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Abstract. Progress in leveraging current and emerging high-performance computing infrastructures using traditional weather

and climate models has been slow. This has become known more broadly as the software productivity gap. With the end

of Moore’s Law driving forward rapid specialization of hardware architectures, building simulation codes on a low-level

language with hardware specific optimizations is a significant risk. As a solution, we present Pace, an implementation of the

nonhydrostatic FV3 dynamical core and GFDL cloud microphysics scheme which is entirely Python-based. In order to achieve5

high performance on a diverse set of hardware architectures, Pace is written using the GT4Py domain-specific language. We

demonstrate that with this approach we can achieve portability and performance, while significantly improving the readability

and maintainability of the code as compared to the Fortran reference implementation. We show that Pace can run at scale on

leadership-class supercomputers and achieve performance speeds 3.5-4 times faster than the Fortran code on GPU-accelerated

supercomputers. Furthermore, we demonstrate how a Python-based simulation code facilitates existing or enables entirely new10

use-cases and workflows. Pace demonstrates how a high-level language can insulate us from disruptive changes, provide a

more productive development environment, and facilitate the integration with new technologies such as machine learning.

1 Introduction

Current weather and climate models are written in low-level compiled languages such as Fortran for performance (Méndez

et al., 2014), and typically run on high-performance computing (HPC) systems with CPUs. With the end of Moore’s law15

(e.g. Theis and Wong, 2017), HPC systems are increasingly relying on specialized hardware architectures such as graphics

processing units (GPUs) to increase throughput while maintaining a reasonable power envelope (Strohmaier et al., 2015). This

has led to a number of efforts to port existing weather and climate models to run on such heterogeneous architectures, for

example by adding OpenACC directives (Lapillonne et al., 2017; Clement et al., 2019; Giorgetta et al., 2022). Today, there are
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a handful of successful productive deployments of weather and climate models (e.g., COSMO, MPAS) on GPU-accelerated20

supercomputers. But porting large code bases using compiler directives comes at a price: The maintenance cost increases

significantly due to more hardware specific details being explicitly exposed in the user code and due to the fact that conditional

compilation increases code complexity and likelihood of introducing errors. Also, optimizations often need to be tailored to a

hardware target which may lead to code duplication and specialized implementations. As a result, community codes have been

slow in their adoption of novel and emerging hardware architectures, and increasingly complex code bases hinder their further25

development. The term software productivity gap has been coined to describe this situation (Lawrence et al., 2018).

Alternative approaches are being explored: The Simple Cloud-Resolving E3SM Atmosphere Model (E3SM Project, 2021)

is a global atmosphere model implemented in C++ using the Kokkos library (Trott et al., 2022), which provides abstractions for

parallel execution and data management for a wide range of programming models and target architectures using a technique

called template meta-programming. LFric, the next generation weather and climate modeling system being developed by30

the UK Met Office (Adams et al., 2019), is implemented using a domain-specific language (DSL) embedded in Fortran and

leverages a domain-specific compiler named PSyclone to generate exectuable parallel code. While these approaches are very

promising, they have currently not been adopted more widely in the field of weather and climate science.

A compelling alternative approach has been extremely successful in the trending field of machine learning: frameworks

such as PyTorch (Paszke et al., 2019) and Tensorflow (Abadi et al., 2015) have accelerated the rapid and broad adoption of35

machine learning methods. These frameworks allow users to implement algorithms with an abstract high-level implementation

in Python using a syntax which is reminiscent of doing computation using the NumPy library (Harris et al., 2020a). Different

backends allow users to target a diverse set of hardware architectures for efficient execution while retaining a high degree of

programmer productivity. The approach has been shown to scale and the computational effort to train such models (e.g. Brown

et al., 2020) is comparable in size to high-resolution weather and climate simulations.40

Aside from the model code itself, scientists developing and using compiled models have increasing needs to interface model

code with scripting languages online. The drastic increase in model resolution over the past decades has increased the need for

online diagnostic calculations to avoid slow I/O operations. It can also simplify development of machine learning parameteri-

zations to be able to interface Python code with a compiled model. This has motivated scientists to interface Python code with

models online, for example by calling Python from Fortran (Brenowitz and Bretherton, 2019; Partee et al., 2021a, b) and by45

wrapping Fortran models to be driven by Python (Monteiro et al., 2018; van den Oord et al., 2020; McGibbon et al., 2021).

We present Pace, an open-source performance-portable implementation of the FV3 dynamical core (Putman and Lin, 2007;

Harris et al., 2021) and GFDL microphysics (Chen and Lin, 2013; Zhou et al., 2019) written entirely in Python. Pace uses the

GridTools for Python (GT4Py) DSL which separates the definition of numerical algorithms from the specific implementation

for a given hardware architecture. Optimization details such as storage order, execution schedule, placement of data in memory50

hierarchy, and loop bounds are not the responsibility of the domain scientist. This allows the use of a single unified and concise

codebase across hardware backends, which clearly presents numerical operators and executes efficiently. The same model

code can be used for applications in the classroom inside a Jupyter notebook as well as deployment at scale on large high-

performance computing systems. Using Python as the host-language enables highly productive model development, testing
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and validation workflows. By having access to a large ecosystem of well-maintained Python packages entirely new workflows55

are enabled (see Section 6.2).

The outline of the paper is as follows: We start in Section 2 with an overview of the DSL structure before moving on to

Pace itself in Section 3. In Section 4 we discuss the process of porting and validating the code from Fortran to Python in detail.

Section 5 highlights the performance of Pace, and Section 6 showcases important features of Pace, especially use-cases and

the benefits of developing in Python. Section 7 documents the limitation of Pace, and finally we summarize in Section 8.60

2 Python-based DSL: separation of concerns

2.1 A modern DSL: requirements

The software productivity gap problem can be described as an issue with the diverse set of skills required by climate modelers

to implement a production-grade climate and weather model, from discretizing the underlying physical equations all the way

to the optimization details of a given hardware architecture. This process can be roughly split in two:65

1. Climate and weather modeling: scientific motivation, algorithmic design, numerical implementation.

2. Performance development: adapting the implementation to a set of given hardware architecture, optimization to reach

useful simulation time.

There is overlap between these; some algorithmic designs are better suited to certain hardware architectures, implementation

details can be changed to improve model speed, but this breakdown is a useful heuristic for the development of weather and70

climate models.

The design of a modern domain-specific language needs to respond to both classes of users. For climate modelers a DSL

should:

– Be easy to use, complete with debugging tools and simple methods to extracting scientific results.

– Allow easy ways to implement new features and or ways to escape the DSL as new methods are developed.75

– Enable quick development round-trip.

– Run with optimal performance.

– Improve development by simplifying the implementation of common code patterns.

For the performance developers it should:

– Leverage a proven host-language to strengthen basic development of a compiler tool-chain and work on solid ground.80

– Build a maintainable and extensible set of compiler elements in order to keep up with novel and emerging hardware

architectures.
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– Ensure the presence of a lower-level interface to perform generic or custom optimizations.

Python stands as a good candidate language to host a DSL given its robustness, ease-of-use, wide adoption across a range

of research and industry groups, large ecosystem of pre-existing tools and packages, and capacity for introspection as an85

interpreted language. Furthermore, in the weather and climate community Python has established itself as the lingua franca for

analysis, visualization and post-processing. But Python has serious limitations in terms of execution performance: designed

primarily as a scripting language, Python alone cannot achieve the performance required by workloads running on large HPC

systems.

The solution is to escape Python at runtime and leverage compiled code. This is a technique already heavily used by frame-90

works such as Cython (Behnel et al., 2011) and Numba (Lam et al., 2015) (see e.g. Augier et al., 2021). The DSL compiler

is responsible for translating and compiling (transpiling) code written in Python into another, more performance-oriented

language. The generated code can be tailored and optimized to a specified hardware target via hardware-specific compiler

backends.

2.2 Related work95

For this work we use the GT4Py DSL compiler because the DSL provides a single-source solution for portable performance

with the correct abstractions for weather and climate models. There are, however, other approaches using Python at different

levels of abstraction that are worth discussing.

Cython (Behnel et al., 2011) is an optimizing static compiler based on Python and the Pyrex language. It is a powerful tool

for accelerating Python code, but it lacks the portability and high level abstractions we seek. Other packages provide portability,100

but still lack the domain-level abstractions to simplify the language for climate scientists. An example of such a package is

Numba (Lam et al., 2015), which is a just-in-time (JIT) compiler for Python and Numpy code. JAX (Bradbury et al., 2018)

similarly lacks the weather and climate abstractions we desire in the frontend DSL language, but brings with it convenient

features such as adjoint capability. Other application-building frameworks such as Exasim (Vila-Pérez et al., 2022), FEniCS

(Alnaes et al., 2015), and Dedalus (Burns et al., 2020) mostly operate on the partial differential equation (PDE) level, which105

allows for more automated model development at the expense of flexibility in the discretization. In order to faithfully reproduce

all aspects of the FV3 dynamical core and GFDL cloud microphysics we required greater flexibility than these frameworks

provided. Thus, the DSL we are targeting works at a lower level on the mathematical representation after the PDE has been

discretized.

2.3 GT4Py: a Python-based DSL110

Our implementation of the domain-specific language described above is called GridTools for Python, or GT4Py. Developed in

partnership with the Swiss National Supercomputing Centre (CSCS), it defines a DSL on top of Python. The code is analyzed

and compiled into a C++ or CUDA executable that is bound back to the original Python, creating a seamless experience for

the modelers but enabling fast and optimized execution (Fig 1). On top of those performance backends, GT4Py also provides
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Figure 1. Workflow pipeline of GT4Py (left) and GT4Py combined with DaCe (right). User code is analyzed, optimized, and translated into

hardware target specific optimized code. In the case of DaCe, the Python code in between GT4Py stencils (control flow) is also included in

the translation. This can lead to significant performance improvements.

Figure 2. Two typical computational patterns in weather and climate models: On the left is a horizontal stencil, on the right is a vertical

solver. Figure from Ben-Nun et al. (2022)

a backend to generate Numpy code, which is useful for debugging and quick development as no compilation is required.115

One GT4Py backend leverages the DaCe (Ben-Nun et al., 2019) framework to be able to also include regular Python code in

between DSL code in the translation.

GT4Py operates through the use of stencils: inside a GT4Py stencil each grid cell in an array is modified according to

neighboring cells based on a fixed pattern. In numerical modelling of weather and climate two major computational patterns

emerge due to the reliance on three-dimensional structured or unstructured grids: computations with dependencies on the local120

horizontal neighbourhood of a grid cell and vertical solvers with column dependencies as shown in Figure 2. These two stencil

computational patterns therefore form the basis of GT4Py’s design.

GT4Py stencils treat the horizontal dimensions differently from the vertical: they always execute in parallel over the entire

horizontal domain. In the vertical dimension the order of execution may be specified with the computation keyword, and the

vertical range is set with interval. A horizontal stencil can be written with computation(PARALLEL) to parallelize125

over the vertical domain as well if there are no vertical loop-carried dependencies. A column-based stencil that calculates

up or down the k-dimension, on the other hand, can be implemented sequentially in k with computation(FORWARD)

or BACKWARD, respectively. Each stencil can also have multiple computation and interval blocks for flow control.
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1: def compute_kinetic_energy(
2: vc: FloatField,
3: uc: FloatField,
4: cosa: FloatFieldIJ,
5: rsina: FloatFieldIJ,
6: v: FloatField,
7: vc_contra: FloatField,
8: u: FloatField,
9: uc_contra: FloatField,

10: dx: FloatFieldIJ,
11: dxa: FloatFieldIJ,
12: rdx: FloatFieldIJ,
13: dy: FloatFieldIJ,
14: dya: FloatFieldIJ,
15: rdy: FloatFieldIJ,
16: dt_kinetic_energy_on_cell_corners: FloatField,
17: dt: float,
18: ):
19: with computation(PARALLEL), interval(...):
20: ub_contra, vb_contra = interpolate_uc_vc_to_cell_corners(
21: uc, vc, cosa, rsina, uc_contra, vc_contra
22: )
23: advected_v = advect_v_along_y(v, vb_contra, rdy=rdy, dy=dy, dya=dya, dt=dt)
24: advected_u = advect_u_along_x(u, ub_contra, rdx=rdx, dx=dx, dxa=dxa, dt=dt)
25: dt_kinetic_energy_on_cell_corners = (
26: 0.5 * dt * (ub_contra * advected_u + vb_contra * advected_v)
27: )
28: dt_kinetic_energy_on_cell_corners = all_corners_ke(
29: dt_kinetic_energy_on_cell_corners, u, v, uc_contra, vc_contra, dt
30: )

.

Figure 3. An example stencil definition function that computes the kinetic energy on cell corners. The functions advect_v_along_y,

advect_u_along_x, and all_corners_ke are defined outside the stencil and the DSL compiler inlines the relevant code. FloatField

and FloatFieldIJ are GT4Py-specific data types for 3d and 2d fields. FloatField is a type which is used to declare three-dimensional fields

of configurable floating point precision.

Because stencils are applied to each point in a 3D grid, all indexation within a stencil is relative to the "current" computed

grid point, i.e. Array[0,0,0] - Array[1,0,0] takes each array element and subtracts the array element immediately130

to its "right" along the x-axis. This method of indexing three-dimensional arrays allows the modelers to use the same indexing

convention (I, J, K), irrespective of the actual storage layout in memory.

GT4Py also allows zero-cost function calls, enabling more readable and reusable code within models. Extents of the com-

putation are automatically determined by the DSL, including through these function calls. Figure 3 shows an example stencil

function that executes in parallel over the entire vertical dimension. The domain of dependence for intermediate variables135

(advected_u and advected_v) is automatically determined by GT4Py. In this example, the advection helper functions

take a horizontal difference of the u and v contravariant velocity components ub_contra and vb_contra, respectively.

As a result, the interpolation function which computes these values is applied on a larger domain than the final operation in the

stencil.
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In order to implement the FV3 dynamical core we had to extend the stencil concept multiple times, enabling 4- and 2-140

dimensional arrays, loops over the k-axis, and specialized handling of horizontal subdomains. Because GT4Py is written in

Python, those extensions were easy to develop and they will be discussed further in Sections 4 and 5.

GT4Py is able to optimize the performance of stencils, however some Python overhead remains in the code linking the

stencil operations together. In order to resolve this and optimize the entire Pace model we have incorporated DaCe (Ben-Nun

et al., 2019) as a backend for Pace. Using this framework both GT4Py stencils and raw Python code are exposed to optimization145

and transpilation to high-performance C++ or CUDA executables, removing all Python overhead seamlessly for the modelers.

Section 5 contains more information on code optimizations, while Ben-Nun et al. (2022) details the performance optimizations

more thoroughly.

3 Pace

Pace is a GT4Py implementation of the nonhydrostatic FV3 dynamical core and GFDL microphysics (Putman and Lin, 2007;150

Harris et al., 2021; Chen and Lin, 2013; Zhou et al., 2019). It is based on the same version of the National Oceanic and

Atmospheric Administration (NOAA) Unified Forecast System (UFS) model as McGibbon et al. (2021), forked from the UFS

respository v1 in December 2019 (Zhou et al., 2019), and is nearly identical to the dynamical core used in SHiELD (Harris

et al., 2020b). At present Pace only supports nonhydrostatic, uniform-resolution simulations, with a restricted set of subgrid

reconstruction schemes (hord and kord values). Pace has the ability to read initial conditions generated by the Fortran155

model and other saved outputs, and can also generate initial conditions for analytic test cases. Currently Pace supports 6-

tile gnomonic cubed-sphere grids and single-tile orthogonal, doubly-periodic grids, though only at uniform resolution. Future

development will enable nested and stretched grids as described in Harris and Lin (2013) and will integrate the rest of the

physics parameterizations (Zhou et al., 2019). Pace is MPI-enabled, allowing it to run in parallel, but can also run using a

"serial" communicator, running each rank in serial and saving data files to mock MPI communication.160

3.1 A Modular Model

Pace is designed to be modular; each model component of Pace (e.g. dynamics, microphysics, utilities, DSL integration) exists

as a separate package. Computationally-focused packages like the dynamics contain heirarchies of component modules (Figure

4). These components provide clear boundaries to document and change model behavior. For example, the horizontal transport

scheme used by FV3 (Putman and Lin, 2007; Lin and Rood, 1996) takes any one-dimensional finite volume subgrid recon-165

struction scheme satisfying certain numerical conditions, and can extend it to two dimensions. Within Pace, one-dimensional

subgrid reconstruction code is contained in the XPPM and YPPM modules (X- and Y-Piecewise Parabolic Methods, respec-

tively). These modules take in scalar gridcell-mean values and Courant numbers (speed as a fraction of gridcell width) defined

on transport interfaces, and return the average value of the scalar within the section of gridcell to be advected through the cell

interface. The FiniteVolumeTransport class extends these one-dimensional subgrid reconstruction schemes to produce two-170

dimensional horizontal fluxes. This allows a scientist to modify the behavior of the dynamics by replacing only the XPPM and
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Figure 4. Internal structure of the Pace dynamical core. To reduce instabilities from the lagrangian vertical coordinate the acoustic dynamics,

tracer advection, and vertical remapping are sub-stepped, executing K times during a model timestep. The acoustic dynamics are additionally

sub-stepped to ensure numerical stability with respect to sound waves.

YPPM components, for example with a cubic reconstruction scheme or a subgrid reconstruction scheme based on machine

learning.

To maintain simplicity of the code and facilitate the separation of compile- and run-time, Pace uses a simple object-oriented

framework that expresses nearly all of the internal computational components as initializable functions, as shown in Figure 5.175

Each of these functions is defined as a Python class with an initialization method and a call method. Initialization performs

necessary setup including memory allocation and compilation of DSL code. Each component’s initialization code defines the

component’s temporary variables, compiles or loads its stencils, and recursively initializes sub-components. Once initialized,

the component may be called the same as any other Python function. This is similar to Fortran model structures where compu-

tational code is paired with initialize and finalize subroutines.180

Stencils are compiled when components are initialized, using only explicitly-passed configuration data. Pace uses the factory

pattern (through the stencil_factory argument) to reduce compilation-specific logic as much as possible within compu-
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1: class ComputeKineticEnergy:
2: def __init__(self,
3: stencil_factory: StencilFactory,
4: grid_data: GridData,
5: config: DGridShallowWaterLagrangianDynamicsConfig,
6: ):
7: self.grid_data = grid_data
8: self._compute_kinetic_energy = stencil_factory.from_dims_halo(
9: func=compute_kinetic_energy,

10: compute_dims=[X_INTERFACE_DIM, Y_INTERFACE_DIM, Z_DIM],
11: externals={
12: "iord": config.hord_mt,
13: "jord": config.hord_mt,
14: "mord": config.hord_mt,
15: "xt_minmax": False,
16: "yt_minmax": False,
17: },
18: )
19:

20: def __call__(self, vc, uc, v, vc_contra, u, uc_contra,
dt_kinetic_energy_on_cell_corners, dt):

21: self._compute_kinetic_energy(
22: vc=vc,
23: uc=uc,
24: cosa=self.grid_data.cosa,
25: rsina=self.grid_data.rsina,
26: v=v,
27: vc_contra=vc_contra,
28: u=u,
29: uc_contra=uc_contra,
30: dx=self.grid_data.dx,
31: dxa=self.grid_data.dxa,
32: rdx=self.grid_data.rdx,
33: dy=self.grid_data.dy,
34: dya=self.grid_data.dya,
35: rdy=self.grid_data.rdy,
36: dt_kinetic_energy_on_cell_corners=dt_kinetic_energy_on_cell_corners,
37: dt=dt,
38: )

.

Figure 5. A class that compiles and runs the stencil defined in Figure 3. The __init__ method initializes the

compute_kinetic_energy stencil using the stencil definition function defined in Figure 3, an output domain, and the constants used

by the stencil, and the __call__ method executes the stencil when the resulting object is invoked at runtime.

tational components. The stencil factory class implements the code responsible for allocating and compiling stencils, allowing

model code to instead focus on computational motifs. In lines 8-18 of Figure 5 we can see this factory at work compiling the

compute_kinetic_energy stencil shown in Figure 3. The from_dims_halo method takes a stencil function and a set185

of dimensions (either cell-centers or cell-interfaces) to execute over, and returns a compiled stencil that writes its outputs over

the compute domain, in this case on cell corners (x and y interfaces). Output can be extended into the computational halos with

an optional compute_halos argument indicating how many halo points to write (not shown). We also see how compile-

time constants are passed as externals to the compilation method. These constants can be set by the model configuration,

extracted from the domain decomposition, or passed as arguments to the initialization method, and have the benefit of being190
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treated as compile-time constants. Because configuration settings such as domain-decomposition and namelist settings are now

known at compile-time they also provide further avenues for the DSL backend to optimize performance.

The factory pattern used here is incredibly powerful when debugging the model. For example, if a model developer finds that

at some point a variable air_pressure used by many routines has gone negative in the model, that developer can temporar-

ily insert code to immediately raise an exception if any stencil writes a negative value to a variable named air_pressure.195

Or that model developer could alter every stencil to write its inputs and outputs to a netCDF file when executed, while only

having to modify the code used for the stencil factory.

3.2 Powerful Testing

The introspection power of Python is used to great effect in the testing code for Pace. For example, we would like to ensure

that Python array allocation only happens when initializing our model, and not at all when it is called. To do this, we write a200

test which initializes the model, then replaces the storage allocation routines of GT4Py with routines which raise an exception

if called before finally calling the model. If any arrays were allocated at call time, an exception would be raised and the test

would fail.

We also want to ensure that the Pace model components are not stateful. The dynamical core, for example, has many

temporary storage arrays assigned to it whose initial value should not matter when calling the model. However, a user could205

easily fail to initialize an array with zeros when they mean to, causing a bug in the model. We have a test which calls the

dynamical core with the same state either once or twice, and compares the value of all temporary data in the model between

these two cases. It does this by dynamically crawling the Python object structure and comparing all array data. If any data

differs between those two cases, it not only tells us that there is a bug but also exactly which temporary has a bug - the one

which is accessed first out of the ones which differ. Without such a test, it could take days, weeks, or months for a scientist to210

find the source of such an error, assuming they notice the presence of the bug.

4 Porting the Model

Atmospheric models are large computational codes, making it difficult to determine the source of a bug given errors in model

outputs. In order to port FV3 and the physics parameterizations we first segment the Fortran code into smaller units of code

which can be ported and tested independently. Typically each unit encompasses a particular Fortran subroutine, but larger or215

more complicated subroutines may be broken down further to ease validation. We use the Serialbox library to extract the inputs

and outputs from each of these Fortran units. We place Serialbox compiler directives before each unit of code to serialize the

inputs to that unit, and similarly insert directives after each unit to extract its outputs. For a given test case we can then run the

Fortran model to generate test data for that case and model configuration.

GT4Py stencils calculate over 3D volumes, so in our porting process we initially wrote each individual stencil to replicate a220

Fortran do-loop over the i, j, and k spatial dimensions. A ported unit of code may use multiple stencils if there are computa-
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Figure 6. Schematic of our porting strategy: We port small units of code, test that they validate against the original Fortran, and then assemble

them into larger model components we then validate, building up to a full model port.

tions over different horizontal domains, or to increase readability of the code. In order to minimize GPU kernel launches we

subsequently merged stencils that executed over the same spatial extents where possible.

4.1 Extending the DSL

In the process of writing Pace we needed to extend GT4Py in order to express the Fortran code in the DSL. FV3 discretizes the225

Earth into a gnomonic cubed-sphere (Putman and Lin, 2007). GT4Py could only apply the same operations uniformly across

the horizontal domain of a stencil. We added the ability to execute code on stencil subdomains to the GT4Py DSL language

in order to perform special handling required near the corners and edges of the cubed-sphere tiles. Specifically, we included

horizontal and region as stencil control keywords (similar to computation and interval) as shown in Figure 7.

with horizontal specifies a horizontally restricted block of code, and region specifies the extent of that subdomain230

through Numpy-like array slicing in the I and J dimensions. Though it does violate the GridTools concept of a stencil, this

allows us to fully port the dynamical core and combine stencils to reproduce a natural amount of Fortran code. This also has

the benefit of increasing the readability of the code: in Fortran the corner and edge computations are handled by the common

pattern of if-conditionals inside of nested for-loops, while in Pace the horizontal regions are used almost exclusively for this

purpose.235

Another example is in the vertical remapping component of the model. The FV3 dynamical core uses a Lagrangian vertical

coordinate which is regularly remapped to its original Eulerian grid using the piecewise parabolic method (Lin, 2004). The

remapping process requires a double k-loop over the vertical dimension: an inner loop over the deformed vertical levels to sum

their contributions to an Eulerian level, and an outer loop over those Eulerian levels. When we initially ported the remapping

code GT4Py did not support for or while loops inside of stencils, so we wrote the inner loop as a stencil over the deformed240

k-levels and the outer loop in plain Python. While this implementation worked algorithmically, calling a stencil inside of a

for-loop has a large penalty in model speed due to the repeated kernel launches and the removal of the loop structure from the

DSL optimization path. To resolve this we added while-loops to GT4Py stencils. This allows us to consolidate the remapping

code into one stencil over the Eulerian k-levels, remove the Python for-loop, and expose the entire remapping scheme to the

DSL compiler. This reduced the run-time of the remapping step by over an order of magnitude.245
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1: @gtscript.stencil(...)
2: def set_field(field: Field[float]):
3: with computation(PARALLEL), interval(...):
4: field = 0.0
5: with horizontal(region[i_start, :]):
6: field = 1.0
7: with horizontal(region[i_start + 1, :]):
8: field = 2.0
9: with horizontal(region[i_start + 2, :]):

10: field = 3.0

.

Figure 7. Example illustration of how horizontal regions in GT4Py can be used to specilize computations in certain sections of the computa-

tional domain: The first region assigns 1.0 to the first row of the array, the second region assigns 2.0 to the second row, and the third assigns

3.0 to the third row.

GTPy is able to cover a large number of algorithmic motifs used in weather and climate models. This section illustrated

two examples where the DSL has been extended in order to express motifs which were present in FV3GFS. There is also

an on-going effort to extend GT4Py to unstructured grid computations. Nevertheless, any DSL will naturally be restricted

from covering some algorithmic motifs. For GT4Py these include reductions (e.g. computing horiztonal integrals over a field),

interpolation (e.g. for multi-grid), and search patterns (e.g. looking for a neighboring grid cell with certain properties). Whether250

these patterns should fall into the scope of the GT4Py DSL or another framework is a design decision, which can be weighed

for example against compiling these patterns with DaCe.

4.2 Model Validation

Each unit of code is validated by running it with the input data serialized from runs of the Fortran model, and comparing the

outputs of our code to the serialized Fortran outputs. If a ported unit is particularly large (e.g. vertical remapping, grid genera-255

tion) we serialize data from components of the larger unit and test the equivalent Pace components to reduce the complexity of

each test. We use two sets of initial atmospheric conditions as our test cases, each with a corresponding configuration namelist.

Our "standard" test case is generated from NCEP reanalysis data from 0Z on August 1, 2016 (as in McGibbon et al., 2021),
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Figure 8. Detail of 850 mb temperature of the baroclinic instability simulated with the Pace (left) and Fortran (right) dynamical cores on

day 9 at 10-km resolution. These results can be compared to Fig. 6 of Jablonowski and Williamson (2006) and show how well our model

replicates the original Fortran.

and the other is the baroclinic instability test case described in Jablonowski and Williamson (2006). Initial versions of the DSL

code were tested on the standard case run on 6 MPI ranks (one per tile) and a 12 by 12 horizontal grid on each tile face with 79260

vertical levels. We also test with a 54-rank domain decomposition, as this gives each tile face a rank for each corner and edge

as well as a central rank with no edges. Our tests thus cover the range of edge and corner handling required of a given rank

from no corners or edges to all eight corners and edges.

In many cases the Pace outputs can be brought near roundoff error to the Fortran outputs. However, there are some instances

where changes to the order of operations or the use of transcendental functions makes such reproducibility impossible, so we265

must choose a validation threshold for our code. We do this by perturbing the inputs to the Fortran code by small, floating-point

differences, and comparing the outputs. This leads us to adopt relative differences of 10−14 as our default validation threshold.

If we find validation errors greater than our default we test the components of the offending code to see what operations

introduce discrepancies between Pace and Fortran. Often these differences are due to errors introduced during porting and

we can reconcile Pace with the Fortran code. If these differences are instead due to algorithmic changes (reordering, etc.) we270

set the error tolerance for that piece of code based on the underlying Fortran/Python difference. For example, in the vertical

remapping scheme FV3 makes use of multiple goto statements for its control flow. These are not available in GT4Py, and so

some code has been rearranged to replicate the original algorithm, introducing small deviations from the Fortran outputs.

When we are confident that each component of the model accurately reproduces the Fortran version, we test larger combi-

nations of these units to ensure the implementation of these larger modules also matches Fortran, as illustrated in Figure 6.275

For example, after validating the cubic-spline vertical interpolation code and the code that calculates the contributions from

deformed, Lagrangian pressure levels to the remapped Eulerian levels, we then validate the code to vertically remap a single

variable from Lagrangian to Eulerian pressure levels. When this code validates, along with the tracer remapping, saturation
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Figure 9. 850 mb temperature difference between Pace and baseline Fortran simulations of a baroclinic instability at 200 km resolution after

1, 3, 6, and 9 model days, showing a good match between the two models.

adjustment, and moist potential temperature adjustment code, we can then validate the entire vertical remapping scheme. In

this way we hierarchically assemble and validate Pace against the Fortran code. These validation tests are incorporated into our280

suite of continuous integration tests to ensure that future developments and code changes do not affect model validity.

Once the full Pace dynamical core passes these unit tests we run the Jablonowski and Williamson (2006) baroclinic instability

test case for 9 model days and compare the results against the same test run in Fortran. In this test case, the dynamical

core is initialized with zonally symmetric steady-state winds, on top of which a Gaussian perturbation of the zonal wind is

superimposed in the northern mid-latitudes, triggering the evolution of a baroclinic wave. In Figure 8 we show the region285

of interest in a 10-km resolution simulation (960x960x80 grid cells per tile, run on 150 MPI ranks) of the same instability

from Pace and the reference Fortran model. We see that the model behavior is consistent with the reference Fortran model

and replicates the results from the highest horizontal resolution in Jablonowski and Williamson (2006) well. Figure 9 shows

the difference in 850 mb temperature between Pace and Fortran running the test case at 200-km (48x48x80 grid cells per tile)

resolution. Both models were run with 6 MPI ranks. The Pace dycore matches the Fortran code closely early on, with random290

errors on the order of 10−11 after three model days of integration. Due to the nature of the baroclinic instability these small

errors do eventually grow to the order of 10−1 after 9 simulation days (3888 timesteps), but even on day 6 the errors are only

on the order of 10−5. Based on these results we are confident that Pace accurately reproduces the Fortran model code.
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Fortran Pace CPU Pace GPU

Tile Size Scaling Time [s] Scaling Time [s] Scaling Speedup Time [s] Scaling Speedup

108x108x80 – 3.58 – 16.00 – 0.22 1.98 – 1.81

128x128x80 x1.40 4.66 1.30 22.25 1.39 0.21 2.34 1.18 1.99

192x192x80 x2.25 12.74 3.56 48.07 3.00 0.27 3.98 2.01 3.20

Table 1. Performance metrics comparing the Pace dynamical core with the Fortran reference code. The size (in number of gridpoints) of

each face (tile) of the cubed sphere grid is increased from row to row. Each of the configurations is run on 6 compute nodes, one compute

node per face of the cubed-sphere grid. Essentially this corresponds to global simulations of decreasing grid spacing of 96km, 72km, and

48km, respectively. The time measurements are the execution time of one invocation of the dynamical core (see Fig. 4).

Pace has only been validated using double precision floating point arithmetic and values. All performance results shown in

the next section have been measured using double precision.295

5 Model Performance

All experiments were conducted on the Piz Daint supercomputer at CSCS. Piz Daint contains 5704 Cray XC50 nodes, with an

Intel Xeon E5-2690 v3 12-core CPU, one NVIDIA Tesla P100 GPU (16 GB RAM), and 64 GB of host RAM on each node.

The nodes are connected via the Cray Aries interconnect. We are using Python 3.8.2 with Pace revision 0.2. the generated code

was compiled with CUDA 11.2 and GCC 9.3.0. To expose the full node architecture to the DSL optimization scheme we run300

Pace with one MPI rank per node for both CPU and GPU backends. The reference Fortran model was compiled with Intel

IFORT version 19.1.3.304. We run the Fortran code in its optimal configuration of 6 ranks per node and 4 threads per rank,

fully utilizing all 24 virtual cores available with hyperthreading.

Table 1 shows our model performance and strong scaling results, comparing the absolute runtime of the Pace dynamical core

on both CPU and GPU architectures with the original Fortran implementation. Figure 11 presents these data graphically. We305

show our weak scaling results in Figure 10. The microphysics implementation in Pace takes a negligible amount of time (≲ 1

%), so we focus our discussion on the dynamical core.

Our weak-scaling results (Figure 10) demonstrate a speed up of 3.6x against Fortran that is nearly constant across simulation

scales. The slight decrease in runtime at higher scales is due to the heavier computational load on the limited case of 6 MPI-

ranks; when running on 6 MPI ranks (one rank per tile face) FV3’s corner and edge handling has to be computed on every310

rank, while at higher scales that computational load is better spread across MPI ranks. Section 5.3 discusses this in more detail.

Overall we see that Pace exhibits perfect weak scaling, which validates the capacity of a GPU-running model to simulate at

km-scale resolutions in an efficient way.
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Since we observe perfect weak-scalability, meaning an increase in compute nodes working on a problem does not affect the

total time we can determine that the total time only scales with the work per node. Since the work is increasing linearly with315

the number of gridpoints per node we show a detailed analysis of the scalability of pace with varying work per node.

The domain size scaling experiments shown in Figure 11 show increasing performance gains on GPU as larger domains

are simulated on each compute node. This is expected, as GPUs are well fitted to high domain sizes since they are capable of

higher throughput than CPUs when optimized accordingly. As is well known and described for example in Fuhrer et al. (2018),

offloading computation to GPUs comes with a non-insignificant startup cost that only starts to pay off if enough work is done320

on accelerators. Pace is no exception to this rule. We can see a regime where not enough work is done to justify the startup

cost.

A detailed view of the scaling numbers for the most relevant region is summarized in Table 1. When we maximize the amount

of data on each node - shortly before we run out of memory on the GPU - Pace achieves a speed up of 3.2x in comparison to

Fortran. The CPU version, on the other hand, is 0.2x the speed of the Fortran code. This is due to a combination of two factors:325

– the Fortran model we ported is itself highly-optimized for CPU,

– the optimization effort was geared toward demonstrating the viability of the Python-DSL for GPU usage.

Despite focusing on GPU optimization, some of the optimization methods also improved CPU performance, and the functional

CPU backend does demonstrate portability. While outside the scope of this paper, work to improve CPU performance is now

underway.330

Model performance is a core motivation for GPU acceleration and for adopting a DSL, and it is encouraging to see a

significant speedup between Pace-GPU and Fortran versions. While the CPU performance has not been our focus to date, it is

the next priority for Pace development. We discuss our optimization strategies and explain how model performance influenced

our decision process in porting the model in the following subsections. More detailed performance results and a thorough

analysis are available in Ben-Nun et al. (2022). The version of the model code and supporting framework for Ben-Nun et al.335

(2022) is slightly earlier, hence a slight difference in absolute numbers, but the methodology remains the same.

5.1 Optimizations

Because GT4Py has multiple backends for various target architectures there is no one performance number that captures the

entirety of our approach. Nonetheless, the aggregate performance across backends indicates the power of the DSL paradigm

through performance portability. With the capability of code-generating for specific hardware targets, we are not limited to sin-340

gle, catch-all solutions in our user-facing code. Instead we can generate optimized code for each type of hardware individually

through backend logic, allowing user code to focus on numerical details. As an example, on CPU architectures it usually pays

off to use coarse-grained parallelism such that threads are assigned to different subdomains, while on GPUs the parallelization

strategy involves having blocks of threads execute subdomains.

Weather and climate models are written with large configuration files, namelists, to allow for flexible use. In order to support345

all the possible configurations, standard models use many conditionals that can not be resolved at compile time, such as
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which subgrid reconstruction to use for tracer advection. This limits how aggressively the low-level compiler can optimize the

model. Code-generation from a DSL allows us to code-generate and compile the model for a specific namelist configuration to

circumvent this problem.

Furthermore the DSL compiler is able to apply domain-specific optimizations under certain conditions on a per stencil level350

before generating code at all. These include:

1. Reduce main memory accesses: Replace 3D temporary fields used for intermediate results that are stored in global

memory with smaller buffers that allow for more reuse and faster access.

2. Inlining: Fully inline both function calls as well as nested conditionals, replacing function calls and branching condition-

als with the relevant code at compile time and removing the performance overhead of these code patterns.355

3. Pruning: Analyze the code based on all the compile-time constants provided and prune unreachable branches of code.

4. Fusion: Fuse numerical operators defined in separate functions and contexts into single kernel calls, as long as that does

not create race conditions. This optimizes performance by reducing the amount of synchronization needed as well as

giving the underlying general purpose compiler more flexibility.

5.2 DaCe360

In order to achieve good performance in a Python driven environment it is crucial to minimize the overhead moving from the

driver language to the compiled language executable. Since our implementation of the model is a series of compiled stencils

called from Python, the performance overhead linked to calling the compiled stencils from Python scales with the number of

stencils called. A secondary issue is that with the fragmentation into individual stencils we limit the optimization potential of

the DSL, as it is limited to the scope of a single stencil for the optimizations described above.365

We leverage DaCe (Ben-Nun et al., 2019) to address those shortcomings, providing a full-program optimization framework.

With our DaCe backend in GT4Py we are able to compile the entire loop over timesteps into a single executable called from

Python, thus completely removing all Python to C call overhead during our simulation. With DaCe as our backend we are

able to leverage custom optimization for our code including improving the computational layout, improving where and how

memory allocation happens, scheduling computation to improve parallelism as well as increasing data locality and improving370

the pressure on global memory. A detailed explanation of our approach and how it affected performance can be found in

Ben-Nun et al. (2022).

5.3 Corner and edge handling

As discussed in Section 4.1, the cubed-sphere discretization of FV3 (Putman and Lin, 2007) requires special finite difference

stencils applied near edges and corners to account for the grid geometry. We added the ability to execute stencils on horizontal375

subdomains to enable these motifs in GT4Py, which unfortunately has negative performance implications for Pace.
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FV3 parallelized the vertical plane K instead of the horizontal IJ ones. Flipping this order of parallelization increases the

parallelism many-fold, which is necessary for high throughput on GPUs and other massively parallel architectures. FV3 par-

allelizes in this way because it is advantageous for their target architectures which are CPUs with branch prediction and large

caches. On CPU architectures instruction divergence inside the tight loops due to FV3’s corner and edge handling is not an380

issue, but there is a limit to what can be done in a single-instruction multiple data (SIMD) GPU kernel. Because of their data

dependencies these corner and edge operations cannot be executed in parallel with the rest of the code, requiring a separate

kernel launch for each of them. This breaks what could be one large and optimized stencil into separate stencils separated by

such corner calculations, though there are certain conditions under which we can fuse these operations into the same kernel.

This example shows how algorithmic choices have large impacts on performance. The choice of specialized corner and edge385

handling made for FV3 fits a CPU architecture well but is sub-optimal for GPU architectures. Changes to the algorithm can be

made to alleviate this problem, such as a duo-grid approach demonstrated in Chen (2021). Since Pace is intended to be a one

to one port of FV3 in it’s current state this is not a development we are focused on at the moment, though it could be a fruitful

direction for other DSL models.

6 Pace in Action390

6.1 Driving the model

The driver code in Figure 12 showcases the power of Python as an API language for configuring, compiling, and running

computational codes. The command_line entry function reads all information needed to run the model from disk, and

directly defines the behavior of the Driver class. Within the Driver (not shown), the dynamical core and physics components

only have access to the configuration and variables they use, which makes it much easier for a new developer of the model to395

understand what the code does. This is true all the way down through its components, as described in Section 3.1.

This example also showcases the advantage of working in a widely-used language with a vibrant open source package

ecosystem. Python has powerful tools available for defining command-line interfaces. Taking a yaml configuration file and

mapping it onto a nested configuration class is as simple as using pyyaml and dacite, which provide this functionality. Python’s

built-in datetime and timedelta types make it easy to manage model execution time, and external packages such as cftime400

provide support for a wide range of calendars. Diagnostics storage makes use of the xarray and zarr packages to greatly

simplify the code we need to write. This well-established ecosystem of tools maintained by scientists and engineers from a

range of disciplines and sectors is incredibly helpful when developing an atmospheric model.

And in turn, having a model written in Python means the tools we have written can be used by anyone who uses the language.

This is particularly important given the popularity of Python as a language for scientific analysis. When processing the output405

of Pace, a scientist has direct access to the tools and numerical code used by the model itself.
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1: @click.command()
2: @click.argument(
3: "CONFIG_PATH",
4: required=True,
5: type=click.Path(exists=True, readable=True, dir_okay=False, resolve_path=True),
6: )
7: @click.option(
8: "--log-rank",
9: type=click.INT,

10: help="rank to log from, or all ranks by default, ignored if running without MPI",
11: )
12: @click.option(
13: "--log-level",
14: default="info",
15: help="one of 'debug', 'info', 'warning', 'error', 'critical'",
16: )
17: def command_line(config_path: str, log_rank: Optional[int], log_level: str):
18: """
19: Run the driver.
20:

21: CONFIG_PATH is the path to a DriverConfig yaml file.
22: """
23: configure_logging(log_rank=log_rank, log_level=log_level)
24: logger.info("loading DriverConfig from yaml")
25: with open(config_path, "r") as f:
26: config = yaml.safe_load(f)
27: driver_config = DriverConfig.from_dict(config)
28: logging.info(f"DriverConfig loaded: {yaml.dump(dataclasses.asdict(driver_config))}")
29: main(driver_config=driver_config)

.

Figure 12. The driver function to run Pace from the command line. The command_line function is able to gather the configuration and

set logging behavior and run the model.

6.2 Use Cases

One of the advantages of Python is the ecosystem surrounding it. For example, packages such as NumPy and SciPy make it easy

to perform common mathematical and numerical operations and manipulate data; Matplotlib enables interactive visualization

and creates static or animated images; Jupyter Notebook allows users to create and share their computational documents;410

TensorFlow provides end-to-end libraries for machine learning and artificial intelligence applications. With Pace, we can

leverage all these tools to make running, processing, and visualizing climate model output all in one Python script.

Pace also enables novel workflows through the use of Jupyter notebooks. The Pace repository contains an example notebook

running one component of Pace. We first initialize a cubed-sphere grid and an idealized atmospheric state, then run the tracer

advection operation and visualize the results. In this case the analytic zonal wind profile should advect the tracer mass once415

around the Earth in twelve model days, and any deviation from this indicates a problem with the advection code. This workflow

is meant to mimic how a model developer could develop, implement, and debug a new advection scheme. We take advantage

of the fact that each component in Pace is modular and skip over running the entire model, which enables rapid prototyping

without leaving the Python ecosystem. Beyond development, this capability is useful for teaching, allowing students to inspect

elements of the model individually.420
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1: class Physics:
2: ...
3:

4: # GT4Py stencil-based physics:
5: prepare_microphysics(physics_state)
6: microph_state = physics_state.microphysics
7: microphysics(microph_state)
8: ...
9:

10: # Machine-learning based microphysics
11: emulation_model = tf.keras.models.load_model("microphysics.tf")
12:

13: emulation_dict = prepare_emulation_data(physics_state.microphysics)
14: predictions = emulation_model(emulation_dict)
15: model_outputs = unpack_predictions(predictions, emulation_model.output_names, _)
16: update_physics(physics_state, model_outputs)

.

Figure 13. Pseudo code outlining how a machine-learned microphysics emulation scheme could be incorporated as a model component in

Pace.

Figure 14. Microphysics emulation results: liquid water column sum of a baroclinic instability simulation on day 10 at 200 km resolution

Another benefit of Pace is that it facilitates incorporating novel applications and approaches into the model, such as machine

learning emulation. Oftentimes machine learning in climate models requires complicated workflows such as calling Fortran

from Python (McGibbon et al., 2021) or calling Python from Fortran. Because Pace is written in Python, we can train and

execute an ML model directly, bypassing difficult infrastructure to pass variables between languages. In Figure 13 we show

Pace’s ability to replace a stencil-based microphysics scheme with a pre-trained TensorFlow based microphysics emulator.425

Taking advantage of the modularity and separation of initialization and call time of the individual module, we simply load the

TensorFlow model during the initialization of the Physics class and replace the call signature of microphysics. Figure 14 shows

an example of the emulator applied to the baroclinic instability test case.
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7 Limitations

Our research has focused on porting a subset of NOAA’s FV3GFS model so as to limit the porting effort and focus on framework430

development. In particular, the nesting capabilities of FV3 were not ported. Likewise, we forked the model code early in the

project and did not pull any updates added to the original Fortran code by NOAA’s team. Despite this limiting choice, we

believe the two namelist configurations we ported cover a wide range of applications to show that any model code can be

effectively ported.

While this paper presents our port of the dynamical core and microphysics, we are actively working on integrating and vali-435

dating gt4py ports of the full GFS physics suite. Our results integrating the GFDL microphysics scheme (Chen and Lin, 2013)

into Pace shows not only show validation and competitive performance, but also demonstrates the feasibility of implementing

physics parameterizations using the same strategy deployed for the dynamical core. We have written GT4Py implementations

of the remaining physics schemes (PBL, turbulence, shallow convection, sea-ice, land surface, and radiation), and work is

ongoing to optimize and integrate them into the Pace model.440

Only the baroclinic wave test case was tested at the larger 150-rank configuration described in Section 4.2. A subset of an

earlier version of the code was run on 2400 GPU nodes (Ben-Nun et al., 2022) before achieving full validation, alleviating

concerns about distributed performance.

Lastly, as explained in Section 5, we have only focused on GPU performance optimization thus far, leaving CPU performance

sub-optimal. We are confident that CPU optimization is achievable within the boundary of the current framework and only445

requires careful engineering.

8 Conclusions

We have presented Pace, an open-source performance-portable implementation of the FV3 dynamical core and GFDL cloud

microphysics written in Python using the GT4Py domain-specific language. The DSL implementation allows Pace to run on

both CPU and GPU architectures, where it achieves high performance. The use of Python as a front-end language lets us450

write Pace in a modular, productive style and gives us access to Python’s powerful testing tools, which allows us to debug and

validate Pace.

We have demonstrated our method of porting code from Fortran to Python, building Pace hierarchically from small units of

ported code that validate regularly against their Fortran equivalents. Fully porting Pace was a combination of porting the code

to the DSL and extending the DSL to cover new algorithmic motifs required by the model, such as while-loops inside stencils455

and allowing computations to occur on horizontal subdomains. Our testing strategy ensures that our code remains equivalent

to the Fortran model throughout our development, including frontend and backend changes. Our approach can be adopted to

reimplementing other model codes, and provides a good template for porting weather and climate models between languages.

We have shown the performance implications of the DSL design and implementation, leading to a ∼3.3x speed up for

Pace’s GPU backend over the Fortran reference. One advantage of Python is the blending of compile- and run-time allows us460

to compile the model for a specific runtime configuration. Increasing the amount of code exposed to the DSL compiler had
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a strong impact on our model performance and drove us to adopt DaCe to leverage full-program optimizations. Algorithmic

changes such as the duo-grid implementation can drive further optimization.

Pace takes great advantage of the Python ecosystem. Pace has full access to Python packages such as Numpy (Harris et al.,

2020a) and matplotlib (Hunter, 2007). We can run the model, or just a model component, in a Jupyter notebook, opening465

new avenues for model exploration and debugging. The Python frontend also allows Pace to easily incorporate and couple to

machine-learned model components, such as physics parameterizations. We have also illustrated the relative ease of debugging

Pace, both through Python’s developer tools and through the ability to implement novel tests like subtracting two dycores to

determine whether temporary variables are properly reset between timesteps.

As supercomputer heterogeneity increases, Pace stands as both a useful atmospheric model and a strong proof-of-concept for470

the DSL approach to performance-portability. We have shown the advantages of an atmospheric model written in a high-level

language such as Python, with further development still to come. We hope to see this approach adopted more broadly in the

modeling community.

Code and data availability. Code releases for Pace (George et al., 2022, https://doi.org/10.5281/zenodo.7079980) and gt4py (Dahm et al.,
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