Reply on RC1

We thank reviewer 1 for their thoughtful and constructive comments which have helped
improve the manuscript.

Maijor:
1. F1: Workflow pipeline ...

RC: The pipeline figure is reasonable - however, please include a brief statement on the
role of DaCe in this pipeline (either in the text associated with F1, or in the F1 caption).
Figure 1 is referred to in line 98, however DaCe is not commented on until lines 125, and
Section 5.

Reply: We have updated the caption and the text discussion of F1 to address the use of
DaCe.

2. L12: Pace demonstrates how a high-level language can ... facilitate the integration with
new technologies such as machine learning.

RC: Are there currently available demonstrations of machine learning methods being
used in Pace? If so, it would be useful to include them in the paper. Figure 13 and the text in
Section 6.2 address this to some extent. It is useful to include changes that “could be”
(caption Fig 13) made to the model to highlight potential use-cases, however | believe a
model development and technical paper must emphasize elements that are currently
operational.

Reply: Pace is not an operational model, since it does not yet include a full suite of
physics packages. As a consequence, there are also no operational machine learning
use-cases. Nevertheless, the example given in F13 and Section 6.2 is not just theoretical.
We have integrated a machine learning component which has been trained using data from
the Fortran version of fv3gfs to emulate the Zhao-Carr microphysics into Pace. We have
added a figure to illustrate a simulation with this ML emulator based on the code shown in
F13 to the paper.

3. F3: RC: Is the model constrained to a specific floating point precision type? Have results
been verified in all supported float-type options?

Reply: The type FloatField in the code shown in F3 is configurable to different float types
(see
https://qgithub.com/ai2cm/pace/blob/f5a4848e909339d7 1ffab0a6f8bdcce5c99e459d/dsl/pace
[dsl/typing.py#L 29 ). But Pace currently has been only tested using double precision



https://github.com/ai2cm/pace/blob/f5a4848e909339d71ffab0a6f8bdcce5c99e459d/dsl/pace/dsl/typing.py#L29
https://github.com/ai2cm/pace/blob/f5a4848e909339d71ffab0a6f8bdcce5c99e459d/dsl/pace/dsl/typing.py#L29

(float64). The caption of F3 has been extended to explain the former. A sentence stating the
latter has been added at the end of Section 4.2 (Model Validation).

4.1.205: ... we occasionally needed to extend GT4Py ...

RC: Is there clarity in when these extensions were/will be needed ? Are these discovered
as the code is being ported, or did the design stage make it abundantly clear that certain
extension patterns would be necessary? (l.e. do you anticipate additional scenarios where
the DSL needs to be extended beyond those highlighted in section 4.1, especially when
considering parameterizations?)

Reply: We have added a discussion at the end of Section 4.1. In summary, a DSL will
always be restricted to a certain domain and not be able to match all algorithmic motifs that
are expressable in a general purpose language such as Fortran. But we believe that the
feature set of GT4PYy is sufficient to already be interesting for a wide range of applications.
GT4Py is currently being extended to be able to express computations on unstructured
grids, such as the ones used by the MPAS and ICON models.

Some of the extensions to GT4P were anticipated at the beginning of our work, such as a
horizontal regions-type capability, given the nature of the FV3 dynamical core. The addition
of while-loops, on the other hand, only became a priority after we measured the
performance of the original vertical remapping port.

5. T1: RC: Exactly what is being timed ? Please be more precise in the table caption. (There
is mention of the absolute runtime in L267 but the table needs a more appropriate caption).

Reply: Table caption has been revised and the text adapted. The units of the “Time”

column erroneously were “ms” instead of “s”. This has also been corrected.
6. F10: axis label [time per timestep]

RC: The units appear to be inconsistent with those in Table 1.

Reply: With the correction of “ms” to “s” F10 is now consistent with T1.
7.L314, L351: “certain conditions”

RC: Multiple references to possible optimization based on specific conditions -
documentation of such conditions would improve the quality of the paper and enable
readers to make decisions on porting strategies if a similar exercise A sd were to be carried
out in the future.

Reply: Rephrased section 5.1 to make it clearer that the DSL compiler automatically
applies this under certain conditions, as long as it does not change the result of the code.



The nature of the DSL is not to code for these optimizations, but to let the compiler apply
them to the extent it can.

8. L333: We leverage DaCe ...
RC: See comment (1).
Reply: Addressed in reply to comment (1).
9. L402: “We have preliminary results ... competitive performance ...”

RC: | believe including these (quantitative) results strengthens the paper by supporting
the general statements made on the feasibility of incorporating parameterizations. Include
quantitative measures of competitive performance here.

Reply: We feel that our work on the microphysics implementation is no longer best
described as preliminary, and have updated the text of the paper to reflect this. We have
added discussion of the microphysics performance to section 5, but the execution time is so
short (under 1%) that it has a negligible impact on our overall performance.

10. L433-435:

RC: Clarify - is the intent to represent Pace v0.1 as a complete atmosphere model with
physical parameterizations or as the underlying dynamical core? The model development
paper in review addresses the dynamical core component of a weather / climate model. As
such | believe the statement “We have shown the advantages of a climate model written in
a high-level language” should be rephrased to emphasize this. Following the code
documentation, an alternative way to support the current statement in L434 could be to
elaborate on the "fv3gfs-physics™ component with supporting results (This is related to lines
401-404).

Reply: We are in the process of integrating the GFS physics suite which is also used in
FV3GFS and x-SHIELD. We have a full suite of validated parameterizations ported to
GT4Py. Also, we have written a physics driver and already integrated the microphysics
parameterization into Pace. Pace will become a full atmospheric model, though Pace
v0.1/v0.2 only has microphysics integrated so far. We have edited “climate model” to
“atmospheric model” and included additional details about our efforts adding additional
parameterizations into the “Limitations” section to reflect this.

12. Plain Language Summary: Similar to (11) - “We re-wrote a Fortran code that simulates
weather and climate into Python ...” If you are suggesting here that, as submitted, Pace
v0.1 is a Python weather and climate simulator then this must be supported by benchmarks
in more complex scenarios (with the appropriate physical parameterizations included).

Minor:



1. L14: “Current weather and climate models are written in low-level compiled languages...”
RC: Please support this with appropriate citations.
Reply: Reference added.
2. L19: “There [are] a handful of successful ... “
Reply: Corrected.
3. F5: “... [figrue] ...” -=> “... [figure] ...”
Reply: Corrected.

4. 1L47: RC: Please include an explicit citation for the FV3 dynamical core. | notice that this
is done in line 131, but it is useful to include the citation at the first mention of this in the
text.

Reply: Reference added.
6. L99: RC: Are there any pitfalls when handling “generated” Numpy code?

Reply: The generated Numpy code is “standard” Python code and can - for example - be
executed without special hardware and debugged using a standard Python debugger.
Nevertheless, it is important to keep in mind that this is generated code. While GT4Py tries
to generate as readable code as possible, some variable names are auto-generated and a
direct link between the original source code and the Numpy generated code can be
obscured and difficult to understand for a novice user of GT4Py.

7. L119: [horizontal difference of the u and v contravariant velocity components
respectively.]

Reply: Corrected.

8. L203: “... [lanches] ...” -=> “... [launches] ...”
Reply: Corrected.

9. L284: [optimization].
Reply: Corrected.

RC: The text in this section in general is within the stated scope - the paper demonstrates
portability but it does not demonstrate fully optimized CPU portability (authors state this is
future work).



Reply: We agree with the reviewer. On the target system we used for performance
measurements the memory bandwidth on the GPU (NVIDIA Tesla P100) is approximately
12x higher as compared to the CPU (Intel Xeon E5-2690 v3). This is approximately
consistent with the runtime difference of Pace on GPU and CPU. While a more detailed
investigation would be required, it could also be argued that we have consistent CPU and
GPU performance but should be able to further improve performance as compared to the
Fortran reference. But as stated in the text, we are indeed confident that we can improve
CPU performance without too much effort.

10. F11: RC: Is this simulated time per timestep? Please clarify the precise measure being
timed in the figure caption.

Reply: Corrected.

11. L288: ...[across simulation scale]
RC: ... [across simulation scales] ...
Reply: Corrected.

12. L408: “... as explained in [Section 5] ...”
Reply: Corrected.

13. L414: Mixed tenses, please fix.
Reply: Corrected.

Other: Please include Zenodo DOI references to ‘Pace’ and "gt4py’ in the code availability
section in the manuscript. (The code is otherwise accessible from the "assets" section on
the preprint submission page.)

Reply: We have added direct URLs to the Zenodo citations in the code availability section.

Reply on RC2

Comment 1: Further discussion of other Python acceleration techniques would help put
GT4Py into context. Cython and Numba are mentioned in passing, but why were they not
chosen for the FV core? What about JAX? Did the authors try any of these? Were there
reasons from the outset that these approaches would be limited relative to the GT4Py
approach? More discussion here would be very useful to other authors interested in moving
other high-performance codes to Python.

Reply: Addressed in new subsection 2.2.



Comment 2: More discussion of other Python and Julia-based PDE solvers and GFD
models would also help contextualize the solver. Popular Python-based (or
Python-interfacing) PDE DSLs such as FEniCS, Exasim, and Dedalus might be mentioned.
Also other atmosphere and ocean models being implemented in high-level languages on
GPUs, such as CIiIMA and Veros, should be referenced and contrasted. Again | don't think
direct simulations comparisons are necessary, but discussing these projects and how the
Pace developers see their code in relation would be very helpful to others.

Reply: Addressed in new subsection 2.2

Comment 3: The scaling tests are a little confusing. The exact setup (nodes vs ranks and
total model degrees of freedom) are scattered throughout the text, but should be stated
clearly in each figure/caption. The weak scaling results look particularly impressive, but
again the details aren't clear -- the plot says number of nodes, but the text refers to the
left-most point is refereed to as "6 ranks". The text says that the Fortran reference is ran
with 6 MPI ranks per node, but doesn't specify this number for Pace. Is this the same, or is
it1?

Reply: Figure 11 (now Figure 10) was updated to refer to Ben-Nun et al. (2022) where full
detail of the setup can be found. The description of our mpi configurations at the start of
section 5 has been updated to include the MPI configuration for our Pace runs. We have
also consolidated the setup where possible to the start of the section, and duplicated the
description of node setup into the caption for Figure 11.

Comment 4: Finally, the strong scaling test leaves a lot to be desired and should be
expanded. If it's possible to run Pace up to 864 nodes, then it would be much better to see
a broader strong scaling test that illustrates the opposing limits of fitting the problem in GPU
memory vs. having too little local work for the GPU to do. Understanding the window of
local-work-per-node required for maximum performance is very important to potential users,
and seeing the efficiency penalties either side of the optimum is also key.

Reply: Since we were able to show perfect weak-scalability we chose to show the
sensitivity of the performance with respect to the work per node not by traditionally strong
scaling with a fixed experiment size and an increasing number of nodes as this would
significantly decrease the observable spectrum. Instead we show a detailed analysis of the
interaction between performance and work to be done per node. We added Figure 11 to
show where the window of maximal efficiency for GPUs is as well as simplified Table 1 to
make it easier to extract the relevant information there. These changes are accompanied by
changes to the text to explain this reasoning.



