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Abstract. Autonomous and expendable profiling float arrays such as deployed in the Argo Program re-

quire the transmission of reliable data from remote sites. However, existing satellite data transfer rates

preclude complete transmission of rapidly sampled turbulence measurements. It is therefore necessary to

reduce turbulence data onboard. Here we propose a scheme for onboard data reduction and test it with ex-

isting turbulence data obtained with a modified SOLO-II profiling float. First, voltage spectra are derived5

from shear probe and fast thermistor signals. Then, we focus on a fixed frequency band that we know

to be unaffected by vibrations and that approximately corresponds to a wavenumber band of 5–25 cpm.

Over the fixed frequency band, we make simple power law fits that—after calibration and correction in

post-processing—yield values for the turbulent kinetic energy dissipation rate ε and thermal variance

dissipation rate χ . With roughly 1 m vertical segments, this scheme reduces the necessary data transfer10

volume 300-fold to approximately 2.5 kB for every 100 m of a profile (when profiling at 0.2 m s−1). As

a test, we apply our scheme to a dataset comprising 650 profiles and compare its output to that from our

standard turbulence processing algorithm. For ε , values from the two approaches agree within a factor

of two 87% of the time; for χ , 78%. These levels of agreement are greater than or comparable to that

between the ε and χ values derived from two shear probes and two fast thermistors, respectively, on the15

same profiler.

1 Introduction

Measurements of oceanic turbulence have been made since the 1950s using platforms and sensors of

various shapes and sizes (Lueck et al. 2002). Complete resolution of the turbulence requires measuring

1



temperature and velocity gradients at millimeter-to-centimeter scale. Hence, sampling turbulence is data20

intensive. Whereas conventional profiling measurements of temperature, conductivity, and pressure are

typically sampled at 1 Hz (e.g., Argo floats; Roemmich et al. 2019a), a turbulence profile involves sam-

pling multiple sensors at 100–1000 Hz. A relatively minimal requirement of five separate signals sampled

at 100 Hz and recorded at 16-bit resolution equates to 1 kB s−1, or 500 kB per 100 m of profiling range at

0.2 m s−1 profiling speed. For floats, this is not a trivial volume of data. For example, transmitting only25

3 kB of data from a Deep SOLO float takes 100–200 s (Roemmich et al. 2019b). Extended surfacings also

present a danger from surface vessels and vandals. Ultimately, raw turbulence profiles are two-to-three

orders of magnitude too large to transmit in a reasonable amount of time.

One approach to reducing turbulence data is given by Rainville et al. (2017) who use it for multi-month

glider missions. Onboard the glider, they calculate spectra of raw voltage signals reported by the shear30

probes and fast thermistors and then band average each of these spectra into 12 bins. After transmission,

these binned values are calibrated and fit to model spectra. In other words, they (i) postpone calibration

and (ii) minimize the data manipulation and processing that happens onboard. These two strategies are

shared by our scheme (and also shared by the reduction scheme developed for χpods; Becherer and Moum

2017). Otherwise, however, our scheme differs from that of Rainville et al. (2017) as it does not suit our35

scientific goals of measuring turbulence over the upper ∼120 m at high vertical resolution (e.g., ∼1 m)

and as frequently as possible (see Sect. 2). Two shear probes and two fast thermistors would produce

(2+2)×12 = 48 spectral values per segment. Even without considering the other profiling quantities, the

spectral values could add up to >20 kB per dive for our scenario. We would be spending as much time

transmitting the data as actually measuring the ocean.40

Our scheme is for profiling instruments that contain shear probes and, optionally, fast thermistors

(Sect. 2). First, we document the necessary calibration details (Sect. 3). Next, we compress raw shear

voltages by way of simple power law fits and show how ε is derived from these fits in post-processing

(Sect. 4). A test of the scheme employing 650 profiles demonstrates that little accuracy is sacrificed in re-

turn for a large reduction in data volume (Sect. 5). Knowing ε from the shear probe measurements makes45

possible a similar method for deriving χ from fast thermistor measurements (Sect. 6 and 7). Adapting the

scheme to a different profiler requires minimal modification (Sect. 8). For our setup, the scheme reduces

the dataset size by a factor of ∼300: only 2.5 kB for each 100 m of a profile (Sect. 9).
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2 The Flippin’ χSOLO (FCS)

We intend our data reduction scheme to be sufficiently general to be portable to all vertical turbulence50

profilers that contain shear probes. It can also be used with gliders if a measure of flow speed past the

sensors is available (e.g., Greenan et al. 2001; Merckelbach and Carpenter 2021). In a general sense,

some of the values specified herein ought to be considered variables (Sect. 8). However, we do have a

particular platform for which we are developing the scheme: the Flippin’ χSOLO (FCS), and the values

used here are chosen for the objective of detailed upper ocean profiling.55

FCS is a descendant of the SOLO-II profiling float (Roemmich et al. 2004) with the addition of a turbu-

lence package and extra functionality. The turbulence package includes two shear probes (Osborn 1974)

to measure small-scale velocity gradients from which ε is computed, two fast thermistors to measure

small-scale temperature fluctuations from which χ is computed, and a pressure sensor from which pro-

filing speed is derived. FCS also includes a three-axis accelerometer that is used to measure the surface60

wave field (although with a method not described in this paper). Accelerometer data from when FCS is

profiling are not used in our reduction scheme. FCS and its measurements are described more completely

in companion paper (Moum et al. under review).

To reverse profiling direction, FCS adjusts buoyancy and flips via internal shifting of the battery pack.

This causes the turbulence sensors to always point into undisturbed fluid. Flipping therefore permits pro-65

filing on both descent and ascent including sampling of the upper 5 m on the ascent.

As a prototype, a standard (non-flipping) SOLO float with a modified χpod (Moum and Nash 2009)

attached was deployed in the Bay of Bengal to measure the suppression of turbulence by salinity stratifi-

cation (Shroyer et al. 2016). This instrument—named χSOLO—did not have shear probes, and therefore

could not have provided estimates of ε within mixed layers. (Values of ε can be approximated from χ ,70

but only if there is stratification.) Nevertheless, χSOLO’s success motivated the development of the FCS

units with flipping capabilities and fully integrated turbulence packages. These new instruments retained

the χ or C in their name despite their ability to also directly measure ε from shear probes.

Two FCS units were vetted over four days in May 2019 off the Oregon coast. During this period, each

unit profiled from the surface to ∼120 m and back at a typical speed of 0.2 m s−1. Adding time at the75

surface, each dive cycle took ∼30 minutes and we obtained 650 profiles in total. In this 2019 experiment,
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one of the shear probes on one of the two units malfunctioned. Hence, the dataset for this paper contains

approximately 25% fewer shear data than fast thermistor data.

3 Conversion of measured voltages to physical units

The core of our data reduction scheme uses power law fits of voltage spectra that are calculated onboard,80

and subsequently converted to meaningful turbulence quantities in post-processing. Additional voltage

quantities are also recorded to determine temperature, pressure, and profiling speed.

3.1 Nomenclature and conventions

– All quantities measured by FCS that are discussed in this paper are sampled at 100 Hz.

– All voltage spectra are frequency spectra and denoted Ψx( f ) (where x is a label such as s for shear)85

with units of V2 Hz−1.

– Physical spectra of shear and temperature gradient are wavenumber spectra and denoted Φx(k) with

units of s−2 cpm−1 and K2 m−2 cpm−1, respectively. Figure 4 is an exception in which shear spectra

are frequency spectra: Φs( f ).

– Wavenumber k has the unit cycles per meter (cpm). Expressions quoted from other papers may90

differ by factors of 2π for wavenumbers in radians per meter.

– The Kraichnan model spectrum ΦKr primarily depends on the dissipation rates of turbulent kinetic

energy and temperature variance (ε and χ), but it also depends on the molecular viscosity ν and

molecular thermal diffusivity DT . For brevity, we write ΦKr(k,ε,χ) rather than the more complete

ΦKr(k,ε,χ,ν ,DT ). Similarly, the Nasmyth spectrum is written ΦNa(k,ε) rather than ΦNa(k,ε,ν).95

In cases where the arguments are unambiguous or unimportant, we simply write ΦNa and ΦKr.

– A pair of angle brackets, ⟨·⟩, denotes the mean value over a segment of length Nseg = 512 data

points. This equates to ∼1 m at our nominal profiling speed of 0.2 m s−1.
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– To calculate spectra for a given 512-element voltage segment, we first remove the linear trend, then

use three half-overlapping, Hamming-windowed, 256-element subsegments (i.e., Nfft = 256,Noverlap =100

128).

In general, the values of Nseg and Nfft are variables. Our choices are based on the 100 Hz sampling

(∼500 cpm) and the goals of FCS, which include obtaining high-vertical-resolution turbulence data, es-

pecially near the surface. For different turbulence profilers or different scientific goals, longer segments

and/or more overlapping subsegments may be more appropriate (see Sect. 8).105

We do not pursue the possibility of using accelerometers to decontaminate spectra (e.g., Levine and

Lueck 1999); three subsegments is too few for this to work well. Rather, we focus on a frequency band

that we know to be unaffected by vibration.

3.2 Shear calibration

The voltage reported by the shear probe Vs is linearly proportional to shear:110

uz =
α

W 2Vs (1)

α = 1/(2
√

2ρGsTsSs) (2)

where W is the flow speed past the sensor. The overall engineering calibration α includes the seawater

density ρ , the analog circuit gain Gs (equal to 1 for FCS circuitry), the probe sensitivity Ss (∼0.25×
10−3 V m2 N−1) and the differentiator time constant Ts (∼1 s). The linearity in Vs admits a simple link115

between the physical and voltage spectra:

Φuz(k) =
1

H2
s (k)

α2

W 3 Ψs( f ). (3)

where H2
s (k) is the transfer function that accounts for (i) spatial averaging by the shear probe of high-

wavenumber motions and (ii) analog and digital filtering of the raw voltage signal (see Appendix A).

Note also the use above of the following relation:120

Ψ( f ) = Ψ(k)
dk
d f

=
Ψ(k)

W
. (4)
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3.3 Temperature and temperature gradient calibration

Two voltage signals are recorded for each fast thermistor. VT is the voltage output directly related to T and

VTt is the differentiated output, which improves resolution at high frequencies (≳10 Hz). Temperature is

related to VT through a quadratic calibration:125

T =C1T +C2TVT +C3TV 2
T (5)

⟨T ⟩=C1T +C2T ⟨VT ⟩+C3T ⟨VT ⟩2 (6)

where C1T , C2T , and C3T are coefficients determined from lab calibrations. Eq. (6) is technically an ap-

proximation because it contains ⟨VT ⟩2, not
〈
V 2

T
〉
, but over 5 s time scales this changes ⟨T ⟩ by ≲0.001°C

(estimated from the 2019 dataset).130

The gradient of the temperature calibration is

∂T
∂VT

=C2T +2C3TVT =C2T +2C3T ⟨VT ⟩ . (7)

Consequently, the small-scale vertical temperature gradient Tz is linearly proportional to the differentiated

voltage VTt . To demonstrate, we first rewrite Tz in terms of more directly measured quantities:

Tz =
∂T
∂ z

=
∂T
∂VT

∂VT

∂ t
∂ t
∂ z

. (8)135

The first quantity on the right-hand side is Eq. (7), the last is 1/W , and the second is

∂VT

∂ t
=

VTt

CTt
(9)

where CTt is the gain of the analog differentiator.

Rewriting Eq. (8), the aforementioned linear relationship between Tz and VTt becomes

Tz =

(
C2T +2C3T ⟨VT ⟩

CTtW

)
VTt . (10)140

The relationship between physical and voltage spectra is therefore

ΦTz(k) =
1

H2
Tt(k)

(
C2T +2C3T ⟨VT ⟩

CTt

)2 1
W

ΨTt( f ). (11)

Again, we have invoked Eq. (4) and the transfer function H2
Tt(k) is defined in Appendix A.
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3.4 Pressure and profiling velocity calibration

Pressure has a linear calibration:145

P [dbar] =
C1P +C2PVP

1.45psidbar−1 − patm. (12)

In our usage, the coefficients C1P and C2P are recorded in units of psi and psi V−1, respectively, and

calibrated under total pressure. Subtracting atmospheric pressure makes P = 0 at the sea surface. The

constant C1P must account for the vertical position of the pressure sensor on the instrument relative to the

shear probes and thermistors. Hence, C1P differs between upcasts and downcasts. For the reduced dataset,150

we record the last pressure voltage in each segment. For example, with Nseg = 512, we save the 512th,

1024th, and 1536th values of VP for the first three segments. The average pressure in the second and third

segment are 0.5(VP(1024)+VP(512)) and 0.5(VP(1536)+VP(1024)), respectively. The average pressure

in the first segment is found by extrapolation.

The flow speed past the sensors, denoted W , is derived from the rate of change of the pressure voltages155

just described:

⟨W ⟩= C2P

1.45
|∆VP|
Nseg∆t

(13)

where ∆t is the sampling period (here 0.01 s) and ∆P is VP(1024)−VP(512) and VP(1536)−VP(1024) for

the second and third segments, respectively. Extrapolation is again used for the first segment.

No smoothing is necessary before calculating ∆VP because its magnitude is so much larger than the160

quantization of the signal (this being the limiting factor for precision of pressure recorded by FCS). In

physical units, P is precise to 0.003 dbar, which is O(300) times smaller than ∆P.

Wave orbitals can introduce variability when W is small (≲0.15 m s−1). As a diagnostic we calculate

and record the minimum value of W for each segment. This also helps to identify the beginning and end of

profiles as shown in Appendix B. In standard processing, we would derive W (t) from the pressure signal165

low passed at 2 Hz. To avoid the need to low-pass filter the signal onboard, we instead make 10 estimates

of W (t) per segment and take the minimum of these:

Wmin =
C2P

1.45
min

( |∆VP(ti)|
50∆t

)
︸ ︷︷ ︸

Calculate onboard

(14)
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where ti = 1,51,101, . . . ,501. Even with this sampling of every 50th element, which follows from sub-

sampling a 100 Hz signal at 2 Hz, ∆VP(ti) is large enough that smoothing is unnecessary.170

In this paper, we immediately discard all segments in which Wmin < 0.05ms−1. This threshold is

reached only at the top and bottom of profiles, if at all. Note, however, that this does not imply that a

segment with Wmin > 0.05 m s−1 is trustworthy. Even segments with Wmin closer to 0.15 m s−1 should be

treated with particular caution. Signs that a segment is questionable are that ⟨W ⟩ and Wmin differ by ∼20%

or more and that spectral fit scores are low (see Sect. 4.3 and 6.3). These two issues often co-occur be-175

cause of the nonlinear relationship between shear and profiling speed (Eq. 1). Low frequency variations in

W ultimately lead to spectra that are redder than expected, and hence have low fit scores. Such segments

should be discarded. There is not a simple way to correct the spectra given the nonlinearity.

4 Reduction of shear data

In this section, we are ultimately going to fit measured spectra to an inertial subrange model that does not180

necessarily apply at the relevant frequencies or wavenumbers. We will elaborate as we go, but we want to

emphasize in advance that measured spectra do not need to conform to an inertial subrange model for us

to obtain accurate values of ε . The inertial subrange is merely a convenient starting point.

4.1 Summarizing Nasmyth spectra with f 1/3 fits

Shear measurements ideally capture both the inertial and viscous subranges and hence use a wide band of185

the measured spectrum to derive values for ε . In practice, noise and sensor resolution limit how well the

true environmental spectrum is resolved. Conventional work-arounds exploit the Nasmyth model spec-

trum ΦNa(k,ε) (Nasmyth 1970; Oakey 1982). One approach is to iterate toward a solution in which the

integral of ΦNa over a specific wavenumber band matches that of the measured spectrum Φuz (e.g., Moum

et al. 1995). Another is to find the best fit of Φuz to ΦNa by using maximum likelihood estimation together190

with a model of the expected statistical distribution of the spectral coefficients being fitted (e.g., Bluteau

et al. 2016).

Here we develop a new and simpler two-stage approach to fitting shear spectra to ΦNa. In the first stage,

we use an f 1/3 power law fit over a fixed frequency range of fl to fh = 1–5 Hz, where f 1/3 follows from
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the assumption that we are fitting over the inertial subrange. In the second stage, we correct for when this195

often-invalid assumption.

In the inertial subrange, shear spectra are proportional to k1/3 and hence also f 1/3 since f =Wk. With

Nfft = 256 and 100 Hz sampling (Sect. 3.1), spectral coefficients are separated by frequency increments of

100 Hz/256 = 0.39 Hz, so there are 10 coefficients between 1 and 5 Hz. (Our processing code will actually

use bounding frequencies of 0.98 and 4.88 Hz as these are half-integer multiples of 0.39 Hz, but for brevity200

we will write these as 1 and 5 Hz throughout.)

Our choice of fl = 1Hz is dictated by a requirement that we avoid low frequency contamination induced

by (i) advection by wave orbital motion and (ii) pitch and roll motions of the profiler. Together, these

dominate below 0.3 Hz. Setting fl = 0.5 Hz would add only one more spectral coefficient. Our choice of

fh = 5Hz is a trade-off between maximizing the bandwidth of the fit and minimizing how much measured205

spectra are subject to either noise or viscous roll off. Other profilers may benefit from different frequency

bounds (see Sect. 8).

Our inertial subrange assumption is often false. Indeed, ‘assumption’ is perhaps a misnomer as we

do not expect it to be true; we know that viscous roll off will often occur at frequencies lower than 5 Hz

(25 cpm for a nominal value of W = 0.2 m s−1). However, because there exists an analytical expression for210

the viscous roll off, we are able to derive an exact expression that quantifies how much ε is underestimated.

This is the second stage of our approach. We derive an expression for the correction function FNa in such

a way that it can be calculated in post-processing. The benefits of this approach are that (i) we can fit

uncalibrated (i.e., voltage) spectra and (ii) it simplifies the actual onboard fitting routine (Sect. 4.2).

The full Nasmyth spectra and its inertial range approximation are as follows (Lueck 2013):215

ΦNa(k,ε) =
ε3/4

ν1/4
8.05(kη)1/3

1+(20.6kη)3.715 (15)

ΦNa(k ≲ 0.02/η ,ε) = 8.05k1/3ε2/3 (16)

where η = (ν3/ε)1/4 is the Kolmogorov length scale.

Let εinit denote the initial value of ε that comes from fitting a measured spectrum to the approximate

form in Eq. (16) using the simple power-law fitting method in Appendix C, rather than fitting to the full220

form in Eq. (15). As noted earlier, the fit will be over the fl– fh = 1–5 Hz range which, given our nominal

value of W = 0.2 m s−1, equates to kl–kh = 5–25 cpm.
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Consider two contrasting examples of low and high turbulence with ε = 1×10−9 and 1×10−6 W kg−1,

respectively (Fig. 1a). For now, assume the measured spectrum to be fit is itself a Nasmyth spectrum.

For ε = 10−6 W kg−1 the f 1/3 fit lies on top of ΦNa. Conversely, the f 1/3 fit for the smaller ε value225

is seemingly meaningless: the f 1/3 fit (dashed line) does not even match the sign of the slope of ΦNa.

Worse yet, naively inverting this initial fit produces the underestimate εinit = 1.2× 10−10 W kg−1, eight

times smaller than the true value of ε . However, by adjusting by a factor of 1/FNa, defined in the following

paragraph, the fit (dotted line) looks like a hypothetical extrapolation of the inertial subrange. Equivalently,

εinit is corrected to the true value of ε as230

ε = εinit/F3/2
Na . (17)

In our example, 1× 10−9 W kg−1 = 1.2× 10−10 W kg−1 / 0.2383/2. The value of 0.238 is the solution to

an implicit equation derived below that depends on εinit and W . For clarity, our demonstration starts by

assuming we know ε rather than εinit.

Nasmyth spectra can be flattened to unity over the inertial subrange with the normalization 8.05k1/3ε2/3235

(Fig. 1b). Values of FNa are based on the mean of these flattened spectra over the wavenumber range kl–kh

(= fl/W– fh/W ):

FNa =
1

kh − kl

kh∫
kl

ΦNa(k,ε)
8.05k1/3ε2/3 dk. (18)

To remove the dependence of the true value of ε , we substitute Eq. (17) to produce an implicit function

for FNa, which can be solved numerically:240

1
kh − kl

kh∫
kl

ΦNa(k,εinit/F3/2
Na )

8.05k1/3ε2/3
init /FNa

dk−FNa = 0. (19)

Note how the two forms of FNa (Eqs. 18 and 19) are defined with different arguments. For our exam-

ple, FNa(ε = 1×10−9 W kg−1) = FNa(εinit = 1.2×10−10 W kg−1) = 0.238. Hereafter, we use the latter:

FNa(εinit).

With fl and fh fixed, FNa is a function of three variables: εinit, W , and ν . FNa is closer to one (less of a245

correction) for larger values of εinit (Fig. 1). It is also closer to one for higher values of W (Fig. 2) since kl

and kh decrease with increasing W (i.e., kl–kh moves closer to the inertial subrange).
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Figure 1. Calculation of the correction function FNa for two values of ε . For ε = 1× 10−6 W kg−1, a k+1/3 power

law is a good approximation of the Nasmyth spectrum over the frequency range fl– fh (1–5 Hz) for a profiling speed

of W = 0.2 m s−1. Although the same is not true for ε = 1× 10−9 W kg−1, we can account for the roll off with a

factor of FNa. FNa can be defined in terms of either ε (Eq. (18)) or εinit (Eq. (19)). Panel b takes the former approach.

In practice, we must take the latter approach since we do not know ε until after it is derived from εinit and FNa.

To simplify calculations in the upcoming section, we make one final change to Eq. (19) using the

substitution

ΦNa(k,ε)→ H2
s (k)ΦNa(k,ε). (20)250

11



0.1 0.2 0.3
−10

−8

−6

−4

0.0 0.2 0.4 0.6 0.8 1.0
FNa

W (m s−1)

lo
g

1
0

(ε
in

it
 (

W
k

g
−1

))

Figure 2. The correction function FNa for ν = 1×10−6 m2 s−1 and fl– fh = 1–5 Hz.

Therefore,

1
kh − kl

kh∫
kl

H2
s (k)ΦNa(k,εinit/F3/2

Na )

8.05k1/3ε2/3
init /FNa

dk−FNa = 0. (21)

Think of this substitution in Eq. (20) as inverting the conventional way that H2
s (k) is invoked. Usually, a

measured shear spectrum is amplified at high wavenumbers by 1/H2
s (k) and then fit to the model spectrum

ΦNa. Here, instead of amplifying the measured spectrum, we reduce the model spectrum. With this latter255

approach, H2
s (k) is calculated and applied only during the post-processing stage. (It changes FNa by only

∼5% since we fit over relatively low wavenumbers.)

4.2 Obtaining εinit from shear voltage spectra

Since ε can be reconstructed from εinit, we require an expression linking εinit to the shear voltage spectrum

Ψs. Equating Eq. (3) and Eq. (16) gives260

α2

W 3 Ψs( f ) = 8.05k1/3ε2/3
init (22)
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where we have left out H2
s (k) since it has been incorporated into FNa. Rearranging and substituting k =

f/W gives

ε2/3
init f 1/3 =

α2

8.05W 8/3 Ψs( f ). (23)

Then, to solve for εinit, we use a least-squares fit (see Appendix C):265

ε2/3
init =

α2

8.05W 8/3

∑ f f 1/3 Ψs

∑ f f 2/3︸ ︷︷ ︸
Calculate onboard

(24)

where the sums are understood to be over the range fl– fh. The quantities α , W , and εinit are calculated in

post-processing.

4.3 Quality control of the shear spectral fits

Measured shear spectra are often quality controlled either by manual visual inspection or, more objec-270

tively, by quantifying the level of mismatch between them and their associated model. Possible mismatch

quantities include the mean absolute deviation or the variance of the ratio Φuz/ΦNa (e.g., Ruddick et al.

2000; Bluteau et al. 2016). We cannot calculate such quantities with our reduced scheme because we do

not know what each spectrum should look like until we calculate its ε value in the post-processing stage.

(Recall that ΦNa is a function of ε .) By this stage, we have lost information about the spectral shape275

through the summing operation in Eq. (24).

To retain at least some information about the shape of each voltage spectrum, we will split the 1–5 Hz

range and compute two fits rather than one. Doing so allows for a first-order check that the spectrum over

the 1–5 Hz range approximately follows the expected shape.

Mathematically, there is nothing special about our choice fl– fh = 1–5 Hz. In theory, we can split the280

1–5 Hz range into two (1–3 Hz and 3–5 Hz) and obtain a value of εinit for each. These values will differ,

but so will the associated values of FNa. For a measured spectrum that conforms to a Nasmyth spectrum,

the two values of ε calculated with Eq. (17) will not differ (Fig. 3). We therefore calculate onboard the

sums in Eq. (24) over both fl– fm and fm– fh, where the mid frequency fm = 3 Hz. (In our code, fm is

actually 7.5×0.39 Hz = 2.93 Hz for the reason given in Sect. 4.1.) Hence, for each spectrum we are able285

to post-process to recover two independent estimates of ε , denoted εl–m and εm–h. The mean of these

13



two provides a single, final value for ε , and their ratio quantifies the match of a measured spectrum to a

Nasmyth spectrum over the range fl– fh:

ε = mean(εl–m,εm–h) (25)

ε fit score =
min(εl–m,εm–h)

max(εl–m,εm–h)
. (26)290

The best possible fit score is 1; the lower the score, the poorer the fit. The example spectra in Fig. 4

show that a high fit score does not necessarily imply small residuals. Rather, fits with high scores are

typically those with random residuals meaning that a given measured spectral coefficient is just as likely

to be above the fit as below it. Fits with low fit scores are typically those with autocorrelated residuals

meaning that the sign and/or magnitude of a residual is correlated with that of its neighbors. In practice,295

we expect a range of ε fit scores: instantaneous and unaveraged spectra differ from the Nasmyth spectrum

because they are derived from a limited sampling of a statistical process, and because of non-stationarity,

anisotropy, and inhomogeneity of the turbulence.

When ε is small (≲10−9 W kg−1), the fit score may be consistently low if spectral coefficients in the

fm– fh range are affected by noise and consequently εm–h ≫ εl–m. For such cases, we choose to use only300

the lower-frequency fit. We would rather have a more accurate estimate of ε and forgo the fit score than

have a biased-high ε value with a biased-low fit score. (Either way, the small values of ε in question will

have minimal effect on any averages given that turbulence distributions have high kurtosis, so high values

dominate means.) Specifically,

ε = εl–m

ε fit score = —

 if 0.1W
(εl–m

ν3

)1/4
< fm, (27)305

where the threshold is equivalent to k < 0.1/η with η the Kolmogorov length scale estimated from εl–m.

For reference, ΦNa peaks at k = 0.026/η and rolls off to 11% of its maximum by k = 0.1/η (see Eq. (15)).

5 Test of the reduction scheme for ε

To test the accuracy of the shear reduction scheme described in the previous section, we apply it retro-

spectively to the dataset from the 2019 test cruise (Sect. 2). We compare the results to those obtained310
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Figure 3. A visual demonstration of how the ε fit score (Eq. (26)) characterizes better and worse fits. For all three

of these hypothetical spectra, ε values from the two fits (1–3 and 3–5 Hz) average to ε = 1.0×10−8 W kg−1. Only

in panel a, however, does the measured spectrum agree well with the Nasmyth spectrum for this ε value. In practice,

the initial fits would be undertaken on voltage spectra; here, we are using physical units for simplicity. In all three

examples, the kinematic viscosity is ν = 10−6 m2 s−1.

with the standard processing scheme. This standard scheme (Appendix D) features a more sophisticated

despiking routine than used for our reduced scheme, which employs a three standard deviation threshold

filter (Appendix E).

A profile-by-profile comparison of the two schemes is shown in Fig. 5. The comparison is then extended

to all 650 profiles (>77 000 segments of shear), where we find that ε from the reduced scheme (εinit/F3/2
Na )315

is within a factor of two of that from the standard scheme 87% of the time over the full range of measured

values, 10−10 < ε < 10−4 W kg−1 (Fig. 6a–b). For comparison, in only 72% do we obtain a factor-of-

two agreement between the two independent values of ε measured on the unit with two working shear

probes (not shown). Further, to obtain this 87% agreement, we clearly need the correction function FNa:

Fig. 6c shows that the uncorrected values εinit only have 1:1 agreement with ε from the standard scheme320

if ε ≳ 10−7 W kg−1. For the lowest values of ε , the ratio is closer to 1:30.
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Figure 4. Examples of measured shear spectra exhibiting a range of ε fit scores (Eq. (26)). The best fits are at the top

with progressively worse fits (lower scores) moving downward. The examples in each column have (left) ε = 10−9–

10−8, (middle) ε = 10−8–10−7, and (right) ε = 10−7–10−6 W kg−1. Each score is only based on spectral coefficients

from 1–5 Hz, but lower and higher frequencies are shown for reference.

To demonstrate the ability of the ε fit score to characterize spectra, we show two-dimensional his-

tograms of non-dimensionalized spectral coefficients from all 77 000 measured shear spectra separated
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Figure 5. Testing the proposed data reduction scheme for shear measurements against the standard processing

approach. One upward and one downward profile from each of the two FCS units were arbitrarily chosen for this

comparison.

into three classes based on their ε fit score: 0.67–1.00, 0.33–0.67, and 0.00–0.33. Only the lowest scoring

class fails to collapse to the Nasmyth spectrum (Figs 7c, 7f).325

6 Reduction of fast thermistor data

The scheme to reduce fast thermistor data to enable measurement of χ is much like the scheme to reduce

shear data. As in Sect. 4, we first show how we summarize a model spectrum in terms of a power law fit

and a correction factor. (In this case, the correction factor partly depends on the values of ε calculated in

Sect. 4.) Then we derive the implementation in terms of voltages and calculate a spectral fit metric.330
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Figure 6. Statistical test of the proposed data reduction scheme for ε based on all 650 profiles (77 000 segments).

(a) A comparison that includes the dependence on ε . (b) Further summarized data that exclude this dependence.

(c) As for panel a, but uncorrected (FNa = 1).

6.1 Summarizing Kraichnan spectra with f 1 fits

Here we take the Kraichnan spectrum ΦKr (Kraichnan 1968) as our model and for its low-wavenumber

approximation we use the viscous–convective subrange, which scales as k+1. In units of K2 m−2 cpm−1,

ΦKr and its approximation are as follows (e.g., Peterson and Fer 2014):

ΦKr(k,ε,χ) = 4π2kχq
√

ν/ε exp
(
−
√

6q2πkλB

)
(28)335

ΦKr(k ≪ λ−1
B ,ε,χ) = 4π2kχq

√
ν/ε. (29)

where the Batchelor length scale λB = (νD2
T/ε)1/4 and q is a constant taken to be 5.26. This expression

does not include a k+1/3 inertial–convective subrange, which we ignore here as it increases the integral of

the temperature gradient spectrum from k = 0 to k = ∞ by less than 1% and therefore has negligible effect

on our results.340
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A fit against Eq. (29) can be rearranged to give χinit, which is related to χ through the correction

function FKr as

χ = χinit/FKr. (30)

FKr is not raised to a power like FNa (Eq. (17)). For small values of k, ΦKr ∝ χ whereas ΦNa ∝ ε2/3.

The derivation of FKr is equivalent to FNa. We therefore present only the result:345

1
kh − kl

kh∫
kl

H2
Tt(k)ΦKr(k,ε,χinit/FKr)

4π2k(χinit/FKr)q
√

ν/ε
−FKr = 0. (31)

Note that FKr(ε,χinit,W ) depends on the underestimate χinit, but the ‘true’ or ‘corrected’ value of ε calcu-

lated in Sect. 4.

6.2 Obtaining χinit from fast thermistor voltage spectra

Like we did for εinit in Sect. 4.2, we derive the expression for χinit in three steps. First, equate the right350

hand sides of Eqs. 11 and 29 (excluding the transfer function H2
Tt(k), which is incorporated into Eq. (31)):

(
C2T +2C3T ⟨VT ⟩

CTt

)2 1
W

ΨTt( f ) = 4π2kχq
√

ν/ε. (32)

Then, rearrange while substituting k = f/W to get

χinit f 1 =
1

4π2q
√

ν/ε

(
C2T +2C3T ⟨VT ⟩

CTt

)2

ΨTt . (33)355

Finally, solve for χinit using a least-squares fit (Appendix C):

χinit =
1

4π2q
√

ν/ε

(
C2T +2C3T ⟨VT ⟩

CTt

)2 ∑ f f ΨTt

∑ f f 2︸ ︷︷ ︸
Calculate onboard

. (34)

6.3 Quality control of the temperature gradient spectral fits

The approach to quality controlling the fast thermistor data is the same as that for shear (Sect. 4.3). That

is, we fit ΨTt over fl– fm and fm– fh (1–3 and 3–5 Hz). This ultimately provides two estimates of χ for360
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each spectrum, which are combined as follows:

χ = mean(χl–m,χm–h) (35)

χ fit score =
min(χl–m,χm–h)

max(χl–m,χm–h)
. (36)

We do not apply a low χ threshold equivalent to Eq. (27).

7 Test of the reduction scheme for χ365

Profiles of χ from the reduced scheme compare well to the standard processing, albeit with a small bias

in one direction for low values and in the other direction for high values (Fig. 8). Across all values, the

two approaches agree within a factor of two 78% of the time (Fig. 9). By comparison, 82% of segments

exhibit a factor-of-two agreement between χ values from the two fast thermistors on the same unit.

Compared to shear spectra, non-dimensionalized temperature gradient spectra have lower fit scores.370

Especially for the lowest fit scores, the measured temperature gradient spectra tend to be too high at lower

frequencies and too high at frequencies near fh (Fig. 10a–c). As frequency increases beyond fh, the effects

of noise and thermal response corrections (Appendix A) begin to dominate.

There are three reasons for the poorer fits to temperature gradient spectra compared to that for shear.

First, shapes of temperature gradient spectra are often more variable; the best choice for non-dimensional375

spectral model can be debated (e.g., Sanchez et al. 2011). Second, the temperature gradient fits depend on

ε , so uncertainties in ε propagate into the calculation of χ . Third, for our 2019 experiment, the recorded

temperature gradient signals were occasionally affected by digitization noise as a consequence of sam-

pling mixed layers. (Shear signals were not affected by digitization noise.)
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Figure 7. As the ε fit score decreases from top to bottom, there is a corresponding decrease in the level of agreement

and tightness of spread between (i) non-dimensionalized, measured shear spectra and (ii) the Nasmyth spectrum.

The two-dimensional histograms in the left column include only spectral coefficients with frequencies between

fl and fh; those in right column include all frequencies. The total number of spectra in this figure is lower than

in Fig. 10 because some low-ε spectra do not have scores (Eq. (27)) and because one of the shear probes failed

(Sect. 2).
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Figure 8. Testing the proposed data reduction scheme for fast thermistor measurements. The profiles used are the

same as those chosen in Fig. 5.
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total, there are 100 000 segments of data.
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8 Recommendations380

8.1 Setting the scheme’s parameters

Our scheme requires a few user-defined parameters: fl, fh, Nseg, and Nfft. For this paper, we based these

partly on the profiling speed and scientific goals of FCS. For a different profiler, we suggest the following:

– Choose fh based on a typical profiling speed such that kh = fh/W ≈ 25 cpm for a nominal profiling

speed W . For a wide range of ε values, 25 cpm is close to, or beyond, the peak of the Nasmyth385

spectrum (Fig. 1). As an example, if FCS profiled at ∼0.5 m s−1, we would consider setting fh ≈
12 Hz.

– Ensure that there are no known issues such as vibrations that are likely to adversely affect spectral

coefficients within the fl– fh range. If, however, there are known issues within the desired frequency

range, then an alternative approach (one that we did not test) is to use accelerometer signals to390

correct spectra that are contaminated by vibrations (Levine and Lueck 1999; Goodman et al. 2006).

– Define fl and fh separately for shear and temperature gradient if appropriate. Although we set them

equal here, this is not necessary.

– Use more than two fitting bands if desired. We use only two bands (1–3 and 3–5 Hz) so as to

minimize the file size to be transmitted, but there is nothing preventing there being three or more395

bands (e.g., adding a 5–7 Hz band). Indeed, this would enable improved estimates of the fit scores

(Eqs. 26 and 36) and more flexibility to discard noise-affected bands as in Eq. 27. If file size is less

of an issue such that it is possible to send back fit values for many more than two bands, then the

Rainville et al. (2017) scheme outlined in Sect. 1 maybe a better choice than ours.

– Choose Nseg and Nfft based on scientific goals and, possibly, any logistical constraints; the data400

reduction scheme is agnostic to these numbers. For example, at the expense of vertical resolution,

we could halve the file size of our transmitted dataset by doubling Nseg from 512 to 1024.

– Reasonable choices for Nfft are Nseg/2 or Nseg/4, which correspond to three or seven half-overlapping

subsegments, respectively. There is little to be gained by diving a segment into even more subseg-
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ments so as to produce smoother spectra before fitting. As Ruddick et al. (2000) notes, the task is405

analogous to fitting a line to 20 points at once or first clumping them in groups of, say, five and then

fitting the four averaged points.

8.2 Evaluating the reduced data

One step that cannot be automated is the heuristic evaluation of the reduced turbulence data after they

have been converted from voltage quantities to physical ones. For this evaluation, we recommend looking410

into multiple quantities. First consider the fit scores (Eqs. 26 and 36). We recommend discarding any ε

or χ values with an associated fit score lower than 0.33. Note, however, that these scores are not a perfect

measure of fit. They should be used together with other quality control checks such as comparing

– W and Wmin (Eqs. 13 and 14) to check whether the profiling speed is constant over a segment;

– ε values from the two shear probes; and415

– turbulent features in successive profiles.

The last point is most applicable for a vertical profiler cycling rapidly – for example, twice per hour for

FCS. In this case, the profiler is nominally sampling the same vertical fragment of the ocean on a time

scale comparable to that over which turbulence evolves. In our experience, many turbulent patches extend

over 5–10 profiles.420

Recall, also, that all uncertainty in ε propagates into the calculation of χ (Sect. 7). If ε for a given

segment cannot be trusted, neither can χ .

9 Conclusions

We have developed a data reduction scheme applicable to vertical profiling of turbulence variables in

which each ∼5 s segment is distilled to 12 quantities (Fig. 11). In post-processing, we reconstruct esti-425

mates of ε and χ , associated quality control metrics, and other quantities such as the temperature and

profiling speed. The raw data that go into the 12 quantities are seven different voltages (VP; VT and VTt

for each thermistor; and Vs for each shear probe). Hence, for each 512-element segment, we effectively

reduce the data by a factor of 512×7/12 ≈ 300.
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This reduction compresses the output data file size for each dive from megabytes to kilobytes. For430

example, the total amount of data per dive (two profiles) can be estimated assuming our nominal dive depth

and profiling velocity of 120 m and 0.2 m s−1. Each dive creates 12× 2× 120 m / (0.2 m s−1 × 5.12s) ≈
2800 quantities. Transmitting each quantity as a 16-bit float or integer equates to approximately 6 kB per

dive. This can be reduced by one-third if the spectral fit metrics are suitably scaled logarithmically and

then transmitted as 8-bit integers.435

One luxury we lose is the ability to inspect the raw signals. Typically this would help to (i) cultivate

faith in the data, (ii) flag which segments to discard, and (iii) inform work-arounds such as filtering out

potential narrowband vibrations in shear spectra. Our scheme accounts for this constraint in two ways.

First, we fit spectra over relatively low frequencies (1–5 Hz) that are unlikely to be affected by noise or

vibration. Second, we reduce the data in a way that uses as little arithmetic as possible. Obviously, we440

cannot reverse-engineer the raw signals, but by making the onboard calculations simple we give ourselves

the best chance to later fix or identify any unforeseen issues.

Although the onboard reduction eliminates possibilities in how we process turbulence data, it opens

up possibilities in how we obtain turbulence data. By visualizing how turbulence evolves over successive

dives in near-real-time, we can concentrate on regions of interest by adapting the dive schedule to profile445

more frequently or to different depths. If instead we encounter quiescent periods, we might consider

profiling less frequently and thereby conserving battery life. Our ultimate objective is to treat FCS floats

as expendable.
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Reshape raw voltage signals
Convert each 1D signal to a 2D array (Nblk,Nseg)

Discard non-profiling data
Use Wmin threshold (∝ min |∆VP(ti)|, Eq. 14, Appendix B)

Record T and P voltage quantities for each block
⟨VT 1⟩ ,⟨VT 2⟩ ,VP(Nseg)

Despike shear voltages
Apply 3σ threshold to Vs1 and Vs2 (Appendix E)

Calculate voltage spectra
Ψs1( f ),Ψs2( f ),ΨTt1( f ), and ΨTt2( f )

Fit shear spectra over two ranges

Fit Tt spectra over two ranges

(Eq. 34)

Calibrate averaged voltages
T1 and T2 (Eq. 6), P (Eq. 12), and W (Eq. 13)

Derive viscosity and thermal diffusivity
Use measured T and P together with S from SOLO-II CTD

Nseg = 512, Nfft = 256, fl, fm, fh = 1,3,5Hz, C2P = 77psiV−1 (Appendix B)

Calculate the correction factors
FNa (Eq. 21) and FKr (Eq. 31)

Correct initial estimates
εinit → ε (Eq. 17) and χinit → χ (Eq. 30)

Combine fffl– fffm and fffm– fffh fit values
ε (Eqs. 25 and 27) and χ (Eq. 35)

Repeat step above for thermal dissipation
For Tt1 and Tt2, get χinit for fl– fm and fm– fh (Eq. 34)

Calculate four ‘initial’ turbulent dissipation values
For S1 and S2, get εinit for fl– fm and fm– fh (Eq. 24)

∑ f f 1/3Ψs1( f )/∑ f f 2/3

—"— —"—

∑ f f 1/3Ψs2( f )/∑ f f 2/3

—"— —"—

over fl– fm

over fm– fh

over fl– fm

over fm– fh

(Eq. 24)

∑ f f 1ΨTt1( f )/∑ f f 2

—"— —"—

∑ f f 1ΨTt2( f )/∑ f f 2

—"— —"—

over fl– fm

over fm– fh

over fl– fm

over fm– fh

Calculate goodness of fit of spectra
ε fit score (Eq. 26) and χ fit score (Eq. 36)

Figure 11. Summary of the data reduction scheme. Each 512-element segment of data is ultimately compressed

down to the 12 highlighted quantities that are then transmitted. These are calibrated and/or converted into turbulence

quantities in post-processing.
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Appendix A: Transfer functions for FCS sensors

Voltage signals from shear probes and thermistors are a smoothed representation of the true environmental450

signal. If the smoothing is a spatial effect, it is described by a transfer function H2(k). If the smoothing is

a temporal effect, it is more natural to use H2( f ). We can use these interchangeably because f =Wk and

therefore H2( f ) = H2(Wk). For FCS, there are three components to the transfer function for each sensor:

H2
s (k) = H2

SP(k)H2
AA( f )H2

D( f ) (A1)

H2
Tt(k) = H2

FT( f )H2
AA( f )H2

D( f ) (A2)455

where we have used the following shorthand: SP = shear probe, FT = fast thermistor, AA = anti-aliasing,

and D = digital. We describe each of these in turn.

Shear probes built and calibrated by the Ocean Mixing Group are very close in dimension to those

examined by Ninnis (1984) who measured their wavenumber response and represented it as

H2
SP (k) =

4

∑
n=0

an

(
k
k0

)n

(A3)460

where a0 = 1.000, a1 =−0.164,a2 =−4.537,a3 = 5.503, a4 =−1.804, and k0 = 170 cpm.

Temporal averaging of temperature at high frequencies due to the thermal response of the fast thermistor

is modeled using a double-pole filter:

H2
FT( f ) =

1

(1+( f/ fc)2)
2 (A4)

where the cut-off frequency fc = 30 Hz. This comes from Nash et al. (1999), who measured the frequency465

response for two different thermistors on an instrument profiling at 0.3 m s−1 and found cut-off frequencies

of 25.1 and 36.7 Hz (see their Fig. A2). The 30 Hz value is the approximate mean of these two values.

Raw shear and thermistor voltage signals are both subject to two filters. First, an analog antialiasing

filter (two-pole Butterworth) with an fc = 40 Hz cut-off:

H2
AA( f ) =

1
1+( f/ fc)4 . (A5)470

After the analog signal is anti-aliased, it is digitized at 400 Hz. Before subsampling to the final 100 Hz

output, the signal is digitally filtered. For the 2019 FCS cruise, the signal was convolved with a symmetric
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29-element kernel in which the first 15 elements were

gi = (216 −1)−1 × [52,221,393,427,174,0,0,0,0,0,

1970,5054,8202,10558,11433]. (A6)475

This is a sinc kernel but with negative values set to zero. (We are currently investigating better choices for

future implementations). The filter has a half-power (−3 db) point at 25 Hz.

Appendix B: Identifying the start and end of a profile

Early in our processing routine, we partition the raw voltage signals into 512-element segments. In order to

discard the segments in which FCS was not profiling, we need robust (yet simple) criteria that demarcate480

the start and end of a profile. For the start, we search for the first three consecutive segments in which

Wmin > 0.05 m s−1. For the end, we swap the inequality.

A drawback of this approach is the appearance of a quantity in physical units (0.05 m s−1). This is the

one instance where we hard code a calibration coefficient in the onboard software, rather than apply it in

post-processing. Fortunately, the relevant coefficient can be approximated as constant: C2P = 76.7 psi V−1485

(barring a redesign of the circuitry or the use of a different brand or model of pressure sensor). For the two

units already built, C2P = 76.81 psi V−1 and 76.53 psi V−1. By comparison, among the four shear probes

on the two units, the calibration coefficients vary by 30%.

At least for the initial implementation of our scheme, we do not include an algorithm to detect the

surface to within centimeters. Doing so would let us work backward to put our uppermost depth bin as490

close to the surface as possible. However, we expect that this could be a fragile part of the scheme. Further,

FCS lacks a micro-conductivity sensor, which is likely the sensor best suited for identifying the air–sea

interface (e.g., Ward et al. 2014).

Without surface detection, the depths of the uppermost bins will be realized randomly. In the worst

cases, we would discard the top ∼1 m (5 s at ∼0.2 m s−1). To alleviate this, we may use half-overlapping495

bins near the surface. The exact implementation will be determined later in the development.
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Appendix C: Least-squares fitting of power laws

In this paper, we use power law fits to derive turbulence quantities: Ψs = Aε f 1/3 and ΨTt = Aχ f 1, where

Aε and Aχ are substitutes for the expressions in Eqs. 23 and 33. With only a single parameter for each fit,

implementing a least-squares fit is easy.500

Assume we are fitting the vector Ψi to the function A f n
i where n is either 1/3 or 1. The sum of squared

residuals is therefore

∑r2
i = ∑(Ψi −A f n

i )
2 . (C1)

The minimum with respect to A is where the derivative is zero:

∂
∂A ∑r2

i = ∑−2 f n
i (Ψi −A f n

i ) = 0. (C2)505

Hence,

A =
∑ f n

i Ψi

∑ f 2n
i

. (C3)

We had originally intended to find A by following Becherer and Moum (2017), who were fitting f 1/3

spectra. Their simpler method, A = ∑(Ψi/ f n
i ), is equivalent to a least-squares fit except that the quantity

minimized is the sum of the squares of the adjusted residuals, where adjusted means divided by f n.510

Differences can be ignored when n = 1/3, but not when n = 1.

Appendix D: Standard processing of FCS turbulence measurements

The standard processing of FCS turbulence data differs from the reduced scheme in three ways. First,

raw data are despiked differently (Appendix E). Second, the 100 Hz raw voltage signals are calibrated

into physical quantities right away. Hence, means and spectra are calculated in physical units, not voltage515

units. Third, the integration of spectra occurs over a variable wavenumber band, which is found iteratively.

When integrating shear spectra (after correction; Appendix A) to find ε , we follow the approach used

for the Chameleon profiler (Moum et al. 1995). A first estimate of ε is made by integrating over k = 4–

10 cpm. This value provides a first estimate of the Kolmogorov wavenumber ks = (ε/ν3)1/4/2π . (The

31



lower limit for Chameleon is 2 cpm, but we increase this for FCS given its slower profiling speed and520

hence the possibility of contamination by waves at lower wavenumbers.) The upper integral limit is then

set to 0.5ks (with a minimum of 10 cpm and a maximum of 45 cpm). The Nasmyth spectra (Eq. (15)) is

integrated over the same wavenumber range. If the measured and Nasmyth integrals are within 1%, then ε

is set equal to the integral of the Nasmyth spectrum over all k. Otherwise, ε and ks are adjusted iteratively

until the two integrals agree.525

A similar but non-iterative approach is used for integrating Tt spectra to find χ . The model spectrum is

the Kraichnan spectrum (Eq. (28)) and, again, the lower limit of integration is 4 cpm. The upper limit is

the Batchelor wavenumber kb = (ε/νD2
T )

1/4/2π (with a maximum defined by kW = 15 Hz).

Appendix E: Identifying and removing noise and spikes in the shear signals

To properly despike the raw output of a shear probe requires several steps. Lueck et al. (2018) describe530

a process in which the signal is high-passed, then rectified, and then low-passed to derive a measure of

the local variance. A value is defined as a spike if it is more than eight times (or similar threshold) above

the local variance. Spikes are replaced with an average based on surrounding points. This process is then

repeated on the new signal, and so on until no spikes are identified.

In our standard processing of FCS data, we use the Lueck et al. (2018) despiking routine. For our535

data reduction scheme, we use an approach that is easier to implement and quicker to compute, albeit

less precise. For each 512-element segment of data, a spike is defined as any data point larger than three

standard deviations from the mean. These spikes are replaced by the mean of remaining values in the

segment.

Code availability. Our Matlab implementation of the processing code is available from github.com/OceanMixingGroup/540

flippin-chi-solo.
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Data availability. Raw and processed data for the 2019 experiment are available at doi.org/10.5281/zenodo.5719505

or kghughes.com/data.
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