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Abstract.  

The role of surface ocean anomalies for the continental Northern Hemisphere snow cover is investigated, 

together with the interactions between snow cover and atmosphere. Four observational datasets and two 

large multi-model ensembles of atmosphere-only simulations are used, with prescribed sea surface 25 

temperature (SST) and sea ice concentration (SIC). A first ensemble uses observed interannually varying 

SST and SIC conditions for 1979-2014, while a second ensemble is identical except for SIC where a 

repeated climatological cycle is used.  

SST and external forcing typically explain 10 to 25% of the snow cover variance in model 

simulations, with a dominant forcing from the tropical and North Pacific SST, while no robust influence 30 

of the SIC is found. In observations, the Ural blocking is the main driver of the November and April snow 
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cover over Eastern Eurasia, while the North Atlantic Oscillation (NAO) dominates the snow cover forcing 

in January. In November and more robustly in January, dipolar anomalies of snow cover over Eurasia, 

with positive anomalies over Europe and negative anomalies over Southern Siberia, also precede the 

Arctic Oscillation (AO) by one month. In models, snow cover over western Eurasia in January also 35 

precedes by one or two months a negative AO phase. The detailed outputs from one of the models suggest 

that both the western Eurasia snow cover and polar vortex are generated by Ural blocking, and that both 

snow cover and polar vortex anomalies act to generate the AO one or two months later.  

1 Introduction 

Understanding the origin and impact of snow variability is important for many activities such as 40 

agriculture, tourism, management of freshwater resources, road maintenance, and many ecosystems. 

Snow is an important element for the climate as the high albedo of snow leads to increased reflected 

shortwave radiation at the surface with a direct influence on the earth’s radiative budget. The small 

thermal conductivity of the snow pack also insulates the soil from the cold winter atmosphere and plays 

an important role in the stability of the permafrost (Pulliainen et al., 2017). 45 

 

Snow over land accumulates from snowfall events and is melted by surface air temperatures above the 

freezing point. The variability of snow cover and snow depth is therefore modulated by the midlatitude 

and polar atmospheric variability. Winter atmospheric variability is large and is mostly unpredictable 

beyond a week or two as it owes its existence to internally-driven atmospheric processes (Feldstein, 2000; 50 

Deser et al., 2012). However, other processes influence the atmospheric variability at low frequency, 

which leads to potential predictability of winter climate at the seasonal time scale (Scaife et al., 2014). 

Tropical surface anomalies can strongly alter the large-scale atmospheric circulation and influence the 

extra-tropical regions through atmospheric teleconnections. In particular, the El Niño-Southern 

Oscillation (ENSO) has a large influence over North America through the Pacific-North American (PNA) 55 

pattern (Wallace and Gutzel, 1981; Lau 1997), and also over Europe (Mathieu et al. 2004; Lopez-Parages 

et al. 2016). The PNA can in turn modify the snow depth, as found in observations (Ge and Gong, 2009). 
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Extra-tropical surface anomalies may also drive the winter atmosphere, through the influence of extra-

tropical sea surface temperature (SST; see the review of Kushnir et al. 2002; Gastineau and Frankignoul, 

2015), sea-ice (Deser et al., 2007; Honda et al., 2009; Garcia-Serrano et al., 2015; King et al., 2016), and 60 

snow cover (Cohen and Entekhabi, 1997; Gastineau et al., 2017; see the review of Henderson et al., 2018). 

Lastly, troposphere-stratosphere coupling in winter can also lead to more persistent atmospheric modes 

(Perlwitz and Graf; 1995; Baldwin and Dunkerton, 1999; Scaife et al., 2014).  

 

The land snow cover is also largely affected by climate change caused by external forcings such as the 65 

increasing concentration of greenhouse gases, the evolution of aerosol concentration or ozone, and land 

use change. The snow cover extent was found to decrease over the last decades (Gulev et al., 2021; Déry 

and Brown, 2007). Recent observational estimates also found a decreasing trend of the snow mass over 

North America but an insignificant decrease over Eurasia (Pulliainen et al., 2020). Detection-attribution 

studies have attributed the decrease of the snow cover to human activities (Paik and Min, 2020; Guo et 70 

al., 2021), but the specific role of the different drivers is unknown. Furthermore, the atmosphere-ocean 

general circulation models (AOGCM) from CMIP5 (Coupled Model Intercomparison Project phase 5) 

underestimate the land snow extent, while they overestimate the snow mass (Derksen and Brown, 2012; 

Mudryk et al., 2020). Even if the snow cover extent is better simulated in CMIP6 (Coupled model 

Intercomparison Project phase 6) models (Mudryk et al., 2020), global climate models mostly use highly 75 

simplified snow physics (Krinner et al. 2018). The simulation of snow cover anomalies over land, 

therefore, remains a challenge as it involves the large-scale circulation together with the parametrized 

precipitation and land surface processes. In the present study, we will further assess the influence of 

external forcing, SST and sea ice concentration (SIC) anomalies on the snow cover.  

 80 

Land snow variability also influences the climate. Cohen and Entekhabi, (1997) found that when the snow 

cover over eastern Siberia is anomalously large in October, negative phases of the Arctic Oscillation (AO) 

are more frequent during the following months. This was confirmed by Saito and Cohen (2003) and Cohen 

et al. (2014). Using an extended observational record, Gastineau et al. (2017) found a similar relationship, 

albeit between November snow cover and the subsequent December and January AO. They also found 85 
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that concomitant sea ice anomalies reinforced the atmospheric response to snow cover anomalies. These 

relationships suggest that snow cover anomalies can influence the mid-latitude atmospheric circulation in 

the same way as SST or SIC anomalies. Sensitivity simulations using models with prescribed snow cover 

also revealed a consistent AO-like atmospheric response to more extensive Eurasian snow cover (Gong 

et al., 2003; Fletcher et al., 2009). Such influence is consistent with changes in seasonal forecast skill 90 

when modifying the initialization of the snow cover (Orsolini et al., 2013). The statistical relationships 

found in observations are stronger than, but consistent with the ones produced in some of the AOGCM 

simulations from CMIP5 climate models (Gastineau et al., 2017). Liang et al. (2021) proposed that the 

apparent underestimation of the atmospheric response to sea-ice anomalies in the Barents-Kara Seas in 

CMIP6 atmosphere-only simulations was in part due to the lack of consistency between sea ice and snow 95 

cover anomalies when the former was prescribed. For instance, Ural blocking increases the eastern 

Siberian snow cover while it decreases the Barents-Kara SIC (Gastineau et al., 2017; Peings 2019). Both 

the increased Siberian snow cover and Barents-Kara sea ice loss are found to lead to negative AO-like 

anomalies the following months (Gastineau et al., 2017; Simon et al. 2020). This may result in a larger 

AO response than the one expected from the sea ice alone, as proposed by Cohen et al. (2014). Hence, 100 

atmosphere-only simulations using prescribed sea-ice anomalies but with prognostic snow cover cannot 

simulate the synchronization of sea ice and snow, and the atmospheric response to SIC anomalies could 

not be reinforced by the snow cover anomalies, unlike in observations. Lastly, a heavy spring snow cover 

was found to increase the soil moisture over Siberia, and the Mongolian/Tibetan plateau, which can lead 

to an abnormal cooling of the land surface. This can alter the atmospheric circulation related to monsoon 105 

through the modification of the land/sea contrasts (Barnett et al., 1989).  

In the present study, we will also further assess the large-scale impacts of snow cover anomalies, focusing 

on early winter, winter and early spring. We use a large ensemble of atmosphere-only simulations to 

characterize the main drivers and impacts of snow cover variability in the Northern Hemisphere. Section 

2 presents the data and methods. Section 3 discusses the influence of the observed SST and SIC anomalies 110 

on continental snow. In Section 4, we investigate the internal variability of the snow cover and its 

influence on the atmosphere. Discussion and conclusions are given in the last section.  
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2. Data and methods 

2.1 Observations 115 

Several snow datasets have been used to sample some of the observational uncertainty (Brown et al., 

2010). For this study we use the monthly snow depth and snow cover of ERA5-land (C3S, 2019), resulting 

from the ECMWF land-surface H-TESSEL model forced with ERA5 atmospheric reanalysis (Hersbach 

et al., 2020) for 1981-2014. We also use the monthly snow diagnostics from MERRA2 (GMAO, 2015; 

Gelaro et al., 2017) for the same period. The NOAA climate data record (CDR) of Northern Hemisphere 120 

weekly snow cover extent dataset (Robinson et al., 2021) retrieved from the National Center for 

Environmental Information is aggregated into monthly time series in 1981-2014. We also use the monthly 

GlobSnow v3 (Pulliainen et al., 2020) snow depth in 1980-2014, where the missing data in December 

1981 was interpolated linearly in between November 1981 and January 1982. Lastly, we use the monthly 

CanSISE observation-based ensemble of the Northern Hemisphere (Mudryk et al., 2015; Mudryk and 125 

Derksen, 2017) snow depth and snow cover in 1981-2010, which is based on five products: GlobSnow 

v2, ERA-Interim/Land reanalysis, MERRA reanalysis, Crocus (Brun et al., 2011) and GLDAS version 2 

(Rodell et al., 2004). The atmospheric geopotential, air temperature, zonal wind, and sea level pressure 

(SLP) fields are retrieved from ERA5 reanalysis (C3S, 2017; Hersbach et al., 2020).  

All data is regridded with bilinear interpolation into a 1.26°x2.5° regular grid before analysis. Coastal 130 

regions are masked if the fraction of land is below 50%. In some products, such as GlobSnow, have 

missing data over mountain regions. Therefore, mountain and ice cap regions are masked in all data where 

the CanSISE data is missing. 

 

2.2 Model simulations 135 

We use the outputs of the two multi-model land-atmosphere simulation ensembles discussed in Liang et 

al. (2020, 2021). These simulations used as boundary conditions the SST and SIC provided by the 

HighResMIP panel of CMIP6 (Haarsma et al., 2016) and atmospheric concentration of aerosol, 

greenhouse gases, and ozone from CMIP6 (Eyring et al., 2016) in the 1979-2014 period. We use the 
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outputs of eight models where the snow depth was saved and distributed (Table 1). The ensemble ALL 140 

uses interannually-varying daily SST and SIC. The other ensemble, called NoSIC, is identical but uses a 

repeated 1979-2014 climatological SIC in the Arctic, with adjustment of the associated local SST (Hurrell 

et al., 2008). The climate sensitivity to SIC anomalies is provided by the difference ALL minus NoSIC. 

As noted in Liang et al. (2020) and in Table 1, the experimental protocol has some small differences for 

each model, but these deviations are unlikely to affect the results substantially. The number of members 145 

varies among models from 10 to 30, while the resolution varies from about 60 km to 150 km. The large 

diversity of models allows us to study the model dependence. However, for comparison with observations, 

these ensembles of atmosphere-only models have limitations associated with the lack of active two-way 

coupling with sea ice and SST, uncertainties in the SST and SIC forcing, and simplified sea ice physics 

(for instance the sea ice thickness is constant), as discussed in Liang et al. (2021). 150 

 

We use the monthly 500-hPa geopotential, SLP, air temperature, and snow depth in all models. For 

LMDZ6 and CMCC, the snow depth was converted into snow water equivalent (SWE) depth, assuming 

a constant snow density of 330 kg m-3. The snow cover is a diagnostic variable in many models and was 

not available for four models (see Table 1): EC-Earth3, ECHAM6, HadGEM3 and IAP4. Lacking a better 155 

formulation, we calculate the snow cover from the SWE using a threshold of 7.5 mm. If the monthly SWE 

depth is lower (larger) than 7.5 mm, then it is assumed that the snow cover is zero (1). This estimation is 

based on LMDZ6, where we found that a reasonable snow cover extent is obtained with the 7.5 mm 

threshold when using monthly outputs. This procedure is similar to that of Krinner et al (2018), except 

they used a threshold of 5 mm.  160 

 

All data sets were regridded with bilinear interpolation into the regular grid 1.26°x2.5° (~150 km) before 

analysis. Coastal regions and grid points with complex orography were masked consistently in all models 

using the observational mask. Multi-model ensemble means (MMM) are constructed by giving the same 

weight to each ensemble member, which largely removes the influence of internal atmospheric variability.  165 
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2.3 Methods 

We study the effects of SST, SIC and external forcing in driving snow cover anomalies with an analysis 

of variance (ANOVA) with two factors, also known as two-way ANOVA. The ANOVA is a statistical 

analysis method for comparing the means of various samples and investigating the influence of one or 

several categorical independent variables, called factors, on one continuous variable (Von Storch and 170 

Zwier, 1999). Here the ANOVA is applied to the land snow from the ALL and NoSIC ensembles, 

separately for each individual model and for each calendar month. The first factor is the simulated year, 

called t, which varies from 1979 to 2014. The second factor is the ensemble, called e, and represents the 

ALL versus NoSIC ensembles. The interaction between the year and the ensemble is called t:e. In the 

analysis, the sum of squares quantifies the variance associated with each factor. The ANOVA then 175 

compares such variance to the residual variance to test the effect of the factors. The corresponding p-

value indicates if the effect of the factors (t, e and t:e) are statistically significant. Hereafter, we show 

such p-values, together with the ratio of the sum of squares over the total variance to quantify the variance 

explained by each factor. 

 180 

The statistical model of the ANOVA decomposes the snow cover anomalies of a calendar month in each 

year and ensemble, called X, by: 

𝑋(𝑡, 𝑒) = 𝜇 +	𝛽!(𝑡) + 𝛽"(𝑒) + 𝛽!:"(𝑡, 𝑒) + 𝜀 ,       (2) 

where 𝜇, the theoretical mean of X, corresponds to the seasonal mean of the calendar month.  𝛽! is a 

different constant for each year, 𝛽" is a constant for each ensemble, 𝛽!:" is an interaction term different 185 

for each year and ensemble, and 𝜀 is a gaussian noise. If the ANOVA is significant for the factor t, then 

at least one of the 𝛽!  is significantly different from zero. It implies that the time-varying prescribed 

boundary conditions have an influence on the snow cover in both ALL and NoSIC, which should result 

from time-varying SST or external forcings, as they both can influence the atmosphere and land. 

Similarly, the effect of time-varying SIC is accounted for by the second factor e. If the second factor is 190 

significant, meaning with at least one of the 𝛽" different from zero, it demonstrates an influence of varying 

sea-ice concentrations on the mean land snow. Lastly, if at least one of the interaction terms, 𝛽!:", is 
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significant, it suggests that the influence of SIC is time-dependent. The ANOVA is repeated for each 

calendar month. 

 195 

The main drivers of snow cover and snow depth are characterized using Empirical Orthogonal Functions 

(EOFs). The EOFs of the Northern Hemisphere snow cover are calculated north of 30°N, while the 

domain for Eurasian snow cover EOFs is (0°E-180°E, 30°N-90°N). Three EOF analyses are performed 

using the year-to-year time series corresponding to each calendar month separately. A first EOF analysis 

is based on the MMM calculated from the ALL experiments. Such EOF is called EOFBC, where BC stands 200 

for boundary conditions and indicates the driving effect of the prescribed SST, SIC and external forcings 

(concentration of greenhouse gases, aerosol and ozone). As the forcing from sea ice concentration is weak 

(Liang et al., 2021), the EOFs are almost identical when using NoSIC instead of ALL. For instance, the 

pattern correlation between the first EOFBC (EOF1BC) of ALL and that of NoSIC is 0.95, 0.93 and 0.98 

for November, January and April, respectively. EOF1BC therefore mainly quantifies the main pattern of 205 

variability induced by the SST and external forcing. The corresponding principal components (PCs) are 

denoted PCBC. A second EOF analysis, called EOFSIC, is identical but performed on the difference 

between the MMM of ALL and NoSIC, to highlight the effect of the SIC.  The corresponding principal 

components (PCs) are denoted PCSIC. Hereafter, all principal components are normalized, and the EOFs 

are illustrated using their regression onto the standardized PC.  210 

 

Lastly, we investigate the internal land-atmosphere variability in the model simulations with a third EOF 

analysis. The internal snow variability is investigated after removing the ensemble mean of the snow 

evolution that mostly reflects the effect of SST, SIC, and external forcing. Therefore, we conduct an EOF 

analysis separately for each model using all the members of ALL and NoSIC concatenated after the 215 

removal of their respective ensemble means. This third analysis provides EOFInt, and PCInt. The relevance 

of this analysis might be limited when the ensemble size is small (only 10 members for some models), as 

the ensemble means are more affected by internal variability. 
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In addition, various fields, such as the surface air temperature, SLP, geopotential height, and zonal wind, 220 

are regressed onto PCBC, PCSIC and PCInt. The p-values of the univariate regression slopes are given by a 

Student’s t-test. The year-to-year autocorrelations for separate calendar months are typically insignificant 

between 0 and 0.05 (not shown). The only exception is for April, where such autocorrelation is significant 

over Scandinavia and the East European Plain, but it remains modest with maximum values at 0.08. 

Hence, we did not account for a reduction in the degree of freedom due to year-to-year correlation.  225 

 

The ANOVA, the retrieval of EOFInt and the regression analyses using PCInt are performed separately for 

each model, but the figures provide the mean for the eight models, denoted by multi-model mean (MMM), 

using a weight proportional to the ensemble size of each model ensemble. This avoids giving too much 

weight to models with only 10 ensemble members. We indicate grid points where the sign of anomalies 230 

is the same in seven models out of eight. This corresponds to a probability of 6.2% when considering that 

the sign of the anomaly has a probability of 50% in the models, as deduced for the Binomial probability 

distribution. Additionally, we indicate the grid points where the p-value is below 5% in at least five 

models out of eight. 

 235 

3. Simulated Northern Hemisphere snow cover and depth    

3.1 Climatology  

First, we briefly assess the Northern Hemisphere land snow simulated in the eight models. The mean 

seasonal cycle of land snow extent and snow mass is first calculated over North America and Eurasia in 

1979-2014. The snow extent over North America (0°N-90°N 180°W 0°E) and Eurasia (0°N-90°N 0°E 240 

180°E) has a maximum in January-February (Fig. 1a-b, black lines). November and April are associated 

with the start and the end of the season with extensive land snow coverage, respectively. The mean 

seasonal cycle of the Eurasian snow area is well represented by all the models (Fig. 1b, color lines). The 

differences between the models are within the range of uncertainty between the observational data sets, 

except for ECHAM6, which underestimates the snow cover throughout the cold season. We note that EC-245 
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Earth3 simulates a slower snow cover decrease in spring. The snow cover area over North America (Fig. 

1a) is also well captured by models, but it is overestimated in EC-Earth3 and again underestimated by 

ECHAM6. There is less agreement on the snow mass (Fig. 1c-d). First, the snow mass estimations from 

observations show a large spread that is maximum from February to May. Then, LMDZ6 and CMCC 

both largely overestimate the snow mass in Eurasia and North America. NorESM and CESM2 only 250 

overestimate the snow mass over North America. Other models simulate snow masses within the spread 

of observational products. In conclusion, the models reproduce the observed snow cover seasonality, but 

tend to overestimate the snow mass, except ECHAM6, which simulates a realistic snow mass, but 

underestimates the snow cover. However, the formula used to convert snow water equivalent into snow 

cover might not apply to ECHAM6. These conclusions are in agreement with the similar analysis of 255 

CMIP6 AOGCMs from Mudryk et al. (2020) or Zhong et al. (2022). Therefore, the use of atmosphere-

only simulations does not significantly reduce the land snow biases compared to AOGCM simulations. 

The location of the snow cover biases of each model compared to CanSISE is illustrated for January in 

Fig. 2. We chose here CanSISE as a reference as it is based on an ensemble of observations. Most models 

simulate more snow than observational products from the Tibetan plateau to Eastern Siberia and too little 260 

snow over southwestern Eurasia. No apparent snow biases are found over the fully snow covered domain 

between Eastern Europe and Central Asia. Over North America, there is generally more snow in models 

than in observations over the Rocky Mountains, and a few models also underestimate the snow cover over 

Northeastern Canada. Given the large uncertainty of the observational products over Mountain regions, 

more observations would be needed to fully confirm the biases over these regions. The snow water 265 

equivalent in models (Fig. 3) shows a generally positive bias over land with no consistent large-scale 

pattern in LMDZ6, CMCC, NorESM, and CESM2. Such positive bias is reduced in EC-Earth3 and 

HadGEM3. In ECHAM6, there is a weak overestimation of snow water equivalent over the East European 

Plain. An overestimation is also simulated in IAP4.1, but over North-Eastern Siberia. 

Hereafter, we focus on the land snow variability in November, January, and April, which represent the 270 

start, the maximum, and the end of the period with large snow coverage in the Northern Hemisphere (Fig. 

1).   
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3.2 Assessment of snow cover anomalies  

Figure 4a-b shows the time series of the anomalous snow cover area in winter, defined by the average 

from November to March, in the MMM of ALL. The anomalies are defined with respect to the 1979-275 

2014 climatology. The observational values are also shown but using a different scale to facilitate the 

comparison. Indeed, the decreasing trend of the MMM snow cover area is roughly half of that observed 

over Eurasia and North America (see also red and grey symbols in Fig. 5b). In addition, the year-to-year 

variability of ALL is much smaller than that observed. This presumably reflects that the observations 

correspond to one realization while the model ensemble means are averaged over 10 to 30 members, 280 

depending on the model, which strongly reduces the impact of internal variability. This suggests either 

that half of the observed trends is due to internal variability, or that the influence of SST or external 

forcing is underestimated by half in the models.  Similar results are found for the snow mass, but the 

decreasing trend over Eurasia is much weaker in models than in observations (Fig. 4c-d and Fig. 5a). The 

timing of some of the minima and maxima are consistent, as in 2007/2008 for the snow extent over Eurasia 285 

(Fig. 4a), in 1993 and 1999-2000 for the snow extent over North America (Fig. 4b), or in 1987, 1998 and 

2010 for the North American snow mass (Fig. 4d). This is consistent with the strong relationship between 

El Niño events and positive phases Pacific North American (PNA) pattern, which are associated with 

warm anomalies and decreasing snow depth over western North America (Ge and Gong, 2009). 

The correlation between the ALL MMM and ERA5 snow cover area is 0.66 (0.59) over Eurasia (North 290 

America), while it is 0.69 (0.60) over Eurasia (North America) for snow mass, which demonstrates a 

dominant influence of the boundary conditions. After removing the linear trend from every time series, 

the correlations are smaller, but they remain significant, except for snow mass over Eurasia (compare red 

and yellow symbols in Fig. 5d).   

 295 

The overall impact of the sea-ice variations on the snow cover area and snow mass is limited, as shown 

by the differences between the MMM of ALL and NoSIC over North America (Fig. 4f-h), which have no 

clear trend and are not significantly related to observations at the 5% level (Fig. 5d). However, a 

significant correlation of 0.43 is obtained for snow area over Eurasia (Fig. 4e), which remains significant 

for detrended time series (R=0.38).  300 
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The correlations of land snow area and mass between observation and models remain significant over 

Eurasia and North America separately for November, January and April in Fig. 5c-d for ALL (red and 

orange symbols), which confirms the robust influence of boundary conditions. The 1980-2014 linear 

trends of snow cover and snow depth are also assessed for the 3 months in Fig. 5a-b, using the MMMs, 305 

and calculating their statistical significance with a Student’s t-test, as detailed in Liang et al. (2021).  

Over Eurasia, the trends in models for November, January, and April (Figs. 5a-b) are consistent with that 

of the whole winter (NDJFM). However, the underestimated trend compared to observations is mainly 

due to November. The trend maps obtained from ALL MMM in November, January, or April reveal an 

important large-scale decrease in snow cover, maximum at the edges of the snow-covered domain (Figs. 310 

5e-g). 

 

The influence of sea-ice is investigated with the trends of the MMM of ALL minus NoSIC, and the 

correlation between observation and the MMM of ALL minus NoSIC in Fig. 5a-d (blue and sky-blue 

symbols). The trends of ALL minus NoSIC are negative and significant for snow mass only, which may 315 

reflect an influence of the sea-ice loss reducing the snow mass. For the snow cover, the correlation and 

trend are mainly small and insignificant. The trend maps show a weak but significant decreasing trend for 

November, January, or April in Southern Scandinavia extending eastward into Eurasia, with an additional 

decreasing trend over north-eastern Canada in November (Fig. 5h-j). 

 320 

3.3 Role of the boundary conditions in driving snow cover  

The influence of boundary conditions is quantified using an ANOVA (see section 2.3). We first applied 

the ANOVA separately at each grid point. The effect of SST and external forcing represented by the factor 

t is found to be dominant. The snow cover variance fraction associated with this factor is significant in all 

models in November, January, or April (Figs. 6a-c).  It is largest over the mid-latitude edges of the snow-325 

cover in Eurasia or North America, and may reach 15% over the Tibetan plateau, although models and 

observations have large uncertainties there (Mudryk et al., 2020). A large variance fraction  (>5%) is also 
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simulated over the Rockies and Scandinavia. In November, the variance fraction is ~4 to 5% over 

Northern Canada and a latitudinal band from Scandinavia to Eastern Siberia. By January, the mean 

variance fraction at the edge of the snow cover domain increases on average to ~6% and shifts toward 330 

eastern Europe and from the Caspian Sea to eastern China. In April, the large variance fraction is more 

important (~6-10%) but more localized from the East European Plain to southern Siberia and over 

Northern Canada. The results are summarized by an ANOVA using the Eurasia or North America snow 

area instead of grid point values in Fig. 6d-f. Models show a significant influence of SST and external 

forcing (indicated by SST/ext in Fig. 6d-f) with 10% to 25% of the variance explained over both domains, 335 

despite important differences between models. 

 

The snow cover variance associated with the varying sea ice concentration is given by the factors e and 

t:e (see section 2.3 for details) representing the influence of the SIC on the time-mean and time-varying 

snow, respectively. The variance fractions show no clear agreement between models and are largely 340 

insignificant at most grid points (not shown). The results are summarized in Fig. 6d-f for the snow cover 

area over Eurasia and Northern America. The sea ice only explains 1% to 5% of the variance, as found in 

the interaction t:e and the impact on the time mean snow cover is below 0.3% in most models. In most 

models, the ANOVA test is not significant for these two factors. We conclude that sea ice does not have 

a robust influence on the snow cover in our simulations. Using snow water equivalent instead of snow 345 

cover yields similar results (not shown). 

3.4 Assessment of the role of the boundary conditions for snow cover 

To assess the main patterns of simulated year-to-year snow cover variability, we first investigate the main 

pattern of variability in observations, using separate EOFs (north of 30°N) for each calendar month. 

Figure 7 shows the first two snow cover EOFs in ERA5-Land in, from top to bottom, November, January, 350 

and April, as well as their pattern correlation with the corresponding EOFs obtained from the three other 

observational data sets (right). In November, the first EOF (EOF1) shows anomalies of the same sign 

with large loading over the East European Plain, eastern Eurasia, and central North America, near the 

edges of the mean snow-covered area. The second EOF (EOF2) is a dipolar pattern with large loading 
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over eastern Europe and small loading with the opposite sign between the Aral Sea and the Baikal Lake 355 

and in western North America. In January, EOF1 is dominated by a large loading over Europe, while 

EOF2 is dominated by strong anomalies over North America. In addition, EOF1 and EOF2 display small 

anomalies near the edge of the Eurasian snow covered domain. In April, EOF1 is a dipole with large 

loading over North America, and anomalies with an opposite sign between the Caspian Sea and the Baikal 

Lake. EOF2 only shows large loading over the East European Plain. CanSISE provides very similar snow 360 

cover EOFs to ERA5-Land in all months.  The EOF1 patterns in MERRA-2 and NOAA-CDR are also 

similar in January and April, but they are different in November. The EOF2 patterns in MERRA-2 and 

NOAA-CDR mainly disagree with ERA5-Land. This suggests that the observational uncertainty is large 

in November but that the EOF1 pattern is otherwise rather robust.  

 365 

To emphasize the role of external forcing, SIC and SST for the simulated snow cover changes, the first 

EOF of the Northern Hemisphere snow cover in the MMM of ALL, called EOF1BC is shown in Figs. 8a, 

8d and 8g. The corresponding principal components, hereafter PC1BC, all show a positive trend (not 

shown), so that the EOF1BC resembles the maps of the land snow trend from ALL in 1981-2014 (compare 

Fig. 5e-g and Fig. 8a,d,g). November EOF1BC (Fig. 8a) also shows anomalies of the same sign over North 370 

America and from Scandinavia to eastern Siberia, at the edges of the mean snow-covered region, and near 

the Tibetan plateau. In January (Fig. 8d), the pattern is again a monopole, but it is centered over a band 

from Europe to East Asia as the snow-covered domain is broader than in November. In April (Fig. 8g), 

the loading over Eurasia is similar to that found in November, but the anomalies over North America are 

opposite. EOF1BC explains from 36% to 48% of the variance in November, January, and April.  375 

 

The EOF associated with the boundary conditions and external forcings can be compared with the 

observed snow cover EOF. The first two EOFs in ERA5-Land (Fig. 7, left) have some similarities with 

the EOF1BC patterns in Figs. 8a,d,g. However, the loading is more localized in ERA5-Land, without a 

clear location at the edge of the snow-covered domain. Moreover, in ERA5-Land EOF1 (EOF2) only 380 

explains from 15% to 21% (12% to 13%) of the variance. The somewhat different patterns and the smaller 

explained variance reflect in part the large influence of internal atmospheric variability in observations. 
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To reveal the links between the observed snow cover variability and the influence of SST and external 

forcing, PC1BC is compared to the observed snow cover PC1 and PC2. The correlation between PC1BC 

and the observed PC1 (Fig. 8c,f,i, left, blue bars) is only significant when using ERA5-Land and CanSISE 385 

in November and when using ERA-Land and NOAA-CDR in April, and it is not significant at all in 

January. Moreover, the correlation between PC1BC and the observed PC2 (orange bars) is only 5% 

significant in November for NOAA-CDR. After removing a linear trend from all the time series (not 

shown), the correlations with PC1BC that largely stem from SST forcing are smaller, and they only remain 

significant with ERA5-Land PC1 in November (R=0.36), and with ERA5-Land (R=0.47) and NOAA-390 

CDR (R=0.48) PC1 in April. This confirms the larger effect of changing SST and external forcing in 

November and April, although the EOF analysis in not robust among the observational dataset. There is 

no significant correlation in January, presumably because the internal variability is larger. 

 

The snow cover EOFs solely related to the sea ice are calculated from the MMM difference of ALL minus 395 

NoSIC (Figs. 8b,e,h). The variance fraction explained by the first EOFSIC is between 10% and 13%. The 

absolute variance explained by EOFSIC (not shown) is 6 to 13 times smaller than the one explained by 

EOF1BC, which confirms that sea ice has a much smaller influence than SST or external forcing. In 

November, EOF1SIC is a dipole with the same sign between the East European Plain and North America, 

and an opposite sign over eastern Siberia. In January, EOF1SIC is a dipole with the opposite signs between 400 

North America and Eurasia. The pattern in April is reminiscent of EOF1BC, but with smaller anomalies. 

EOF1SIC can hardly be related to the observed snow cover variability, as the correlations between PC1SIC 

and the observed PCs are weak. This confirms that the sea ice cover has little or no impact.  

 

The SSTs related to the snow cover changes are given by the regression of the SST anomalies from ALL 405 

onto PC1BC, using SST anomalies with respect to the 1979-2014 climatology. The regressions can be 

interpreted as the SST patterns contributing to the snow cover anomalies of EOF1BC, or the SST pattern 

responding to the external forcing that affected the snow cover changes. The SIC anomalies might also 

play a secondary role. We note warm SST anomalies in the western equatorial Pacific and the central 

midlatitude North Pacific in all months (Fig. 9a-c), consistent with the extended negative snow cover 410 
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anomalies of EOF1BC (Fig. 8a,d,g). This might reflect the SST trends observed during that period, which 

were found to result from the combination of external forcing superimposed on the changes of the Pacific 

decadal variability (Dai and Bloecker, 2018; Gastineau et al. 2019). In April, there is a cold anomaly in 

the Central and Eastern equatorial Pacific, with an extension toward the eastern North Pacific. This 

horseshoe pattern resembles a La Niña pattern and its extension toward mid-latitudes, called the 415 

Interdecadal Pacific Oscillation (Newman et al., 2016). We also note warm SST anomalies over the North 

Atlantic in November, which remain similar, but with smaller amplitude, when removing the linear trends 

(not shown), suggesting a dominant role of interannual or decadal North Atlantic variability.  

 

To understand these links, the SLP anomalies in ALL MMM associated to PC1BC are shown in Fig. 9d-f. 420 

In April, the SST is associated with a weakened Aleutian Low in the North Pacific and a PNA pattern, 

which are consistent with the expected pattern associated with cold equatorial Pacific SST anomalies. 

The weakened Aleutian Low leads to cold air advection over western North America, which explains the 

positive snow cover anomalies in that region (Fig. 8g). Therefore, the SST over the Pacific Ocean plays 

a significant role in the April snow cover over North America. The SLP anomalies are otherwise not 425 

significant for November and January. We also note positive SST anomalies into the Atlantic and Pacific 

oceans, which might reflect the positive SST trend observed during that period at those locations. 

 

To investigate the role of sea-ice driven variability, we calculated the regression onto the PC1SIC index, 

using the prescribed SIC in ALL, and the MMM difference of SLP from ALL minus NoSIC. PC1SIC has 430 

a decreasing trend in November (not shown) and it reflects small but significant negative SIC anomalies 

in the Barents, Labrador, and Bering Seas (Fig. 9g). In November, the associated SLP is low over the 

negative sea ice anomalies, as expected from the warming in the atmospheric planetary boundary layer, 

as shown in previous studies (Peings and Magnusdottir, 2014; Liang et al. 2021). The November SLP 

pattern (Fig. 9g) is different from a negative North Atlantic Oscillation (NAO) or a Ural blocking pattern 435 

as previously found as a response to sea ice loss (Mori et al., 2014; Kug et al., 2015; Nakamura et al., 

2015; King et al., 2016; Smith et al., 2022), but it is consistent with previous studies using atmosphere-

only experiments (Ogawa et al., 2018; Liang et al. 2021). In January and April, the sea ice anomalies are 
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very small. In January, the SLP pattern is insignificant, but in April, there is a cyclonic anomaly around 

50°N over the Atlantic Ocean, a small cyclonic anomaly over the Mongolian Plateau, and a weakening 440 

of the Aleutian Low. This might be related to the impact of sea ice on the snow cover and soil moisture 

in spring (Barnett et al. 1989). Positive SLP anomalies are also located over the Kara Sea, but it cannot 

be linked to the snow cover anomaly in a simple way. In all cases, removing the linear trends lead to 

different results (not shown), so the relationships shown in Fig. 9g-i mostly reflect the impact of the sea 

ice declining trend. 445 

 

4. Internal variability and climate impacts of snow cover anomalies 

4.1 Internal variability of snow cover  

The impact of internal atmospheric variability on snow cover anomalies is investigated over Eurasia. We 

focus on Eurasia as it is the largest continent, and snow cover was previously suggested to influence the 450 

Northern Hemisphere atmospheric circulation (Cohen and Entekhabi, 1999; Cohen et al. 2014; Gastineau 

et al. 2017). In the observational datasets, we remove a quadratic trend from all variables, which should 

remove a large part of the changes linked to the long-term evolution of external forcing, and then 

quantifies the internal variability, which is largely due to atmosphere-land processes, in addition to a 

residual influence of SST and SIC. The first EOF of the detrended snow cover in ERA5-Land is shown 455 

in Figs. 10a, 10e and 10i. The patterns are somewhat similar to those obtained over the Northern 

Hemisphere before detrending (Fig. 7), but the EOF1 over Eurasia in November and April corresponds 

to the EOF2 of the Northern Hemisphere before detrending. The regressions of the SLP and surface air 

temperature (Figs. 10b,f,j) onto the PC1 at no lag illustrate in January the influence of the NAO on the 

snow cover with cold air advection increasing the European snow cover. In November and April, the 460 

snow cover is linked to a trough over the Ural region, with cold (warm) air advection over its western 

(eastern) flank. The troughs over Central Eurasia are part of a wave-like perturbation between the Atlantic 

Ocean and Eurasia. In November, the trough extends to eastern Siberia and is associated with a warming 

and a snow cover decrease in Central Siberia. These patterns are similar in January when using the other 
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three snow cover datasets (see Figs. 10d and 10h). In November, the patterns remain similar except for 465 

MERRA-2. In April, the patterns are different when the SLP anomalies are smaller (Fig. 10l). 

 

To investigate the internal atmospheric-land variability in the model simulations, we repeat the same 

analysis except that we remove from snow cover, SLP, and surface air temperature the effect of boundary 

conditions by removing for each model the model ensemble mean of the ALL and NoSIC simulations 470 

from the individual members. This removes a large part of the variability driven by external forcing, SST 

and SIC. The main EOFInt patterns are calculated for each model separately and then, as they are found 

to be similar among models, averaged among the eight models using the ensemble size as a weight (Fig. 

11a-f). This robustness is shown by the large pattern correlation of EOF1Int (blue bars) and EOF2Int 

(orange bars) of each model and those of the multi-model average, with a pattern correlation largest when 475 

the model has a large ensemble of 30 members (indicated by black stars in the x-axis numbers of Fig. 

11g-i). In November, January, and April, a large monopole with positive snow cover anomalies over the 

edge of the snow-covered domain appears as the first mode (Fig. 11a-c), with between 9% and 30% of 

the variance explained. The maximum loading of the monopole is located in western Eurasia, except in 

April where it is over Central Siberia. A dipole is found as a second mode, with positive anomalies from 480 

Scandinavia to the Black Sea, and negative anomalies from the Caspian Sea to the eastern coast of Siberia. 

The variance explained by the second mode ranges between 6% and 18%.  

 

The SLP and surface air temperature associated with the first mode are calculated by a regression onto 

the PC1Int of the snow cover in each model, which is then averaged similarly among all models. The snow 485 

EOF1Int in November, January, and April is always associated at no lag with an anticyclone located at the 

north or the north-west of the positive snow cover anomalies (Fig. 12a-c), as expected from cold air 

advection which increases snow cover. However, the location and amplitude of the cold surface air 

temperature anomalies are not always matching the snow cover anomalies. For instance, the cold 

anomalies are strongest in January with a widespread cooling extending from western Europe to far 490 

eastern Siberia, but the associated snow cover anomalies have the same amplitude in all three months, 

and are only located over eastern Europe in January. In November, the anticyclone is centered over the 
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Nordic seas (Fig. 12a), while it extends from the Nordic Seas to Northern Siberia in January (Fig. 12b). 

In April, the snow anomalies cover the southern edge of the snow cover domain, and the anticyclone is 

centered over the eastern Arctic (Fig. 12c). EOF2Int is associated with a trough over the Ural Mountains 495 

in November and April, while the NAO and the associated temperature anomalies over southern Siberia 

dominate in January.   

 

The comparison between Fig. 10 for observations and Figs. 11-12 for models suggests that the models 

reproduce fairly well the main mode of variability found in observations, although the associated variance 500 

is smaller in models. However, the analysis of observation is based on detrended time series that still 

include the contribution from interannual SST variability and short-term fluctuations in the external 

forcing.  

4.2 Climate influence of snow cover anomalies 

Because of the limited intrinsic atmospheric persistence, the SLP and temperature lagging the snow cover 505 

by one month should reflect the snow cover influence in the absence of other concomitant forcings. It is 

illustrated for observations in Fig. 10c,g,k and for models in Figs. 13-14. In observations, the November 

EOF1 is followed by negative SLP anomalies over the polar cap and positive anomalies over western 

Europe and the Bering Sea. The pattern broadly resembles the positive Arctic Oscillation, which could 

be linked to the November snow cover influence investigated in Gastineau et al. (2017). In January, the 510 

negative NAO anomalies associated in phase with EOF1 persists the following month. In April, no 

significant SLP pattern emerges at a lag of one month. In all cases, the surface temperature is cold over 

positive snow cover anomalies, as expected.  

 

In models, no robust SLP or temperature anomalies follow the November snow cover EOF1Int with a lag 515 

of one or two months (Fig. 13a,d). On the other hand, the January EOF1Int (Fig. 13b) is followed by strong 

temperature and SLP anomalies at lag 1 (in February) with a strong anticyclonic anomaly over the polar 

cap extending toward central Eurasia, which is associated with cold continental air advection over 

northern Eurasia. The patterns are somewhat similar to those shown at lag 0 for January (Fig. 12b). Since 
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they remain largely similar at lag 2 (Fig. 13e), albeit with smaller amplitude, this suggests that snow cover 520 

anomalies act as a positive feedback and amplify the AO one (in February) or two (in March) months 

later. However, it might also reflect an unusually large atmospheric persistence or the presence of a 

concomitant forcing. The May SLP and temperature anomalies lagging the EOF1Int in April by one month 

(Fig. 13c) are also similar to the unlagged patterns, albeit smaller, and the air temperature remains cold 

over the land surfaces covered with positive snow anomalies in April. However, the anomalies are 525 

negligible at lag 2 (Fig. 13f). The pattern lagging the snow cover by one month is robust among models 

in January (Fig. 13h), but the agreement decreases in April (Fig. 13i) and more so in November (Fig. 

13g). For the pattern following the January EOF1Int  by two months, the agreement among models is 

smaller than at lag 1, but it remains high in models with 30 members. 

 530 

The temperature and SLP anomalies lagging the snow cover EOF2Int by one month (Fig. 14a-c) are smaller 

than for EOF1Int and they vanish at lag 2 (not shown). One month after January EOF2Int there are 

substantial temperature and SLP perturbations (Fig. 14b), resembling a negative AO pattern as was the 

case of the forcing pattern (Fig. 12e), but weaker. Its polar center is rather located over Svalbard, and it 

is less associated with an intensification of the Siberian anticyclone. Negative SLP anomalies are also 535 

found over East Asia. On the other hand, only small SLP and surface air temperature anomalies follow 

the November and April EOF2Int. 

 

The comparison of Fig. 10 with Fig. 13 shows a different relationship in models and observations for 

snow cover in November and April. However, in January, a more extended snow cover over Europe is 540 

followed in both models and observation by anticyclonic anomalies over Iceland and negative pressure 

anomalies over the mid-latitude Atlantic Ocean, as well as cold air temperature advection toward Europe. 

As the same relationship is found when the January land snow leads the atmosphere by two months in 

models, this might indicate a large-scale atmospheric response to the snow cover anomalies. However, 

an anomalous persistence of the atmospheric anomalies can also be caused by troposphere-stratosphere 545 

interactions, increasing the memory of the atmosphere. This hypothesis is investigated in the next section. 
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4.3 Role of the stratosphere for the January snow cover variability  

To understand the mechanism behind the statistical relationship between the January snow cover and the 

atmosphere, we focus on LMDZOR6 (the #5 model in Figs. 11g-i, 12g-i, and 13g-i.), as daily outputs and 550 

three-dimensional atmospheric fields are available. LMDZOR6 reproduces the links between the January 

snow cover EOF1Int and the atmosphere one or two months later as shown in Fig. 13, with nearly identical 

regression maps onto PC1Int when using only LMDZOR6 data (not shown). Figure 15 shows the lag 

regression of the daily polar cap temperature (north of 60°N) onto the PC1Int of the January snow cover. 

A significant lower-stratosphere warming is simulated from November to March. At 50-hPa, the 555 

temperature anomaly increases from 0.15°C in November to 0.3°C in December and 0.5°C in January. 

The stratospheric warming and the polar vortex weakening thus precede the January snow cover 

anomalies. However, the stratospheric temperature shows another maximum anomaly of 0.9°C in 

February, suggesting that the snow cover might have intensified the polar vortex weakening. The 

influence of Eurasian snow cover on the atmosphere could be induced by an amplification of the 560 

climatological stationary planetary wave pattern (Garfinkel et al., 2010), through an intensification of the 

ridge over Eastern Europe. Such a planetary wave propagates upward into the stratosphere and may 

indeed weaken the polar vortex within 10 to 20 days. It is well established that such polar vortex 

weakening might then lead to a negative AO in the troposphere, with a lag of a few weeks (Baldwin and 

Dunkerton, 1999), and episodic downward propagations are visible in Fig. 15 from the end of January to 565 

early April. However, the role of the snow cover anomalies in this mechanism remains to be established.  

 

To do so, we consider in the same model (e.g. LMDZOR6) an index of the stratospheric polar vortex. We 

define this index as the standardized January polar cap (north of 60°N) temperature anomalies at 50-hPa, 

called PCT50. We then remove the ensemble mean of that model from PCT50 and atmospheric fields. 570 

Using then regression onto PCT50, we found that the snow cover anomalies precede the stratospheric 

warming by 1 or 2 months, but not by more (Fig. 16a). The same regression using SLP (Fig. 16d) shows 

a dominant Ural blocking pattern in December increasing the snow cover anomalies by easterly cold air 

advection, and preceding by one month the January polar vortex anomaly. The Ural blocking is associated 

with negative SLP anomalies over western Europe and the Aleutians, thus projects onto the negative AO 575 

https://doi.org/10.5194/egusphere-2022-939
Preprint. Discussion started: 15 November 2022
c© Author(s) 2022. CC BY 4.0 License.



22 
 

phase. The regressions are weaker for lag -2, with only a small significant anticyclone east of Scandinavia.  

The Ural blocking pattern over northern Siberia is consistent with positive snow anomalies south of it 

(Fig. 16b,e). These regressions resemble the one obtained with PC1Int (Fig. 16c,f), even if the later 

anomalies are shifted toward the North Atlantic. This suggests that both snow cover and polar vortex have 

a common driver, namely Ural tropospheric blocking, so that the lead-lag relationship between January 580 

snow cover and the troposphere in February or March must be interpreted with caution, and causality 

cannot be firmly established. However, the polar vortex anomalies in Fig. 15 show a clear amplification 

in February, following the January snow cover anomalies. This suggests that snow cover anomalies might 

act as a positive feedback, and amplify the combined negative AO and Ural blocking pattern.    

5. Discussion and conclusion 585 

The land snow over the Northern Hemisphere is investigated in four observational datasets and in two 

large multi-model ensembles of atmosphere-only experiments, one with prescribed SST, sea ice and 

external forcing during the 1979-2014 period, and the other in which sea ice variations are replaced by 

their climatology. Although models have biases in representing the snow cover, the observed snow cover 

trend is overall well reproduced. In the multi-model ensemble mean, the trend is mainly driven by the 590 

external forcings and the associated SST warming, while sea ice loss drives a small and insignificant 

fraction of snow cover anomalies. Cohen et al. (2014), among others, proposed that snow anomalies might 

amplify or damp the mid-latitude atmospheric circulation response to sea ice loss, but in our experiments, 

the SIC has little influence in driving the snow cover. However, the lack of two-way coupling between 

atmosphere, sea-ice and the ocean in our experiments does not allow reproducing realistic links between 595 

snow and sea ice anomalies. Analogous analyses need to be conducted in AOGCMs to further investigate 

the links between SIC and snow cover.  

 

The 1979-2014 investigated period shows a transition from a warm to a cold IPO phase and from a cold 

to a warm Atlantic multidecadal variability (AMV) phase (Luo et al. 2022). Our analysis suggests that 600 

the IPO has a consistent influence among models on the North American snow cover, through the PNA 

teleconnection pattern. The results for the Eurasian snow cover are ambiguous and cannot be specifically 
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attributed to the SST anomalies or the external forcings. The investigation of simulations focusing on the 

role of external forcing, such as those realized in the RFMIP (Pincus et al., 2016) panel of CMIP6 would 

be necessary to distinguish between them. Sensitivity simulations using the observed changes in the AMV 605 

and IPO would also be helpful. In addition, including the period after 2014 would be important to 

understand the climate impacts of the observed reduction in spring snow cover (Mudryk et al. 2020). The 

simulations investigated here end in 2014 and cannot be used to fully understand this change. A similar 

multi-model investigation with simulation extended to present day could be pursue in future works.  

 610 

The snow cover variability due to internal atmosphere-land variability is analyzed in the large ensembles 

of simulation after removing the ensemble mean separately in each model. Lacking a better method, the 

internal variability is quantified in observations by removing the quadratic trend. We performed an EOF 

analysis of the Eurasian snow cover and used regression of atmospheric fields on the associated PCs to 

investigate the atmosphere-snow coupling. We found that the models reproduce well the main 615 

atmospheric modes responsible for the forcing of the snow cover in observations, with Ural blocking 

anomalies embedded with wave-like anomalies leading to dipolar snow cover anomalies in early spring 

and early winter. In mid-winter, the NAO has the dominant influence, increasing the snow cover over 

eastern Europe and inducing a widespread Eurasian cooling for negative NAO phases. In observation, we 

found that the November snow leads to AO-like anomalies by one month. Such a relationship is not 620 

reproduced in models, seemingly contradicting the results of Gastineau et al. (2017), when CMIP5 

preindustrial control simulations were found to partly reproduce the observed November Eurasian snow 

influence. However, as mentioned above, sea ice concentration and SST anomalies are prescribed in our 

atmosphere-only simulations and cannot respond to the atmospheric forcing. This is different in 

observations or coupled simulations where snow cover, sea ice and SST are driven by the atmosphere, 625 

and provide concomitant forcings. Both models and observations show that January eastern European 

snow cover anomalies are linked to AO-like anomalies one month later. The relationship remains 

significant at a lag of two months in models. The outputs from one of the models reveal that the Ural 

blocking pattern acts as a common driver for the Eastern Europe snow and the polar vortex anomalies. A 

stratospheric warming (cooling) event is, therefore, found to precede by two months the snow cover and 630 
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negative (positive) AO changes in January. This lead-lag relationship might only stem from the internal 

atmospheric variability, as proposed by Blackport and Screen (2021) for the case of the sea-ice 

atmosphere interaction that shares a large similarity with the interaction discussed here. However, we 

note that polar vortex anomalies (Fig. 15) are reinforced in February, one month after snow cover 

anomalies, and are much weaker before January. Such asymmetry suggests that the snow cover acts as a 635 

positive feedback onto the combined AO-Ural blocking pattern, intensifying the stratospheric warming 

and the resulting AO-like anomalies produced by downward propagation one month later. This suggests 

a two-way coupling between the snow cover and the atmosphere, where the snow cover anomalies 

amplify the AO-Ural blocking anomalies that generated them. This coupling with snow cover might act 

as a positive feedback for the internal variability of the land-troposphere-stratosphere system. 640 

Investigating these hypotheses would require sensitivity experiments controlling the land snow cover, or 

the use of specific statistics to investigate the causation (San Liang, 2014; Runge et al., 2015).  
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Table 1. Summary of the AGCMs used in this study. The short name is used in the text of this study 
instead of the full model name. 

Model Name 
(short name) # Institution 

Horizontal 
resolution 
(lat x lon) 

# of vertical 
levels 

(top level) 

# of 
members 

Adjustment 
of SST/SIC 

Snow 
cover 

available 

CMIP6 External 
Forcing used Reference 

EC-Earth3 
(EC-Earth3) 1 DMI 

T255 
(~80 km) 

91 
(0.01 hPa) 20 Yes No CMIP6 Döscher et al., (2022) 

HadGEM3-
GC3.1 

(HadGEM3) 
2 UoS 0.83o x 0.55o 

(~60 km) 
85 

(85 km) 
10 No No HighResMIP Walters et al. (2017) 

ECHAM6.3 
(ECHAM6) 

3 MPI-M T127 
(~100km) 

95 
(0.01hPa) 

10 Yes No CMIP6 Stevens et.al.(2013) 
Mueller et. al. (2018) 

IAP4.1 
(IAP4) 

4 IAP 1.4 o x1.4 o 30 
(2.2hPa) 

15 Yes No 

1979-2005: CMIP5 
historical 

2006-2013: CMIP5 
RCP8.5 

Sun et al. (2012) 

LMDZOR6 
(LMDZZ6) 5 LOCEAN-IPSL 

1.26o x 2.5o 
(~150 km) 

79 
(0.01 hPa) 30 Yes Yes HighResMIP Hourdin et al. (2020) 

NorESM2-
CAM6 

(NorESM) 
6 NERSC 0.94o x 1.25o 

(~100 km) 
32 

(3.4 hPa) 
30 Yes Yes CMIP6 Bentsen et al. (2013) 

Seland et al. (2020) 

CESM2-
WACCM6 
(CESM2) 

7 WHOI-NCAR 0.94o x 1.25o 

(~100 km) 
70 

(4.5x10-6 hPa) 30 Yes Yes CMIP6 Gettelman et al. 
(2019) 

CMCC-CM2-
HR4 

(CMCC) 
8 CMCC 0.9° x 1.25° 

(~100 km) 
30 

(2 hPa) 10 No Yes HighResMIP Cherchi et al. (2018) 
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Figure 1: (Top) Seasonal cycle of the area covered by snow, in 106 km2, in (a) North America and (b) Eurasia. (Bottom) Seasonal 20 
cycle of the Northern Hemisphere snow mass, in 1012 kg, in (c) North America and (d) Eurasia. Color curves show results from 
models. Thick black curves show observations. 
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Figure 2: (a) Mean January snow cover in CanSISE, in fraction. (b-i) mean snow cover (color shade) bias in January, in fraction, 25 
calculated as the ALL ensemble mean minus CanSISE for each model. The contours indicate the mean snow cover fraction in 
CanSISE (contour interval 0.2) shown in (a). 
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 30 
 

Figure 3: Same as Fig. 2, but for the snow water equivalent, in m. 
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 35 
 
 
 

 
Figure 4: Time series of the anomalous area covered by snow in 106 km2 (first row)  and anomalous snow mass in 1012 kg (second 40 
row)  in winter (from November to April) , in (right) North America and (left) Eurasia in observation and the simulation ALL. 
(Third row) Same as first row, but for ALL minus NoSIC. (Forth row) Same as second row, but for the difference ALL minus 
NoSIC. Note the different scale in the y-axis for (left axis, black line) models and (right axis, blue line) ERA5-Land and CanSISE 
observations. The grey shading indicates the range between the minimum and the maximum values among the eight models. The 
black curve is the multi-model ensemble mean. The correlation between the multi-model mean and ERA5-Land is given in the 45 
bottom left corner of each panel, the star symbol indicating a p-value below 5%. 
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Figure 5: Northern Hemisphere trend in a) snow cover extent and b) snow mass. Correlation with ERA5-Land for c) snow cover 50 
extent and d) snow mass. Red (blue) symbol denotes the simulation ALL ( ALL minus NoSIC) for 1979-2014. Grey symbol denotes 
the CanSISE observations for 1979-2010. Orange (blue sky) symbol is for the simulation ALL (ALL minus NoSIC) when using 
linearly detrended fields. Northern Hemisphere trend in snow cover, in % per decade-1, for the simulations (e-g) ALL and the 
difference of (h-j) ALL minus NoSIC; in (e) (h) November (f) (i) January and (g) (j) April. In (e-j), black contours indicate where 
the p-values are lower than 5%.  55 
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Figure 6: Variance fraction (in %) of the interannual snow water equivalent anomalies explained by SST, external forcing and sea 
ice concentration; for (a) November, (b) January and (c) April. The thick black curve indicates where the p-value of the ANOVA 
test is lower than 5% for at least 5 models out of 8. Variance fraction (in %) of the snow cover area over Eurasia (Eur) and North 
America (NAm) calculated for each model separatly for (d) November, (e) January and (f) April. The effect of the factor t, 
representing the influence of SST and external forcings, is refered to as SST/ext. The effect of the factor e, representing the influence 65 
of SIC on the time mean snow, is refered to as SIC. The effect of the factor t:e, representing the influence of SIC on the time varying 
snow, is refered to as SST/Ext:SIC. Numbers are given in bold font if the ANOVA test has a p-value below 5%. 
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Figure 7: (Left column) First and (center column) second EOFs of Northern Hemisphere snow cover anomalies in ERA5-Land 
during 1981-2014 for (first row) November, (second row) January and (third row) April. The variance explained by the EOFs is 
indicated. (Right column) Pattern correlation between the (blue bar) EOF1 and (orange bar) EOF2 of ERA5-Land and that found 75 
in other observational datasets MERRA2, NOAA-CDR and CanSISE. 
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Figure 8: (Left column) First EOFBC of the snow cover anomalies associated with sea surface temperature and external forcing 
anomalies and (center column) first EOFSIC associated with sea ice concentration anomalies, for (first row) November, (second row), 80 
January and (third row) April. (Right column) Correlation between the observed snow cover PC1/2 and PC1 BC and between the 
observed PC1/2 and PC1SIC when using (blue and orange bars) ERA5-Land, (green cross) MERRA2, (blue cross) NOAA-CDR and 
(red cross) CanSISE. The blue (orange) bars and the associated crosses provide the results when using PC1 (PC2) from observations. 
The dashed line provide the 5% and level of statistical significance for the correlation when using ERA5-Land, MERRA2 or NOAA-
CDR in 1981-2014 (32 degrees of freedom). The dotted line is the same as the dashed line but when using CanSISE in 1981-2010 (28 85 
degrees of freedom).  

 
 

42

https://doi.org/10.5194/egusphere-2022-939
Preprint. Discussion started: 15 November 2022
c© Author(s) 2022. CC BY 4.0 License.



 

Figure 9: (a) (b) (c) Regression of the SST, in °C (gray contours and color shade) on PC1BC; (d) (e) (f) Regression of the SST, in °C 90 
(color shade)  and sea level pressure, in hPa (black contour, contour interval 2 hPa; dotted contours for negative values), on PC1BC. 
(g) (h) (i) Regression of the SIC, in % (gray contours and color shade), and sea level pressure, in hPa (black contour, contour interval 
2 hPa; dotted contours for negative values), on PC1SIC. In all panels, color shade indicates p-value below 5% for the regression of 
the SST or SIC. Dots indicates p-values below 5% for the SLP regression in panels (d)-(i). Left panels are for November. Center 
panels are for January. Right panels are for April. 95 
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Figure 10: (First column from left) First EOF of the detrended Eurasian snow cover in ERA5-Land, shown as the regression of the 
snow cover, in %, onto the first PC. (Second column) Regression of the observed (color shade and grey contours) surface air 100 
temperature, in °C, and (black contour; contour interval 1 hPa) sea level pressure in hPa on PC1 at lag=0, and (third column) at lag 
= 1, i.e. for PC1 leading by one month the atmospheric fields. (Forth column) Pattern correlation of the EOF1s and of the regressions 
of surface air temperature or sea level pressure on the Eurasian snow cover PC1 between ERA-Land and other snow cover datasets. 
T2M0  and SLP0 designate the pattern correlation of the regressions at lag = 0; T2M1 and SLP1 designate the pattern correlation at 
lag = 1. First row is for November, second row for January and third row for April. In second and third columns, color shadings 105 
indicate p-value below 5% for the regression. 
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 110 
Figure 11: (First row) First and (second row) second EOFInt of the Eurasian snow cover, in %, associated with internal atmospheric 
variability in the simulations ALL and NoSIC. The patterns are the average patterns of the eight models. The numbers displayed 
on top are the minimum and maximum variance explained by that EOF among the eight models. Dots indicate the locations where 
7 models out of 8 have EOFInt anomalies with the same sign. (Last row) Spatial pattern correlation between the EOFInt obtained 
from each model and that of the model average. The blue (orange) bar shows the results when using the first (second) EOF. The 115 
numbers on the x-axis designates each model (see Table 1 for the corresponding model names). The symbol star indicates when 30 
members are available for both ALL and NoSIC; for (left column) November, (center column) January and (right column) April.  
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Figure 12: Regression of the (color shade) 2 m air temperature (T2m), in °C, and (black contour, contour interval 0.5 hPa) SLP, in 120 
hPa, on (a) (b) (c) PC1Int and (c) (d) (e) PC2Int, for (left) November, (center) January and (right) April. All regressions are calculated 
at no lag (lag = 0 mth), and only use the T2m and SLP anomalies associated with the internal atmosphere-land variability, after 
removal of the corresponding multi-model mean. The regression shows the multi-model mean regression map, with dots indicating 
when the sign of SLP anomalies is consistent in at least 7 models out of eight. The color shades are masked if the sign of T2m is not 
consistent in at least 7 models out of eight.  125 
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Figure 13: Same as Fig. 12, but at (a) (b) (c) lag 1 and (d) (e) (f) lag 2, when the atmosphere follows by one month the (left) November, 
(center) January and (right) April snow cover index, as provided by PC1Int.  

 
 130 
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Figure 14: Same as Fig. 12, but using PC2Int instead of PC1Int at lag = 1 month, when the atmosphere follows by one month the (a) 
(d) November, (b) (e) January and (c) (f) April snow cover.  

 
 135 

 

 
 
Figure 15: Regression of the daily air temperature anomalies over the polar cap (north of 60°N) onto the First PC of the snow cover 
internal atmospheric variability, PC1Int, in January and in LMDZOR6. The black line indicates the local statistical significance at 140 
the 5% level. The vertical dashed black line shows the days corresponding to January. 

 
 

Figure 1:
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Figure 16: Regression of the (a,d) snow cover and sea level pressure (SLP; b,e) anomalies onto the January polar cap (north of 60°N) 150 
50-hPa temperature anomalies in LMDZOR6. (c,f) Regression of the sea level pressure (SLP) anomalies onto the First PC of the 
snow cover internal atmospheric variability, PC1Int, in January and LMDZOR6. The lag indicated is negative and given in month, 
indicating that the polar cap 50-hPa geopotential height or the PC1Int lags. The color shades are masked if the local statistical 
significance is above 5%.  

 155 
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