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We thank all the reviewers for their helpful comments. We have made many revisions to the paper and 

have detailed our responses to all comments in blue text 

Our responses to Anonymous Referee 1’s comments begin on page 2 

Our responses to Toshiyuki Hibiya’s comments begin on page 6 

Our responses to Cynthia Bluteau’s comments begin on page 8 

A version of the manuscript showing the changes from the previous version is appended to the end of 

this document. 

 

We have made a few other changes that are not directly in response to any of the reviewers’ comments. 

• The quantity <VT
2> for each thermistor is no longer part of the transmitted dataset since <VT

2> = 

<VT>2 to a very good approximation, and we already have <VT>. We did not previously recognize 

this opportunity to further reduce the transmitted dataset. 

• Instead of transmitting both <VP> and ΔVP for each segment, we transmit the final VP value in 

each segment. The former two quantities can be derived from the final VP values. 

• The two changes above reduced the number of quantities in the transmitted dataset from 15 to 

12. 

• We have changed the thermal response transfer function (Appendix A) from the one discussed 

in Sommer et al. (2013) to one shown in Nash et al. (1999). In an earlier review, it was noted 

that the Sommer et al. correction is overly aggressive. In hindsight, we should have made the 

change then. We are making it now. 

• We added a factor of H2
Tt, which was missing from the expression for ΦTz 
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Review by anonymous reviewer 
 

I think this is an interesting paper describing a good method, but I’m not entirely convinced that there is 

a great reason for doing the fits on a constant frequency band, besides the convenience. The on-board 

processing is already complicated enough - ultimately I don’t understand why the on-board processing 

shouldn’t be more complete (doing the fits on fixed spatial scales on the wavenumber scaled spectra?) 

or much simpler (by sending back a more representative voltage spectra and doing the fit on shore)? 

Our scheme’s on-board component involves just as many steps as the reviewer’s “much simpler” 

approach. That is, the reviewer is suggesting we send back representative voltage spectra (presumably 

with some band averaging to reduce the file size). That is effectively all we are doing on board. We 

define two bands (1–3 and 3–5 Hz) and then do a band-averaging of sorts across each one. For shear, for 

example, we calculate ∑ f 1/3 Ψs /∑f 2/3 (see Figure 11). This calculation is marginally more complicated 

than that of a mean. 

Taking the “more complete” approach is much more involved as it requires calibrating the shear and 

temperature gradient data (and the pressure to get profiling speed). And then implementing a nonlinear 

curve fitting routine. All of these steps introduce possibilities for errors to creep in. Our scheme was 

developed to circumvent these possibilities. 

Getting good estimates when the vertical velocity is not the nominal 0.2 m/s (e.g., near the top of the 

profiles, as the float comes to the surface) seems to be a very important aspect for the specific 

instrument discussed.  

Yes, one of our scientific goals with FCS is to quantify turbulence in the near surface. From our 2019 

experiments we learned that faster profiling is generally better near the surface; if the instrument 

moves too slowly, then wave orbitals introduce problems. We now note in section 3.4 that segments 

that are negatively affected by waves have two tell-tale signs: (i) Wmin is not close to <W> and (ii) the fit 

scores are low because wave motion introduces variance at low frequencies. This causes spectra to be 

redder than expected and therefore they do not conform to the Nasmyth/Kraichnan models. 

As far as I understand, the results are only obtained by fitting frequencies between 1 and 5 Hz. That 

corresponds to only 10 points in the spectrum…  Separating this results on doing the fit on 5 points. 

Going from the full-spectrum (100 Hz for 5 sec. = 500 points) to 10 points is ultimately the core of the 

data reduction scheme. The paper claims that one can estimate accurate rates of dissipation from this 

narrow frequency range (without fancy despiking or using acceleration data). For these 10 points (for 

each channel), the fitting method returns 2 fitted values (factor of 5). This additional factor of 5 certainly 

a nice reduction. I also wonder at what precision that data is returned. Choosing a different number 

representation, or compression could also help here.  

We have added a note in the conclusion that for a given dive: 

“Transmitting each quantity as a 16-bit float or integer equates to approximately 6 kB per dive. This can 

be reduced by one-third if the spectral fit metrics are suitably scaled logarithmically and then 

transmitted as 8-bit integers.” 

This is our approach for future FCS deployments. 
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That being said, the paper is generally clear and the method is well documented.  Particularly if the 

profiling (or horizontal velocity) varies a bit more widely, I would hesitate to really champion that 

method (because of the relatively narrow and fixed frequency band were the fits are done), but I can 

see how it might be useful and accurate for the application in question. 

In section 8, we describe how our scheme could be adapted to profilers with different nominal 

velocities. If the chosen frequency band is suitably adapted, there’s no reason our scheme cannot apply. 

Of course, we wouldn’t recommend anyone blindly apply our scheme to a different profiler without 

thoroughly testing with an existing dataset from that profiler. 

A few more comments: 

Line 23-24: It would be useful to state the size of a typical dataset from an Argo float (one profile every 

10 days). Something like “In contrast, a typical Argo profile (once every 10 days) contains XXX kB of 

data). 

One of our goals with FCS is to profile the upper ocean rapidly—to about 120 m once every 30 minutes. 

Obviously, this is very different to the conventional Argo profile of 2000 m every 10 days. Hence, the 

comparison to the file size of a typical Argo profile is not relevant here. It is only the rate of transmission 

that we care about.  

We have revised the Introduction to make our scientific goals, and hence our data transmission needs, 

more explicit. 

Line 54: Why is there a 3-axis accelerometer, compass, and pitot tube? What is done with that data? In 

addition to the data compression, if might be worth it to discuss power consumption…  

We use the accelerometer to calculate surface wave height spectra when the profiler is surfaced 

(though the method is detailed elsewhere).  

Otherwise, accelerometer, compass, and pitot data are all recorded internally. We do this in case we can 

recover the profiler and obtain the full, raw dataset. These auxiliary data are useful but not essential, 

and so they are not transmitted in any way.  

In hindsight, noting that FCS includes a compass and pitot tube does not help the reader in any way, so 

we have removed any description of these two sensors. 

Power consumption is certainly part of our research group’s discussion, but this is outside the scope of 

the paper. More generally, engineering details for FCS are described in a separate paper that currently 

has a status of Minor Revisions for J. Atmos. Oceanic Tech.: 

 

Flippin’ 𝜒SOLO, an Upper Ocean Autonomous Turbulence Profiling Float 

J. N. Moum, D. L. Rudnick, E. L. Shroyer, K. G. Hughes, B. D. Reineman, K. Grindley, J. Sherman, P. 

Vutukur, C. Van Appledorn , K. Latham, A. J. Moulin and T. M. S. Johnston. 

Line 148: Could horizontal velocities impact the estimate of W? In particular, wave motion will have 

some horizontal component that is not present in pressure, but does advect turbulence past the sensor, 

no? In other words, are there situations where the flow past the sensor is not strictly vertical? 
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Based on analyses not described in the paper, we have found that—to a first order approximation—FCS 

as a whole is advected by waves. Therefore, the flow past the sensor relative to the instrument’s body is 

independent of wave velocities, both horizontal and vertical. Of course, this is only an approximation 

and there could be nonzero residual horizontal velocities. We are assuming these are small such that 

they would have no effect if added in quadrature to dp/dt. 

More generally, we are aware that W = dp/dt is not a perfect measure of the speed of the sensors 

relative to the surrounding fluid. Indeed, the main reason that we include the <Wmin> quantity in our 

scheme is to identify segments in which W is questionable. 

L170: “two-stage approach”. This phrasing, and the following sentence, made me expect that a 

description of the second stage would immediately follow. As it is now, I’m not sure I can readily identify 

the second stage (not mentioned until line 188).  

We have added a sentence so that the expected parallel structure occurs. The paragraph now reads 

“Here we develop a new and simpler two-stage approach to fitting shear spectra to ΦNa. In the first 

stage, …. In the second stage, ….” 

When the initial fit on the voltage is done on a frequency range past the inertial subrange, it seems that 

the least-square fit would be really dominated by the lower frequency elements of the band, since the 

spectrum rolls off so rapidly. The fit then doesn’t really help with any noise (for example, in Fig 3b). That 

is presumably captured in the score. 

Yes, the fit value is weighted more by the lower frequencies due to roll off, but  

(1) the value of FNa is also weighted more by lower frequencies and so counteracts the effect in 

question when it comes to calculating ε; and 

(2) the roll off between 1 and 3 Hz and 3 and 5 Hz is typically small enough that the effects are 

limited. 

Regarding point 1, consider Figure 1b, which uses one band (1–5 Hz) instead of two (1–3 and 3–5 Hz). 

The value of FNa = 0.238 comes from an integral over 5–25 cpm. Half of the this 0.238 value comes from 

the first 17% of the 5–25 cpm range. 

Regarding point 2, except for ε < 10−9 W/kg, the difference in ΦNa at 1 Hz and 3 Hz (nominally 5 and 

15 cpm) is a factor of 5 or less. And similarly for 3 and 5 Hz. In other words, the reviewer’s concern is 

most relevant for low ε (which makes sense because that is when the roll off will be largest). However, 

as we note in section 4.3, issues with low ε are less concerning to us because they “have minimal effect 

on any averages given that turbulence distributions have high kurtosis, so high values dominate means”. 

All the fits in Fig 4 have about the same value of epsilon. It might be interesting to have a column in Fig 4 

for much smaller values (10−10), and larger (10−6, say), to see how the fit is affected by what 

frequency/wavenumber range it is done over…  

We have changed Fig 4 so that it now has three columns with five panels per column, not one column 

with eight panels. The left column has examples with ε = 10−9−10−8 W/kg. The middle column has ε = 

10−8−10−7 W/kg. The right column has ε = 10−7−10−6 W/kg. 
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Raw data are typically not going to be recovered… What is reason for sampling so fast, if only data up to 

5 Hz are used? Naively, perhaps, an analog filter could be used and microstructure signal could be 

sampled slower, no? Would that save power? 

Although our scheme is designed so that FCS is expendable, we may still recover the instruments on 

occasion, in which case we prefer to have the full 100-Hz raw data available. Further, any power savings 

are unlikely to be worth the effort of redesigning the existing circuits. 
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Review by Toshiyuki Hibiya 
 

Summary 
Considering that continuous turbulence observations using autonomous and expendable profiling floats 

such as Deep Argo floats will be the norm in the near future, the development of the data reduction 

scheme as described in this paper is indispensable and deserves publication. Nevertheless, I am still not 

convinced about some aspects of the data reduction scheme described in the paper, so that I would be 

happy to receive some answers before publication. 

Thank you for the review. 

Major Comment 
1. The data reduction scheme proposed in this paper presupposes the existence of a spectral slope 

with k1/3 dependence in the inertial subrange. However, Figure 4 shows that the shape of the 

measured shear spectrum significantly deviates from that of the Nasmyth spectrum, and does not 

appear to have the k1/3 slope presupposed in the inertial subrange. I am afraid that, in this case, the 

proposed formulation to obtain ε using the correction factor FNa defined by (17) and (20) might break 

down. 

Our scheme does not presuppose that measured spectra have k1/3 slopes. Yes, a k1/3 slope is initially 

assumed but, as we note in the paper: 

“Our inertial subrange assumption is often false. Indeed, ‘assumption’ is perhaps a misnomer as we do 

not expect it to be true; we know that viscous roll off will often occur at frequencies lower than 5 Hz (25 

cpm for a nominal value of W = 0.2 m/s).” 

The statement above is key to understanding our unorthodox approach to calculating ε. However, it is 

buried somewhat in the middle of section 4.1. Therefore, we have added the following paragraph right 

at the beginning of section 4 to alert the reader to this point: 

“In this section, we are ultimately going to fit measured spectra to an inertial subrange model that does 

not necessarily apply at the relevant frequencies or wavenumbers. We will elaborate as we go, but we 

want to emphasize in advance that measured spectra do not need to conform to an inertial subrange 

model for us to obtain accurate values of ε. The inertial subrange is merely a convenient starting point.” 

Perhaps the best evidence that FNa and hence ε is correct is the agreement between ε from the reduced 

scheme and that from our standard processing (Figs 5 and 6). 

2. Also, in this case, does the “fit score” defined in this study have any meaning? In other words, even 

if a good fit score is obtained by matching the ε calculated for 1-3 Hz with that for 3-5 Hz, this 

cannot necessarily be an indicator of a good match between the measured spectrum and the 

Nasmyth spectrum, and it may cause errors in the estimation of ε using (17) and (20), right? 

The fit score is simply the ratio of two independent values of ε: one from 1–3 Hz and one from 3–5 Hz. 

Each of these are derived from their respective values of εinit and FNa. As shown in Figure 3a, the two 

dark blue lines match up, which is equivalent to saying that the two ε values match. These lines match 

up because the original measured spectrum (brown line) looks like a Nasmyth spectrum. The opposite is 
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true for Figures 3b and 3c—the dark blue lines don’t match—because the measured spectra don’t match 

well with the Nasmyth spectrum. So, yes, a high fit score does provide an indicator of a good match 

between the measured spectrum and the Nasmyth spectrum. 

3. In section 4.1, the method for obtaining εinit is not presented, and the discussion in section 4.1 

proceeds without clarifying the definition of εinit. Wouldn't it be easier to understand the overall 

flow of the discussion if the definition of εinit written in section 4.2 were given first, followed by the 

discussion in section 4.1? 

The original text did define εinit but it was an implicit definition and hidden somewhat in the middle of a 

paragraph. We have reworded a few paragraphs in section 4.1 to highlight the definition of εinit and 

point the reader to the fitting method in Appendix C. 

4. Please add to the end of section 7 the reason why the agreement between the obtained χ values 

and those obtained from the standard scheme becomes worse than in the case of ε, even though 

the method for obtaining χ from the reduced scheme is basically the same as in the case of ε. 

We have added the following paragraph: 

“There are three reasons for the poorer fits to temperature gradient spectra compared to that for shear. 

First, shapes of temperature gradient spectra are often more variable; the best choice for non-

dimensional spectral model can be debated (e.g., Sanchez et al. 2011). Second, the temperature 

gradient fits depend on ε. Uncertainties in ε propagate into the calculation of χ. Third, for our 2019 

experiment, the recorded temperature gradient signals” 

 

Minor comments 
5. Line 198: six times smaller than → eight times smaller than 

Good catch. Changed as suggested. 

6. Although Hs(k) is defined in (3), it appears somewhat suddenly in (19) in section 4.1 without any 

connection to the preceding discussion, which seems a bit awkward. 

We have re-ordered the text to get rid of the awkwardness. Previously, the two forms of FNa were 

defined in Eqs 18 and 20, with the awkward discussion of Hs
2 in between. Now, the two forms are given 

in Eqs 18 and 19 and Hs
2 is discussed in its own paragraph afterwards. 

7. Just below color tones in Figures 7 and 10: proportion (%) → proportion (× 100 %) 

The label is correct as is.  There are many hundreds of nonzero bins in these 2D histograms and the 

upper limit of the colour axes are <1%. 

 

 

 

  



   

 

 8  

 

Review by Cynthia Bluteau  
 

Summary 
I initially refused the review request but can now provide comments. I’ve elected to do so as a 

community member rather than an anonymous reviewer. My review will be more narrated than usual, 

given the open peer discussion at EGU journals. My understanding is the authors developed a "reduced 

algorithm" for estimating two turbulence quantities (ε and χ) from the voltage spectra of shear and fast-

temperature sensors onboard an expendable profiler (SOLO). It needs to be clarified from the methods’ 

description, but the χ estimates rely on first obtaining ε from the shear probe. The algorithms are 

designed to minimize the data transfer rate by fitting a narrow range of frequencies of voltage spectra 

with a power relationship. This model spectra may not apply over the fitted range (as noted by the 

authors). Whether the observations are expected to have a power relationship over the fitted 

frequencies is accounted for with a correction factor FNa (shear) or FKr (temperature-gradient). They have 

chosen the empirical Nasmyth (inertial subrange) and the Kraichnan models (viscous-convective 

subrange) instead of using an inertial model for both datasets or a viscous model for both. Below I 

summarized further my understanding of the algorithm before providing more details about 

modifications that may render the article more transparent for readers. 

Algorithm summary 
For each segment of data (e.g., ∼5 s chunk of the full profile), the algorithm estimates: 

• an average and minimum drop-speed onboard the instrument 

• voltage frequency spectra from each temperature and shear probe sensor (are there 2x of each 

onboard?) 

− Their spectra have roughly 6-10 degrees of freedom in their setup by using 3 

overlapping segments of 256 samples each. The spectral bandwidth is from ∼0.4 Hz to 

50 Hz with a frequency resolution of 0.4 Hz. The drop speed is about 0.2m/s, so their 

spectra cover wavenumbers ranging from 2 to 250 cpm. Given the thermal frequency 

response and the spatial size of the shear probe, the spectra are probably "usable" up to 

20 Hz (thermistor) and 100 cpm for the shear probe. Of course, noise can limit this 

further. Still, the drop speed of 0.2m/s nicely "optimizes" the usable range in both the 

shear and temperature gradient spectra. 

− The calibration coefficients are not stored on the SOLO, unlike recoverable turbulence 

profilers or most ocean sensors. The lack of calibration constants prevents them from 

converting the voltage spectra into physical units onboard the SOLO (or onshore since 

no spectral observations are transmitted). 

• Two power fits are performed for each voltage spectrum over a narrow bandwidth of available 

spectral observations. This bandwidth is between 1 and 5 Hz (1/2 decade of data). The first 

power fit is between 1 and 3 Hz, and the second is from 3 to 5 Hz. Overall, their 1/2 decade has 

10 spectral samples, and each power fit is done with 5 samples. 

• Two quantities, one for each power fit, are returned to shore for each voltage spectrum. These 

quantities are then converted into initial εinit and χinit estimates via the calibration constants of 

the sensors. 
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• From these initial estimates, the correction factors FNa and FKr are used to obtain ε and χ. I 

presume that ε is also fed into FKr to obtain χ (not clear from the methods’ description). Both 

correction factors depend on the frequencies fitted, the choice of model, etc. It’s unclear 

whether FNa and FKr are sufficiently general such that any frequencies could be used for fitting 

the voltage spectra (e.g., different profiling speed or source of vibrations). 

• There are accelerometers onboard the SOLO, but they are not used to correct the turbulence 

(voltage) spectra. Instead, the analysis utilizes data between 1 to 5Hz to avoid surface waves 

and motion-contamination. The authors state the accelerometers are for computing wave 

statistics, which I presume will involve additional spectral computations onboard the SOLO. How 

the turbulence analysis changes in wavy flows dominated by surface waves should be discussed 

in the ms. 

Thank you for providing these summaries of the paper and algorithm. A few clarifications/notes (but 

mostly leaving our detailed replies to the comments below): 

• Yes, there are two shear sensors and two fast thermistors as noted in the second paragraph of 

section 2. 

• We agree that the spectra are “probably useable” up to 20 Hz and 100 cpm, and less if noise is 

an issue. The operative word here is “probably”. Our scheme is necessarily conservative about 

the upper limits we use for fitting. We need to be confident that the spectra that we are fitting 

are useable, not just probably useable. We do not have the luxury of re-examining the raw data 

or full spectra after they are reduced. 

• Our choice to not apply calibration coefficients onboard the instrument is a feature, not a bug, if 

you will. We do not dwell much on this point in the paper, but postponing calibration has a big 

benefit: it removes the possibility of an inadvertent mistake (say, the wrong shear probe is 

installed, or the wrong header is applied) that would cascade through the turbulence profiling 

algorithm and lead to values of ε or χ that are difficult or impossible to later correct for. 

• Yes, values of ε are fed into the calculation of FKr. We have added a sentence to the first 

paragraph of section 6 to make this clearer. 

• The comment about whether FNa and FKr are sufficiently general is already addressed in section 

8.1 in which we provide recommendations for porting our scheme to a different profiler. In 

short, our scheme is suitable for different profiling speeds but it does assume that any vibrations 

that occur are outside the fixed frequency fitting range. 

• The wave statistics do indeed involve additional spectral computations. On the advice from an 

early reviewer, these tangential details are left out of the paper. 

• See our response to comments 7 and 8 regarding accelerometers and surface wave frequencies. 

Major comments 
I have grouped my concerns into three themes. The main suggestions for implementation in the ms are 

numbered and shown in italic purple. 

1. More transparency is required in discussing the drawbacks of their chosen strategy. The 

algorithm was designed to limit data transmission at all costs by relying on a small subset of data 

recorded by the profiler. 

2. Lack of assessment of the fit-score as an alternative measure of data quality. 
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3. Lack of transparency about the χ methods and the data quality both in applying the reduced 

algorithm and for estimating χ from standard practices. 

1 Reduced algorithm’s "framework" 

1.1 Improvement over using band-averaged (low-resolution) spectra 
The ms should be more transparent in explaining the drawbacks of their chosen strategy when 

compared to that employed by Rainville et al. (2017). As noted by the authors on L27-31, the reduced 

algorithms of Rainville et al. (2017) sends band-averaged (i.e., low-resolution) spectra ashore. In their 

case, 12 spectral observations are transmitted that cover all available lengths and timescales of 

turbulence, including the noise (a bit overkill, in my opinion). Specifically, their instrument sends 9 

spectral samples between 2 to 100 cpm and 4 samples over the wavenumber range (5 to 25cpm) used in 

the current ms for fitting. The main advantage of sending spectral observations ashore is being free to 

apply standard fitting or integrating techniques to estimate the turbulence quantities of interest. More 

importantly, quality-control criteria, such as the mean absolute deviation listed by the authors on L240 

can be calculated. This criterion indicates whether the observations follow the expected forms of 

turbulence, i.e., spectra aren’t drowned by noise, motion contamination, or anisotropy. These issues are 

usually also nicely spotted by inspecting spectra, but with the proposed reduced algorithm in the ms, 

this information is lost during transmission. 

1. Since the authors only used limited range of turbulence scales (1 to 5Hz), it would be worth 

highlighting the data "savings" that they gain by transmitting two power fit estimates (1-3Hz, and 3 to 

5Hz) over sending for example 4x (band-averaged) spectral observations. 

We have added details to the second paragraph of the Introduction about why Rainville et al.’s scheme 

is too data intensive for our purposes. In short, with two shear probes, two thermistors, and 12-element 

spectra, we have 48 values per segment (plus a few other quantities) that must be sent back to shore. 

For our profiling scenario, we’d end up spending as much time at the surface transmitting data as 

actually measuring the ocean. This goes against one of our scientific goals of profiling as frequently as 

possible.  

We developed our scheme with an aim of having the smallest possible file size for transmission. That 

meant we used only two fitting bands (1–3 and 3–5 Hz). But there is nothing to stop someone from 

using our scheme with three or more fitting bands (say, adding a 5–7 Hz band) and benefiting from any 

improvements that this entails. We have added this recommendation to our list in section 8.1. We also 

note in this section that there is a point at which if the number of bands to be used is many more than 

two, then (as the reviewer alludes) one might as well use the Rainville et al. (2017) instead.  

2. It would also be useful to say why a data reduction scheme that reduces 512 samples to 12 samples 

(band-averaged spectra) is inadequate, which ultimately resulted in developing an algorithm that fits a 

narrow range of information onboard the processor. 

As in our reply above, using 12 samples per spectra leads to file sizes sufficiently large that they interfere 

with and limit our intended profiling strategy. 

1.2 Using a limited range of frequencies for fitting 

The algorithm appears highly dependent and applicable for their particular drop speed, sampling rates 

and frequencies used for fitting. It also depends on there being no motion contamination over the range 
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of frequencies used. It makes the paper highly specific for their platform, as opposed to being a 

"reduced algorithm" for turbulence profilers. This is fine but worth highlighting. However, the reliance 

on a small subset of the available turbulence information is problematic. Makes you question why even 

sample the shear signal at rates above 32-64Hz if we can get away with deriving ε (or χ) from such a 

narrow range of turbulence length/time scales. 

We disagree that the scheme is “highly specific” to our platform. Section 8.1 outlines how it can be 

adapted for other scenarios. Nevertheless, we agree that we had not highlighted enough the 

assumption of no motion contamination. We now state in the abstract that “..., we focus on a fixed 

frequency band that we know to be unaffected by vibrations and that approximately corresponds to a 

wavenumber band of 5–25 cpm.” 

The reviewer is correct that ε and χ from our reduced scheme would barely change if we had a sampling 

frequency of 32 or 64 Hz instead of 100 Hz. At the same time, we don't claim that our values of ε and χ 

are as exact as they could be. Nor are we suggesting that anyone should use our reduced method if they 

have the luxury of having raw data at 100 Hz or more. But it shouldn't be a surprise that we can get good 

results using a narrow frequency band. Although a wider band allows for better statistics (as the 

reviewer notes elsewhere in this review), this doesn't change the fact that shear spectra scale 

monotonically with ε. And the same for temperature gradient spectra vs χ (provided ε is known). 

As a contrived example, consider a scenario in which measured spectra conform perfectly to the 

Nasmyth spectrum. In this case, one could calculate ε with just one coefficient from the measured 

spectra (in other words, a very narrow band) 

Furthermore, the narrow band of scales used comprises a low number of spectral observations (5x per 

fit), which have low statistical significance given how the voltage spectra are calculated. The spectra use 

3x FFTs with a 50% overlap, each having 256 samples, which is less than typical when accelerometers 

are used to decontaminate the spectra. Depending on the widowing function applied, this is about 6 to 

10 degrees of freedom – a tad more than spectra with no statistical significance. The degrees of freedom 

wouldn’t allow using squared-coherency to decontaminate the spectra (a minimum of 7 NFFTs would be 

more appropriate). There’s all this effort to reduce the data transfer, but an easy saving would be using 

a statistically significant spectral averaging strategy, e.g., 768 samples for each segment instead of 512 

samples (the 5x NFFTs would still have the exact resolution). 

Turbulence processing always comes with trade-offs as the reviewer alludes. Yes, we could increase the 

sampling period and use more subsegments to increase statistical significance, but we then lose vertical 

resolution. For us, going from 512 to 768 samples equates approximately to Δz from 1.0 m to 1.5 m. 

These may not sound like much, but it matters a lot in places like the near-surface ocean where ε 

depends strongly on z. 

Section 8.1 explicitly notes that Nseg = 512 and Nfft = 256 is merely the choice we made for our own 

scientific goals. Someone else could easily use our scheme with, say, Nseg = 1024 and Nfft = 256 to have 7 

half-overlapping subsegments per segment. 

3. Would the results be similar if a more statistically significant spectra were used in the calculation? 

Would band-averaging the spectra change the estimated εinit (χinit)? 
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In the paper with Nseg = 512 and Nfft = 256, we find that the reduced scheme and standard processing 

agree within a factor of 2 in 87% of cases for ε and 78% of cases for χ. These became 88% and 78% when 

we reran the analysis with Nseg = 1024 (i.e., 7 subsegments rather than 3). In other words, effectively no 

improvement. This indicates that statistical significance of spectra is not a limiting factor on the quality 

of the final dataset. 

4. Fig 3: Include the kinematic viscosity and confidence intervals for these spectra (see §5.4.8 Emery and 

Thomson, 2001) for calculating the confidence levels 

If we understand correctly, the reviewer is suggesting that we add confidence intervals to the 10 

spectral values in each panel. We have not done this as we think it could cause confusion. Figure 3 

demonstrates visually how to calculate the ε fit score, which is a value that is independent of confidence 

intervals. If we include confidence intervals, the reader might incorrectly infer that confidence intervals 

somehow enter the fit score calculation. 

Kinematic viscosity is now noted in the caption. 

1.3 Number of samples used for each fit 
Recent work has concluded that for data with low variance, 8 samples are required for regressions 

(Jenkins and Quintana-Ascencio, 2020). For highly variable datasets, this number increases to 25. The 

authors have used 5x spectral observations, compounding the above issue of relying on low bandwidth 

of turbulence spectral observations that each have low statistical significance. It makes you wonder if 

the least-square power fit is just a guesstimate of what the turbulence level in the signal might be. 

The Jenkins and Quintana-Ascencio results have been quoted without context and they are not relevant 

here. The numbers 8 and 25 are for their specific and contrived scenario of distinguishing between null, 

linear, and quadratic data. We are doing something quite different: we have a known model to fit 

against and we are finding the fit coefficient. We are not trying to distinguish between models. 

5. How large are the confidence intervals for the fitted quantity in Eq 23? Least-square fitting usually 

allows for this result to be calculated, but these have not been presented. 

As we note in section 4.3, we cannot calculate conventional goodness of fit metrics (including 

confidence intervals for least-squares fits) with our reduced scheme because we do not know the scaling 

for each model spectrum until we calculate ε values in the post-processing stage. By this stage, we have 

lost information about the spectral shape through the summing operation in Eq. (24). 

6. What would be the confidence level for εinit if the spectral confidence levels were propagated, along 

with the errors associated with using only 5x samples for a least-square fit? The error would propagate 

through to FNa in Fig 2. 

As per our response to comment 3, we find that statistical significance of the measured spectra is not a 

limiting factor. And per our response to comment 5, we cannot calculate confidence intervals because 

we don’t know ε until post-processing. 

We don’t mean to downplay the value of calculating uncertainties for each spectral fit, and we recognize 

that the reviewer has done a lot of work to help the turbulence community follow best practices on this 

topic. However, with a tool like FCS, we gain the luxury of a dataset with ~50 profiles per day. Hence, we 
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personally are better served by using bootstrapping to calculate uncertainties from repeated samples of 

ε and χ than we are diagnosing the confidence intervals for each individual fit. 

1.4 No reduction of vibration and wave-contamination 
The ms mentioned using accelerometers to determine the wave climate, so spectra are presumably 

being calculated. It seems no information gained from the accelerometers will be used to assess the 

quality of the turbulence measurements? Rather than decontaminate the shear spectra, the fit is 

restricted to frequencies 1 to 5Hz when some platforms do have contamination across those ranges (Fig 

5 of Bluteau et al., 2016). Surface waves "seas" are awfully close to the frequency range used here. 

7. The authors should acknowledge that their chosen frequencies avoids motion-contamination for their 

specific platform. 

As noted earlier, we now state up front in the abstract that the frequency band we use is one that we 

know to be unaffected by vibration. 

8. It would help to detail in the ms why it’s unfeasible to perform this calculation onboard the processor. 

A squared-coherency estimate (Zhang and Moum, 2010) is mostly rearranging cross-spectral terms 

(conjugates of FFTs). It is not restricted to being done in physical units. This additional processing could 

indeed be accommodated by using longer segments. We often live with ADCP profiles with 10 m bins, so 

getting a lower vertical resolution turbulence signal might be worthwhile if the estimates are more 

robust. 

On the low frequency side, decontamination via squared coherency is not going to help. The motions 

that we’d being trying to account for would be surface gravity waves, but the nonlinear relationship 

between shear and profiling speed makes this too challenging. We now note this in section 3.3. In that 

same section, we also now note that segments that are adversely affected by waves can be identified in 

post processing because they typically share two traits: <W> is not close to Wmin and ε fit score << 1. We 

state that these segments should be discarded. 

For f > 5 Hz, we agree that vibration decontamination is possible and that it can be done in voltage units. 

But, as the reviewer noted earlier, this requires ≥7 subsegments. To us, this represents too large of a 

constraint on the vertical resolution. We have added an explicit statement to the end of section 3.1 that 

we are not pursuing the possibility of motion decontamination. 

2 Fit-score as a quality-control indicator 
The authors’ "fit-score" is the ratio of the result obtained using the first 5 samples (1 to 3 Hz) vs the 

subsequent 5 samples (3 to 5Hz). This quantity tests crudely the sensitivity of the results to a very slight 

change in frequencies. Having used it myself as a qualitative guide (see Fig 4 of Bluteau et al., 2011), I’m 

concerned that there’s no measure of whether the entire spectra are “garbage” particularly the 

temperature gradient spectra that are usually much more variable in quality. 

If the turbulence shape varies widely over such small changes in frequencies, then, indeed, the data is 

very poor. The question, though, becomes, how poor? How much variations in shape can we expect? 

Does this variation depend on the spectral averaging, i.e., the statistical significance of the spectra? Will 

the fit-score depend on the number of samples used in the individual fits? How do all of these factors 

translate into rejection criteria? It needs to be clarified if a rejection threshold was proposed. What’s 
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evident in the manuscript is that the fit-score it’s now the primary way to assess quality, given that the 

reduced algorithm does not send spectra observations to shore. 

9. To develop and assess the algorithm, the SOLO was recovered. Thus, it’s possible to estimate the mean 

absolute deviation listed on L240. The mad has existed for 22 years and is on its way to being 

recommended by the SCOR working group #160 as a quality-control indicator for data archiving. The fit-

score should be compared to the mean absolute deviation (mad) for all segments in a scatter plot. The 

scatter plot would enable readers to judge the robustness and usefulness of the fit-score as a quality-

control indicator. Let the data speak for itself. 

Although our fit score and the mean absolute deviation are both goodness of fit measures, they quantify 

different aspects and there is not an apples-to-apples comparison between the two. 

• Mean absolute deviation, as its name implies, focuses on the size of the residuals. 

• Our fit score is more focused on whether the residuals are random or autocorrelated. 

We have added three sentences to section 4.3 explaining that our fit score focuses on random vs 

autocorrelated residuals. 

To elaborate, consider the spectra examples in Figure 4. Those with the higher scores tend to have 

unbiased residuals: measured spectral coefficients are just as likely to be above the fit as below it. Those 

with lower scores tend to have autocorrelated residuals (often manifesting as the sign of the residuals 

being a function of frequency). Take, for example, a spectrum from Figure 4 whose fit score is low 

because all coefficients with f < 3.3 Hz have negative residuals and vice versa: 

 

This example would also have a large MAD because it’s a poor fit full stop. But there are cases where the 

MAD is large (→ bad fit) but the fit scores are close to 1 (→ good fit) because the residuals are large but 

not autocorrelated. 

Obviously, we prefer that our fits don’t have large residuals, but the more pressing concern is that the 

fits do not have autocorrelated residuals. 

For what it is worth, we did do the comparison of ** 

(1) ε fit score vs MAD(Φs/ΦNa −⟨Φs/ΦNa⟩) over 1–5 Hz 

(2) χ fit score vs MAD(ΦTz/ΦKr −⟨ΦTz/ΦKr⟩) over 1–5 Hz 

The two quantities are clearly correlated (see figure below), but there is variability for the reasons 

described above. 
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**For each fit, we actually calculated the MAD for Φs /ΦNa and its inverse Φs /ΦNa and took the larger 

MAD of the two (and similarly for ΦTz/ΦKr). We did this because there are times when Φs /ΦNa is small 

because ΦNa is large, not because the residuals are small. As a contrived example,  

MAD(Φs/ΦNa −⟨Φs/ΦNa⟩) = 0 if Φs is 0 for every frequency. 

 

3 Data quality of the temperature gradient data 

3.1 Methods description 
In general, the χ description is unclear. The ms is organized as if the χ estimates are done in isolation of 

ε, when Eq 30-31 shows that ε is required to estimate χ. This strategy differs from the many previous 

chipod papers (e.g., Moum and Nash, 2009; Becherer and Moum, 2017), which use the fast-temperature 

data to solve for both ε and χ by equating Osborn to Osborn-Cox’s model. The proposed algorithm 

design in the ms was justified by referring to chipod papers pioneered by their research group (Becherer 

and Moum, 2017). However, the authors haven’t highlighted that the new algorithm depends on getting 

ε first from the shear probe before obtaining χ from the temperature gradient spectra rather than 

obtaining ε and χ simultaneously from the temperature gradient spectra. Needing both shear probes 

and fast-temperature sensors in itself increases the amount of data processing and data transmission 

from the SOLO. Why not get rid of the shear probes completely? Does the SOLO not measure 

background temperature and salinity? 

Inferring values of ε from χ is only possible where there is stratification. Since FCS is an instrument 

focused on the upper ocean, it will spend a lot of its time in the mixed layer. To measure ε here, it needs 

shear probes. We now mention this need for shear probes near the end of section 2. 

10. Please explain in the intro [L35-40] whether they are using the shear probe to derive ε, and if this 

quantity is then used for estimating χ. Some comments as to why this strategy was chosen should be 

provided given it increases the demands on data processing and data transfer. 

We now state in the last paragraph of the Introduction that, yes, we get ε from the shear probes and 

subsequently invoke this in the calculation of χ. (This is also reiterated at the start of section 6.) As the 

reviewer rightly notes, this is different from the chipod method. Consequently, we caused confusion by 

stating that we were closely following the chipod paper of Becherer and Moum (2017). We have moved 

and reworded the reference to Becherer and Moum so that it no longer causes confusion. 
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11. The ms could also better discuss the implications of relying on ε from the reduced algorithm on the 

quality of the χ estimates. Unless of course, they’ve estimated ε and χ simultaneously from the 

temperature gradient spectra in which case the ms should illustrate how εχ compares to ε obtained from 

the shear probes. 

We have added the following paragraph to section 7 (Testing the reduction scheme for χ) 

“There are three reasons for the poorer fits to temperature gradient spectra compared to that for shear. 

First, shapes of temperature gradient spectra are often more variable; the best choice for non-

dimensional spectral model can be debated (e.g., Sanchez et al. 2011). Second, the temperature 

gradient fits depend on ε. Uncertainties in ε propagate into the calculation of χ. Third, for our 2019 

experiment, the recorded temperature gradient signals” 

We briefly reiterate this point in section 8.2 

“Recall, also, that all uncertainty in ε propagates into the calculation of χ (Sect. 7). If ε for a given 

segment cannot be trusted, neither can χ.” 

12. Also re-iterate the dependency of χ on ε when presenting Eq 30-31, and on L306 when claiming the 

temperature gradient spectra ΦKr depends only on χ, which isn’t true (see Fig r1). 

The text already includes a reminder of this dependence after Equation 30. 

We assume the reviewer meant line 307? This line states that ΦKr ∝ χ, but it does not state it depends 

only on χ. The additional dependence on ε is already clearly stated in the definition of ΦKr in Eqs 27–28. 

3.2 Information about the chi data quality 
The fact that no temperature gradient spectra were shown in the ms is disconcerting. A few shear probe 

examples focus on observations between 1 and 5 Hz, which mask any spectral contributions from waves 

or motion contamination. The only spectral information for χ is the data density plots in Fig 10, which 

only show observations between 1 and 5Hz. Still, this figure gives an inkling of the temperature gradient 

data quality. Fig 10b shows a cloud of data with the wrong slope sign at non-dimensional k ≲ 3 × 10−2, 

which then starts to fall off too early. Is this because of problems with the estimated ε shifting the 

spectra to the left? Fig 10c looks like spectra drowned by noise (perhaps high ε and low χ). Even the 

high-score examples in Fig 10a could be better. The “peak" data density doesn’t fit the Kraichnan form. 

There’s no curvature in the location of maximum data density, unlike Fig 7a for the shear probe. 

I’m questioning whether it’s the algorithm behaving poorly or whether the collected temperature 

gradient data could be of better quality at the outset. 

13. To alleviate concerns about the data quality, I strongly recommend adding an extra column in Fig 7 

and 10 showing the data density for all wavenumbers, not just those used by the algorithm. 

As suggested, we have added the extra columns to Fig 7 and 10. The new column in Fig 7 shows that, 

provided the fit score ≳ 0.33, the measurements agree with the Nasmyth spectrum at all but the highest 

frequencies where noise becomes an issue. Conversely, the new column in Fig 10 shows looser 

agreement and that the effects of noise are larger. This implies that the quality of our results is not 

limited by the algorithm, but by the quality of the temperature gradient data. 
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14. Another request is adding an extra column in Fig 4 with the temperature gradient spectra collected 

concurrently with the shear probe. Preferably all available wavenumbers for data transparency. There 

are none in the ms, which masks the data quality. 

The purpose of Fig 4 is not to demonstrate data quality. It is to demonstrate how well the ε fit score 

differentiates better and worse fits. We designed the figure to make it easy to follow: the fits get 

progressively worse moving from top to bottom. Adding a column with the concurrent temperature 

gradient spectra would confuse the figure as this extra column of fits would not necessarily get 

progressively worse in the same way. 

The temperature gradient spectra certainly are of poorer quality in terms of how well they match the 

model form. This is now clear from the extra column added to Fig 10 as suggested in the previous 

comment (and discussed at the end of section 7). 

15. Specify which χ estimates were rejected from the paper. Fig 10 shows variable fit-score, but which 

would be flagged as unusable for further analysis in a scientific article? 

We now note in section 8.2 that we recommend discarding ε and χ values if their associated fit scores 

are less than 0.33. As with any turbulence dataset, it is always a challenge to turn a goodness-of-fit 

continuum into a pass/fail binary. That said, based on our analyses, we find that 0.33 is a good 

threshold. 

16. Why use the inertial subrange model for shear but then assume the viscous-convective subrange 

model for temperature when the same frequencies are fitted onboard the processor? Does it not matter 

that the fitted model isn’t expected over the range k? 

There are two subranges for shear (inertial and viscous) and three for temperature gradient (inertial–

convective, viscous–convective, and viscous–diffusive). We think the reviewer is implying that we use 

the viscous subrange for shear so that the two models are more similar? This is not obvious since there 

isn’t a one-to-one correspondence between subranges for shear and temperature gradient. 

For our scheme to work, the models used (ΦNa and ΦKr) only need to have a subrange in which they are 

proportional to kn (or equivalently fn). For shear, we have k1/3. For temperature gradient, we have k1. 

These power law approximations are what makes the onboard component of the scheme simple (see 

sections 4.2 and 6.2). 

To answer the second question in the comment, no it doesn’t matter. For elaboration, see our response 

to the first comment by reviewer Toshiyuki Hibiya. 

17. Also, please use a colour scale/scheme that compares the temperature and shear spectra data 

density against each other. The colour gradient presents a data count (or proportion of data), but the 

scheme changes between figures. If a colour theme for shear and temperature is necessary, decorate the 

x and y-axis colours, but leave the colour gradient the same across all the data density plots (Fig 6, 7 and 

8-9). 

We fail to see the reasoning behind using a single colourmap. There is never a need to compare 

proportions across different figures. Proportions are only meaningful within a single figure. 
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We use blue for shear and green for temperature gradient throughout the paper to help signal to the 

reader when the discussion shifts from one quantity to the other. 

18. The colours in Fig 6, 7 and 8-9 also seem to saturate at values below the maximum, which makes it 

hard to see where the maximum sits relative to the theoretical shape (Fig 7-10) and the 1:1 slope (Fig 6 

and 9). Perhaps visit brewermap or cmocean color palettes described in Thyng et al. (2016) article about 

ocean data visualization. 

We have fixed the colour limits for the affected figures so that they no longer saturate. 

Colorbrewer is the tool (via a Matlab wrapper) that we used to generate the blue and green colourmaps 

used in this paper. 

Other comments 
Misciting 
Remove the erroneous citations to my published work. On L342, the reference to my article on fitting 

shear probe data does not state that centring a fit around 10-20 cpm minimizes sensitivity to the fitted 

range. The only thing that reduces this sensitivity is fitting the correct model (e.g., inertial subrange) 

over the wavenumbers that this model is expected to be valid. Another way to limit sensitivity is to have 

high-quality measurements that aren’t drowned by noise, vibrations and surface waves. The range of 

wavenumbers would depend on data quality, drop speed, and model used for fitting. If my results were 

insensitive to the 10-20 cpm range, I was using a model that covered both the inertial and viscous 

subranges, and the data was of good quality after decontamination. 

We have removed the statement in question. 

L344-349. I’d remove the whole paragraph. First, the power fit used by the authors sometimes uses 

frequencies in the inertial subrange (1 to 5Hz translates to 5 to 25cpm). With the 0.2m/s drop speed, the 

inertial subrange is only being fitted with the correct model when ε > 10−7 W kg−1. For low ε < 10−7 W/kg, 

the inertial subrange model is fitted to the shear probe’s viscous subrange. A similar argument would 

apply for temperature, except that the authors have chosen to always apply the viscous-convective 

model instead of the inertial-convective model (Fig. r1).  

We have removed the whole paragraph as suggested. 

Using a moored platform changes very little other than we have to contend with variable speeds past 

the sensor. A mooring doesn’t automatically translate into long FFT segments. My miscited article 

(Bluteau et al., 2011) refers to the spectral fitting of the inertial subrange of acoustic-velocity 

measurements – not shear probes. We use long segments because we’re relying on the lower scales of 

turbulence since the data quality is typically too poor over the viscous subranges (technological issue). 

Another reason for using long segments is calculating other turbulence quantities such as Re stresses 

and TKE. These estimates rely on covariances and thus the integration of cospectra with reasonable 

statistical significance (need more NFFTs, and/or band-averaging). 

The reference to Bluteau et al. (2011) was, as we noted, tangential to the paper. We see how it could 

cause confusion and so have removed it per the previous comment. 
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Abstract. Autonomous and expendable profiling float arrays such as deployed in the Argo Program re-

quire the transmission of reliable data from remote sites. However, existing satellite data transfer rates

preclude complete transmission of rapidly sampled turbulence measurements. It is therefore necessary to

reduce turbulence data onboard. Here we propose a scheme for onboard data reduction and test it with

existing turbulence data obtained with a newly developed version of a
:::::::::
modified

:
SOLO-II profiling float.5

The scheme invokes simple power law fits to (i) shear probe
:::::
First,

:
voltage spectra

:::
are

::::::::
derived

:::::
from

::::::
shear

:::::
probe

:
and (ii) fast thermistor voltage spectra

:::::::
signals.

:::::::
Then,

:::
we

::::::
focus

:::
on

:
a
::::::
fixed

::::::::::
frequency

:::::
band

:
that yield

:::
we

::::::
know

::
to

:::
be

:::::::::::
unaffected

:::
by

:::::::::::
vibrations

::::
and

::::
that

:::::::::::::::
approximately

::::::::::::
corresponds

:::
to a fit value plus a quality

control metric
::::::::::::
wavenumber

:::::
band

:::
of

::::::::::
5–25 cpm. At

:::::
Over

:::
the

::::::
fixed

::::::::::
frequency

::::::
band,

:::
we

::::::
make

:::::::
simple

:::::::
power

:::
law

::::
fits

:::::::::::
that—after

:::::::::::
calibration

:::::
and

::::::::::
correction

:::
in

:::::::::::::::::::::::
post-processing—yield

:::::::
values

:::
for

::::
the

:::::::::
turbulent

::::::::
kinetic10

::::::
energy

::::::::::::
dissipation

::::
rate

:::
ε

::::
and

::::::::
thermal

::::::::::
variance

:::::::::::
dissipation

:::::
rate

:::
χ .

:::::
With

:
roughly 1 m vertical interval

resolution
::::::::
segments, this scheme reduces the necessary data transfer volume 240-fold

::::::::
300-fold

:
to ap-

proximately 3
:::
2.5 kB for every 100 m of a profile (when profiling at 0.2 m s−1). Turbulent kinetic energy

dissipation rate ε and thermal variance dissipation rate χ are recovered in post-processing. As a test, we

apply our scheme to a dataset comprising 650 profiles and compare its output to that from our standard15

turbulence processing algorithm. For ε , values from the two approaches agree within a factor of two 87%

of the time; for χ , 78%. These levels of agreement are greater than or comparable to that between the ε

and χ values derived from two shear probes and two fast thermistors, respectively, on the same profiler.
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1 Introduction

Measurements of oceanic turbulence have been made since the 1950s using platforms and sensors of20

various shapes and sizes (Lueck et al. 2002). Complete resolution of the turbulence requires measuring

temperature and velocity gradients at millimeter-to-centimeter scale. Hence, sampling turbulence is data

intensive. Whereas conventional profiling measurements of temperature, conductivity, and pressure are

typically sampled at 1 Hz (e.g., Argo floats; Roemmich et al. 2019a), a turbulence profile involves sam-

pling multiple sensors at 100–1000 Hz. A relatively minimal requirement of five separate signals sampled25

at 100 Hz and recorded at 16-bit resolution equates to 1 kB s−1, or 500 kB per 100 m of profiling range at

0.2 m s−1 profiling speed. For floats, this is not a trivial volume of data. For example, transmitting only

3 kB of data from a Deep SOLO float takes 100–200 s (Roemmich et al. 2019b). Extended surfacings also

present a danger from surface vessels and vandals. Ultimately, raw turbulence profiles are two-to-three

orders of magnitude too large to transmit in a reasonable amount of time.30

One approach to reducing turbulence data is given by Rainville et al. (2017) who use it for multi-

month glider missions. Onboard the glider, they calculate spectra of raw voltage signals reported by

the shear probes and fast thermistors and then band average each of these spectra into 12 bins. After

transmission, these binned values are calibrated and fit to model spectra. Although we will share this

strategy of postponing calibration ,
::
In

::::::
other

:::::::
words,

:::::
they

:::
(i)

::::::::::
postpone

:::::::::::
calibration

::::
and

::::
(ii)

::::::::::
minimize

::::
the35

::::
data

:::::::::::::
manipulation

:::::
and

:::::::::::
processing

::::
that

::::::::
happens

::::::::::
onboard.

::::::
These

::::
two

::::::::::
strategies

::::
are

:::::::
shared

:::
by

::::
our

::::::::
scheme

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(and also shared by the reduction scheme developed for χpods; Becherer and Moum 2017)

:
.
:::::::::::
Otherwise,

:::::::::
however,

our scheme differs from Rainville et al. (2017)
::::
that

::
of

::::::::::::::::::::::
Rainville et al. (2017)

::
as

::
it

:::::
does

:::
not

::::
suit

::::
our

:::::::::
scientific

:::::
goals

:::
of

:::::::::::
measuring

:::::::::::
turbulence

:::::
over

::::
the

::::::
upper

:::::::::
∼120 m

:::
at

:::::
high

::::::::
vertical

:::::::::::
resolution

:::::
(e.g.,

:::::::
∼1 m)

:::::
and

:::
as

::::::::::
frequently

::
as

:::::::::
possible

::::
(see

:::::::
Sect. 2

:
).
:::::
Two

::::::
shear

::::::
probes

::::
and

::::
two

::::
fast

:::::::::::
thermistors

:::::::
would

::::::::
produce

::::::::::::::::::
(2+2)×12 = 4840

:::::::
spectral

:::::::
values

::::
per

:::::::::
segment.

::::::
Even

::::::::
without

::::::::::::
considering

::::
the

:::::
other

:::::::::
profiling

:::::::::::
quantities,

::::
the

::::::::
spectral

:::::::
values

:::::
could

::::
add

::::
up

::
to

::::::::
>20 kB

::::
per

:::::
dive

:::
for

::::
our

:::::::::
scenario.

::::
We

:::::::
would

:::
be

:::::::::
spending

:::
as

::::::
much

:::::
time

::::::::::::
transmitting

::::
the

::::
data

:::
as

::::::::
actually

:::::::::::
measuring

::::
the

::::::
ocean. Instead, we more closely follow Becherer and Moum (2017) who

designed a scheme to reduce moored χpod data by more than four orders of magnitude. Overall, our goal

is to minimize the file size to be transmitted, and yet also minimize the amount by which we manipulate45

and process the data onboard.
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Becherer and Moum (2017) showed that , for a given segment, turbulence quantities can be reconstituted

from voltage quantities (means, variances, and power law fits). We adapt their approach so that it works

for a vertical profiler (
:::
Our

::::::::
scheme

:::
is

:::
for

:::::::::
profiling

::::::::::::
instruments

::::
that

::::::::
contain

::::::
shear

:::::::
probes

:::::
and,

:::::::::::
optionally,

:::
fast

::::::::::::
thermistors

::
(Sect. 2). First, we document the necessary calibration details (Sect. 3). Next, we com-50

press raw shear voltages by way of simple power law fits
:::
and

::::::
show

:::::
how

::
ε

::
is
::::::::
derived

::::::
from

:::::
these

::::
fits

:::
in

:::::::::::::::
post-processing

:
(Sect. 4). A test of the scheme employing 650 profiles demonstrates that little accuracy

is sacrificed in return for a large reduction in data volume (Sect. 5). A similar method and test is given

for
:::::::::
Knowing

::
ε
:::::
from

::::
the

::::::
shear

::::::
probe

::::::::::::::
measurements

:::::::
makes

::::::::
possible

::
a
:::::::
similar

::::::::
method

::::
for

::::::::
deriving

::
χ
::::::
from

fast thermistor measurements (Sect. 6 and 7). Adapting the scheme to a different profiler requires minimal55

modification (Sect. 8). For our particular profiler
:::::
setup, the scheme reduces the dataset size by a factor of

∼240: only 3
::::
300:

:::::
only

::::
2.5 kB for each 100 m of a profile (Sect. 9).

2 The Flippin’ χSOLO (FCS)

We intend our data reduction scheme to be sufficiently general to be portable to all vertical turbulence

profilers
:::
that

::::::::
contain

::::::
shear

:::::::
probes. It can also be used with gliders if a measure of flow speed past the60

sensors is available (e.g., Greenan et al. 2001; Merckelbach and Carpenter 2021). In a general sense,

some of the values specified herein ought to be considered variables (Sect. 8). However, we do have a

particular platform for which we are developing the scheme: the Flippin’ χSOLO (FCS), and the values

used here are chosen for the objective of detailed upper ocean profiling.

FCS is a conventional
:::::::::::
descendant

:::
of

::::
the

:
SOLO-II profiling float (Roemmich et al. 2004) with the65

addition of a turbulence package plus
:::
and

:
extra functionality. The turbulence package includes two shear

probes (Osborn 1974) to measure small-scale velocity gradients from which ε is computed, two fast

thermistors to measure small-scale temperature fluctuations from which χ is computed, as well as a pitot

tube (Moum 2015), pressure sensor ,
:::
and

::
a
:::::::::
pressure

:::::::
sensor

:::::
from

:::::::
which

:::::::::
profiling

::::::
speed

::
is

:::::::::
derived.

:::::
FCS

::::
also

:::::::::
includes

:
a
:
three-axis accelerometer, and compass. The pressure sensor yields a measure of profiling70

speed used in our scheme. The pitot tube, accelerometer, and compass data
::::::::::::::
accelerometer

::::
that

::
is

:::::
used

:::
to

::::::::
measure

::::
the

:::::::
surface

::::::
wave

:::::
field

:::::::::
(although

:::::
with

::
a
::::::::
method

::::
not

:::::::::
described

:::
in

::::
this

:::::::
paper).

:::::::::::::::
Accelerometer

:::::
data

:::::
from

::::::
when

::::
FCS

:::
is

:::::::::
profiling are not used in the turbulence data reduction schemebut have other purposes
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such as measuring the surface wave field. When changing its buoyancy to switch
:::
our

::::::::::
reduction

:::::::::
scheme.

::::
FCS

::::
and

:::
its

::::::::::::::
measurements

::::
are

:::::::::
described

::::::
more

:::::::::::
completely

::
in

:::::::::::
companion

::::::
paper

:::::::::::::::::::::::::::
(Moum et al. under review)75

:
.

:::
To

:::::::
reverse

:
profiling direction, FCS also flips (

:::::::
adjusts

::::::::::
buoyancy

::::
and

:::::
flips

:
via internal shifting of the

battery pack) so that
:
.
:::::
This

:::::::
causes the turbulence sensors

::
to

:
always point into undisturbed fluid. Flipping

therefore permits profiling on both ascent and descent
:::::::
descent

::::
and

:::::::
ascent including sampling of the upper

5 m on the upward profile. FCS and its measurements will be described more completely in a future paper.80

:::::::
ascent.

As a prototype, a SOLO float without flipping capability but
::::::::
standard

::::::::::::::
(non-flipping)

:::::::
SOLO

:::::
float with

a modified χpod (Moum and Nash 2009) attached was deployed in the Bay of Bengal to measure the

suppression of turbulence by salinity stratification (Shroyer et al. 2016). Two
::::
This

::::::::::::::::::::
instrument—named

:::::::::::::
χSOLO—did

::::
not

:::::
have

::::::
shear

::::::::
probes,

::::
and

:::::::::
therefore

::::::
could

::::
not

:::::
have

:::::::::
provided

::::::::::
estimates

::
of

::
ε
:::::::
within

:::::::
mixed85

::::::
layers.

::::::::
(Values

::
of

::
ε
::::
can

:::
be

:::::::::::::
approximated

:::::
from

:::
χ ,

::::
but

::::
only

::
if

::::::
there

::
is

:::::::::::::
stratification.)

::::::::::::::
Nevertheless,

::::::::::
χSOLO’s

:::::::
success

::::::::::
motivated

::::
the

:::::::::::::
development

::
of

::::
the

:::::
FCS

:
units with flipping capabilities and fully integrated turbu-

lence packageswere subsequently built and
:
.
::::::
These

:::::
new

::::::::::::
instruments

::::::::
retained

::::
the

:::
χ

::
or

:::
C

::
in

::::::
their

::::::
name

:::::::
despite

:::::
their

:::::::
ability

::
to

::::
also

::::::::
directly

:::::::::
measure

::
ε

:::::
from

::::::
shear

:::::::
probes.

:

:::::
Two

::::
FCS

::::::
units

:::::
were

:
vetted over four days in May 2019 off the Oregon coast. During this period, each90

unit profiled from the surface to ∼120 m and back at a typical speed of 0.2 m s−1. Adding time at the

surface, each dive cycle took ∼30 minutes and we obtained 650 profiles in total.

In this 2019 experiment, one of the shear probes on one of the two units malfunctioned. Hence, the

dataset for this paper contains approximately 25% fewer shear data than fast thermistor data.

3 Conversion of measured voltages to physical units95

The core of our data reduction scheme uses power law fits of voltage spectra that are calculated onboard,

and subsequently converted to meaningful turbulence quantities in post-processing. Additional voltage

quantities are also recorded to determine temperature, pressure, and profiling speed.
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3.1 Nomenclature and conventions

– All quantities measured by FCS that are discussed in this paper are sampled at 100 Hz.100

– All voltage spectra are frequency spectra and denoted Ψx( f ) (where x is a label such as s for shear)

with units of V2 Hz−1.

– Physical spectra of shear and temperature gradient are wavenumber spectra and denoted Φx(k) with

units of s−2 cpm−1 and K2 m−2 cpm−1, respectively. Figure 4 is an exception in which shear spectra

are frequency spectra: Φs( f ).105

– Wavenumber k has the unit cycles per meter (cpm). Expressions quoted from other papers may

differ by factors of 2π for wavenumbers in radians per meter.

– The Kraichnan model spectrum ΦKr primarily depends on the dissipation rates of turbulent kinetic

energy and temperature variance (ε and χ), but it also depends on the molecular viscosity ν and

molecular thermal diffusivity DT . For brevity, we write ΦKr(k,ε,χ) rather than the more complete110

ΦKr(k,ε,χ,ν ,DT ). Similarly, the Nasmyth spectrum is written ΦNa(k,ε) rather than ΦNa(k,ε,ν).

In cases where the arguments are unambiguous or unimportant, we simply write ΦNa and ΦKr.

– A pair of angle brackets, ⟨·⟩, denotes the mean value over a segment of length Nseg = 512 data

points. This equates to ∼1 m at our nominal profiling speed of 0.2 m s−1.

– To calculate spectra for a given 512-element voltage segment, we first remove the linear trend, then115

use three half-overlapping, Hamming-windowed, 256-element subsegments (i.e., Nfft = 256,Noverlap =

128).

In general, the values of Nseg and Nfft are variables. Our choices are based on the 100 Hz sampling

(∼500 cpm) and the goals of FCS, which include obtaining high-vertical-resolution turbulence data, es-

pecially near the surface. For different turbulence profilers or different scientific goals, longer segments120

and/or more overlapping subsegments may be more appropriate (see Sect. 8).

:::
We

:::
do

::::
not

:::::::
pursue

:::
the

:::::::::::
possibility

::
of

::::::
using

:::::::::::::::
accelerometers

::
to

::::::::::::::
decontaminate

::::::::
spectra

:::::::::::::::::::::::::::::
(e.g., Levine and Lueck 1999)

:
;
:::::
three

:::::::::::::
subsegments

::
is

::::
too

::::
few

::::
for

::::
this

::
to

::::::
work

:::::
well.

::::::::
Rather,

:::
we

::::::
focus

:::
on

::
a

::::::::::
frequency

:::::
band

::::
that

::::
we

::::::
know

::
to

:::
be

::::::::::
unaffected

:::
by

::::::::::
vibration.

:
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3.2 Shear calibration125

The voltage reported by the shear probe Vs is linearly proportional to shear:

uz =
α

W 2Vs (1)

α = 1/(2
√

2ρGsTsSs) (2)

where W is the flow speed past the sensor. The overall engineering calibration α includes the seawater

density ρ , the analog circuit gain Gs (equal to 1 for FCS circuitry), the probe sensitivity Ss (∼0.25×130

10−3 V m2 N−1) and the differentiator time constant Ts (∼1 s).

The linearity in Vs admits a simple link between the physical and voltage spectra:

Φuz(k) =
1

H2
s (k)

α2

W 3 Ψs( f ). (3)

where H2
s (k) is the transfer function that accounts for (i) spatial averaging by the shear probe of high-

wavenumber motions and (ii) analog and digital filtering of the raw voltage signal (see Appendix A).135

Note also the use above of the following relation:

Ψ( f ) = Ψ(k)
dk
d f

=
Ψ(k)

W
. (4)

3.3 Temperature and temperature gradient calibration

Two voltage signals are recorded for each fast thermistor. VT is the voltage output directly related to T and

VTt is the differentiated output, which improves resolution at high frequencies (≳10 Hz). Temperature is140

related to VT through a quadratic calibration:

T =C1T +C2TVT +C3TV 2
T (5)

⟨T ⟩=C1T +C2T ⟨VT ⟩+C3T

〈
VT

2
〉

2
:

(6)

where C1T , C2T , and C3T are coefficients determined from lab calibrations. Note how ⟨T ⟩ depends on

the means of both VT and V 2
T because of the quadratic calibration

:::::::
Eq. (6)

::
is

:::::::::::
technically

:::
an

:::::::::::::::
approximation145

::::::::
because

::
it

::::::::
contains

:::::::
⟨VT ⟩2,

::::
not

::::::

〈
V 2

T
〉
,
::::

but
:::::
over

::::
5 s

:::::
time

::::::
scales

::::
this

:::::::::
changes

::::
⟨T ⟩

:::
by

:::::::::::
≲0.001°C

:::::::::::
(estimated

:::::
from

:::
the

::::::
2019

::::::::
dataset).
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The gradient of this
:::
the

::::::::::::
temperature calibration is

∂T
∂VT

=C2T +2C3TVT≈=
:

C2T +2C3T ⟨VT ⟩ . (7)

Over 5 s time scales, we consider VT to be constant. Consequently, the small-scale vertical temperature150

gradient Tz is linearly proportional to the differentiated voltage VTt . To demonstrate, we first rewrite Tz in

terms of more directly measured quantities:

Tz =
∂T
∂ z

=
∂T
∂VT

∂VT

∂ t
∂ t
∂ z

. (8)

The first quantity on the right-hand side is Eq. (7), the last is 1/W , and the second is

∂VT

∂ t
=

VTt

CTt
(9)155

where CTt is the gain of the analog differentiator.

Rewriting Eq. (8), the aforementioned linear relationship between Tz and VTt becomes

Tz =

(
C2T +2C3T ⟨VT ⟩

CTtW

)
VTt . (10)

The relationship between physical and voltage spectra is therefore

ΦTz(k) =
1

H2
Tt(k)

::::::

(
C2T +2C3T ⟨VT ⟩

CTt

)2 1
W

ΨTt( f ). (11)160

Again, we have invoked Eq. (4)
:::
and

::::
the

::::::::
transfer

::::::::
function

:::::::
H2

Tt(k):::
is

:::::::
defined

:::
in

::::::::::
Appendix

::
A.

3.4 Pressure and profiling velocity calibration

Pressure has a linear calibration:

P [dbar] =
C1P +C2PVP

1.45psidbar−1 − patm. (12)

In our usage, the coefficients C1P and C2P are recorded in units of psi and psi V−1, respectively, and165

calibrated under total pressure. Subtracting atmospheric pressure makes P = 0 at the sea surface. The

constant C1P must account for the vertical position of the pressure sensor on the instrument relative to
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the shear probes and thermistors. Hence, C1P differs between upcasts and downcasts. For the reduced

dataset, we want ⟨P⟩, which is simply Eq. (12) with ⟨VP⟩ in place
::::::
record

::::
the

::::
last

:::::::::
pressure

:::::::
voltage

:::
in

:::::
each

:::::::::
segment.

:::
For

::::::::::
example,

:::::
with

:::::::::::
Nseg = 512,

::::
we

:::::
save

:::
the

:::::::
512th,

::::::::
1024th,

::::
and

:::::::
1536th

:::::::
values of VP .

:::
for

:::
the

:::::
first170

:::::
three

::::::::::
segments.

::::
The

::::::::
average

:::::::::
pressure

:::
in

:::
the

::::::::
second

::::
and

:::::
third

:::::::::
segment

:::
are

::::::::::::::::::::::::::
0.5(VP(1024)+VP(512))

::::
and

::::::::::::::::::::::::::
0.5(VP(1536)+VP(1024)),

:::::::::::::
respectively.

::::
The

::::::::
average

::::::::
pressure

::
in

::::
the

::::
first

::::::::
segment

::
is
:::::::
found

::
by

::::::::::::::
extrapolation.

The flow speed past the sensors, denoted W , is derived from the pressure voltage rate of change . Over a

segment of length N, the mean of W is a scaled version of the difference between the first and Nth voltage175

values
::
of

::::
the

::::::::
pressure

:::::::::
voltages

::::
just

::::::::::
described:

⟨W ⟩= ∂P
∂ t

=
C2P

1.45Calculate onboard
|∆VP|
Nseg∆t
::::::

(13)

where ∆t is the sampling period (here 0.01 s) , and ∆VP is VP(N)−VP(1). ::::
and

:::
∆P

:::
is

::::::::::::::::::::
VP(1024)−VP(512)

:::
and

::::::::::::::::::::::
VP(1536)−VP(1024)

:::
for

::::
the

:::::::
second

::::
and

:::::
third

::::::::::
segments,

:::::::::::::
respectively.

:::::::::::::
Extrapolation

:::
is

:::::
again

:::::
used

::::
for

:::
the

::::
first

:::::::::
segment.

:
180

No smoothing is necessary before calculating ∆VP because its magnitude is so much larger than the

quantization of the signal (this being the limiting factor for precision of pressure recorded by FCS). In

physical units, P is precise to 0.003 dbar, which is O(300) times smaller than ∆P.

Wave orbitals can introduce variability when W is small (≲0.15 m s−1). As a diagnostic we calculate

and record the minimum value of W for each segment. This also helps to identify the beginning and end of185

profiles as shown in Appendix B. In standard processing, we would derive W (t) from the pressure signal

low passed at 2 Hz. To avoid the need to low-pass filter the signal onboard, we instead make 10 estimates

of W (t) per segment and take the minimum of these:

Wmin =
C2P

1.45
min

( |∆VP(ti)|
50∆t

)
︸ ︷︷ ︸

Calculate onboard

(14)

where ti = 1,51,101, . . . ,501. Even with this sampling of every 50th element, which follows from sub-190

sampling a 100 Hz signal at 2 Hz, ∆VP(ti) is large enough that smoothing is unnecessary.

In this paper, we immediately discard all segments in which Wmin < 0.05ms−1. This threshold is

reached only at the top and bottom of profiles, if at all. Note, however, that this does not imply that a
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segment with Wmin > 0.05 m s−1 is trustworthy. Even segments with Wmin closer to 0.15 m s−1 should be

treated with particular caution. Signs that a segment is questionable are that ⟨W ⟩ and Wmin differ by more195

than ∼20% or
:::::
more

::::
and

:
that spectral fit scores are low (see Sect. 4.3 and 6.3).

::::::
These

::::
two

:::::::
issues

::::::
often

::::::::
co-occur

:::::::::
because

::
of

::::
the

:::::::::
nonlinear

::::::::::::
relationship

:::::::::
between

::::::
shear

::::
and

:::::::::
profiling

::::::
speed

::::
(Eq.

::::
1).

:::::
Low

::::::::::
frequency

:::::::::
variations

:::
in

::
W

:::::::::::
ultimately

::::
lead

::
to

::::::::
spectra

::::
that

:::
are

:::::::
redder

::::
than

::::::::::
expected,

::::
and

::::::
hence

:::::
have

::::
low

::
fit

:::::::
scores.

::::::
Such

:::::::::
segments

:::::::
should

:::
be

::::::::::
discarded.

::::::
There

:::
is

:::
not

::
a
:::::::
simple

::::
way

:::
to

:::::::
correct

::::
the

:::::::
spectra

::::::
given

:::
the

:::::::::::::
nonlinearity.

:

4 Reduction of shear data200

::
In

::::
this

::::::::
section,

:::
we

::::
are

::::::::::
ultimately

::::::
going

:::
to

::
fit

::::::::::
measured

:::::::
spectra

:::
to

:::
an

:::::::
inertial

:::::::::
subrange

:::::::
model

::::
that

:::::
does

::::
not

:::::::::::
necessarily

::::::
apply

::
at

:::
the

:::::::::
relevant

:::::::::::
frequencies

:::
or

::::::::::::::
wavenumbers.

::::
We

::::
will

::::::::::
elaborate

::
as

::::
we

:::
go,

::::
but

:::
we

:::::
want

:::
to

::::::::::
emphasize

:::
in

::::::::
advance

::::
that

::::::::::
measured

::::::::
spectra

:::
do

:::
not

:::::
need

:::
to

:::::::::
conform

::
to

:::
an

::::::::
inertial

:::::::::
subrange

:::::::
model

:::
for

:::
us

::
to

::::::
obtain

:::::::::
accurate

:::::::
values

::
of

:::
ε .

::::
The

::::::::
inertial

:::::::::
subrange

::
is

:::::::
merely

::
a
:::::::::::
convenient

::::::::
starting

::::::
point.

4.1 Summarizing Nasmyth spectra with f 1/3 fits205

Shear measurements ideally capture both the inertial and viscous subranges and hence use a wide band of

the measured spectrum to derive values for ε . In practice, noise and sensor resolution limit how well the

true environmental spectrum is resolved. Conventional work-arounds exploit the Nasmyth model spec-

trum ΦNa(k,ε) (Nasmyth 1970; Oakey 1982). One approach is to iterate toward a solution in which the

integral of ΦNa over a specific wavenumber band matches that of the measured spectrum Φuz (e.g., Moum210

et al. 1995). Another is to find the best fit of Φuz to ΦNa by using maximum likelihood estimation together

with a model of the expected statistical distribution of the spectral coefficients being fitted (e.g., Bluteau

et al. 2016).

Here we develop a new and simpler two-stage approach to fitting shear spectra to ΦNa. In the first stage,

we use an f 1/3 power law fit over a fixed frequency range of fl to fh = 1–5 Hz, where f 1/3 follows from215

the assumption that we are fitting over the inertial subrange. In this
:::
the

:::::::
second

::::::
stage,

:::
we

::::::::
correct

:::
for

::::::
when

:::
this

:::::::::::::
often-invalid

::::::::::::
assumption.

:

::
In

::::
the

:::::::
inertial

:
subrange, shear spectra are proportional to k1/3 and hence also f 1/3 since f =Wk. With

Nfft = 256 and 100 Hz sampling (Sect. 3.1), spectral coefficients are separated by frequency increments of

9



100 Hz/256 = 0.39 Hz, so there are 10 coefficients between 1 and 5 Hz. (Our processing code will actually220

use bounding frequencies of 0.98 and 4.88 Hz as these are half-integer multiples of 0.39 Hz, but for brevity

we will write these as 1 and 5 Hz throughout.)

Our choice of fl = 1Hz is dictated by a requirement that we avoid low frequency contamination induced

by (i) advection by wave orbital motion and (ii) pitch and roll motions of the profiler. Together, these

dominate below 0.3 Hz. Setting fl = 0.5 Hz would add only one more spectral coefficient. Our choice of225

fh = 5Hz is a trade-off between maximizing the bandwidth of the fit and minimizing how much measured

spectra are subject to either noise or viscous roll off. Other profilers may benefit from different frequency

bounds (see Sect. 8).

Our inertial subrange assumption is often false. Indeed, ‘assumption’ is perhaps a misnomer as we

do not expect it to be true; we know that viscous roll off will often occur at frequencies lower than 5 Hz230

(25 cpm for a nominal value of W = 0.2 m s−1). However, because there exists an analytical expression for

the viscous roll off, we are able to derive an exact expression that quantifies how much ε is underestimated.

This is the second stage of our approach. We derive an expression for the correction function FNa in such

a way that it can be calculated in post-processing. The benefits of this approach are that (i) we can fit

uncalibrated (i.e., voltage) spectra and (ii) it simplifies the actual onboard fitting routine (Sect. 4.2).235

The full Nasmyth spectra and its inertial range approximation are as follows (Lueck 2013):

ΦNa(k,ε) =
ε3/4

ν1/4
8.05(kη)1/3

1+(20.6kη)3.715 (15)

ΦNa(k ≲ 0.02/η ,ε) = 8.05k1/3ε2/3 (16)

where η = (ν3/ε)1/4 is the Kolmogorov length scale.

Consider an f 1/3 fit of the Nasmyth spectrum over
::::
Let

::::
εinit:::::::

denote
::::
the

:::::::
initial

:::::
value

:::
of

::
ε
:::::
that

:::::::
comes240

:::::
from

::::::
fitting

::
a

::::::::::
measured

:::::::::
spectrum

:::
to

:::
the

:::::::::::::
approximate

:::::
form

:::
in

:::::::::
Eq. (16)

:::::
using

::::
the

:::::::
simple

::::::::::
power-law

:::::::
fitting

:::::::
method

:::
in

::::::::::
Appendix

::
C,

:::::::
rather

::::
than

:::::::
fitting

::
to

::::
the

::::
full

:::::
form

::
in

:::::::::
Eq. (15).

::::
As

:::::
noted

::::::::
earlier,

:::
the

:::
fit

::::
will

:::
be

:::::
over

:::
the fl– fh = 1–5 Hz for two values of ε: 1×10−9 and 1×10−6 W kg−1 (Fig. 1a). With

:::::
range

:::::::
which,

::::::
given

our nominal value of W = 0.2 m s−1, we get
:::::::
equates

:::
to kl–kh = 5–25 cpm. For

:::::::::
Consider

::::
two

:::::::::::
contrasting

::::::::::
examples

::
of

::::
low

::::
and

:::::
high

::::::::::
turbulence

:::::
with

:::::::::::::
ε = 1×10−9

::::
and

::::::::::::::::::
1×10−6 W kg−1,245

::::::::::::
respectively.

::::
For

::::::
now,

:::::::
assume

::::
the

::::::::::
measured

::::::::::
spectrum

:::
to

:::
be

:::
fit

::
is

::::::
itself

::
a
::::::::::
Nasmyth

::::::::::
spectrum.

::::
For

:
ε =

10−6 W kg−1 the f 1/3 fit lies on top of ΦNa. Conversely, the f 1/3 fit for the smaller ε value is seemingly

10



meaningless: the f 1/3 fit (dashed line) does not even match the sign of the slope of ΦNa. Worse yet,

naively inverting this initial (or ‘init’)
:::::
initial

:
fit produces the underestimate εinit = 1.2× 10−10 W kg−1,

six
::::
eight

:
times smaller than the true value of ε . However, by adjusting by a factor of 1/FNa, defined in250

the following paragraph, the fit (dotted line) now looks like a hypothetical extrapolation of the inertial

subrange. Equivalently, εinit is corrected to the true value of ε as

ε = εinit/F3/2
Na . (17)

In our example, 1× 10−9 W kg−1 = 1.2× 10−10 W kg−1 / 0.2383/2. The value of 0.238 is the solution to

an implicit equation derived below that depends on εinit and W . For clarity, our demonstration starts by255

assuming we know ε rather than εinit.

Nasmyth spectra can be flattened to unity over the inertial subrange with the normalization 8.05k1/3ε2/3

(Fig. 1b). Values of FNa are based on the mean of these flattened spectra over the wavenumber range kl–kh

(= fl/W– fh/W ):

FNa =
1

kh − kl

kh∫
kl

ΦNa(k,ε)
8.05k1/3ε2/3 dk. (18)260

To remove the dependence of the true value of ε , we substitute using Eq. (17) . Further, to account for the

H2
s (k) factor in Eq. (3), we make the substitution

ΦNa(k,ε)→ H2
s (k)ΦNa(k,ε).

Think of this substitution as inverting the conventional way that H2
s (k) is invoked. Usually, a measured

shear spectrum is amplified at high wavenumbers by 1/H2
s (k) and then fit to the model spectrum ΦNa.265

Here, instead of amplifying the measured spectrum, we reduce the model spectrum. With this latter

approach, H2
s (k) is calculated and applied only during the post-processing stage. (It changes FNa by only

∼5% since we fit over relatively low wavenumbers.) Altogether, the substitutions result in
:::::::::
Eq. (17)

::
to

::::::::
produce an implicit function for FNa, which can be solved numerically:

1
kh − kl

kh∫
kl

H2
s (k)ΦNa(k,εinit/F3/2

Na )

8.05k1/3ε2/3
init /FNa

ΦNa(k,εinit/F3/2
Na )

8.05k1/3ε2/3
init /FNa

:::::::::::::::::

dk−FNa = 0. (19)270
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Figure 1. Calculation of the correction function FNa for two values of ε . For ε = 1× 10−6 W kg−1, a k+1/3 power

law is a good approximation of the Nasmyth spectrum over the frequency range fl– fh (1–5 Hz) for a profiling speed

of W = 0.2 m s−1. Although the same is not true for ε = 1× 10−9 W kg−1, we can account for the roll off with a

factor of FNa. FNa can be defined in terms of either ε (Eq. (18)) or εinit (Eq. (19)). Panel b takes the former approach.

In practice, we must take the latter approach since we do not know ε until after it is derived from εinit and FNa.

Note how the two forms of FNa (Eqs. 18 and 19) are defined with different arguments. For our exam-

ple, FNa(ε = 1×10−9 W kg−1) = FNa(εinit = 1.2×10−10 W kg−1) = 0.238. Hereafter, we use the latter:

FNa(εinit).
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Figure 2. The correction function FNa for ν = 1×10−6 m2 s−1 and fl– fh = 1–5 Hz.

With fl and fh fixed, FNa is a function of three variables: εinit, W , and ν . FNa is closer to one (less of a

correction) for larger values of εinit (Fig. 1). It is also closer to one for higher values of W (Fig. 2) since kl275

and kh decrease with increasing W (i.e., kl–kh moves closer to the inertial subrange).

:::
To

:::::::::
simplify

::::::::::::
calculations

:::
in

::::
the

:::::::::::
upcoming

::::::::
section,

::::
we

::::::
make

::::
one

::::::
final

:::::::
change

:::
to

::::::::::
Eq. (19)

:::::
using

::::
the

:::::::::::
substitution

:

ΦNa(k,ε)→ H2
s (k)ΦNa(k,ε).

::::::::::::::::::::::::::::
(20)

::::::::::
Therefore,

:
280

1
kh − kl

kh∫
kl

H2
s (k)ΦNa(k,εinit/F3/2

Na )

8.05k1/3ε2/3
init /FNa

dk−FNa = 0.

::::::::::::::::::::::::::::::::::::::::::::::

(21)

::::::
Think

::
of

:::::
this

:::::::::::
substitution

:::
in

:::::::::
Eq. (20)

::
as

:::::::::
inverting

::::
the

:::::::::::::
conventional

::::
way

:::::
that

::::::
H2

s (k):::
is

::::::::
invoked.

:::::::::
Usually,

::
a

:::::::::
measured

::::::
shear

:::::::::
spectrum

::
is

::::::::::
amplified

::
at

:::::
high

:::::::::::::
wavenumbers

:::
by

:::::::::
1/H2

s (k)::::
and

:::::
then

::
fit

:::
to

:::
the

::::::
model

::::::::::
spectrum

:::::
ΦNa.

::::::
Here,

:::::::
instead

:::
of

:::::::::::
amplifying

:::
the

::::::::::
measured

::::::::::
spectrum,

::::
we

:::::::
reduce

:::
the

:::::::
model

::::::::::
spectrum.

:::::
With

::::
this

::::::
latter

:::::::::
approach,

:::::::
H2

s (k)::
is

::::::::::
calculated

:::::
and

:::::::
applied

:::::
only

:::::::
during

::::
the

:::::::::::::::
post-processing

::::::
stage.

:::
(It

:::::::::
changes

::::
FNa :::

by
:::::
only285

:::::
∼5%

::::::
since

:::
we

:::
fit

::::
over

::::::::::
relatively

::::
low

:::::::::::::::
wavenumbers.)

:
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4.2 Obtaining εinit from shear voltage spectra

Since ε can be reconstructed from εinit, we require an expression linking εinit to the shear voltage spectrum

Ψs. Equating Eq. (3) and Eq. (16) gives

α2

W 3 Ψs( f ) = 8.05k1/3ε2/3
init (22)290

where we have left out H2
s (k) since it has been incorporated into FNa. Rearranging and substituting k =

f/W gives

ε2/3
init f 1/3 =

α2

8.05W 8/3 Ψs( f ). (23)

Then, to solve for εinit, we use a least-squares fit (see Appendix C):

ε2/3
init =

α2

8.05W 8/3

∑ f f 1/3 Ψs

∑ f f 2/3︸ ︷︷ ︸
Calculate onboard

(24)295

where the sums are understood to be over the range fl– fh. The quantities α , W , and εinit are calculated in

post-processing.

4.3 Quality control of the shear spectral fits

Measured shear spectra are often quality controlled either by manual visual inspection or, more objec-

tively, by quantifying the level of mismatch between them and their associated model. Possible mismatch300

quantities include the mean absolute deviation or the variance of the ratio Φuz/ΦNa (e.g., Ruddick et al.

2000; Bluteau et al. 2016). We cannot calculate such quantities with our reduced scheme because we do

not know what each spectrum should look like until we calculate its ε value in the post-processing stage.

(Recall that ΦNa is a function of ε .) By this stage, we have lost information about the spectral shape

through the summing operation in Eq. (24).305

To retain at least some information about the shape of each voltage spectrum, we will split the 1–5 Hz

range and compute two fits rather than one. Doing so allows for a first-order check that the spectrum over

the 1–5 Hz range approximately follows the expected shape.

Mathematically, there is nothing special about our choice fl– fh = 1–5 Hz. In theory, we can split the

1–5 Hz range into two (1–3 Hz and 3–5 Hz) and obtain a value of εinit for each. These values will differ,310
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but so will the associated values of FNa. For a measured spectrum that conforms to a Nasmyth spectrum,

the two values of ε calculated with Eq. (17) will not differ (Fig. 3). We therefore calculate onboard the

sums in Eq. (24) over both fl– fm and fm– fh, where the mid frequency fm = 3 Hz. (In our code, fm is

actually 7.5×0.39 Hz = 2.93 Hz for the reason given in Sect. 4.1.) Hence, for each spectrum we are able

to post-process to recover two independent estimates of ε , denoted εl–m and εm–h. The mean of these315

two provides a single, final value for ε , and their ratio quantifies the match of a measured spectrum to a

Nasmyth spectrum over the range fl– fh:

ε = mean(εl–m,εm–h) (25)

ε fit score =
min(εl–m,εm–h)

max(εl–m,εm–h)
. (26)

The best possible fit score is 1; the lower the score, the poorer the fit(Fig. 4 ). .
:::::
The

:::::::::
example

:::::::
spectra

:::
in320

::::::
Fig. 4

:::::
show

::::
that

::
a

:::::
high

::
fit

::::::
score

::::
does

::::
not

:::::::::::
necessarily

::::::
imply

::::::
small

::::::::::
residuals.

:::::::
Rather,

:::
fits

:::::
with

:::::
high

::::::
scores

::::
are

::::::::
typically

::::::
those

:::::
with

::::::::
random

:::::::::
residuals

:::::::::
meaning

::::
that

::
a
::::::
given

::::::::::
measured

::::::::
spectral

:::::::::::
coefficient

::
is

::::
just

:::
as

::::::
likely

::
to

:::
be

::::::
above

::::
the

:::
fit

:::
as

::::::
below

:::
it.

::::
Fits

:::::
with

:::::
low

::
fit

:::::::
scores

::::
are

:::::::::
typically

::::::
those

:::::
with

::::::::::::::
autocorrelated

::::::::::
residuals

::::::::
meaning

:::::
that

:::
the

:::::
sign

:::::::
and/or

::::::::::
magnitude

:::
of

::
a

::::::::
residual

::
is

:::::::::::
correlated

:::::
with

::::
that

:::
of

::
its

:::::::::::
neighbors.

:
In practice,

we expect a range of ε fit scores: instantaneous and unaveraged spectra differ from the Nasmyth spectrum325

because they are derived from a limited sampling of a statistical process, and they can also deviate because

of non-stationarity, anisotropy, and inhomogeneity of the turbulence.

When ε is small (≲10−9 W kg−1), the fit score may be consistently low if spectral coefficients in the

fm– fh range are affected by noise and consequently εm–h ≫ εl–m. For such cases, we choose to use only

the lower-frequency fit. We would rather have a more accurate estimate of ε and forgo the fit score than330

have a biased-high ε value with a biased-low fit score. (Either way, the small values of ε in question will

have minimal effect on any averages given that turbulence is approximately lognormal
::::::::::::
distributions

:::::
have

::::
high

:::::::::
kurtosis,

:::
so

:::::
high

::::::
values

::::::::::
dominate

:::::::
means.) Specifically,

ε = εl–m

ε fit score = —

 if 0.1W
(εl–m

ν3

)1/4
< fm, (27)

where the threshold is equivalent to k < 0.1/η with η the Kolmogorov length scale estimated from εl–m.335

For reference, ΦNa peaks at k = 0.026/η and rolls off to 11% of its maximum by k = 0.1/η (see Eq. (15)).

15



−8.4
−8.2
−8.0, best fit
−7.8
−7.6

101 102

10−5

10−4

101

k (cpm)

101

100 101 100 101
f (Hz) (for W = 0.2  m  s−1)

100 101

log10(ε)

Φ
u
z

(s
−2

 cp
m
−1

)

Corrected fit

Initial fit

1–3 Hz 3–5 Hz

×1/FNa

Measured

(a) High score: (b) Low score: (c) Low score: 
Corrected fits aligned Corrected fits misaligned Corrected fits misaligned

Figure 3. A visual demonstration of how the ε fit score (Eq. (26)) characterizes better and worse fits. For

all three examples
::
of

::::::
these

::::::::::::
hypothetical

:::::::
spectra, ε values from the two fits (1–3 and 3–5 Hz) average to

ε = 1×10−8
:::::::::::::
ε = 1.0×10−8 W kg−1. Only in panel a, however, does the measured spectrum agree well with the

Nasmyth spectrum for this ε value. In practice, the initial fits would be undertaken on voltage spectra. Here
:
;
::::
here,

we are using physical units for simplicity.
::
In

:::
all

:::::
three

:::::::::
examples,

:::
the

:::::::::
kinematic

:::::::::
viscosity

::
is

:::::::::::::::
ν = 10−6 m2 s−1.

:

5 Test of the reduction scheme for ε

To test the accuracy of the shear reduction scheme described in the previous section, we apply it retro-

spectively to the dataset from the 2019 test cruise (Sect. 2). We compare the results to those obtained

with the standard processing scheme. This standard scheme (Appendix D) features a more sophisticated340

despiking routine than used for our reduced scheme, which employs a three standard deviation threshold

filter (Appendix E).

A profile-by-profile comparison of the two schemes is shown in Fig. 5. The comparison is then extended

to all 650 profiles (>77 000 segments of shear), where we find that ε from the reduced scheme (εinit/F3/2
Na )

is within a factor of two of that from the standard scheme 87% of the time over the full range of measured345

values, 10−10 < ε < 10−4 W kg−1 (Fig. 6a–b). For comparison, in only 72% do we obtain a factor-of-

two agreement between the two independent values of ε measured on the unit with two working shear

probes (not shown). Further, to obtain this 87% agreement, we clearly need the correction function FNa:
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Figure 4. Examples of measured shear spectra exhibiting a range of ε fit scores (Eq. (26)). The best fit is
:::
fits

:::
are at the top with progressively worse fits (lower scores) moving downward.

::::
The

:::::::::
examples

::
in

:::::
each

:::::::
column

:::::
have

::::
(left)

:::::::::::::::
ε = 10−9–10−8,

:::::::::
(middle)

::::::::::::::
ε = 10−8–10−7,

::::
and

:::::::
(right)

::::::::::::::::::::::
ε = 10−7–10−6 W kg−1. Each score is only based on

spectral coefficients from 1–5 Hz, but lower and higher frequencies are shown for reference.

Fig. 6c shows that the uncorrected values εinit only have 1:1 agreement with ε from the standard scheme

if ε ≳ 10−7 W kg−1. For the lowest values of ε , the ratio is closer to 1:30.350

17



−10 −7
ε (W kg−1) Standard processing

Proposed reduction scheme

20

40

De
pt

h 
(m

)
60

80

100

0

Down UpProfile dir: Down Up

Figure 5. Testing the proposed data reduction scheme for shear measurements against the standard processing

approach. One upward and one downward profile from each of the two FCS units were arbitrarily chosen for this

comparison.

To demonstrate the ability of the ε fit score to characterize spectra, we show two-dimensional his-

tograms of non-dimensionalized spectral coefficients from all 77 000 measured shear spectra separated

into three classes based on their ε fit score: 0.67–1.00, 0.33–0.67, and 0.00–0.33. Only the lowest scoring

class fails to collapse to the Nasmyth spectrum (Fig. 7c
::::
Figs

::::
7c,

:::
7f).

6 Reduction of fast thermistor data355

The scheme to reduce fast thermistor data to enable measurement of χ is much like the scheme to reduce

shear data. As in Sect. 4, we first show how we summarize a model spectrum in terms of a power law fit

and a correction factor.
:::
(In

::::
this

:::::
case,

::::
the

::::::::::
correction

::::::
factor

:::::::
partly

::::::::
depends

:::
on

::::
the

::::::
values

:::
of

::
ε

::::::::::
calculated

:::
in

:::::::
Sect. 4

:
.)

:
Then we derive the implementation in terms of voltages and calculate a spectral fit metric.
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Figure 6. Statistical test of the proposed data reduction scheme for ε based on all 650 profiles (77 000 segments).

(a) A comparison that includes the dependence on ε . (b) Further summarized data that exclude this dependence.

(c) As for panel a, but uncorrected (FNa = 1).

6.1 Summarizing Kraichnan spectra with f 1 fits360

Here we take the Kraichnan spectrum ΦKr (Kraichnan 1968) as our model and for its low-wavenumber

approximation we use the viscous–convective subrange, which scales as k+1. In units of K2 m−2 cpm−1,

ΦKr and its approximation are as follows (e.g., Peterson and Fer 2014):

ΦKr(k,ε,χ) = 4π2kχq
√

ν/ε exp
(
−
√

6q2πkλB

)
(28)

ΦKr(k ≪ λ−1
B ,ε,χ) = 4π2kχq

√
ν/ε. (29)365

where the Batchelor length scale λB = (νD2
T/ε)1/4 and q is a constant taken to be 5.26. This expression

does not include a k+1/3 inertial–convective subrange, which we ignore here as it increases the integral of

the temperature gradient spectrum from k = 0 to k = ∞ by less than 1% and therefore has negligible effect

on our results.
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A fit against Eq. (29) can be rearranged to give χinit, which is related to χ through the correction370

function FKr as

χ = χinit/FKr. (30)

FKr is not raised to a power like FNa (Eq. (17)). For small values of k, ΦKr ∝ χ whereas ΦNa ∝ ε2/3.

The derivation of FKr is equivalent to FNa. We therefore present only the result:

1
kh − kl

kh∫
kl

H2
Tt(k)ΦKr(k,ε,χinit/FKr)

4π2k(χinit/FKr)q
√

ν/ε
−FKr = 0. (31)375

Note that FKr(ε,χinit,W ) depends on the underestimate χinit, but the ‘true’ or ‘corrected’ value of ε calcu-

lated in Sect. 4.

6.2 Obtaining χinit from fast thermistor voltage spectra

Like we did for εinit in Sect. 4.2, we derive the expression for χinit in three steps. First, equate the right

hand sides of Eqs. 11 and 29
:::::::::::
(excluding

:::
the

::::::::
transfer

:::::::::
function

:::::::
H2

Tt(k),:::::::
which

::
is

:::::::::::::
incorporated

::::
into

:::::::::
Eq. (31)380

:
):(

C2T +2C3T ⟨VT ⟩
CTt

)2 1
W

ΨTt( f ) = 4π2kχq
√

ν/ε. (32)

Then, rearrange while substituting k = f/W to get

χinit f 1 =
1

4π2q
√

ν/ε

(
C2T +2C3T ⟨VT ⟩

CTt

)2

ΨTt . (33)

Finally, solve for χinit using a least-squares fit (Appendix C):385

χinit =
1

4π2q
√

ν/ε

(
C2T +2C3T ⟨VT ⟩

CTt

)2 ∑ f f ΨTt

∑ f f 2︸ ︷︷ ︸
Calculate onboard

. (34)

6.3 Quality control of the temperature gradient spectral fits

The approach to quality controlling the fast thermistor data is the same as that for shear (Sect. 4.3). That

is, we fit ΨTt over fl– fm and fm– fh (1–3 and 3–5 Hz). This ultimately provides two estimates of χ for
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each spectrum, which are combined as follows:390

χ = mean(χl–m,χm–h) (35)

χ fit score =
min(χl–m,χm–h)

max(χl–m,χm–h)
. (36)

We do not apply a low χ threshold equivalent to Eq. (27).

7 Test of the reduction scheme for χ

Profiles of χ from the reduced scheme compare well to the standard processing, albeit with a small bias395

in one direction for low values and in the other direction for high values (Fig. 8). Across all values, the

two approaches agree within a factor of two 78% of the time (Fig. 9). By comparison, 82% of segments

exhibit a factor-of-two agreement between χ values from the two fast thermistors on the same unit.

Compared to shear spectra, non-dimensionalized temperature gradient spectra have lower fit scores.

Especially for the lowest fit scores, the measured temperature gradient spectra tend to be too high at lower400

frequencies and vice versa (Fig. 10).
:::
too

:::::
high

::
at

::::::::::::
frequencies

::::
near

:::
fh::::::::

(Fig. 10
:::::
a–c).

:::
As

::::::::::
frequency

::::::::::
increases

:::::::
beyond

:::
fh,

::::
the

:::::::
effects

::
of

::::::
noise

::::
and

::::::::
thermal

:::::::::
response

:::::::::::
corrections

:::::::::::
(Appendix

:::
A)

::::::
begin

:::
to

::::::::::
dominate.

::::::
There

::::
are

:::::
three

::::::::
reasons

::::
for

:::
the

:::::::
poorer

::::
fits

:::
to

::::::::::::
temperature

::::::::
gradient

::::::::
spectra

::::::::::
compared

:::
to

::::
that

:::
for

:::::::
shear.

:::::
First,

:::::::
shapes

:::
of

::::::::::::
temperature

::::::::
gradient

:::::::
spectra

::::
are

:::::
often

::::::
more

:::::::::
variable;

:::
the

:::::
best

:::::::
choice

:::
for

:::::::::::::::::
non-dimensional

:::::::
spectral

:::::::
model

::::
can

:::
be

:::::::::
debated

:::::::::::::::::::::::::
(e.g., Sanchez et al. 2011)

:
.
:::::::::
Second,

:::
the

:::::::::::::
temperature

::::::::
gradient

::::
fits

::::::::
depend405

::
on

:::
ε ,

:::
so

::::::::::::::
uncertainties

:::
in

::
ε

::::::::::
propagate

:::::
into

::::
the

:::::::::::
calculation

:::
of

::::
χ .

:::::::
Third,

:::
for

:::::
our

:::::
2019

:::::::::::::
experiment,

::::
the

::::::::
recorded

:::::::::::::
temperature

::::::::
gradient

:::::::
signals

::::::
were

::::::::::::
occasionally

:::::::::
affected

:::
by

::::::::::::
digitization

:::::
noise

:::
as

::
a

:::::::::::::
consequence

::
of

:::::::::
sampling

:::::::
mixed

:::::::
layers.

:::::::
(Shear

:::::::
signals

:::::
were

::::
not

::::::::
affected

:::
by

::::::::::::
digitization

:::::::
noise.)
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Figure 7. As the ε fit score decreases from top to bottom, there is a corresponding decrease in the level of agreement

and tightness of spread between (i) non-dimensionalized, measured shear spectra and (ii) the Nasmyth spectrum.

These
:::
The

:
two-dimensional histograms

:
in

::::
the

::::
left

:::::::
column include only spectral coefficients with frequencies be-

tween fl and fh;
::::::

those
::
in

:::::
right

:::::::
column

:::::::
include

:::
all

:::::::::::
frequencies.

::::
The

::::
total

::::::::
number

::
of

:::::::
spectra

::
in

::::
this

::::::
figure

::
is

::::::
lower

::::
than

::
in

:::::::
Fig. 10

:::::::
because

:::::
some

::::::
low-ε

:::::::
spectra

::
do

::::
not

::::
have

::::::
scores

:::::::::
(Eq. (27))

::::
and

::::::::
because

:::
one

:::
of

:::
the

:::::
shear

::::::
probes

::::::
failed

:::::::
(Sect. 2

:
).

:
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Figure 8. Testing the proposed data reduction scheme for fast thermistor measurements. The profiles used are the

same as those chosen in Fig. 5.
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Figure 9. Statistical test of the proposed data reduction scheme for χ . Equivalent to Fig. 6 except for χ not ε . In

total, there are 100 000 segments of data.
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8 Recommendations

8.1 Setting the scheme’s parameters410

Our scheme requires a few user-defined parameters: fl, fh, Nseg, and Nfft. For this paper, we based these

partly on the profiling speed and scientific goals of FCS. For a different profiler, we suggest the following:

– Choose fh based on a typical profiling speed such that kh = fh/W ≈ 25 cpm for a nominal profiling

speed W . For a wide range of ε values, 25 cpm is close to, or beyond, the peak of the Nasmyth

spectrum (Fig. 1). Further, ε can be sensitive to the wavenumber fitting range, but centering the fit415

near k ≈ 10–20 cpm minimizes this sensitivity (Bluteau et al. 2016). As an example, if FCS profiled

at ∼0.5 m s−1, we would consider setting fh ≈ 12 Hz.

– Keep fl in the range 0.5–1 Hz. Although our scheme uses the inertial subrange (i.e., low frequencies/wavenumbers)

as its starting point, there is little to be gained by including frequencies of O(0.1)Hz. A possible

exception, albeit tangential to this paper, is if the turbulence measurements come from a platform420

that effectively measures horizontally. In such cases, FFT segments may be many minutes or more

and thereby contain useful low-frequency information (e.g., Bluteau et al. 2011; Moum 2015).

– Ensure that there are no known issues such as vibrations that are likely to adversely affect spec-

tral coefficients within the fl– fh range. Although vibrational effects can be removed spectrally

(Goodman et al. 2006), doing so is beyond the scope of our scheme
::
If,

:::::::::
however,

::::::
there

::::
are

:::::::
known425

::::::
issues

::::::
within

::::
the

:::::::
desired

::::::::::
frequency

:::::::
range,

::::
then

:::
an

::::::::::
alternative

::::::::::
approach

::::
(one

::::
that

::::
we

:::
did

::::
not

::::
test)

:::
is

::
to

:::
use

::::::::::::::
accelerometer

:::::::
signals

:::
to

:::::::
correct

:::::::
spectra

::::
that

:::
are

::::::::::::::
contaminated

:::
by

::::::::::
vibrations

::::::::::::::::::::::::::::::::::::::::::::::
(Levine and Lueck 1999; Goodman et al. 2006)

.

– Define fl and fh separately for shear and temperature gradient if appropriate. Although we set them

equal here, this is not necessary.430

–
::::
Use

::::::
more

:::::
than

::::
two

:::::::
fitting

::::::
bands

:::
if

::::::::
desired.

::::
We

::::
use

::::::
only

::::
two

:::::::
bands

:::::
(1–3

::::
and

:::::::::
3–5 Hz)

:::
so

:::
as

:::
to

:::::::::
minimize

::::
the

::::
file

::::
size

:::
to

:::
be

::::::::::::
transmitted,

:::
but

::::::
there

::
is

::::::::
nothing

:::::::::::
preventing

::::::
there

::::::
being

:::::
three

:::
or

::::::
more

::::::
bands

:::::
(e.g.,

:::::::
adding

::
a
::::::::
5–7 Hz

::::::
band).

::::::::
Indeed,

::::
this

:::::::
would

:::::::
enable

::::::::::
improved

:::::::::
estimates

:::
of

::::
the

::
fit

:::::::
scores

:::::
(Eqs.

:::
26

::::
and

::::
36)

::::
and

:::::
more

::::::::::
flexibility

:::
to

:::::::
discard

:::::::::::::::
noise-affected

::::::
bands

::
as

:::
in

::::
Eq.

:::
27.

::
If
::::
file

::::
size

:::
is

::::
less
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::
of

:::
an

:::::
issue

::::::
such

::::
that

::
it

::
is

:::::::::
possible

::
to

:::::
send

::::::
back

::
fit

:::::::
values

::::
for

::::::
many

:::::
more

:::::
than

::::
two

:::::::
bands,

:::::
then

::::
the435

::::::::::::::::::::::
Rainville et al. (2017)

:::::::
scheme

::::::::
outlined

:::
in

:::::::
Sect. 1

:::::::
maybe

:
a
:::::::
better

::::::
choice

:::::
than

:::::
ours.

:

– Choose Nseg and Nfft based on scientific goals and, possibly, any logistical constraints; the data

reduction scheme is agnostic to these numbers. For example, at the expense of vertical resolution,

we could halve the file size of our transmitted dataset by doubling Nseg from 512 to 1024.

– Reasonable choices for Nfft are Nseg/2 or Nseg/4, which correspond to three or seven half-overlapping440

subsegments, respectively. There is little to be gained by diving a segment into even more subseg-

ments so as to produce smoother spectra before fitting. As Ruddick et al. (2000) notes, the task is

analogous to fitting a line to 20 points at once or first clumping them in groups of, say, five and then

fitting the four averaged points.

8.2 Evaluating the reduced data445

One step that cannot be automated is the heuristic evaluation of the reduced turbulence data after they

have been converted from voltage quantities to physical ones. For this evaluation, we recommend looking

into multiple quantities. First consider the fit scores (Eqs. 26 and 36). These scores work well, but they

:::
We

::::::::::::
recommend

:::::::::::
discarding

::::
any

::
ε

::
or

::
χ
:::::::
values

:::::
with

:::
an

::::::::::
associated

:::
fit

:::::
score

:::::::
lower

::::
than

::::::
0.33.

::::::
Note,

:::::::::
however,

::::
that

:::::
these

:::::::
scores are not a perfect measure of fit. They should be used together with other quality control450

checks such as comparing

– W and Wmin (Eqs. 13 and 14) to check whether the profiling speed is constant over a segment;

– ε values from the two shear probes; and

– turbulent features in successive profiles.

The last point is most applicable for a vertical profiler cycling rapidly – for example, twice per hour for455

FCS. In this case, the profiler is nominally sampling the same vertical fragment of the ocean on a time

scale comparable to that over which turbulence evolves. In our experience, many turbulent patches extend

over 5–10 profiles.

:::::::
Recall,

:::::
also,

:::::
that

:::
all

::::::::::::
uncertainty

::
in

:::
ε

:::::::::::
propagates

::::
into

::::
the

::::::::::::
calculation

::
of

:::
χ

::::::::
(Sect. 7

:
).
:::

If
::
ε
::::
for

::
a

::::::
given

::::::::
segment

:::::::
cannot

:::
be

::::::::
trusted,

:::::::
neither

::::
can

:::
χ .460
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9 Conclusions

We have developed a data reduction scheme applicable to vertical profiling of turbulence variables in

which each ∼5 s segment is distilled to 15
:::
12

:
quantities (Fig. 11). In post-processing, we reconstruct

estimates of ε and χ , associated quality control metrics, and other quantities such as the temperature and

profiling speed. The raw data that go into the 15
:::
12 quantities are seven different voltages (VP; VT and VTt465

for each thermistor; and Vs for each shear probe). Hence, for each 512-element segment, we effectively

reduce the data by a factor of 512×7/15 ≈ 240
:::::::::::::::::
512×7/12 ≈ 300.

This reduction compresses the output data file size for each dive from megabytes to kilobytes. For exam-

ple, the total amount of data per dive (two profiles) can be estimated assuming our nominal dive depth and

profiling velocity of 120 m and 0.2 m s−1. Each dive creates 15×2×120
::::::::::::
12×2×120 m / (0.2 m s−1 ×5.12s)≈ 3500470

:::::::::::::::::::

−1 ×5.12s)≈ 2800
:
quantities. Transmitting each quantity as a 16-bit word

::::
float

:::
or

:::::::
integer equates to ap-

proximately 7
::
6 kB per dive.

::::
This

::::
can

:::
be

::::::::
reduced

:::
by

::::::::::
one-third

::
if

:::
the

::::::::
spectral

:::
fit

:::::::
metrics

::::
are

::::::::
suitably

:::::::
scaled

:::::::::::::::
logarithmically

::::
and

::::
then

::::::::::::
transmitted

::
as

::::::
8-bit

::::::::
integers.

:

One luxury we lose is the ability to inspect the raw signals. Typically this would help to (i) cultivate

faith in the data, (ii) flag which segments to discard, and (iii) inform work-arounds such as filtering out475

potential narrowband vibrations in shear spectra. Our scheme accounts for this constraint in two ways.

First, we fit spectra over relatively low frequencies (1–5 Hz) that are unlikely to be affected by noise or

vibration. Second, we reduce the data in a way that uses as little arithmetic as possible. Obviously, we

cannot reverse-engineer the raw signals, but by making the onboard calculations simple we give ourselves

the best chance to later fix or identify any unforeseen issues.480

Although the onboard reduction eliminates possibilities in how we process turbulence data, it opens

up possibilities in how we obtain turbulence data. By visualizing how turbulence evolves over successive

dives in near-real-time, we can concentrate on regions of interest by adapting the dive schedule to profile

more frequently or to different depths. If instead we encounter quiescent periods, we might consider

profiling less frequently and thereby conserving battery life. Our ultimate objective is to treat FCS floats485

as expendable.
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Reshape raw voltage signals
Convert each 1D signal to a 2D array (Nblk,Nseg)

Discard non-profiling data
Use Wmin threshold (∝ min |∆VP(ti)|, Eq. 14, Appendix B)

Record T and P voltage quantities for each block
⟨VT 1⟩ ,⟨VT 2⟩ ,VP(Nseg)

Despike shear voltages
Apply 3σ threshold to Vs1 and Vs2 (Appendix E)

Calculate voltage spectra
Ψs1( f ),Ψs2( f ),ΨTt1( f ), and ΨTt2( f )

Fit shear spectra over two ranges

Fit Tt spectra over two ranges

(Eq. 34)

Calibrate averaged voltages
T1 and T2 (Eq. 6), P (Eq. 12), and W (Eq. 13)

Derive viscosity and thermal diffusivity
Use measured T and P together with S from SOLO-II CTD

Nseg = 512, Nfft = 256, fl, fm, fh = 1,3,5Hz, C2P = 77psiV−1 (Appendix B)

Calculate the correction factors
FNa (Eq. 21) and FKr (Eq. 31)

Correct initial estimates
εinit → ε (Eq. 17) and χinit → χ (Eq. 30)

Combine fffl– fffm and fffm– fffh fit values
ε (Eqs. 25 and 27) and χ (Eq. 35)

Repeat step above for thermal dissipation
For Tt1 and Tt2, get χinit for fl– fm and fm– fh (Eq. 34)

Calculate four ‘initial’ turbulent dissipation values
For S1 and S2, get εinit for fl– fm and fm– fh (Eq. 24)

∑ f f 1/3Ψs1( f )/∑ f f 2/3

—"— —"—

∑ f f 1/3Ψs2( f )/∑ f f 2/3

—"— —"—

over fl– fm

over fm– fh

over fl– fm

over fm– fh

(Eq. 24)

∑ f f 1ΨTt1( f )/∑ f f 2

—"— —"—

∑ f f 1ΨTt2( f )/∑ f f 2

—"— —"—

over fl– fm

over fm– fh

over fl– fm

over fm– fh

Calculate goodness of fit of spectra
ε fit score (Eq. 26) and χ fit score (Eq. 36)

Figure 11. Summary of the data reduction scheme. Each 512-element segment of data is ultimately compressed

down to the 15
::
12 highlighted quantities that are then transmitted. These are calibrated and/or converted into turbu-

lence quantities in post-processing.
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Appendix A: Transfer functions for FCS sensors

Voltage signals from shear probes and thermistors are a smoothed representation of the true environmental

signal. If the smoothing is a spatial effect, it is described by a transfer function H2(k). If the smoothing is

a temporal effect, it is more natural to use H2( f ). We can use these interchangeably because f =Wk and490

therefore H2( f ) = H2(Wk). For FCS, there are three components to the transfer function for each sensor:

H2
s (k) = H2

SP(k)H2
AA( f )H2

D( f ) (A1)

H2
Tt(k) = H2

FT( f )H2
AA( f )H2

D( f ) (A2)

where we have used the following shorthand: SP = shear probe, FT = fast thermistor, AA = anti-aliasing,

and D = digital. We describe each of these in turn.495

Shear probes built and calibrated by the Ocean Mixing Group are very close in dimension to those

examined by Ninnis (1984) who measured their wavenumber response and represented it as

H2
SP (k) =

4

∑
n=0

an

(
k
k0

)n

(A3)

where a0 = 1.000, a1 =−0.164,a2 =−4.537,a3 = 5.503, a4 =−1.804, and k0 = 170 cpm.

Temporal averaging of temperature at high frequencies due to the thermal response of the fast thermistor500

is modeled following Sommer et al. (2013) and Lien et al. (2016)
:::::
using

::
a

::::::::::::
double-pole

:::::
filter:

H2
FT( f ) =

1

(1+(2π f τ)2)
2

1

(1+( f/ fc)2)
2

::::::::::::::

(A4)

where τ = 0.01
:::
the

:::::::
cut-off

::::::::::
frequency

:::::::
fc = 30 s so that H2

FT(5Hz) = 0.83. Note that there is large sensor-to-sensor

variation among thermistors, which means there is not one true thermal response correction (Nash et al. 1999)

.Compared to Sommer et al. (2013), other nominal corrections tend to be less aggressive (see, e.g., Bluteau et al. 2017)505

. Our reduced scheme is built in such a way that a different correction can be applied in post-processing

if desired
:::
Hz.

:::::
This

:::::::
comes

:::::
from

::::::::::::::::::
Nash et al. (1999),

:::::
who

::::::::::
measured

:::
the

:::::::::::
frequency

::::::::
response

::::
for

::::
two

:::::::::
different

:::::::::::
thermistors

:::
on

:::
an

::::::::::
instrument

:::::::::
profiling

:::
at

:::::::::
0.3 m s−1

::::
and

::::::
found

:::::::
cut-off

::::::::::::
frequencies

:::
of

::::
25.1

::::
and

::::::::
36.7 Hz

:::::
(see

::::
their

:::::
Fig.

:::::
A2).

::::
The

::::::
30 Hz

::::::
value

::
is

::::
the

::::::::::::
approximate

::::::
mean

:::
of

:::::
these

::::
two

:::::::
values.
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Raw shear and thermistor voltage signals are both subject to two filters. First, an analog antialiasing510

filter (two-pole Butterworth) with an fc = 40 Hz cut-off:

H2
AA( f ) =

1
1+( f/ fc)4 . (A5)

After the analog signal is anti-aliased, it is digitized at 400 Hz. Before subsampling to the final 100 Hz

output, the signal is digitally filtered. For the 2019 FCS cruise, the signal was convolved with a symmetric

29-element kernel in which the first 15 elements were515

gi = (216 −1)−1 × [52,221,393,427,174,0,0,0,0,0,

1970,5054,8202,10558,11433]. (A6)

This is a sinc kernel but with negative values set to zero. (We are currently investigating better choices for

future implementations). The filter has a half-power (−3 db) point at 25 Hz.

Appendix B: Identifying the start and end of a profile520

Early in our processing routine, we partition the raw voltage signals into 512-element segments. In order to

discard the segments in which FCS was not profiling, we need robust (yet simple) criteria that demarcate

the start and end of a profile. For the start, we search for the first three consecutive segments in which

Wmin > 0.05 m s−1. For the end, we swap the inequality.

A drawback of this approach is the appearance of a quantity in physical units (0.05 m s−1). This is the525

one instance where we hard code a calibration coefficient in the onboard software, rather than apply it in

post-processing. Fortunately, the relevant coefficient can be approximated as constant: C2P = 76.7 psi V−1

(barring a redesign of the circuitry or the use of a different brand or model of pressure sensor). For the two

units already built, C2P = 76.81 psi V−1 and 76.53 psi V−1. By comparison, among the four shear probes

on the two units, the calibration coefficients vary by 30%.530

At least for the initial implementation of our scheme, we do not include an algorithm to detect the

surface to within centimeters. Doing so would let us work backward to put our uppermost depth bin as

close to the surface as possible. However, we expect that this could be a fragile part of the scheme. Further,

FCS lacks a micro-conductivity sensor, which is likely the sensor best suited for identifying the air–sea

interface (e.g., Ward et al. 2014).535
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Without surface detection, the depths of the uppermost bins will be realized randomly. In the worst

cases, we would discard the top ∼1 m (5 s at ∼0.2 m s−1). To alleviate this, we may use half-overlapping

bins near the surface. The exact implementation will be determined later in the development.

Appendix C: Least-squares fitting of power laws

In this paper, we use power law fits to derive turbulence quantities: Ψs = Aε f 1/3 and ΨTt = Aχ f 1, where540

Aε and Aχ are substitutes for the expressions in Eqs. 23 and 33. With only a single parameter for each fit,

implementing a least-squares fit is easy.

Assume we are fitting the vector Ψi to the function A f n
i where n is either 1/3 or 1. The sum of squared

residuals is therefore

∑r2
i = ∑(Ψi −A f n

i )
2 . (C1)545

The minimum with respect to A is where the derivative is zero:

∂
∂A ∑r2

i = ∑−2 f n
i (Ψi −A f n

i ) = 0. (C2)

Hence,

A =
∑ f n

i Ψi

∑ f 2n
i

. (C3)

We had originally intended to find A by following Becherer and Moum (2017), who were fitting f 1/3550

spectra. Their simpler method, A = ∑(Ψi/ f n
i ), is equivalent to a least-squares fit except that the quantity

minimized is the sum of the squares of the adjusted residuals, where adjusted means divided by f n.

Differences can be ignored when n = 1/3, but not when n = 1.

Appendix D: Standard processing of FCS turbulence measurements

The standard processing of FCS turbulence data differs from the reduced scheme in three ways. First,555

raw data are despiked differently (Appendix E). Second, the 100 Hz raw voltage signals are calibrated

into physical quantities right away. Hence, means and spectra are calculated in physical units, not voltage

units. Third, the integration of spectra occurs over a variable wavenumber band, which is found iteratively.
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When integrating shear spectra (after correction; Appendix A) to find ε , we follow the approach used

for the Chameleon profiler (Moum et al. 1995). A first estimate of ε is made by integrating over k = 4–560

10 cpm. This value provides a first estimate of the Kolmogorov wavenumber ks = (ε/ν3)1/4/2π . (The

lower limit for Chameleon is 2 cpm, but we increase this for FCS given its slower profiling speed and

hence the possibility of contamination by waves at lower wavenumbers.) The upper integral limit is then

set to 0.5ks (with a minimum of 10 cpm and a maximum of 45 cpm). The Nasmyth spectra (Eq. (15)) is

integrated over the same wavenumber range. If the measured and Nasmyth integrals are within 1%, then ε565

is set equal to the integral of the Nasmyth spectrum over all k. Otherwise, ε and ks are adjusted iteratively

until the two integrals agree.

A similar approach is used for integrating Tt spectra to find χ . The model spectrum is the Kraichnan

spectrum (Eq. (28)) and, again, the lower limit of integration is 4 cpm. The upper limit is the Batchelor

wavenumber kb = (ε/νD2
T )

1/4/2π (with a maximum defined by kW = 15 Hz).570

Appendix E: Identifying and removing noise and spikes in the shear signals

To properly despike the raw output of a shear probe requires several steps. Lueck et al. (2018) describe

a process in which the signal is high-passed, then rectified, and then low-passed to derive a measure of

the local variance. A value is defined as a spike if it is more than eight times (or similar threshold) above

the local variance. Spikes are replaced with an average based on surrounding points. This process is then575

repeated on the new signal, and so on until no spikes are identified.

In our standard processing of FCS data, we use the Lueck et al. (2018) despiking routine. For our

data reduction scheme, we use an approach that is easier to implement and quicker to compute, albeit

less precise. For each 512-element segment of data, a spike is defined as any data point larger than three

standard deviations from the mean. These spikes are replaced by the mean of remaining values in the580

segment.

Code availability. Our Matlab implementation of the processing code is available from github.com/OceanMixingGroup/

flippin-chi-solo.
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Data availability. Raw and processed data for the 2019 experiment are available at doi.org/10.5281/zenodo.5719505

or kghughes.com/data.585
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