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Abstract. Exchanges of mass, momentum and energy between the ocean and atmosphere are of large importance in regulating
the climate system. Here we apply for the first time a relatively novel approach, the rate of information transfer, to quantify
interactions between the ocean surface and lower atmosphere over the period 1988-2017 at monthly time scale. More specif-
ically, we investigate dynamical dependencies between sea-surface temperature (SST), SST tendency and turbulent heat flux
in satellite observations. We find a strong two-way influence between SST / SST tendency and turbulent heat flux in many
regions of the world, with largest values in eastern tropical Pacific and Atlantic oceans, as well as in western boundary cur-
rents. The total number of regions with a significant influence of turbulent heat flux on SST and on SST tendency is reduced

when considering the three variables (case that should be privileged as it provides additional sources of information), while it

remains large for the information transfer from SST and SST tendency to turbulent heat flux, suggesting an overall stronger
ocean influence compared to the atmosphere. We also find a relatively strong influence of turbulent heat flux taken one month
before on SST. Additionally, an increase in the magnitude of the rate of information transfer and in the number of regions with

significant influence is observed when looking at interannual and decadal time scales, compared to monthly time scale.

1 Introduction

The climate on Earth is strongly affected by exchanges of mass, momentum and energy between the ocean and atmosphere.
The ocean absorbs a large amount of solar energy and releases part of this energy to the atmosphere. In turn, the atmosphere
modifies the ocean state through changes in winds, humidity and temperature. The classical view is that the slowly-changing
upper ocean is modulated by the high-frequency atmospheric variability (Hasselmann, 1976; Frankignoul and Hasselmann,
1977). While this paradigm has been successful in explaining the variability in sea-surface temperature (SST) and surface heat
flux over large parts of the ocean, it has been challenged over ocean regions characterized by intense mesoscale activity, such
as western boundary currents and Antarctic Circumpolar Current (Chelton et al., 2004; Brachet et al., 2012; Kirtman et al.,
2012; Bishop et al., 2017; Roberts et al., 2017; Small et al., 2020; Bellucci et al., 2021).

Chelton et al. (2004) used 25 km resolution satellite radar scatterometer measurements over 1999-2003 and revealed the
existence of persistent small-scale features in wind stress. According to Chelton et al. (2004), much of that mesoscale variability

is attributable to SST modification. In particular, they found that surface wind speed is locally higher over warm water and
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lower over cool water, i.e. a positive correlation that is opposite to the one found at large scale. Bishop et al. (2017) found
that monthly-scale lead-lag correlations between SST, SST tendency and turbulent heat flux (THF, positive upwards) allow to
discriminate between atmospheric-driven variability and ocean-led variability, using results from a stochastic energy balance
model (Wu et al., 2006) designed to represent ocean-atmosphere interactions, as well as satellite observations over 1985-2013.
In their analysis, when the SST variability is dominated by atmospheric weather, SST tendency is negatively correlated with
THF anomalies, while when the SST fluctuations are driven by intrinsic ocean processes (ocean weather), the correlation
between SST and THF is positive. Following this approach, they showed that eddy-rich regions associated with pronounced
SST gradients, such as western boundary currents, are characterized by ocean-driven SST variability, while less dynamically
active, open ocean regions, characterized by weaker SST gradients, exhibit an atmosphere-driven SST variability. These two
regimes are reproduced by both eddy-parameterized (~1° spatial resolution) and eddy-permitting (~0.25°) coupled global
climate models (Bellucci et al., 2021), with an increased ocean resolution leading to a substantially improved representation of
SST and THF cross-covariance patterns.

According to a commonly accepted interpretation, the positive SST-THF zero-lag correlation (identifying an ocean-driven
regime) indicates a damping role of THF on the SST anomalies generated by ocean dynamics, while the negative SST tendency-
THEF correlation (identifying an atmosphere-driven regime) is attributed to the ocean surface cooling determined by the release
of heat from the ocean to the atmosphere. However, the presence of such correlations does not firmly demonstrate causal
influences between these variables, as correlation does not mean causation. Thus, the use of a dedicated causal method is of
crucial importance to corroborate these findings. Several causal inference frameworks have been developed in the past years
to identify such causal links (Granger, 1969; Liang and Kleeman, 2005; Sugihara et al., 2012; Krakovska et al., 2018; Palu§
et al., 2018; Runge et al., 2019).

The Liang-Kleeman information flow method allows to identify the direction and magnitude of the cause-effect relationships
between variables (Liang and Kleeman, 2005). It is based on the rate of information transfer in dynamical systems and is
rigorously derived from the propagation of information entropy between variables (Liang, 2016). It has initially been developed
for two-variable systems (Liang, 2014) and has recently been extended to multivariate systems (Liang, 2021). Compared to
other causal inference frameworks, the rate of information transfer is a relatively simple index to compute one-way and/or two-
way dependencies between variables. This novel method has been successfully applied to several climate studies, e.g. causal
influences between greenhouse gases and global mean surface temperature (Stips et al., 2016; Jiang et al., 2019; Hagan et al.,
2022), dynamical dependencies between a set of observables and the Antarctic surface mass balance (Vannitsem et al., 2019),
soil moisture - air temperature interactions in China (Hagan et al., 2019), prediction of El Nifio Modoki (Liang et al., 2021),
causal links between climate indices in the North Pacific and Atlantic regions (Vannitsem and Liang, 2022), and identification
of potential drivers of Arctic sea-ice changes (Docquier et al., 2022).

In our study, we analyze upper ocean - lower atmosphere interactions using the rate of information transfer developed
by Liang (2021). More specifically, we check the two-way influences between SST / SST tendency and THF at the air-sea
interface in satellite observations. Thus, our study allows to go one step further than previous studies (Bishop et al., 2017;

Bellucci et al., 2021), which have mainly focused on lead-lag correlation analyses, by identifying causal links between these
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variables. Section 2 presents the data and methods used in this analysis. Section 3 provides the main results of our study and

places them in the overall context. Our conclusions are presented in Sect. 4.

2 Data and Methods
2.1 Data

We use version 3 of the Japanese Ocean Flux Data Sets with the Use of Remote-Sensing Observations (J-OFURO3; Tomita
etal., 2019; Tomita, 2020). This dataset uses multiple satellite data to estimate surface fluxes between the ocean and atmosphere
over sea ice-free regions with a resolution of 0.25°. It makes use of passive microwave radiometers and scatterometers available
from 1988 to 2017 (see Tomita et al. (2019) for further details). From this dataset, we extract monthly mean latent and sensible
heat fluxes, as well as SST. The latter is computed as an ensemble median obtained from various global SST products.

We also use the SeaFlux Data Products to estimate the observational uncertainty. It consists of estimates of ocean surface
latent and sensible heat fluxes, among other variables (Roberts et al., 2020). It relies on the use of Special Sensor Microwave
Imager (SSM/I) and Special Sensor Microwave Imager Sounder (SSMIS) over the period 1988-2018 (we use 1988-2017 to
be consistent with J-OFURO3). The SST is also available for this dataset and is computed using the Reynolds Optimally-
Interpolated Version 2.0 (Reynolds et al., 2007). As for JF-OFURO3, SeaFlux data are available on a 0.25° grid and we extract
monthly mean latent and sensible heat fluxes and SST.

In the main text, we only show results from J-OFURQ3, as results obtained with SeaFlux are largely consistent. The latter

are presented in Appendix B.
2.2 Methods

Our analysis involves three variables, namely SST, SST tendency and THF, following the approach of Bishop et al. (2017) and
Bellucci et al. (2021). The choice of these three specific variables is based on the stochastic energy balance model of Wu et al.
(2006). As explained in Sect. 1, lead-lag covariances between these three variables are used as a way to diagnose ocean-driven
and atmosphere-driven regimes. The goal of our analysis is to go beyond the correlation / covariance relationships identified
by Bishop et al. (2017) and Bellucci et al. (2021) and check the causal links between SST, SST tendency and THF. THF is
defined as the sum of latent heat flux and sensible heat flux and is expressed in W m~2 (positive upwards), as in Bishop et al.
(2017) and Bellucci et al. (2021). SST tendency is computed via a central difference approximation of SST (expressed in °C)
using a time step of one month (following Bishop et al., 2017) and is expressed in °C month~!.

We compute the rate of information transfer between SST, SST tendency and THF at each grid point of the globe using
monthly data from 1988 to 2017. As we would like to extract statistical information from time series independent of any specific
trend or cycle, we remove the trend and seasonality of all three variables using a linear regression and additive decomposition.

The absolute rate of information transfer from variable X to variable X; is computed assuming linearity following Liang
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(2021):
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where C is the covariance matrix, d is the number of variables, A j;, are the cofactors of C, Cy, 4; is the sample covariance
between X, and the Euler forward difference approximation of ¢25/d¢-(dt-d.X;/dt (dt is the time step and equals one month
in our study), Cj; is the sample covariance between X; and X, Cj; is the sample variance of X;.

To assess the relative importance of the different cause-effect relationships, we compute the relative rate of information
transfer from variable X to variable X; following Liang (2021):
- Ta% 7 o)

where Z; is the normalizer, computed as follows:

d
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dt

where the first term on the right-hand side represents the information flowing from all the X}, to X; (including the influence of
X; on itself), and the last term is the effect of noise and unobserved processes, computed following Liang (2021).

When 7;_,; is statistically different from O (either positive or negative), X; has an influence on X;, while if 7;_,; = O there
is no influence. A value of |7| = 100 % indicates that X; has the maximum influence on X;. A positive (negative) value
of 7;_,; means that the variability in X; makes the variability in X; more uncertain (certain) (Liang, 2014), i.e. it increases
(decreases) the variability in X; (Appendix A; Fig. Al). Statistical significance of 7;_,; is computed via bootstrap resampling
with replacement of all terms included in equations-Eq. (1)-(3) using 500 realizations. These boostrap realizations are combined
together using the False Discovery Rate (FDR) from Wilks (2016) with a significance level of 5% to account for the multiplicity

of tests.

3 Results and discussion

Bishop et al. (2017) identified a strong positive zero-lag covariance between SST and THF at monthly time scale (over 1985-
2013) in western boundary currents, Agulhas Return Current and eastern tropical Pacific, using the OAFlux dataset (1° resolu-
tion) for THF and the NOAA OISST dataset (0.25° resolution) for SST (see their Fig. 3b). They also found a strong negative
zero-lag covariance between SST tendency and THF over many regions of the globe, with largest values at mid-latitudes (see
their Fig. 3e). Using the J-OFURO3 dataset (0.25° resolution), we find similar results in terms of zero-lag covariance (Fig. B1).
Additionally, when mapping the Pearson correlation coefficient instead of the covariance, we find a strong positive correlation
between SST and THF in many regions of the world, with largest values in eastern tropical Pacific and Atlantic regions, and
in western boundary currents (Fig. 1(a)). A strong negative correlation between SST tendency and THF is also identified in

most parts of the world, with the exception of a relatively narrow band along the equator and in western boundary currents

(Fig. 1(b)).
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Figure 1. Pearson correlation coefficient (a) between sea-surface temperature (SST) and turbulent heat flux (THF) and (b) between SST
tendency (SSTt) and THF, based on J-OFURO3 satellite observations. Black contours are drawn around regions with a statistically significant

correlation coefficient (FDR 5%; Student’s t-test).
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Bishop et al. (2017) and Bellucci et al. (2021) showed that regions of high SST gradient and THF (such as the Gulf Stream)
are characterized by an ocean-driven regime. In these regions, the SST-THF zero-lag covariance is positive, suggesting that
ocean processes drive SST anomalies, and the SST tendency-THF lead-lag covariance is anti-symmetric (positive covariance at
lag -1 and negative covariance at lag +1). On the contrary, an anti-symmetric SST-THF lead-lag covariance and a negative SST
tendency-THF zero-lag covariance are typical of an atmosphere-driven regime (such as in the North Atlantic subtropical gyre).
In the latter case, the release of heat flux from the ocean to the atmosphere acts to cool the upper ocean. While this approach
is interesting to identify whether the SST variability is driven by ocean or atmosphere processes, it does not precisely indicate
whether the SST causally influences THF or the other way round. In our study, we quantify the causal relationships between

SST / SST tendency and THF using the rate of information transfer from Liang (2021).
3.1 The two-dimensional (2D) case

If we only take into account SST and THF (i.e. two-dimensional system, hereafter referred to as 2D) in the computation of
the rate of information transfer, we find that many regions are characterized by relatively strong two-way influences between
SST and THF (Fig. 2). The spatial distribution of the rate of information transfer is relatively similar to the one of correlation
coefficient between SST and THF (Fig. 1(a)), with largest values (either positive or negative) in eastern tropical Pacific and
Atlantic regions, western boundary currents and many parts of the Southern Hemisphere. Interestingly, the rate of information
transfer is mainly positive for the influence of SST on THF (Fig. 2(a)), while negative values dominate for the reverse influence
(Fig. 2(b)). This suggests that SST variability generally increases THF variability, while THF variability mainly constrains SST
variability. Also, the regions where the influence from SST on THF is strongest are also characterized by a strong influence
from THF on SST (in absolute value).

Regarding the SST tendency-THF relationship, using only these two variables in the computation of the rate of information
transfer also provides relatively strong two-way influences (either positive or negative) in many regions of the world (Fig. 3).
The spatial distribution is more contrasted than with the SST-THF relationship, as both positive and negative values are now
present in both directions, especially for the influence of SST tendency on THF (Fig. 3a(a)). The information transfer from
SST tendency to THF is characterized by positive southwest-northeast bands in the North Atlantic and North Pacific, positive
northwest-southeast bands in the South Atlantic and South Pacific, and negative values between these regions (Fig. 3(a)). The
information transfer from THF to SST tendency shows a relatively symmetrical behavior to that from SST tendency to THF,
with positive (negative) values where the reverse information transfer is negative (positive) (Fig. 3(b)). This indicates that in
regions where the variability in SST tendency increases (decreases) the variability in THF, the variability in THF decreases
(increases) the variability in SST tendency.

In summary, the 2D analysis shows additional information compared to previous lead-lag correlation studies (Bishop et al.,
2017; Bellucci et al., 2021). In particular, we find that the ocean surface influences the lower atmosphere not only in strong
boundary currents, but also in many other regions of the world (Fig. 2(a) and 3(a)). In turn, the lower atmosphere (via surface
heat fluxes) influences the ocean surface not only at mid-latitudes, but also in tropical regions and western boundary currents

(Fig. 2(b) and Fig. 3(b)). Our results are in line with Bach et al. (2019), who also find significant two-way influences between
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Figure 2. Relative rate of information transfer 7 (a) from sea-surface temperature (SST) to turbulent heat flux (THF) and (b) from THF
to SST, based on J-OFURO3 satellite observations, when two variables are considered. Black contours are drawn around regions with a

statistically significant transfer of information (FDR 5%; 500 bootstrap samples).
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Figure 3. Relative rate of information transfer 7 (a) from sea-surface temperature tendency (SSTt) to turbulent heat flux (THF) and (b) from
THEF to SSTt, based on J-OFURO3 satellite observations, when two variables are considered. Black contours are drawn around regions with

a statistically significant transfer of information (FDR 5%; 500 bootstrap samples).
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the upper ocean and lower atmosphere in many regions of the world using the Granger causality, but with some methodological
differences (daily time scale and other atmospheric fields). This shows that the lead-lag covariance analysis, while interesting
in identifying a particular ocean-driven or atmospheric-led regime, is not sufficient to accurately quantify causal links between
the upper ocean and lower atmosphere. Importantly, our analysis (like the ones from Bishop et al. (2017) and Bellucci et al.

(2021)) applies to the monthly time scale, and we will show results beyond this specific time scale in Sect. 3.4.

3.2 The-three-dimensional-3D)-ease

The-analysis-done-so-far-with-twe-variables-However, this 2D analysis excludes one of the three key variables considered in
the stochastic energy balance model of Wu et al. (2006), either SST tendency in Fig. 2 or SST in Fig. 3. Thus, it may provide

a false impression of a two-way influence emerging due to the absence of a set-of-hidden-variables—Thus;-we-hidden variable.
Also, the symmetry between the two directions for both the SST-THF (Fig. 2) and SST tendency-THF (Fig. 3) relationships

is questionable due to inaccurate results found using a theoretical example (see Sect. 3.5 for further discussion of this aspect).

That is why we repeated the computation of the rate of information transfer including all three variables in the next section
Sect. 3.2).

3.2 The three-dimensional (3D) case

We computed the rate of information transfer based on the three variables analyzed in Bishop et al. (2017) and Bellucci
et al. (2021), namely SST, SST tendency and THF (hereafter referred to as 3D). The 3D case provides additional sources of
information compared to the 2D case and should thus be preferred in terms of result interpretation.

In the 3D case, the influence from SST to THF (Fig. 4(a)) is very similar to the 2D case (Fig. 2(a)). This is logical since
SST has no significant influence on SST tendency (Fig. B2), so all the information from SST goes to THF, demonstrating the
robustness of the approach. However, a much reduced number of regions shows a significant rate of information transfer from
THF to SST (Fig. 4(b)) compared to the 2D case (Fig. 2(b)). This reduction is due to the fact that we now take SST tendency
into account in the computation of the rate of information transfer: part of the information transfer from THF also goes into
SST tendency, as we will see below. Despite this reduction in the number of regions with significant transfer of information,
the eastern tropical Pacific and Atlantic regions still show a strong negative rate of information transfer, suggesting that THF
variability constrains SST variability in these regions (Fig. 4(b)). Interestingly, some regions (such as the Agulhas Return
Current) show a positive rate of information transfer from THF to SST in the 3D case (Fig. 4(b)), while it is negative or close
to 0 in the 2D case (Fig. 2(b)).

In the 3D case, the rate of information transfer from SST tendency to THF (Fig. 5(a)) is very similar to the 2D case (Fig. 3(a))
for the same reason as for the SST-THF influence. However, a much reduced number of regions shows a significant transfer
of information from THF to SST tendency (Fig. 5(b)) compared to the 2D case (Fig. 3(b)). Similarly as for the influence of
THF on SST, this is due to the inclusion of a third variable: part of the information transfer from THF also goes into SST.
Nevertheless, we still find regions of significant influence, e.g. negative values in the North Atlantic and northeastern Pacific,

and positive values in tropical regions.
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Figure 4. Relative rate of information transfer 7 (a) from sea-surface temperature (SST) to turbulent heat flux (THF) and (b) from THF to
SST, based on J-OFURO3 satellite observations, when three variables are considered (SST, SST tendency and THF). Black contours are

drawn around regions with a statistically significant transfer of information (FDR 5%; 500 bootstrap samples).

10



(a) TssTt— 7HF 1988-2017 - J-OFURO3

. ST 3
T p <5 o

30

15

Tsstt—1HF (%)

|
=
(9,1

—-30

30

15

)
TrHF — 557t (%)

|
=
(93]

—-30

Figure 5. Relative rate of information transfer 7 (a) from sea-surface temperature tendency (SSTt) to turbulent heat flux (THF) and (b) from
THEF to SSTt, based on J-OFURO3 satellite observations, when three variables are considered (SST, SST tendency and THF). Black contours

are drawn around regions with a statistically significant transfer of information (FDR 5%); 500 bootstrap samples).
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Thus, computing the rate of information transfer based on the three variables of interest (SST, SST tendency and THF)
somehow partitions the total influence of the lower atmosphere (THF) into a contribution to SST (Fig. 4(b)) and another
contribution to SST tendency (Fig. 5(b)). Additionally, the total number of regions with a significant influence from THF to
SST and from THF to SST tendency (both combined) clearly decreases compared to the 2D case. As the influences from SST
to THF and from SST tendency to THF remain strong in the 3D case (almost unchanged compared to the 2D case), this goes
in favor of a stronger ocean influence compared to the atmosphere at monthly time scale, especially in extra-tropical regions.

In western boundary currents, we find large values of the rate of information transfer from SST to THF (Fig. 4(a)), suggesting
a strong ocean influence, in agreement with Bishop et al. (2017). However, in extra-tropical regions far away from western
boundary currents, such as in the central North Atlantic, we also find a strong transfer of information from SST (Fig. 4(a)) and
from SST tendency (Fig. 5(a)) to THF, generally stronger than the reverse influence (from THF to SST and to SST tendency).
This puts somewhat in question previous findings that suggest an atmospheric-driven SST variability in these regions (Bishop
et al., 2017; Bellucci et al., 2021) and this shows that lead-lag covariance analyses should be supplemented by causality
studies. The use of the SeaFlux observational dataset provides results in broad agreement with J-OFURO3 (Figs. B3-B4),
which confirms the robustness of our findings.

The extension to additional variables can of course be performed to refine the analysis further, making sure that the additional
variables are not nearly parallel (otherwise, the singularity of the covariance matrix could numerically deteriorate the results).
We can do this by including other fields, higher-order tendencies, or lagged fields. A first step toward such type of analysis
is provided below. In our study, we prefer to keep the three fields used in the stochastic energy balance model from Wu et al.
(2006) and analyzed by Bishop et al. (2017) and Bellucci et al. (2021), i.e. SST, SST tendency and THE. We will therefore

focus on the use of a lagged field (Sect. 3.3) as well as the analysis of interannual to decadal variability (Sect. 3.4).
3.3 Lagged transfer of information

Due to the inertia of the ocean mixed layer, the SST does not necessarily respond directly to changes in THF (Deser et al.,
2003; Shi et al., 2022). To take this effect into account, we added a fourth variable to our analysis: THF leading SST by one
month, hereafter referred to as “THF(-1)’. Thus, four variables are considered here: SST, SST tendency, THF and THF(-1).
The rate of information transfer has been applied to lagged variables in a previous study to predict El Nifio Modoki based on
solar activity (Liang et al., 2021). Note that the rate of information s not entirely free of time lag as it involves a tendency term

We find that there is a significant positive rate of information transfer from THF(-1) to SST in eastern tropical Pacific and
Atlantic regions, western boundary currents (Gulf Stream and Kuroshio Extension) and Agulhas Return Current, as well as
negative values in other parts of the world (Fig. 6a(a)). Thus, the lagged analysis shows that THF taken one month before
strongly controls SST variability, especially in northern extra-tropical regions where this influence is almost absent in the
original 3D case (Fig. 4b(b)). There is also additional information provided by this fourth variable in the transfer of information

from THF(-1) to SST tendency (Fig. 6b(b)), but this is mostly restricted to eastern tropical Pacific and Atlantic (negative values).

12
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The influence from SST / SST tendency to THF(-1) is found to be very close to 0 and almost everywhere not significant
(Fig. BS), which confirms the robustness of the method, as causality cannot go back in time.

Interestingly, most regions showing a positive rate of information transfer from THF(-1) to SST (Fig. 6a(a)) also have
a positive lead-lag covariance between THF(-1) and SST (Fig. 3c of Bishop et al. (2017)). Bishop et al. (2017) show that
these regions have a symmetric lead-lag structure between SST and THF, which is characteristic of an ocean-driven regime.
However, these similarities between the rate of information transfer and the lead-lag covariance disappear when we look at the
relationships between THF(-1) and SST tendency. According to Bishop et al. (2017), the strongest values of lead-lag covariance
between THF(-1) and SST tendency appear in western boundary currents (negative values; Fig. 3f of Bishop et al. (2017)),

while the rate of information transfer is significant only in eastern tropical Pacific and Atlantic (negative values; Fig. 6b(b)).
3.4 Interannual to decadal variability

All previous results are based on monthly mean outputs. Thus, our results are valid at monthly time scale. In order to figure out
what happens at interannual and decadal time scales, we take the 12-month and 120-month (respectively) running mean SST
and THF respeetively(moving average with the same number of samples), and re-compute the rate of information transfer
in the 3D case (SST, SST tendency and THF). This approach is similar to the one used in Vannitsem and Liang (2022), who
found differences in the rate of information transfer between climate indices depending on the time scale used.

At interannual time scale (12-month running mean), the influence of SST on THF encompasses approximately the same
regions as at monthly time scale but with a general increase in the magnitude of the rate of information transfer (Fig. 7a(a)).
We also find regions that have a negative rate of information transfer, such as in the western North Atlantic Ocean, whereas
such regions are not present with monthly means. The reverse influence of THF on SST provides a more contrasted pattern
compared to the original 3D case, with a reduced number of regions with negative values along the equator but the additional
presence of regions with positive values (Fig. 7b(b)).

At decadal time scale (120-month running mean), almost the whole globe is covered by significant information transfer
between SST and THF in the two directions (Fig. 8). Also, the magnitude of the rate of information transfer clearly increases
at this time scale compared to interannual and decadal time scales. These results suggest that ocean-atmosphere interactions

become more pronounced at larger time scale.

3.5 FLinearity assumptionLimitations of the method

The rate of information transfer used in our study owns major advantages compared to other causal methods, including its
derivation from first principles of information entropy (Liang, 2016) and its relative simplicity (Eq. (1)). However, a-several

The first limitation arises from the linearity assumption (Liang, 2014). While the method has been tested and validated with
highly nonlinear synthetic examples (e.g. Liang 2014, 2018, 2021), it provides an approximated solution, and a generalization
to the fully nonlinear case is still to be developed to get a more accurate solution (Liang, 2021). Reeent-However, recent

studies applying the rate of information transfer to climate data show that the method is successful at representing some key
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Figure 6. Relative rate of information transfer 7 (a) from turbulent heat flux at lag -1 (THF(-1); THF leading SST by 1 month) to sea-
surface temperature (SST) and (b) from THF(-1) to SST tendency (SSTt), based on J-OFURO3 satellite observations, when four variables
are considered (SST, SST tendency, THF and THF(-1)). Black contours are drawn around regions with a statistically significant transfer of

information (FDR 5%; 500 bootstrap samples).
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Figure 7. Relative rate of information transfer 7 (a) from sea-surface temperature (SST) to turbulent heat flux (THF) and (b) from THF to
SST, based on J-OFURO3 satellite observations, when three variables are considered (SST, SST tendency and THF) and using 12-month
running mean (interannual variability). Black contours are drawn around regions with a statistically significant transfer of information (FDR

5%; 500 bootstrap samples).
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Figure 8. Relative rate of information transfer 7 (a) from sea-surface temperature (SST) to turbulent heat flux (THF) and (b) from THF to
SST, based on J-OFURO3 satellite observations, when three variables are considered (SST, SST tendency and THF) and using 120-month
running mean (decadal variability). Black contours are drawn around regions with a statistically significant transfer of information (FDR 5%;

500 bootstrap samples).
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causal influences, such as the interactions between El Nifio and the Indian Ocean Dipole (Liang, 2014), CO, and global mean

temperature (Stips et al., 2016), and Arctic sea ice and its drivers (Docquier et al., 2022).

The second limitation is linked to_the

r-problem of hidden variables.
If we omit an important variable in our system, the rates of information transfer might be biased. In our specific study, some
differences appear between the 2D case and the 3D case (Section 3.2). As we do not include one of the key variables of the
stochastic energy balance model designed by Wu et al. (2000) in the 2D case, we end up with a biased result. In particular,
the rate of information transfer from THE to SST is overestimated in northern and southern extratropical regions (compare
Fig. 2(b) to Fig. 4(b)). This overestimation also appears in the rate of information transfer from THE to SST tendency (att

causal directions for the SST-THF relationship (Fig. 2) and for the SST tendency-THF relationship (Fig. EH;-in-agreement

with-eurresults—<(3), although a number of regions do not provide such a symmetry. This somehow goes in hand with the
inaccurate symmetry obtained in computing the rate of information transfer in the unidirectionally coupled Rdssler systems
(Palu§ et al., 2018) when using only two variables (Palus 2022; Fig. 4C1(f)). Thus, the results obtained in the 2D case in our
study must be taken with great care, and 3D results should be privileged. Further research wotld-be needed-to-carefully-address
smitarities and differenees-between should be carried out to better understand the impact of hidden variables in computing the
rate of information transferand other causal-methods; butitis beyond the scope of the currentstudy

Finally, the information flow method depends on the sampling frequency when applied to unidirectionally coupled Rossler
systems, and possibly to other systems and real-case studies. In the case of the Rossler systems, the method becomes inaccurate
when the sampling frequenc
quantify this effect due to the shortness of the time period (360 months). Further research is needed to better understand the

. In our real-case study, it is difficult to accuratel

4 Conclusions

In summary, we find that the rate of information transfer provides a more detailed quantification of dependencies between
SST, SST tendency and turbulent heat flux (THF) than previous classical correlation-covariance studies. We do not argue that
causal methods should replace covariance analyses, but they should rather be used as a complement in order to get a better
understanding of physical interactions between variables. We show that the ocean surface (SST and SST tendency) strongly
drives changes in the lower atmosphere (THF) and that the lower atmosphere also has an important influence on the ocean
surface in many regions of the world. This result is somewhat different from what has been found in covariance analyses,

in which ocean-driven regimes exist in western boundary currents and atmospheric-led regimes dominate in the open ocean
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(Bishop et al., 2017; Bellucci et al., 2021). It is however supported by another recent analysis, using the Granger causality,
which shows that many regions of the world present a significant two-way influence between the lower atmosphere and the
upper ocean, with a stronger ocean influence in tropical regions and a stronger atmospheric impact in the extra-tropics (Bach
et al., 2019). As the latter study presents methodological differences, i.e. it focuses on the daily time scale and uses different
atmospheric variables, we need to be cautious in comparing it to our analysis. In any case, our interpretation of these results is
that ocean-atmosphere interactions are more complex than presented by classical covariance analyses.

Furthermore, we find that the influence of THF is partitioned between SST and SST tendency if we consider the three
variables together (3D case, which should be privileged due to the inclusion of additional sources of information), so that the
single impact of either THF on SST or THF on SST tendency is decreased in the 3D case compared to the 2D case. Also, the
number of regions with a significant rate of information transfer from THF to SST and from THF to SST tendency (combined)
is smaller than the one from SST to THF and from SST tendency to THF (combined) in the 3D case. This suggests an overall
stronger upper ocean influence compared to the lower atmosphere. However, when adding THF taken one month before to take
the lagged effect into account, we find that this variable has a relatively strong influence on SST in a large portion of the globe.
Finally, a larger time scale (going from monthly to interannual and decadal) provides larger values of the rates of information
transfer between the three variables.

In our study, we only considered the ocean surface, but several studies have shown that variations in the ocean heat content
are controlled by both air-sea fluxes and ocean heat transport convergence, with a more important role for the latter with a
deeper integration of ocean heat and with higher-resolution climate models (Roberts et al., 2017; Small et al., 2020). Also,
only observations were considered here. Thus, extending our analysis to the ocean heat budget terms in climate models would
provide further insights into the causal influences between the ocean and atmosphere. This is of large importance as ocean-
atmosphere interactions constitute an important regulator of our climate. Finally, from a theoretical perspective, additional
investigations of the role of hidden and lagged variables should be performed, as well as a comparison of the rate of information

transfer to other causal methods.

Code and data availability. J-OFURO3 observational data (Tomita et al., 2019; Tomita, 2020) are available on https://j-ofuro.isee.nagoya-u.
ac.jp/en/dataset/entry-323.html. SeaFlux observational data (Roberts et al., 2020) are accessible from NASA (https://cmr.earthdata.nasa.gov/
search/concepts/C1995869798-GHRC_DAAC.html). The Python scripts to compute the rate of information transfer and produce the figures
of this article are available on Zenodo: https://zenodo.org/record/7547073 (Docquier, 2023).

Appendix A: Impact of the rate of information transfer on the variability

As explained in the main text (Sect. 2.2), a positive value of the relative rate of information transfer 7;_,; means that the
variability in X; increases the variability in X;, while a negative value means that the variability in X ; decreases the variability

in X;. More broadly, an increase in the rate of information transfer from X; to X; leads to an increases in the variability

18


https://j-ofuro.isee.nagoya-u.ac.jp/en/dataset/entry-323.html
https://j-ofuro.isee.nagoya-u.ac.jp/en/dataset/entry-323.html
https://j-ofuro.isee.nagoya-u.ac.jp/en/dataset/entry-323.html
https://cmr.earthdata.nasa.gov/search/concepts/C1995869798-GHRC_DAAC.html
https://cmr.earthdata.nasa.gov/search/concepts/C1995869798-GHRC_DAAC.html
https://cmr.earthdata.nasa.gov/search/concepts/C1995869798-GHRC_DAAC.html
https://zenodo.org/record/7547073

320

325

330

of X;. We demonstrate this by computing the rate of information transfer 7;_,; from variable X; to variable X; (based on

eguationEq. (3) in the main text), using a three-dimensional stochastic linear system of equations:

dX1 = (a1 X1+ a12 X2+ a13X3)dt +0.1dWy
dXs = (a2 X1+ a2 Xo+ ass X3)dt +0.1dWs
dX3 = (az31 X1+ a3z X2+ azz X3)dt +0.1dWs, (AD)

where X7, X5 and X3 are the three variables, a;; are the different coefficients, ¢ is time and varies between 0 and 100 with
100,000 time steps (At = 0.001), and W7, W5 and W3 represent normal random noises (standard Wiener process). We set a1
= a9y = a3 = -1, and we vary the six other coefficients one by one with 5 different values between -1 and 1 (-1, -0.5, 0, 0.5,
1). When varying one of the six coefficients, we set the other five coefficients to a fixed value (a2 = a13 = 0.5 and ag; = a3 =
a1 = azz = 0).

We solve the linear system (A+Al) using the Euler-Maruyama method, and 40 different values of the random noise are
taken in order to take into account the uncertainty related to the rate of information transfer. The variance in each variable is
compared to the rate of information transfer from any other variable to this variable to test our hypothesis. Results show that

when the rate of information transfer from X; to X; increases, the variance in X; increases (Fig. Al).
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Figure A1. Variance o2 of a variable as a function of the relative rate of information transfer 7 from any other variable to this variable using

the linear system of equations-Eq. (A+A1). The error bars show the 95% confidence intervals of the rates of information transfer.
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Appendix B: Supplementary figures
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Figure B1. Covariance (a) between sea-surface temperature (SST) and turbulent heat flux (THF) and (b) between SST tendency (SSTt) and
THE, based on J-OFURO?3 satellite observations.
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Figure B2. Relative rate of information transfer 7 (a) from sea-surface temperature (SST) to SST tendency and (b) from SST tendency to
SST, based on J-OFURO3 satellite observations, when three variables are considered (SST, SST tendency and THF). None of the grid points

shows a statistically significant transfer of information (FDR 5%; 500 bootstrap samples).
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Figure B3. Relative rate of information transfer 7 (a) from sea-surface temperature (SST) to turbulent heat flux (THF) and (b) from THF to
SST, based on SeaFlux satellite observations, when three variables are considered (SST, SST tendency and THF). Black contours are drawn

around regions with a statistically significant transfer of information (FDR 5%); 500 bootstrap samples).
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Figure B4. Relative rate of information transfer 7 (a) from sea-surface temperature tendency (SSTt) to turbulent heat flux (THF) and (b) from
THF to SSTt, based on SeaFlux satellite observations, when three variables are considered (SST, SST tendency and THF). Black contours

are drawn around regions with a statistically significant transfer of information (FDR 5%); 500 bootstrap samples).
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Figure BS5. Relative rate of information transfer 7 (a) from sea-surface temperature (SST) to turbulent heat flux one month before (THF(-1))
and (b) from SST tendency to THF(-1), based on J-OFURO3 satellite observations, when four variables are considered (SST, SST tendency,
THF and THF(-1)). Black contours are drawn around regions with a statistically significant transfer of information (FDR 5%; 500 bootstrap

samples).
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Appendix C: Dependence on the sampling frequenc

In order to test the dependence of the information flow method on the sampling frequency, we compute the absolute rate of
information transfer (Eq. (1)) on the two unidirectionally coupled Rossler systems using the same parameters as PaluS and Vejmelka (2007
335 and Palus et al. (2018):

day /dt TW1T2 T T3

dug/dt = wizita11s

drs/dt = b tzs(z1—c1)

dy [t = —ways —yste(n - 1)

340 dyp/dt = way a2y
dys/dt = by tys( — ), €D

fourth order Runge-Kutta scheme, and run the model for 7.5 x 10° time steps. We discard the first 1.5 x 10° time steps from
345  the analysis. We use a coupling strength ¢ varying between 0 and 0.25 with an increment of 0.025. We test different numbers
of samples per pseudo-period and retain five of them (20, 60, 80, 200, 6000) here that best illustrate our results.

As illustrated in Fig. C1, results depend on the number of samples per pseudo-period. When using 20 samples per pseudo-period,
Lursar > Teisyr When the coupling strength ¢ > 0.2, which is physically not correct (Fig. C1(a)). For 60 samples per
pseudo-period, both influences are comparable for larger coupling strengths (Fig. C1(b)). From 80 samples per pseudo-period,

350 111 > Ty1 01 (Fig. Cl(c)-(e)), which is physically correct, and one needs to reach ~ 6000 samples per pseudo-period
to have Ty15q1 = 0 (Fig. Cl(e)). Importantly, all six variables need to be considered in the computation of the rate of
information transfer (multivariate formula, Liang 2021) to reach this result. If we only consider X; and Y; and compute the
rate of information transfer using the bivariate formula (Liang, 2014), we obtain an inaccurate result with a symmetry between
the two directions, whatever the number of samples per pseudo-period (Fig. C1(f))..

355  Author contributions. DD wrote the manuscript with contributions from all co-authors. DD, SV and AB designed the science plan. DD
analyzed satellite data, run the Rossler systems and produced the figures. All authors participated in the interpretation of results and provided

useful comments to help improve the analysis.
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Figure C1. Causatinfluencemeastred-by-the-conditional-mutual-Absolute rate of information transfer 7' (EMimultivariate formula) --as a
function of the coupling strength € applied to unidirectionally coupled Rossler systems with (a) from-sea-surface-temperature-20, (SSTb) to

tarbulent-heatfux-60, (FHFc) given-SST-tendeney-80, (d) 200, and (be) fromFHF-6000 samples per pseudo-period. (f) is similar to SSF
given-SST-tendeney(e), based-onJ-OFURO3satelite-observationsexcept that the bivariate formula is used instead. The sign of T is kept in
all panels.
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