fig. 9). By comparison, 82% of segments330

exhibit a factor-of-two agreement between χ values from the two fast thermistors on the same unit.
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Compared to shear spectra, non-dimensionalized temperature gradient spectra have lower fit scores.

Especially for the lowest fit scores, the measured temperature gradient spectra tend to be too high at lower

frequencies and vice versa (Fig. 10).
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Figure 4. Examples of measured shear spectra exhibiting a range of ε fit scores (Eq. (25)). The best fit is at the top

with progressively worse fits (lower scores) moving downward. Each score is only based on spectral coefficients

from 1–5 Hz, but lower and higher frequencies are shown for reference.
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Figure 5. Testing the proposed data reduction scheme for shear measurements against the standard processing

approach. One upward and one downward profile from each of the two FCS units were arbitrarily chosen for this

comparison.
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Figure 6. Statistical test of the proposed data reduction scheme for ε based on all 650 profiles (77 000 segments).

(a) A comparison that includes the dependence on ε . (b) Further summarized data that exclude this dependence.

(c) As for panel a, but uncorrected (FNa = 1).
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Figure 7. As the ε fit score decreases from top to bottom, there is a corresponding decrease in the level of agreement

and tightness of spread between (i) non-dimensionalized, measured shear spectra and (ii) the Nasmyth spectrum.

These two-dimensional histograms include only spectral cofficients with frequencies between fl and fh.
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Figure 8. Testing the proposed data reduction scheme for fast thermistor measurements. The profiles used are the

same as those chosen in Fig. 5.
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Figure 9. Statistical test of the proposed data reduction scheme for χ . Equivalent to Fig. 6 except for χ not ε . In

total, there are 100 000 segments of data.
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Figure 10. As for Fig. 7, but for temperature gradient rather than shear.
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8 Recommendations335

8.1 Setting the scheme’s parameters

Our scheme requires a few user-defined parameters: fl, fh, Nseg, and Nfft. For this paper, we based these

partly on the profiling speed and scientific goals of FCS. For a different profiler, we suggest the following:

– Choose fh based on a typical profiling speed such that kh = fh/W ≈ 25 cpm for a nominal profiling

speed W . For a wide range of ε values, 25 cpm is close to, or beyond, the peak of the Nasmyth340

spectrum (Fig. 1). Further, ε can be sensitive to the wavenumber fitting range, but centering the fit

near k≈ 10–20 cpm minimizes this sensitivity (Bluteau et al. 2016). As an example, if FCS profiled

at ∼0.5 m s−1, we would consider setting fh ≈ 12 Hz.

– Keep fl in the range 0.5–1 Hz. Although our scheme uses the inertial subrange (i.e., low frequen-

cies/wavenumbers) as its starting point, there is little to be gained by including frequencies of345

O(0.1) Hz. A possible exception, albeit tangential to this paper, is if the turbulence measurements

come from a platform that effectively measures horizontally. In such cases, FFT segments may be

many minutes or more and thereby contain useful low-frequency information (e.g., Bluteau et al.

2011; Moum 2015).

– Ensure that there are no known issues such as vibrations that are likely to adversely affect spectral350

cofficients within the fl– fh range. Although vibrational effects can be removed spectrally (Goodman

et al. 2006), doing so is beyond the scope of our scheme.

– Define fl and fh separately for shear and temperature gradient if appropriate. Although we set them

equal here, this is not necessary.

– Choose Nseg and Nfft based on scientific goals and, possibly, any logistical constraints; the data355

reduction scheme is agnostic to these numbers. For example, at the expense of vertical resolution,

we could halve the file size of our transmitted dataset by doubling Nseg from 512 to 1024.

– Reasonable choices for Nfft are Nseg/2 or Nseg/4, which correspond to three or seven half-overlapping

subsegments, respectively. There is little to be gained by diving a segment into even more subseg-
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ments so as to produce smoother spectra before fitting. As Ruddick et al. (2000) notes, the task is360

analogous to fitting a line to 20 points at once or first clumping them in groups of, say, five and then

fitting the four averaged points.

8.2 Evaluating the reduced data

One step that cannot be automated is the heuristic evaluation of the reduced turbulence data after they

have been converted from voltage quantities to physical ones. For this evaluation, we recommend looking365

into multiple quantities. First consider the fit scores (Eqs. 25 and 35). These scores work well, but they

are not a perfect measure of fit. They should be used together with other quality control checks such as

comparing

– W and Wmin (Eqs. 13 and 14) to check whether the profiling speed is constant over a segment;

– ε values from the two shear probes; and370

– turbulent features in successive profiles.

The last point is most applicable for a vertical profiler cycling rapidly – for example, twice per hour for

FCS. In this case, the profiler is nominally sampling the same vertical fragment of the ocean on a time

scale comparable to that over which turbulence evolves. In our experience, many turbulent patches extend

over 5–10 profiles.375

9 Conclusions

We have developed a data reduction scheme applicable to vertical profiling of turbulence variables in

which each ∼5 s segment is distilled to 15 quantities (Fig. 11). In post-processing, we reconstruct esti-

mates of ε and χ , associated quality control metrics, and other quantities such as the temperature and

profiling speed. The raw data that go into the 15 quantities are seven different voltages (VP; VT and VTt380

for each thermistor; and Vs for each shear probe). Hence, for each 512-element segment, we effectively

reduce the data by a factor of 512×7/15≈ 240.

This reduction compresses the output data file size for each dive from megabytes to kilobytes. For

example, the total amount of data per dive (two profiles) can be estimated assuming our nominal dive depth
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Reshape raw voltage signals
Convert each 1D signal to a 2D array (𝑁blk, 𝑁seg)

Discard non-profiling data
Use𝑊min threshold (∝ min |Δ𝑉𝑃 (𝑡𝑖) |, Eq. 14, Appendix B)
Average voltages over the Nseg-length blocks
⟨𝑉𝑇1⟩ ,

〈
𝑉2
𝑇1

〉
, ⟨𝑉𝑇2⟩ ,

〈
𝑉2
𝑇2

〉
, ⟨𝑉𝑃⟩ ,Δ𝑉𝑃 (Eq. 13)

Despike shear voltages
Apply 3𝜎 threshold to 𝑉𝑠1 and 𝑉𝑠2 (Appendix E)

Calculate voltage spectra
Ψ𝑠1 ( 𝑓 ),Ψ𝑠2 ( 𝑓 ),Ψ𝑇𝑡1 ( 𝑓 ), and Ψ𝑇𝑡2 ( 𝑓 )
Fit shear spectra over two ranges

Fit Tt spectra over two ranges

(Eq. 33)

Calibrate averaged voltages
𝑇1 and 𝑇2 (Eq. 6), 𝑃 (Eq. 12), and𝑊 (Eq. 13)

Derive viscosity and thermal diffusivity
Use measured 𝑇 and 𝑃 together with 𝑆 from SOLO-II CTD

𝑁seg = 512, 𝑁fft = 256, 𝑓l, 𝑓m, 𝑓h = 1,3,5Hz, 𝐶2𝑃 = 77psiV−1 (Appendix B)

Calculate the correction factors
𝐹Na (Eq. 20) and 𝐹Kr (Eq. 30)

Correct initial estimates
𝜖init → 𝜖 (Eq. 17) and 𝜒init → 𝜒 (Eq. 29)

Combine 𝒇l– 𝒇m and 𝒇m– 𝒇h fit values
𝜖 (Eqs. 24 and 26) and 𝜒 (Eq. 34)

Repeat above step for thermal dissipation
For 𝑇𝑡1 and 𝑇𝑡2, get 𝜒init for 𝑓l– 𝑓m and 𝑓m– 𝑓h (Eq. 33)

Calculate four ‘initial’ turbulent dissipation values
For 𝑆1 and 𝑆2, get 𝜖init for 𝑓l– 𝑓m and 𝑓m– 𝑓h (Eq. 23)

∑
𝑓 𝑓 1/3Ψ𝑠1 ( 𝑓 )/

∑
𝑓 𝑓 2/3

—"— —"—
∑

𝑓 𝑓 1/3Ψ𝑠2 ( 𝑓 )/
∑

𝑓 𝑓 2/3

—"— —"—

over 𝑓l– 𝑓m
over 𝑓m– 𝑓h

over 𝑓l– 𝑓m
over 𝑓m– 𝑓h

(Eq. 23)

∑
𝑓 𝑓 1Ψ𝑇𝑡1 ( 𝑓 )/

∑
𝑓 𝑓 2

—"— —"—
∑

𝑓 𝑓 1Ψ𝑇𝑡2 ( 𝑓 )/
∑

𝑓 𝑓 2

—"— —"—

over 𝑓l– 𝑓m
over 𝑓m– 𝑓h

over 𝑓l– 𝑓m
over 𝑓m– 𝑓h

Calculate goodness of fit of spectra
𝜖 fit score (Eq. 25) and 𝜒 fit score (Eq. 35)

Fig. 11. Summary of the data reduction scheme. Each 512-element segment of data is ultimately compressed

down to the 15 highlighted quantities that are then transmitted. These are calibrated and/or converted into

turbulence quantities in post-processing.
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One luxury we lose is the ability to inspect the raw signals. Typically this would help to404

(i) cultivate faith in the data, (ii) flag which segments to discard, and (iii) inform work-arounds405

such as filtering out potential narrowband vibrations in shear spectra. Our scheme accounts for406

this constraint in two ways. First, we fit spectra over relatively low frequencies (1–5Hz) that are407

unlikely to be affected by noise or vibration. Second, we reduce the data in a way that uses as little408

arithmetic as possible. Obviously, we cannot reverse-engineer the raw signals, but by making the409

26

Figure 11. Summary of the data reduction scheme. Each 512-element segment of data is ultimately compressed

down to the 15 highlighted quantities that are then transmitted. These are calibrated and/or converted into turbulence

quantities in post-processing.

and profiling velocity of 120 m and 0.2 m s−1. Each dive creates 15× 2× 120 m / (0.2 m s−1× 5.12s) ≈385

3500 quantities. Transmitting each quantity as a 16-bit word equates to approximately 7 kB per dive.

One luxury we lose is the ability to inspect the raw signals. Typically this would help to (i) cultivate

faith in the data, (ii) flag which segments to discard, and (iii) inform work-arounds such as filtering out

potential narrowband vibrations in shear spectra. Our scheme accounts for this constraint in two ways.
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First, we fit spectra over relatively low frequencies (1–5 Hz) that are unlikely to be affected by noise or390

vibration. Second, we reduce the data in a way that uses as little arithmetic as possible. Obviously, we

cannot reverse-engineer the raw signals, but by making the onboard calculations simple we give ourselves

the best chance to later fix or identify any unforeseen issues.

Although the onboard reduction eliminates possibilities in how we process turbulence data, it opens

up possibilities in how we obtain turbulence data. By visualizing how turbulence evolves over successive395

dives in near-real-time, we can concentrate on regions of interest by adapting the dive schedule to profile

more frequently or to different depths. If instead we encounter quiescent periods, we might consider

profiling less frequently and thereby conserving battery life. Our ultimate objective is to treat FCS floats

as expendable.

Appendix A: Transfer functions for FCS sensors400

Voltage signals from shear probes and thermistors are a smoothed representation of the true environmental

signal. If the smoothing is a spatial effect, it is described by a transfer function H2(k). If the smoothing is

a temporal effect, it is more natural to use H2( f ). We can use these interchangeably because f = Wk and

therefore H2( f ) = H2(Wk). For FCS, there are three components to the transfer function for each sensor:

H2
s (k) = H2

SP(k)H2
AA( f )H2

D( f ) (A1)405

H2
Tt(k) = H2

FT( f )H2
AA( f )H2

D( f ) (A2)

where we have used the following shorthand: SP = shear probe, FT = fast thermistor, AA = anti-aliasing,

and D = digital. We describe each of these in turn.

Shear probes built and calibrated by the Ocean Mixing Group are very close in dimension to those

examined by Ninnis (1984) who measured their wavenumber response and represented it as410

H2
SP (k) =

4

∑
n=0

an

(
k
k0

)n

(A3)

where a0 = 1.000, a1 =−0.164,a2 =−4.537,a3 = 5.503, a4 =−1.804, and k0 = 170 cpm.
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Temporal averaging of temperature at high frequencies due to the thermal response of the fast thermistor

is modeled following Sommer et al. (2013) and Lien et al. (2016):

H2
FT( f ) =

1

(1+(2π f τ)2)2 (A4)415

where τ = 0.01 s so that H2
FT(5Hz) = 0.83. Note that there is large sensor-to-sensor variation among

thermistors, which means there is not one true thermal response correction (Nash et al. 1999). Compared

to Sommer et al. (2013), other nominal corrections tend to be less aggressive (see, e.g., Bluteau et al.

2017). Our reduced scheme is built in such a way that a different correction can be applied in post-

processing if desired.420

Raw shear and thermistor voltage signals are both subject to two filters. First, an analog antialiasing

filter (two-pole Butterworth) with an fc = 40 Hz cut-off:

H2
AA( f ) =

1
1+( f / fc)4 . (A5)

After the analog signal is anti-aliased, it is digitized at 400 Hz. Before subsampling to the final 100 Hz

output, the signal is digitally filtered. For the 2019 FCS cruise, the signal was convolved with a symmetric425

29-element kernel in which the first 15 elements were

gi = (216−1)−1× [52,221,393,427,174,0,0,0,0,0,

1970,5054,8202,10558,11433]. (A6)

This is a sinc kernel but with negative values set to zero. (We are currently investigating better choices for

future implementations). The filter has a half-power (−3 db) point at 25 Hz.430

Appendix B: Identifying the start and end of a profile

Early in our processing routine, we partition the raw voltage signals into 512-element segments. In order to

discard the segments in which FCS was not profiling, we need robust (yet simple) criteria that demarcate

the start and end of a profile. For the start, we search for the first three consecutive segments in which

Wmin > 0.05 m s−1. For the end, we swap the inequality.435

A drawback of this approach is the appearance of a quantity in physical units (0.05 m s−1). This is the

one instance where we hard code a calibration coefficient in the onboard software, rather than apply it in
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post-processing. Fortunately, the relevant coefficient can be approximated as constant: C2P = 76.7 psi V−1

(barring a redesign of the circuitry or the use of a different brand or model of pressure sensor). For the two

units already built, C2P = 76.81 psi V−1 and 76.53 psi V−1. By comparison, among the four shear probes440

on the two units, the calibration coefficients vary by 30%.

At least for the initial implementation of our scheme, we do not include an algorithm to detect the

surface to within centimeters. Doing so would let us work backward to put our uppermost depth bin as

close to the surface as possible. However, we expect that this could be a fragile part of the scheme. Further,

FCS lacks a micro-conductivity sensor, which is likely the sensor best suited for identifying the air–sea445

interface (e.g., Ward et al. 2014).

Without surface detection, the depths of the uppermost bins will be realized randomly. In the worst

cases, we would discard the top ∼1 m (5 s at ∼0.2 m s−1). To alleviate this, we may use half-overlapping

bins near the surface. The exact implementation will be determined later in the development.

Appendix C: Least-squares fitting of power laws450

In this paper, we use power law fits to derive turbulence quantities: Ψs = Aε f 1/3 and ΨTt = Aχ f 1, where

Aε and Aχ are substitutes for the expressions in Eqs. 22 and 32. With only a single parameter for each fit,

implementing a least-squares fit is easy.

Assume we are fitting the vector Ψi to the function A f n
i where n is either 1/3 or 1. The sum of squared

residuals is therefore455

∑r2
i = ∑(Ψi−A f n

i )2 . (C1)

The minimum with respect to A is where the derivative is zero:

∂
∂A ∑r2

i = ∑−2 f n
i (Ψi−A f n

i ) = 0. (C2)

Hence,

A =
∑ f n

i Ψi

∑ f 2n
i

. (C3)460

We had originally intended to find A by following Becherer and Moum (2017), who were fitting f 1/3

spectra. Their simpler method, A = ∑(Ψi/ f n
i ), is equivalent to a least-squares fit except that the quantity
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minimized is the sum of the squares of the adjusted residuals, where adjusted means divided by f n.

Differences can be ignored when n = 1/3, but not when n = 1.

Appendix D: Standard processing of FCS turbulence measurements465

The standard processing of FCS turbulence data differs from the reduced scheme in three ways. First,

raw data are despiked differently (Appendix E). Second, the 100 Hz raw voltage signals are calibrated

into physical quantities right away. Hence, means and spectra are calculated in physical units, not voltage

units. Third, the integration of spectra occurs over a variable wavenumber band, which is found iteratively.

When integrating shear spectra (after correction; Appendix A) to find ε , we follow the approach used470

for the Chameleon profiler (Moum et al. 1995). A first estimate of ε is made by integrating over k = 4–

10 cpm. This value provides a first estimate of the Kolmogorov wavenumber ks = (ε/ν3)1/4/2π . (The

lower limit for Chameleon is 2 cpm, but we increase this for FCS given its slower profiling speed and

hence the possibility of contamination by waves at lower wavenumbers.) The upper integral limit is then

set to 0.5ks (with a minimum of 10 cpm and a maximum of 45 cpm). The Nasmyth spectra (Eq. (15)) is475

integrated over the same wavenumber range. If the measured and Nasmyth integrals are within 1%, then ε

is set equal to the integral of the Nasmyth spectrum over all k. Otherwise, ε and ks are adjusted iteratively

until the two integrals agree.

A similar approach is used for integrating Tt spectra to find χ . The model spectrum is the Kraichnan

spectrum (Eq. (27)) and, again, the lower limit of integration is 4 cpm. The upper limit is the Batchelor480

wavenumber kb = (ε/νD2
T )1/4/2π (with a maximum defined by kW = 15 Hz).

Appendix E: Identifying and removing noise and spikes in the shear signals

To properly despike the raw output of a shear probe requires several steps. Lueck et al. (2018) describe

a process in which the signal is high-passed, then rectified, and then low-passed to derive a measure of

the local variance. A value is defined as a spike if it is more than eight times (or similar threshold) above485

the local variance. Spikes are replaced with an average based on surrounding points. This process is then

repeated on the new signal, and so on until no spikes are identified.
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In our standard processing of FCS data, we use the Lueck et al. (2018) despiking routine. For our

data reduction scheme, we use an approach that is easier to implement and quicker to compute, albeit

less precise. For each 512-element segment of data, a spike is defined as any data point larger than three490

standard deviations from the mean. These spikes are replaced by the mean of remaining values in the

segment.

Code availability. Our Matlab implementation of the processing code is available from github.com/OceanMixingGroup/

flippin-chi-solo.

Data availability. Raw and processed data for the 2019 experiment are available at doi.org/10.5281/zenodo.5719505495

or kghughes.com/data.
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