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We would like to thank the reviewer M. Palus for his helpful comments. Below we present the
reviewers’ comments (in black) and our point-by-point replies (including changes in the paper)
(in bold blue).

Comments

The authors apply the Liang (or Liang-Kleeman) information flow (LIF thereafter) in order to
quantify interactions between the ocean surface and lower atmosphere over the period 1988-2017 at
monthly time scale. They investigate dynamical dependencies between sea-surface temperature
(SST), SST tendency and turbulent heat flux in satellite observations and find a strong two-way
influence between SST / SST tendency and turbulent heat flux in many regions of the world.

LIF is a very interesting approach, independent of all other causality methods known in the
literature. It was analytically derived for dynamical systems and its general application requires the
knowledge of the underlying equations of the studied dynamical systems. The only form, available
for experimental data without the knowledge of the equations, was derived for linear systems. In
spite of this, the approach has recently been applied for data from apparently nonlinear systems,
relying on a few numerical examples by the original author in which LIF was applied to nonlinear
systems.

In general, there are cases when linear approaches can extract correct causal relations from
nonlinear data. One example is the causality in highly nonGaussian data from space weather area
[1]. In the study [1], however, the analysis started by a general nonlinear approach — conditional
mutual information (CMI thereafter, a.k.a. transfer entropy). In the next step, the response to time
reversal suggested [according to study 2] that although the data were nonlinear, the observed
causality is a sort of linear information transfer. The latter was confirmed by the application of the
linearized version of CMI as well as by LIF, both giving consistent results with the nonlinear CMI.
Applying a linear approach, LIF in this MS, alone, can be dangerous.

I will explain my concern using the well-known causality benchmark of unidirectionally coupled
Rossler systems, described, e.g., in [3]. Figure 1 in this review, left panel, illustrates the successful
application of LIF to the unidirectionally coupled Rossler systems, presented originally by X. San
Liang. It took me some time to reproduce this result. The key to obtain the correct distinction of the
direction of coupling is using very high sampling frequency, which is about 6000 samples per
period (or pseudoperiod in this chaotic system), see Fig. 1 right panel. With this oversampling, the
nonlinear dynamics is locally linearized. In Fig. 1. left panel, we can see that LIF in the direction of
coupling (“causal direction”) increases with the increase of the coupling strength €, while the LIF in
the non-causal direction (the direction with no coupling, i.e. from the effect to the cause) remains on
the zero value. A slightly disturbing fact is that the e-dependence ignores the transient to
synchronization (cf Fig. 4 in [3]), however, LIF in this case correctly identifies the causal direction.



The result is different when LIF is applied to the unidirectionally coupled Réssler systems sampled
with “usual” frequency, with about 20 samples per period, which is sufficient for inferring causality
using nonlinear methods [3]. We can see in Fig. 2 that LIF in the causal direction nonmonotonically
increases with the increase of the coupling strength €, however, the LIF in the non-causal direction

does the same, just with the negative sign. That is, when the sampling does not allow linearization

of the problem, LIF detects information flow also in the direction where there is no connection, just
its value is negative. The plot of LIF as function of coupling strength € results in a symmetric figure
(Fig. 2, left panel) with the zero axis as the axis of symmetry, meaning that LIF(x - y)=—LIF(y - x).

Fig. 1.: Left panel: LIF applied to coupled Réssler systems with very high sampling frequency,
illustrated in the right panel. — See comment from M. Palus for displaying this figure.

Fig. 2.: Left panel: LIF applied to coupled Rdossler systems with usual sampling frequency,
illustrated in the right panel. — See comment from M. Palus for displaying this figure.

The results presented in the current manuscript, e.g. MS Fig. 2 for the relation between SST and
THEF reflect the same symmetric pattern: LIF(SST->THEF) is positive, marked by red color in the
used color scale, while LIF(THF->SST) is negative, marked by blue color in the used color scale,
and the red and blue patterns in parts (a) and (b) are the same. This is the same results as in the case
of the unidirectionally coupled Réssler systems with usual sampling frequency, presented in our
Fig. 2 above, i.e. the authors obtained that LIF(SST->THF)=-LIF(THF->SST). For any further
discussion of the results presented in this MS, the authors should provide an evidence, based on an
independent, nonlinear method, that the “symmetric information flow” (interpreted as a strong two-
way influence) between SST or tSST and THF is indeed a physical phenomenon and not just a
failure of the linear LIF applied to nonlinear data, as observed in the case of the unidirectionally
coupled Rossler systems above.
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M. Palus, December 10, 2022

We thank the reviewer M. Palus for his highly detailed comment, which helped us to improve
our manuscript. We have revised the paper by adding a new sub-section (Section 3.5), which
highlights the limitation of the linear approach. We also provide our reply to the reviewer’s
comment below.

We agree with the reviewer that the method of Liang (2014) has been designed for linear
systems and caution needs to be taken in using this approach for nonlinear systems, such as
the climate system. However, as the reviewer mentions, the approach has been successfully
validated for some nonlinear synthetic problems (e.g. Liang, 2014; Liang, 2018; Liang, 2021).
It has also been applied to several real-case climate studies, in which results have a physical
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sense (e.g. Docquier et al., 2022). We now provide a detailed explanation of this aspect in
Section 3.5, inspired by the reviewer’s comment.

We have applied the conditional mutual information (CMI) using the algorithm from Mesner
& Shalizi (2021), based on nearest neighbors, on the SST - SSTt - THF data used in our study
(monthly data from 1988 to 2017). We have done so for two different cases: a case mimicking
the 2D (or 2-variable) case of our study and a case resembling the 3D (or 3-variable) case of
our study. We have verified our results with another method based on Gaussian copula using
the algorithm from Ince et al. (2016) and find very similar results.

In the 2D case, we have computed:

- CMI;sr . tar, Which is the causal link from SST at time t to THF one time lag further t+1 given
THF at time t, noted I{SST(t) ; THF (t+1) | THF (t)} in the CMI framework (Palus et al., 2018),
see Fig. Aa below;

- CMIrxr . ss1, which is the causal link from THF at time t to SST one time lag further t+1 given
SST at time t, noted I{THF (t) ; SST(t+1) | SST()} in the CMI framework, see Fig. Ab below.
Figure A below shows that the causal influence from THF to SST is much stronger than from
SST to THF and that, while the former shows strong spatial variations (large values in
western boundary currents, tropical regions and North Pacific), the latter is much more
homogeneous. Please note that this result is not fully comparable to the 2D case using the
Liang index in our study (Fig. 2), as we include time-delayed information in the CMI
computation.

However, we show in our study that it is important to take all three variables into account, i.e.
SST, SST tendency (SSTt) and THF, when computing causal influences (Section 3.2). Thus, we
have also computed the CMI for the 3D case:

- CMI;sr . tur sste, Which is the causal link from SST to THF given SST tendency, noted I(SST ;
THF | SSTt} in the CMI framework, see Fig. Ba below;

- CMIryr . sstsste, which is the causal link from THF to SST given SST tendency, noted

I(THF ; SST | SSTt} in the CMI framework, see Fig. Bb below.

Figure B below shows that causal influences are identical in both directions, which can be
verified by eq. (7) of the CMI formula in Palus et al. (2018) if we switch X and Y. Also, the
largest influences appear in eastern tropical Pacific and Atlantic regions and western
boundary currents (Fig. B), in agreement with the Liang index (Fig. 4a in the paper). Results
of the CMI method thus appear somewhat closer to the Liang index in the 3D case; however,
the fact that the two influences are identical with the CMI represents a severe limitation of the
method when considering three variables.

Additionally, we have computed the Liang index (in both bivariate and multivariate cases) for
the unidirectionally coupled Rossler systems using the same parameters as Palus & Vejmelka
(2007) and Palus et al. (2018) and a coupling strength varying between 0 and 0.25 with an
increment of 0.025. We have used different numbers of samples per pseudo-period to make a
similar test as the reviewer. In the bivariate case (only considering x1 and y1), we obtain a
very similar result to Fig. 2 of the reviewer, i.e. a symmetrical influence in both directions,
whatever the number of samples per pseudo-period, see Figs. C-D below (where we show
results for 20 and 6000 samples). In the multivariate case (considering all 6 variables of the
two Raossler systems), results depend on the number of samples per pseudo-period, see Figs. E-
I below (where we show results for 20, 60, 80, 200 and 6000 samples). However, the almost
perfect symmetry we had in the bivariate case disappears in the multivariate case. For 20 and
40 samples per pseudo-period, T); .1 > Tx:.y1 when the coupling strength € > 0.2, which is
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physically not correct (Fig. E). For 60 samples per pseudo-period, both influences are
comparable for larger coupling strengths (Fig. F). From 80 samples per pseudo-period, Ty; 1
> Tyi.x (Figs. G-H), which is physically correct, and one needs to reach ~ 6000 samples per
pseudo-period to have T,; .,; # 0 (Fig. I). Thus, results depend on the number of samples per
pseudo-period as found by the reviewer, but more importantly they depend on the use of the
multivariate formula (Liang, 2021) instead of the 2D formula (Liang, 2014).

In summary, we agree with the reviewer that the assumption of linearity is a limitation of the
Liang’s approach, which we now emphasize in Section 3.5. However, the tests we did with the
CMI method (3D case) confirm the validity of our results (these results have been added to
Section 3.5), and the tests with the unidirectionally coupled Réssler systems highlight the
“strength” of the multivariate approach versus the bivariate approach. Thus, we are confident
in our results. We also mention in Section 3.5 and at the end of the Conclusions that further
research is needed in comparing the Liang’s approach to other causal methods.
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Figure A. Causal influence measured by the conditional mutual information (CMI) (a) from sea-surface
temperature (SST) to turbulent heat flux (THF) and (b) from THF to SST, based on J-OFURO3 satellite
observations, when using a time lag.
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Figure B. Causal influence measured by the conditional mutual information (CMI) (a) from sea-surface
temperature (SST) to turbulent heat flux (THF) given SST tendency and (b) from THF to SST given SST tendency,
based on J-OFUROS3 satellite observations.
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Figure C. Rate of information transfer (bivariate approach) as a function of the coupling strength applied to
unidirectionally coupled Réssler systems with 20 samples per pseudo-period.
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Figure D. Rate of information transfer (bivariate approach) as a function of the coupling strength applied to
unidirectionally coupled Rossler systems with 6000 samples per pseudo-period.
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Figure E. Rate of information transfer (multivariate approach) as a function of the coupling strength applied to
unidirectionally coupled Rossler systems with 20 samples per pseudo-period.
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Figure F. Rate of information transfer (multivariate approach) as a function of the coupling strength applied to
unidirectionally coupled Réssler systems with 60 samples per pseudo-period.



0.407" . Tx1— 1 (coupling) J+_--—+

0.351 “’l(" T}rl—rxl !‘#‘J +Lﬁ_+

f’ "’“
0.30 - ,« ;l(
Fi &

0.25 - ¢/
0.20 - i

0.15 b

T (nats unit time™1)
-

0.10 i
0.05 &/

0.00 +=p———=dimns= o e e e e e

0.00 0.05 0.10 0.15 0.20 0.25
Coupling strength €

Figure G. Rate of information transfer (multivariate approach) as a function of the coupling strength applied to
unidirectionally coupled Réssler systems with 80 samples per pseudo-period.
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Figure H. Rate of information transfer (multivariate approach) as a function of the coupling strength applied to
unidirectionally coupled Roéssler systems with 200 samples per pseudo-period.
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Figure I. Rate of information transfer (multivariate approach) as a function of the coupling strength applied to
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unidirectionally coupled Rossler systems with 6000 samples per pseudo-period.
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