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Abstract.  

The main drivers of role of surface ocean anomalies for the continental Northern Hemisphere snow cover 

areis investigated in , together with the 1979-2014 period.interactions between snow cover and 

atmosphere. Four observational datasets are used and two large multi-model ensembles of atmosphere-25 

only simulations are used, with prescribed sea surface temperature (SST) and sea ice concentration (SIC). 

A first ensemble uses observed interannually varying SST and SIC conditions for 1979-2014, while a 

second ensemble is identical except for SIC where a repeated climatological cycle is used.  

SST and external forcing typically explain 10 to 25% of the snow cover variance in model simulations, 

with a dominant forcing from the tropical and North Pacific SST during this period. In terms of the climate 30 

influence, while no robust influence of the SIC is found. In observations, the Ural blocking is the main 
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driver of the snow cover anomalies, both observations and models show no robust links between the 

November and April snow cover variability and the atmospheric circulation one month later. Onover 

Eastern Eurasia, while the other hand,North Atlantic Oscillation (NAO) dominates the first mode of 

Eurasian snow cover variabilityforcing in January. In November and more robustly in January, with more 35 

extended snow dipolar anomalies of snow cover over Eurasia, with positive anomalies over Europe and 

negative anomalies over Southern Siberia, also precede the Arctic Oscillation (AO) by one month. In 

models, snow cover over western Eurasia, is found to precede by one month an atmospheric circulation 

pattern similar to a negative Arctic Oscillation (AO). A decomposition of the variability in the model 

simulations shows that this relationship is mainly due to internal climate variability. DetailedJanuary also 40 

precedes by one or two months a negative AO phase. The detailed outputs from one of the models 

indicatesuggest that both the Westernwestern Eurasia snow cover anomalies are preceded by a negative 

AO phase accompanied by a Ural blocking pattern and a stratospheric polar vortex weakening. The link 

between the AO and the snow cover variability is strongly related to the concomitant role of the 

stratosphericare generated by Ural blocking, and that both snow cover and polar vortex, with the Eurasian 45 

snow cover acting as a positive feedback for the AO variability in winter. No robust influence of the SIC 

variability is found, as the sea ice loss in these simulations only drives an insignificant fraction of the 

snow cover anomalies, with few agreements among models. anomalies act to generate the AO one or two 

months later.  

1 Introduction 50 

Understanding the origin and impact of snow variability is important for many activities such as 

agriculture, tourism, management of freshwater resources, or road maintenance. It is also essential for the 

evolution, and understanding of midlatitude and subarcticmany ecosystems. Snow is an important element 

for the climate as the high albedo of snow leads to increased reflected shortwave radiation at the surface 

with a direct influence on the earth’s radiative budget. The small thermal conductivity of the snow pack 55 

also insulates the soil from the cold winter atmosphere and plays an important role in the stability of the 

permafrost (Pulliainen et al., 2017). 
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Snow over land accumulates from snowfall events and is melted by surface air temperatures above the 

freezing point. The variability of snow cover and snow depth is therefore modulated by the midlatitude 60 

and polar atmospheric variability. Winter atmospheric variability is large and is mostly unpredictable 

beyond a week or two as it owes its existence to internally-driven atmospheric processes (Feldstein, 2000; 

Deser et al., 2012). However, other processes influence the atmospheric variability at low frequency, 

which leads to the potential predictability of winter climate at the seasonal time scale (Scaife et al., 2014). 

Tropical surface anomalies can strongly alter the large-scale atmospheric circulation and influence the 65 

extra-tropical regions through atmospheric teleconnections. In particular, the El Niño-Southern 

Oscillation (ENSO) has a large influence over North America through the Pacific-North American (PNA) 

pattern (Wallace and Gutzel, 1981; Lau 1997), and also over Europe (Mathieu et al. 2004; Lopez-Parages 

et al. 2016). The PNA can in turn modify the snow depth, as found in observations (Ge and Gong, 2009). 

Extra-tropical surface anomalies may also drive the winter atmosphere, through the influence of extra-70 

tropical sea surface temperature (SST; see the review of Kushnir et al. 2002; Gastineau and Frankignoul, 

2015), sea-ice (Deser et al., 2007; Honda et al., 2009; Garcia-Serrano et al., 2015; King et al., 2016), and 

snow cover (Cohen and Entekhabi, 1997; Gastineau et al., 2017; see the review of Henderson et al., 2018). 

Lastly, troposphere-stratosphere coupling in winter can also enhance and increase the persistence oflead 

to more persistent atmospheric modes (Perlwitz and Graf; 1995; Baldwin and Dunkerton, 1999; Scaife et 75 

al., 2014).  

 

The land snow cover is also largely affected by climate change caused by external forcings such as the 

increasing concentration of greenhouse gases, the evolution of aerosol or ozone concentration or ozone, 

and land use change. The snow cover extent was found to decrease over the last decades (Gulev et al., 80 

2021; Déry and Brown, 2007; Gulev et al., 2021), although observational data shows a large spread in 

fall and early winter (Brown and Derksen, 2013; Mudryck et al., 2017). Mudryk et al. (2020) reported 

negative trends below -50 × 103 km2 per year over 1981-2018 in November, December, March and 

May.). Recent observational estimates also found a decreasing trend of the snow mass over North America 

but an insignificant decrease over Eurasia (Pulliainen et al., 2020). Detection-attribution studies have 85 
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attributed the decrease of the snow cover to human activities (Paik and Min, 2020; Guo et al., 2021), but 

the specific role of the different drivers is unknown. Furthermore, the atmosphere-ocean general 

circulation models (AOGCM) from CMIP5 (Coupled Model Intercomparison Project phase 5) 

underestimate the land snow extent, while they overestimate the snow mass (Derksen and Brown, 2012; 

Mudryk et al., 2020). Even if the snow cover extent is better simulated in CMIP6 (Coupled model 90 

Intercomparison Project phase 6) models (Mudryk et al., 2020), global climate models mostly use highly 

simplified snow physics (Krinner et al. 2018). The simulation of snow cover anomalies over land, 

therefore, remains a challenge as it involves the large-scale circulation together with the parametrized 

atmosphericprecipitation and land surface processes. In the present study, we will further assess the 

influence of external forcing, SST and sea ice concentration (SIC) anomalies on the snow cover.  95 

 

Land snow variability also influences the climate. Cohen and Entekhabi, (1997) found that when the snow 

cover over eastern Siberia is anomalously large in October, negative phases of the Arctic Oscillation (AO) 

are more frequent during the following months. This was confirmed by Saito and Cohen (2003) and Cohen 

et al. (2014). Using an extended observational record, Gastineau et al. (2017) found a similar relationship, 100 

albeit between November snow cover and the subsequent December and January AO. They also found 

that concomitant sea ice anomalies reinforced the atmospheric response to snow cover anomalies. These 

relationships suggest that snow cover anomalies can influence the mid-latitude atmospheric circulation in 

the same way as SST or SIC anomalies. The pathway of the snow influence involves an amplification of 

the climatological tropospheric stationary wave associated to a lower-troposphere cooling as the snow 105 

cover increases (Cohen et al., 2014), as found for the 2017/2018 winter (Lü et al., 2020). Such 

amplification was suggested to lead to stratospheric warming which can result in more frequent negative 

AO events through downward propagation (Baldwin and Dukerton, 1999). Sensitivity simulations using 

models with prescribed snow cover also revealed a consistent AO-like atmospheric response to more 

extensive Eurasian snow cover (Gong et al., 2003; Fletcher et al., 2009). Such influence is consistent with 110 

changes in subseasonalseasonal forecast skill when modifying the initialization of the snow cover in 2004-

2009 (Orsolini et al., 2013) or in 2009-2010 (Orsolini et al. 2016), even if this influence is not found 

systematically from other periods and different models (Garfinkel et al., 2020).). The statistical 
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relationships found in observations are stronger than, but consistent with thosethe ones produced in some 

of the AOGCM simulations from CMIP5 climate models (Gastineau et al., 2017). Liang et al. (2021) 115 

proposed that the apparent underestimation of the atmospheric response to sea-ice anomalies in the 

Barents-Kara Seas in CMIP6 atmosphere-only simulations was in part due to the lack of consistency 

between sea ice and snow cover anomalies when the former was prescribed. IndeedFor instance, Ural 

blocking increases the eastern Siberian snow cover while it decreases the Barents-Kara SIC (Gastineau et 

al., 2017; Peings 2019). Both the increased Siberian snow cover and Barents-Kara sea ice loss are found 120 

to lead to negative AO-like anomalies in the following months (Gastineau et al., 2017; Simon et al. 2020). 

This may result in a larger AO response than the one expected from the sea ice alone, as proposed by 

Cohen et al. (2014). Hence, atmosphere-only simulations using prescribed sea-ice anomalies but with 

prognostic snow cover cannot simulate the synchronization of sea ice and snow, and the atmospheric 

response to SIC anomalies could not be reinforced by the snow cover anomalies, unlike in observations. 125 

Lastly, a heavy spring snow cover was found to increase the soil moisture over Siberia, and the 

Mongolian/Tibetan plateau, which can lead to an abnormal cooling of the land surface. This can alter the 

atmospheric circulation related to monsoon through the modification of the land/sea contrasts (Barnett et 

al., 1989).  

In the present study, we will also further assess the drivers andlarge-scale impacts of snow cover 130 

anomalies, focusing on early winter, winter and early spring. We use a large ensemble of atmosphere-

only simulations to characterize the main drivers and impacts of snow cover variability in the Northern 

Hemisphere. To sample the uncertainties of the observations, we analyze four observational products. 

Section 2 presents the data and methods. Section 3 discusses the influence of the observed SST and SIC 

anomalies on continental snow. In Section 4, we investigate the internal variability of the snow cover and 135 

its influence on the atmosphere. Discussion and conclusions are given in the last section.  
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2. Data and methods 

2.1 Observations 

Several snow datasets arehave been used to sample some of the observational uncertainty. We (Brown et 140 

al., 2010). For this study we use the monthly snow water equivalent (SWE) depth and snow cover of 

ERA5-land in 1981-2014 (Muñoz-Sabater(C3S, 2019; Muñoz-Sabater et al., 2021), resulting from the 

ECMWF land-surface H-TESSEL model forced with ERA5 atmospheric reanalysis (Hersbach et al., 

2020).) for 1981-2014. We also use the monthly snow diagnostics from MERRA2 (GMAO, 2015; Gelaro 

et al., 2017) for the same period. The NOAA climate data record (CDR) of Northern Hemisphere weekly 145 

snow cover extent dataset (Robinson et al., 2021) is retrieved from the National Center for Environmental 

Information andis aggregated into monthly time series for thein 1981-2014 period. The . We also use the 

monthly SWE from GlobSnow v3 (Pulliainen et al., 2020) is usedsnow depth in 1980-2014, where the 

missing data in December 1981 was interpolated linearly in between November 1981 and January 1982. 

Lastly, we use the dailymonthly CanSISE SWE in 1981-2010observation-based ensemble of the Northern 150 

Hemisphere (Mudryk et al., 2015; Mudryk and Derksen, 2017),) snow depth and snow cover in 1981-

2010, which is based on five products: GlobSnow v2, ERA-Interim/Land reanalysis, MERRA reanalysis, 

Crocus (Brun et al., 2011) and GLDAS version 2 (Rodell et al., 2004). The CanSISE product also provides 

a spread based on the range (maximum minus minimum) of these five products. A snow cover from 

CanSICE is then estimated from the SWE using a threshold of 7 mm. If the daily SWE depth is lower 155 

(larger) than 7 mm, then it is assumed that the snow cover is zero (1). A minimum and maximum snow 

cover is also estimated with the same procedure using the SWE and its spreads, assuming the spread is 

centered on the mean SWE. The SWE and snow cover from CanSISE are then aggregated into monthly 

means. 

 160 

The atmospheric 2mgeopotential, air temperature, zonal wind, and sea level pressure (SLP) fields are 

retrieved from ERA5 reanalysis (Hersbach et al., 2019C3S, 2017; Hersbach et al., 2020).  
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All data is regridded with bilinear interpolation into a 1.26°x2.5° regular grid before analysis. Coastal 

regions are masked if the fraction of land is below 50%. SomeIn some products, such as GlobSnow, have 165 

missing data over mountain regions. Therefore, mountain and ice cap regions are masked in all data where 

the CanSISE data is missing. 

 

2.2 Model simulations 

We use the outputs of the two multi-model land-atmosphere simulation ensembles discussed in Liang et 170 

al. (2020, 2021). These simulations used as boundary conditions the SST and SIC provided by the 

HighResMIP panel of CMIP6 (Haarsma et al., 2016) and atmospheric concentration of aerosol, 

greenhouse gases, and ozone from CMIP6 (Eyring et al., 2016) in the 1979-2014 period. We use the 

outputs of eight models where the snow depth was saved and distributed (Table 1). The ensemble ALL 

uses interannually-varying daily SST and SIC. The other ensemble, called NoSICvarNoSIC, is identical 175 

but uses a repeated 1979-2014 climatological SIC in the Arctic, with adjustment of the associated local 

SST (Hurrell et al., 2008). The climate sensitivity to SIC anomalies is provided by the difference ALL 

minus NoSICvarNoSIC. As noted in Liang et al. (2020) and in Table 1, the experimental protocol has 

some small differences for each model, but these deviations are unlikely to affect the results substantially. 

The number of members varies among models from 10 to 30, while the horizontal resolution varies from 180 

about 60 km to 150 km. The large diversity of models allows us to study the model dependence. However, 

for comparison with observations, these ensembles of atmosphere-only models have limitations 

associated with the lack of active two-way coupling with sea ice and SST, uncertainties in the SST and 

SIC forcing, and simplified sea ice physics, (for instance the sea ice thickness is constant), as discussed 

in Liang et al. (2021). 185 

 

We use the monthly 500-hPa geopotential, SLP, 2m air temperature, and snow depth in all models. For 

LMDZOR6LMDZ6 and CMCC, the snow depth was converted into snow water equivalent (SWE) depth, 

assuming a constant snow density of 240330 kg m-3, as found in observations (Sturm et al. 2010).. The 

snow cover is a diagnostic variable in many models and was not available for four models (see Table 1): 190 
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EC-Earth3, ECHAM6, HadGEM3 and IAP4. Lacking a better formulation, we calculate the snow cover 

from the SWE using a threshold of 7.5 mm. If the monthly SWE depth is lower (larger) than 7.5 mm, then 

it is assumed that the snow cover is zero (1). This estimation is based on LMDZOR6LMDZ6, where we 

found that a reasonable snow cover extent is obtained with the 7.5 mm threshold when using monthly 

outputs. This procedure is similar to that of Krinner et al (2018), except they used a threshold of 5 mm.  195 

 

The detailed outputs from LMDZOR6 are also used with the monthly geopotential height at 500-hPa and 

50-hPa, and the daily air temperature. For this model, the wave activity flux from Plumb (1985) is also 

calculated from daily geopotential height, zonal wind and meridional wind at 500-hPa and 250-hPa. 

 200 

All data sets were regridded with bilinear interpolation into the regular grid 1.26°x2.5° (~150 km) before 

analysis. Coastal regions and grid points with complex orography were masked consistently in all models 

using the observational mask. Multi-model ensemble means (MMM) are constructed by giving the same 

weight to each ensemble member, which largely removes the influence of internal atmospheric variability.  

2.3 Methods 205 

We study the effects of SST, SIC and external forcing in driving snow cover anomalies with an analysis 

of variance (ANOVA) with two factors, also known as two-way ANOVA. The ANOVA is a statistical 

analysis method for comparing the means of various samples and investigating the influence of one or 

several categorical independent variables, called factors, on one continuous variable (Von Storch and 

Zwier, 1999). Here the ANOVA is applied in a balanced design to the land snow from the ALL and 210 

NoSICvarNoSIC ensembles, separately for each individual model and for each calendar month. The first 

factor is the simulated year, called t, which varies from 1979 to 2014. The second factor is the ensemble, 

called e, and represents the ALL versus NoSICvarNoSIC ensembles. The interaction between the year 

and the ensemble is called t:e. In the analysis, the sum of squares quantifies the variance associated with 

each factor. The ANOVA then compares such variance to the residual variance to test the effect of the 215 

factors. The corresponding p-value indicates if the effect of the factors (t, e and t:e) isare statistically 
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significant. Hereafter, we show such p-values, together with the ratio of the sum of squares over the total 

variance to quantify the variance explained by each factor. 

 

The statistical model of the ANOVA decomposes the snow cover anomalies of a calendar month in each 220 

year and ensemble, called X, by: 

𝑋(𝑡, 𝑒) = 𝜇 +	𝛽!(𝑡) + 𝛽"(𝑒) + 𝛽!:"(𝑡, 𝑒) + 𝜀 ,       (2) 

where 𝜇, the theoretical mean of X, corresponds to the seasonal mean of the calendar month.  𝛽! is a 

different constant for each year, 𝛽" is a constant for each ensemble, 𝛽!:" is an interaction term different 

for each year and ensemble, and 𝜀 is a gaussian noise. If the ANOVA is significant for the factor t, then 225 

at least one of the 𝛽!  is significantly different from zero. It implies that the time-varying prescribed 

boundary conditions have an influence on the snow cover in both ALL and NoSICvarNoSIC, which 

should result from time-varying SST or external forcings, as they both can influence the atmosphere and 

land. Similarly, the effect of time-varying SIC is accounted for by the second factor e. If the second factor 

is significant, meaning with at least one of the 𝛽" different from zero, it demonstrates an influence of 230 

varying sea-ice concentrations on the mean land snow. Lastly, if at least one of the interaction terms, 𝛽!:", 

is significant, it suggests that the influence of SIC is time-dependent. The ANOVA is repeated for each 

calendar month. 

 

The main drivers of snow cover and snow depth are characterized using Empirical Orthogonal Functions 235 

(EOFs). The EOFs of the Northern Hemisphere snow cover are calculated north of 30°N, while the 

domain for Eurasian snow cover EOFs is (0°E-180°E, 30°N-90°N). Three EOF analyses are performed 

using the year-to-year time series corresponding to each calendar month separately. TheA first EOF 

analysis performed is based on the MMM calculated from the ALL experiments. TheSuch EOF pattern 

is denoted ascalled EOFBC, where BC stands for boundary conditions and indicates the driving effect of 240 

the prescribed SST, SIC and external forcings (concentration of greenhouse gases, aerosol and ozone). 

As the forcing from sea ice concentration is weak (Liang et al., 2021), the EOFs are almost identical when 

using NoSICvarNoSIC instead of ALL. For instance, the pattern correlation between the first EOFBC 

(EOF1BC) of ALL and that of NoSICvarNoSIC is 0.95, 0.93 and 0.98 for November, January and April, 



 

10 
 

respectively. EOF1BC therefore mainly quantifies the main pattern of variability induced by the SST and 245 

external forcing. The corresponding principal components (PCs) are denoted PCBC. A second EOF 

analysis, called EOFSIC, is identical but performed on the difference between the MMM of ALL and 

NoSICvarNoSIC, to highlight the effect of the SIC variability.  The corresponding principal components 

(PCs) are denoted PCSIC. Hereafter, all principal components are normalized, and the EOFs are illustrated 

using their regression onto the standardized PC.  250 

 

Hereafter, all principal components are standardized, and the EOFs are illustrated using their regression 

onto the standardized PC. The sign convention is that a positive PC corresponds to an EOF with positive 

loading over eastern Europe (20°E-70°E 55°N-70°N). 

 255 

Lastly, we investigate the internal land-atmosphere variability is investigated in the model simulations 

with a third EOF analysis. The internal snow variability is investigated after removing the ensemble mean 

of the snow evolution that mostly reflects the effect of SST, SIC, and external forcing. WeTherefore, we 

conduct an EOF analysis separately for each model using all the members of ALL and NoSICvarNoSIC 

concatenated after the removal of their respective ensemble means. This third analysis provides EOFInt, 260 

and PCInt as spatial patterns and time series, respectively.. The relevance of this analysis might be limited 

when the ensemble size is small (only 10 members for some models), as the ensemble means are more 

affected by internal variability. 

 

In addition, various fields, such as the surface air temperature, SLP, geopotential height, and zonal wind, 265 

are regressed onto PCBC, PCSIC and PCInt. The p-values of the univariate regression slopes are given by a 

Student’s t-test. The year-to-year autocorrelations for separate calendar months are typically insignificant 

between 0 and 0.05 (not shown). The only exception is for April, where such autocorrelation is significant 

over Scandinavia and the East European Plain, but it remains modest with maximum values at 0.08. 

Hence, we did not account for a reduction in the degree of freedom due to year-to-year correlation.  270 
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The ANOVA, the retrieval of EOFInt and the regression analyses using PCInt are performed separately for 

each model, but the figures provide the mean for the eight models, denoted by multi-model mean (MMM), 

using a weight proportional to the ensemble size of each model ensemble, referred to as the multi-model 

mean (MMM).. This avoids giving too much weight to models with only 10 ensemble members. We 275 

indicate grid points where the sign of anomalies is the same in seven models out of eight. This corresponds 

to a probability of 6.2% when considering that the sign of the anomaly has a probability of 50% in the 

models, as deduced for the Binomial probability distribution. We alsoAdditionally, we indicate the grid 

points where the p-value is below 5% in at least five models out of eight. 

 280 

3. Simulated Northern Hemisphere snow cover and depth    

3.1 Climatology  

First, we briefly assess the Northern Hemisphere land snow simulated in the eight models. The mean 

seasonal cycle of land snow extent and snow mass is first calculated over North America and Eurasia in 

1979-2014. The snow extent over North America (0°N-90°N 180°W 0°E) and Eurasia (0°N-90°N 0°E 285 

180°E) has a maximum in January-February (Fig. 1a-b, black lines). November and April are associated 

with the start and the end of the season with extensive land snow coverage, respectively. The mean 

seasonal cycle of the Eurasian snow area is well represented by all the models (Fig. 1b, color lines). The 

differences between the models are within the range of uncertainty between the observational data sets, 

except for ECHAM6, which underestimates the snow cover throughout the cold season. We note that EC-290 

Earth3 that simulates a slower snow cover decrease in spring. The snow cover area over North America 

(Fig. 1a) is also well captured by models, but it is overestimated in EC-Earth3 and again underestimated 

by ECHAM6. We also calculate the standard deviation obtained from year-to-year time series for each 

month. The interannual variability in models also agrees with that found in observations (Fig. S1). 

There is less agreement on the snow mass (Fig. 1c-d). First, the snow mass estimations from observations 295 

show a large spread that is maximum from February to May. Then, LMDZOR6LMDZ6 and CMCC both 

largely overestimate the snow mass in Eurasia and North America from December to March.. NorESM 
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and CESM2 only overestimate the snow mass over North America, especially from February to March.. 

Other models simulate snow masses within the spread of observational products. In conclusion, the 

models reproduce the observed snow cover seasonality, but tend to overestimate the snow mass., except 300 

ECHAM6, which simulates a realistic snow mass, but underestimates the snow cover. However, the 

formula used to convert snow water equivalent into snow cover might not apply to ECHAM6. These 

conclusions are in agreement with the similar analysis of CMIP6 AOGCMs from Mudryk et al. (2020) or 

Zhong et al. (2022). Therefore, the use of atmosphere-only simulations does not significantly reduce the 

land snow biases compared to AOGCM simulations. 305 

The location of the snow cover biases of each model compared to CanSISE is illustrated for January in 

Fig. 2. We chose here CanSISE as a reference as it is based on an ensemble of observations. Most models 

simulate more snow cover than observational products from the Tibetan plateau to Eastern Siberia and 

too little snow cover over southwestern Eurasia. No apparent snow biases are found over the fully snow- 

covered domain between Eastern Europe and Central Asia. Over North America, there is generally more 310 

snow in models than in observations over the Rocky Mountains, and a few models also underestimate the 

snow cover over Northeastern Canada. Given the large uncertainty of the observational products over 

Mountain regions, more observations would be needed to fully confirm the biases over these regions. The 

snow water equivalent in models (Fig. 3) shows a generally positive bias over land with no consistent 

large-scale pattern in LMDZOR6LMDZ6, CMCC, NorESM, and CESM2. TheSuch positive bias is 315 

negativereduced in EC-Earth3 and HadGEM3. In ECHAM6 and IAP4.1, with an underestimation, there 

is a weak overestimation of the SWEsnow water equivalent over the East European Plain and. An 

overestimation is also simulated in IAP4.1, but over North-Eastern Siberia, respectively. EC-Earth3 and 

HadGEM3 agree with the observations. 

Hereafter, we focus on the land snow variability in November, January, and April, which represent the 320 

start, the maximum, and the end of the period with large snow coverage in the Northern Hemisphere (Fig. 

1).   
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3.2 Assessment of snow cover anomalies  

Figure 4a-b shows the time series of the anomalous snow cover area in winter, defined by the average 

from November to March, in the MMM of ALL. The anomalies are defined with respect to the 1979-325 

2014 climatology. The observational values are also shown but using a different scale to facilitate the 

comparison. Indeed, the decreasing trend of the MMM snow cover area is roughly half of that observed 

over Eurasia and North America (see also red and grey symbols in Fig. 5b). In addition, the year-to-year 

variability of ALL is much smaller than that observed. This presumably reflects that the observations 

correspond to one realization while the model ensemble means are averaged over 10 to 30 members, 330 

depending on the model, which strongly reduces the impact of internal variability. This suggests either 

that half of the observed trends is due to internal variability, or that the influence of SST or external 

forcing is underestimated by half in the models.  Similar results are found for the snow mass, but the 

decreasing trend over Eurasia is much weaker in models than in observations (Fig. 4c-d and Fig. 5a). The 

timing of some of the minima and maxima are consistent, as in 2007/2008 for the snow extent over Eurasia 335 

(Fig. 4a), in 1993 and 1999-2000 for the snow extent over North America (Fig. 4b), or in 1987, 1998 and 

2010 for the North American snow mass (Fig. 4d). This is consistent with the strong relationship between 

El Niño events and positive phases Pacific North American (PNA) pattern, which are associated with 

warm anomalies and decreasing snow depth over western North America (Ge and Gong, 2009). 

The correlation between the ALL MMM and ERA5-Land snow cover area is 0.66 (0.59) over Eurasia 340 

(North America), while it is 0.69 (0.60) over Eurasia (North America) for snow mass, which demonstrates 

a dominant influence of the boundary conditions. After removing the linear trend from every time series, 

the correlations are smaller, but they remain significant, except for snow mass over Eurasia (compare red 

and yellow symbols in Fig. 5d).   

 345 

The overall impact of the sea-ice variations on the snow cover area and snow mass is limited, as shown 

by the differences between the MMM of ALL and NoSICvarNoSIC over North America (Fig. 4f-h). The 

time series in Fig. 4f-h show), which have no clear trend and are not significantly related to observations 

at the 5% level (Fig. 5d), except5d). However, a significant correlation of 0.43 is obtained for the Eurasian 
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snow extentarea over Eurasia (Fig. 4e), which is significantly correlated with observations (R=0.43) 350 

evenremains significant for detrended time series (R=0.38).  

 

The correlations of land snow area and mass between observation and models remain significant over 

Eurasia and North America separately for November, January and April in Fig. 5c-d for ALL (red and 

orange symbols), which confirms the robust influence of boundary conditions. The 1980-2014 linear 355 

trends of snow cover and snow depth are also assessed for the 3 months in Fig. 5a-b, using the MMMs, 

and calculating their statistical significance with a Student’s t-test, as detailed in Liang et al. (2021).  

Over Eurasia and North America, the trends in ALLmodels for November and, January, and April (Figs. 

5a-b, red circle and plus) are consistent with that of the whole winter (NDJFM). However, in April, the 

snow depthunderestimated trend over Eurasia in ALL is more negative, while the snow extent trend over 360 

North America is smaller and insignificant. The comparison between the observed CanSISE (Figs. 5a-b, 

grey circle and plus) and simulated trend reveals important differences, as a dominant negative trend is 

observed in November and January for snow extent and mass, respectively. A comparison of the trends 

obtained in other observational datasets (Figs. S2 and S3) shows a large spread in trend estimates, with 

increasing snow extent in fall and early winter in the NOAA-CDRcompared to observations, while ERA5-365 

Land, MERRA2 and CanSISE show a decreasing snow extent, as found previously (Brown and Derksen, 

2013; Mudryck et al., 2017). The reason for this difference between the NOAA-CDR and multi-

observation products is unknown (Mudryck et al., 2017). This suggests that observational uncertainties 

are important, especially in fall, as reported by Fox-Kemper et al. (2021). is mainly due to November. 

The trend maps obtained from ALL MMM in November, January, or April (Figs. 5e-g) reveal an 370 

important large-scale decrease in snow cover, maximum at the edges of the snow-covered domain. (Figs. 

5e-g). 

 

The influence of sea-ice is investigated with the trends of the MMM of ALL minus NoSICvarNoSIC, and 

the correlation between observationsobservation and the MMM of ALL minus NoSICvarNoSIC in Fig. 375 

5a-d (blue and sky-blue symbols). The trends of ALL minus NoSICvarNoSIC are negative and significant 

for snow mass only, which may reflect an influence of the sea-ice loss reducing the snow mass. For the 



 

15 
 

snow cover, the correlation and trend are mainly small and insignificant. The trend maps (Fig. 5h-j) show 

a weak but significant decreasing trend for November, January, or April in Southern Scandinavia 

extending eastward into Eurasia. In November, a, with an additional decreasing trend is located east of 380 

Scandinavia, downstream of the Barents Sea. Such a location is in agreement with the large oceanic heat 

release expected from the observed Barents-Kara sea ice loss (Deser et al., 2015). Another decreasing 

snow cover trend is also simulated over north-eastern Canada in November.  (Fig. 5h-j). 

 

3.3 Role of the boundary conditions in driving snow cover  385 

The influence of boundary conditions is quantified using an ANOVA (see section 2.3). We first applied 

the ANOVA separately at each grid point. The effect of SST and external forcing represented by the factor 

t is found to be dominant. The snow cover variance fraction associated with this factor is significant in all 

models in November, January, or April (Figs. 6a-c).  It is largest over the mid-latitude edges of the snow-

cover in Eurasia or North America, and may reach 15% over the Tibetan plateau, although models and 390 

observations have large uncertainties there (Mudryk et al., 2020). A large variance fraction  (>5%) is also 

simulated over the Rockies and Scandinavia. In November, the variance fraction is ~4 to 5% over 

Northern Canada and a latitudinal band from Scandinavia to Eastern Siberia. By January, the mean 

variance fraction at the edge of the snow cover domain increases on average to ~6% and shifts toward 

eastern Europe and from the Caspian Sea to eastern China. In April, the large variance fraction is more 395 

important (~6-10%) but more localized from the East European Plain to southern Siberia and over 

Northern Canada. The results are summarized by an ANOVA using the Eurasia or North America snow 

area instead of grid point values in Fig. 6d-f. Models show a significant influence of SST and external 

forcing (indicated by SST/ext in Fig. 6d-f) with 10% to 25% of the variance explained over both domains, 

despite important differences between models. 400 

 

The snow cover variance associated with the varying sea ice concentration is given by the factors e and 

t:e (see section 2.3 for details) representing the influence of the SIC on the time-mean and time-varying 

snow, respectively. The variance fractions show no clear agreement between models and are largely 
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insignificant at most grid points (not shown). The results are summarized in Fig. 6d-f for the snow cover 405 

area over Eurasia and Northern America. The sea ice only explains 1% to 5% of the variance, as found in 

the interaction t:e and the impact on the time mean snow cover is below 0.3% in most models. In most 

models, the ANOVA test is not significant for these two factors. We conclude that sea ice does not have 

a robust influence on the snow cover in our simulations. Using SWEsnow water equivalent instead of 

snow cover yields similar results (not shown). 410 

3.4 Assessment of the role of the boundary conditions for snow cover 

To assess the main patterns of simulated year-to-year snow cover variability, we first investigate the main 

pattern of variability in observations, withusing separate EOFs (north of 30°N) for each calendar month. 

Figure 7 shows the first two snow cover EOFs in ERA5-Land in, from top to bottom, November, January, 

and April, as well as their pattern correlation with the corresponding EOFs obtained from the three other 415 

observational data sets (right). In November, the first EOF (EOF1) shows anomalies of the same sign 

with large loading over the East European Plain, eastern Eurasia, and central North America, near the 

edges of the mean snow-covered area. The second EOF (EOF2) is a dipolar pattern with large loading 

over eastern Europe and small loading with the opposite sign between the Aral Sea and the Baikal Lake 

and in western North America. In January, EOF1 is dominated by a large loading over Europe, while 420 

EOF2 is dominated by strong anomalies over North America. In addition, EOF1 and EOF2 display small 

anomalies near the edge of the Eurasian snow- covered domain. In April, EOF1 is a dipole with large 

loading over North America, and anomalies with an opposite sign between the Caspian Sea and the Baikal 

Lake. EOF2 only shows large loading over the East European Plain. CanSISE provides very similar snow 

cover EOFs to ERA5-Land in all months.  The EOF1 patterns in MERRA-2 and NOAA-CDR are also 425 

similar in January and April, but they are different in November. The EOF2 patterns in MERRA-2 and 

NOAA-CDR mainly disagree with ERA5-Land. This suggests that the observational uncertainty is large 

in November but that the EOF1 pattern is otherwise rather robust.  

 

To emphasize the role of external forcing, SSTSIC and SICSST for the simulated snow cover changes, 430 

the first EOF of the Northern Hemisphere snow cover in the MMM of ALL, called EOF1BC is shown in 
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Figs. 8a, 8d and 8g. The corresponding principal components, hereafter PC1BC, all show a positive trend 

(not shown), so that the EOF1BC resembles the maps of the land snow trend from ALL in 1981-2014 

(compare Fig. 5e-g and Fig. 8a,d,g). November EOF1BC (Fig. 8a) also shows anomalies of the same sign 

over North America and from Scandinavia to eastern Siberia, at the edges of the mean snow-covered 435 

region, and near the Tibetan plateau. In January (Fig. 8d), the pattern is again a monopole, but it is centered 

over a band from Europe to East Asia as the snow-covered domain is broader than in November. In April 

(Fig. 8g), the loading over Eurasia is similar to that found in November, but the anomalies over North 

America are opposite. EOF1BC explains from 36% to 48% of the variance in November, January, and 

April.  440 

 

The EOF associated with the boundary conditions and external forcings can be compared with the 

observed snow cover EOF. The first two EOFs in ERA5-Land (Fig. 7, left) have some similarities with 

the EOF1BC patterns in Figs. 8a,d,g. However, the loading is more localized in ERA5-Land, without a 

clear location at the edge of the snow-covered domain. Moreover, in ERA5-Land EOF1 (EOF2) only 445 

explains from 15% to 21% (12% to 13%) of the variance. The somewhat different patterns and the smaller 

explained variance may reflect in part the large influence of internal atmospheric variability in 

observations. To reveal the links between the observed snow cover variability and the influence of SST 

and external forcing, PC1BC is compared to the observed snow cover PC1 and PC2. The correlation 

between PC1BC and the observed PC1 (Fig. 8c,f,i, left, blue bars) is only significant when using ERA5-450 

Land and CanSISE in November and when using ERA-Land and NOAA-CDR in April, and it is not 

significant at all in January. Moreover, the correlation between PC1BC and the observed PC2 (orange bars) 

is only 5% significant in November for NOAA-CDR. After removing a linear trend from all the time 

series (not shown), the correlations with PC1BC that largely stem from SST forcing are smaller, and they 

only remain significant with ERA5-Land PC1 in November (R=0.36), and with ERA5-Land (R=0.47) 455 

and NOAA-CDR (R=0.48) PC1 in April. This confirms the larger effect of changing SST and external 

forcing in November and April, although the EOF analysis isin not robust among the observational 

dataset. There is no significant correlation in January, presumably because the internal variability is larger. 
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The snow cover EOFs solely related to the sea ice are calculated from the MMM difference of ALL minus 460 

NoSICvarNoSIC (Figs. 8b,e,h). The variance fraction explained by the first EOFSIC is between 10% and 

13%. The absolute variance explained by EOFSIC (not shown) is 6 to 13 times smaller than the one 

explained by EOF1BC, which confirms that sea ice has a much smaller influence than SST or external 

forcing. In November, EOF1SIC is a dipole with the same sign between the East European Plain and North 

America, and an opposite sign over eastern Siberia. In January, EOF1SIC is a dipole with the opposite 465 

signs between North America and Eurasia. The pattern in April is reminiscent of EOF1BC, but with smaller 

anomalies. EOF1SIC can hardly be related to the observed snow cover variability, as the correlations 

between PC1SIC and the observed PCs are weak. This confirms that the sea ice cover has little or no 

impact.  

 470 

The SSTs related to the snow cover changes are given by the regression of the SST anomalies from ALL 

onto PC1BC., using SST anomalies with respect to the 1979-2014 climatology. The regressions can be 

interpreted as the SST patterns contributing to the snow cover anomalies of EOF1BC, or the SST pattern 

responding to the external forcing that affected the snow cover changes. The SIC anomalies might also 

play a secondary role. We note warm SST anomalies in the western equatorial Pacific and the central 475 

midlatitude North Pacific in all months (Fig. 9a-c), consistent with the extended negative snow cover 

anomalies of EOF1BC (Fig. 8a,d,g). This might reflect the SST trends observed during that period, which 

were found to result from the combination of external forcing superimposed on the changes of the Pacific 

decadal variability (Dai and Bloecker, 2018; Gastineau et al. 2019). In April, there is a cold anomaly in 

the Central and Eastern equatorial Pacific, with an extension toward the eastern North Pacific. This 480 

horseshoe pattern resembles a La Niña pattern and its extension toward mid-latitudes, called the 

Interdecadal Pacific Oscillation (Newman et al., 2016). We also note warm SST anomalies over the North 

Atlantic in November, which remain similar, but with smaller amplitude, when removing the linear trends 

(not shown), suggesting a dominant role of interannual or decadal North Atlantic variability.  

 485 

To understand these links, the SLP anomalies in ALL MMM associated to PC1BC are shown in Fig. 9d-f. 

In April, the SST is associated with a weakened Aleutian Low in the North Pacific and a PNA pattern, 
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which are consistent with the expected pattern associated with cold equatorial Pacific SST anomalies. 

The weakened Aleutian Low leads to cold air advection over western North America, which explains the 

positive snow cover anomalies in that region (Fig. 8g). Therefore, the SST over the Pacific Ocean plays 490 

a significant role in the April snow cover over North America. The SLP anomalies are otherwise not 

significant for November and January. We also note positive SST anomalies ininto the Atlantic and 

Pacific oceans, which might reflect the positive SST trend observed during that period at those locations. 

 

To investigate the role of sea-ice driven variability, we calculated the regression onto the PC1SIC index, 495 

using the prescribed SIC in ALL, and the MMM difference of SLP from ALL minus NoSICvarNoSIC. 

PC1SIC has a decreasing trend in November (not shown) and it reflects small but significant negative SIC 

anomalies in the Barents, Labrador, and Bering Seas (Fig. 9g). In November, the associated SLP anomaly 

is negativelow over the negative sea ice anomalies, as expected from the warming in the atmospheric 

planetary boundary layer, as shown in previous studies (Peings and Magnusdottir, 2014; Liang et al. 500 

2021). The November SLP pattern (Fig. 9g) is different from a negative North Atlantic Oscillation (NAO) 

or a Ural blocking pattern as previously found as a response to sea ice loss (Mori et al., 2014; Kug et al., 

2015; Nakamura et al., 2015; King et al., 2016; Smith et al., 2022), but it is consistent with previous 

studies using atmosphere-only experiments (Ogawa et al., 2018; Liang et al. 2021). In January and April, 

the sea ice anomalies are very small. In January, the SLP pattern is insignificant, but in April, there is a 505 

cyclonic anomaly around 50°N over the Atlantic Ocean, a small cyclonic anomaly over the Mongolian 

Plateau, and a weakening of the Aleutian Low. This might be related to the impact of sea ice on the snow 

cover and soil moisture in spring (Barnett et al. 1989). Positive SLP anomalies are also located over the 

Kara Sea, but these anomaliesit cannot be linked to the snow cover anomaly in a simple way. In all cases, 

removing the linear trends lead to different results (not shown), so the relationships shown in Fig. 9g-i 510 

mostly reflect the impact of the sea ice declining trend. 
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4. Internal variability and climate impacts of snow cover anomalies 

4.1 Internal variability of snow cover  

The impact of internal atmospheric variability on snow cover anomalies is investigated over Eurasia. We 515 

focus on Eurasia as it is the largest continent, and snow cover was previously suggested to influence the 

Northern Hemisphere atmospheric circulation (Cohen and Entekhabi, 1999; Cohen et al. 2014; Gastineau 

et al. 2017). In the observational datasets, we remove a quadratic trend from all variables, which should 

remove a large part of the changes linked to the long-term evolution of external forcing, and then 

quantifies the internal variability, which is largely due to atmosphere-land processes, in addition to a 520 

residual influence of SST and SIC. The first EOF of the detrended snow cover in ERA5-Land is shown 

in Figs. 10a, 10e and 10i. The patterns are somewhat similar to those obtained over the Northern 

Hemisphere before detrending (Fig. 7), but the EOF1 over Eurasia in November and April corresponds 

to the EOF2 of the Northern Hemisphere before detrending. The similarity in the EOF1 pattern obtained 

in January in models and observations (Figs. 7d and 10e) suggests that internal variability is dominant 525 

during that month, as opposed to November and April where forcings are important. The regressions of 

the SLP and surface air temperature (Figs. 10b,f,j) onto the PC1 at no lag illustrate in January the influence 

of the NAO on the snow cover with cold air advection increasing the European snow cover. In November 

and April, the snow cover is linked to a trough over the Ural region, with cold (warm) air advection over 

its western (eastern) flank. The troughtroughs over Central Eurasia isare part of a wave-like perturbation 530 

between the Atlantic Ocean and Eurasia. In November, the trough extends to eastern Siberia and is 

associated with a warming and a snow cover decrease in Central Siberia. These patterns are similar in 

January when using the other three snow cover datasets (see Figs. 10d and 10h). In November, the patterns 

remain similar except for MERRA-2. In April, the patterns are different (Fig. 10i) andwhen the SLP 

anomalies are smaller (Fig. 10j10l). 535 

 

To investigate the internal atmospheric-land variability in the model simulations, we repeat the same 

analysis except that we remove from snow cover, SLP, and surface air temperature the effect of boundary 

conditions by removing for each model the model ensemble mean of the ALL and NoSICvarNoSIC 
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simulations from the individual members. This removes mosta large part of the variability driven by 540 

external forcing, SST and SIC. The main EOFInt ispatterns are calculated for each model separately and 

then, as it isthey are found to be similar among models, averaged among the eight models using the 

ensemble size as a weight (Fig. 11a-f). This robustness is shown by the large pattern correlation of EOF1Int 

(blue bars) and EOF2Int (orange bars) of each model and those of the multi-model average, with a pattern 

correlation largest when the model has a large ensemble of 30 members (indicated by black stars in the 545 

x-axis numbers of Fig. 11g-i). In November, January, and April, a large monopole with positive snow 

cover anomalies over the edge of the snow-covered domain appears as the first mode (Fig. 11a-c), with 

between 9% and 30% of the variance explained. The maximum loading of the monopole is located in 

Westernwestern Eurasia in November. It shifts to Eastern Europe in January, and moves eastward toward, 

except in April where it is over Central Siberia in April. The. A dipole is found as a second mode is a 550 

dipole, with positive anomalies positioned on from Scandinavia to the northwestern and southeastern 

endsBlack Sea, and negative anomalies from the Caspian Sea to the eastern coast of the EOF1 patterns; 

its Siberia. The variance explained variance by the second mode ranges between 6% and 18%.  

 

The SLP and surface air temperature associated with the first mode are calculated by a regression onto 555 

the PC1Int of the snow cover in each model, which is then averaged similarly among all models. The snow 

EOF1Int in November, January, and April is always associated at no lag with an anticyclone located at the 

north or the north-west of the positive snow cover anomalies (Fig. 12a-c), as expected from cold air 

advection which increases snow cover. However, the location and amplitude of the cold surface air 

temperature anomalies are not always matching the snow cover anomalies. For instance, the cold 560 

anomalies are strongest in January with a widespread cooling extending from western Europe to far 

eastern Siberia, but the associated snow cover anomalies have the same amplitude in all three months, 

and are only located over eastern Europe in January. In November, the anticyclone is centered over the 

Nordic seas (Fig. 12a), while it extends from the Nordic Seas to Northern Siberia in January (Fig. 12b). 

In April, the snow anomalies cover the southern edge of the snow cover domain, and the anticyclone is 565 

centered over the eastern Arctic (Fig. 12c). EOF2Int is associated with a trough over the Ural Mountains 
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in November and April, while the NAO and the associated temperature anomalies over southern Siberia 

dominate in January.   

 

The comparison between Fig. 10 for observations and Figs. 11-12 for models suggests that the models 570 

reproduce fairly well the main mode of the observed variability. In both cases, the NAO is the dominant 

mode of variability during January. In January, the analysis of the second EOF from detrended  found in 

observations (not shown) also shows that it is , although the associated with patterns similar with that 

found in models (Figs. 11e and 12e). During November and April, the observed dominant mode of 

variability is a blocking pattern with a trough over the Ural region. This pattern also occurs in the models, 575 

but with less variance, as it is reproduced by EOF2 rather than EOF1. However, there is an important 

spread among observations in November and April, and is smaller in models. However, the analysis of 

observation is based on detrended time series that still include the contribution from interannual SST 

variability and short-term fluctuations in the external forcing.  

4.2 Climate influence of snow cover anomalies 580 

Because of the limited intrinsic atmospheric persistence, the SLP and temperature lagging the snow cover 

by one month should reflect the snow cover influence in the absence of other concomitant forcings. It is 

illustrated for observations in Fig. 10c,g,k and for models in Figs. 13-14. In observations, the November 

EOF1 is followed by negative SLP anomalies over the polar cap and some weak positive anomalies over 

Westernwestern Europe and the Bering Sea. This SLPThe pattern shares some similarities with that found 585 

at no lag, but with a smaller amplitude.broadly resembles the positive Arctic Oscillation, which could be 

linked to the November snow cover influence investigated in Gastineau et al. (2017). In January, the 

negative NAO anomalies associated in phase with EOF1 are reduced by half but they persistpersists the 

following month. In April, no clearsignificant SLP pattern emerges at a lag of one month. In all cases, the 

surface temperature is cold (warm) over positive (negative) snow cover anomalies, as expected, although 590 

their statistical significance is limited.  
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In models, no robust SLP or temperature anomalies follow the November snow cover EOF1Int with a lag 

of one or two months (Fig. 13a,d). On the other hand, the January EOF1Int (Fig. 13b) is followed by strong 

temperature and SLP anomalies at lag 1 (in February) with a strong anticyclonic anomaly over the polar 595 

cap extending toward central Eurasia, which is associated with cold continental air advection over 

northern Eurasia. The patterns are somewhat similar to those shown at lag 0 for January (Fig. 12b). Since 

they remain largely similar at lag 2 (Fig. 13e), albeit with smaller amplitude, this suggests that snow cover 

anomalies act as a positive feedback and amplify the AO one (in February) or two (in March) months 

later. However, it might also reflect an unusually large atmospheric persistence or the presence of a 600 

concomitant forcing. The May SLP and temperature anomalies lagging the EOF1Int in April by one month 

(Fig. 13c) are also similar to the unlagged patterns, albeit smaller, and the air temperature remains cold 

over the land surfaces covered with positive snow anomalies in April. However, the anomalies are 

negligible at lag 2 (Fig. 13f). The pattern lagging the snow cover by one month is robust among models 

in January (Fig. 13h), but the agreement decreases in April (Fig. 13i) and more so in November (Fig. 605 

13g). For the pattern following the January EOF1Int  by two months, the agreement among models is 

smaller than at lag 1, but it remains high in models with 30 members. 

 

The temperature and SLP anomalies lagging the snow cover EOF2Int by one month (Fig. 14a-c) are smaller 

than for EOF1Int and they vanish at lag 2 (not shown). One month after January EOF2Int there are 610 

substantial temperature and SLP perturbations (Fig. 14b), resembling a negative AO pattern as was the 

case of the forcing pattern (Fig. 12e), but weaker. Its polar center is rather located over Svalbard, and it 

is less associated with an intensification of the Siberian anticyclone. Negative SLP anomalies are also 

found over East Asia. On the other hand, only small SLP and surface air temperature anomalies follow 

the November and April EOF2Int. 615 

 

The comparison of Fig. 10 with Figs. 12 andFig. 13 shows a different relationship in models and 

observations for snow cover in November and April. However, in January, a more extended snow cover 

over Europe is followed in both models and observation by anticyclonic anomalies over Iceland and 

negative pressure anomalies over the mid-latitude Atlantic Ocean, as well as cold air temperature 620 
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advection toward Europe. As the same relationship is found when the January land snow leads the 

atmosphere by two months in models, this might indicate a large-scale atmospheric response to the snow 

cover anomalies. However, an anomalous persistence of the atmospheric anomalies can also be caused 

by troposphere-stratosphere interactions, increasing the memory of the atmosphere. This hypothesis is 

investigated in the next section. 625 

 

4.3 Role of the stratosphere for the January snow cover variability  

To understand the mechanism behind the statistical relationship between the January snow cover and the 

atmosphere, we focus on LMDZOR6 (the #5 model #5 in Figs. 11g-i, 12g-i, and 13g-i.), as daily outputs 

and three-dimensional atmospheric fields are available. LMDZOR6 reproduces the links between the 630 

January snow cover EOF1Int and the atmosphere one or two months later as shown in Fig. 13, with nearly 

identical regression maps onto PC1Int when using only LMDZOR6 data (not shown). Figure 15 shows the 

lag regression of the daily polar cap temperature (north of 60°N) onto the PC1Int of the January snow 

cover. A significant lower-stratosphere warming is simulated from November to March. At 50-hPa, the 

temperature anomaly increases from 0.15°C in November to 0.3°C in December and 0.65°C in January. 635 

The stratospheric warming and the polar vortex weakening thus precede the January snow cover 

anomalies. However, the stratospheric temperature shows another maximum anomaly of 1.0.9°C in 

February, suggesting that the snow cover hasmight have intensified the polar vortex weakening. The 50-

hPa geopotential height anomalies associated to theinfluence of Eurasian snow cover show thaton the 

polar vortex weakening is widespread and affects the whole polar cap (Fig. S4). 640 

 

The wave activity flux was calculated to investigate the propagation of theatmosphere could be induced 

by an amplification of the climatological stationary waves (see Section 2.2). The regression of the wave 

activity flux on PC1Int shows an amplified upward componentplanetary wave pattern (Garfinkel et al., 

2010), through an intensification of the wave activity fluxridge over eastern Eurasia and the western North 645 

Pacific (Fig. S5). This Eastern Europe. Such a planetary wave propagates upward into the stratosphere 

and may indeed weaken the polar vortex within 10 to 20 days. It is well established that such polar vortex 
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weakening might then lead to a negative AO in the troposphere, with a lag of a few weeks (Baldwin and 

Dunkerton, 1999), and episodic downward propagations are indeed visible in Fig. 15 from mid-the end 

of January to Marchearly April. However, the role of the snow cover anomalies in this mechanism remains 650 

to be established.  

 

To do so, we consider in the same model (e.g. LMDZOR6) an index of the stratospheric polar vortex, 

defined. We define this index as the standardized January polar cap (north of 60°N) temperature 

anomalies at 50-hPa, hereinafter called PCT50. We also define an February AO index withWe then remove 655 

the first PC of the SLP north of 20°N.  The ensemble mean of that model is then removed from all time 

series. The correlation between PCT50 and PC1Int is weak (0.09) but significant. Both the January PCT50 

and PC1Int are significantly correlated to the February AO, but the variance of the AO that is explained 

by PCT50 is larger than the one associated with the snow cover index, PC1Int (Fig. 15b). Both polar vortex 

and snow cover remain significantly related to the AO when using a multi-variate regression (not shown). 660 

A similar analysis using composites confirms this result and shows that the relationships between both 

indices and the AO are mostly linear (Fig. S6). Therefore, the snow cover has a significant influence on 

the AO, but this influence is smaller than the one associated with the polar vortex.  

 

atmospheric fields. Using then regression onto PCT50, we found that the snow cover anomalies precede 665 

the stratospheric warming by 1 or 2 months (Fig. 16a,d),, but not by more. (Fig. 16a). The same regression 

using SLP (Fig. 16b,e16d) shows a dominant Ural blocking pattern in December increasing the snow 

cover anomalies by easterly cold air advection, and preceding by one month the January polar vortex 

anomaly. The Ural blocking is associated with negative SLP anomalies over Westernwestern Europe and 

the Aleutians, and thus projects onto the negative AO phase. Ural blocking can also amplify the stationary 670 

wave pattern and warm the stratosphere through intensified heat flux due to planetary waves (Martius et 

al., 2009; Peings, 2019). The regressions are weaker for lag -2, with only a small significant anticyclone 

east of Scandinavia.  The Ural blocking pattern over northern Siberia is consistent with positive snow 

anomalies south of it. The (Fig. 16b,e). These regressions obtained using PCT50 (Fig. 16b,e) resemble the 

one obtained with PC1Int (Fig. 16c,f), even if the later anomalies are shifted toward the North Atlantic.  675 
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In summary, theThis suggests that both snow cover and the polar vortex have a common driver, namely 

Ural tropospheric blocking. The snow cover and the polar vortex also have a similar influence on the AO 

one month later. Therefore, the , so that the lead-lag relationship between January snow cover and the 

troposphere in February or March must be interpreted with caution, asand causality cannot be firmly 680 

established. However, the polar vortex anomalies in Fig. 15 show a clear amplification in February, 

following the January snow cover anomalies. Although the snow cover influence is smaller than the one 

of the polar vortex, it remains significant when removing the concomitant effect of the polar vortex with 

a multivariate regression using snow cover and polar vortex indices. This suggests that snow cover 

anomalies might act as a positive feedback for the AO variability, as they, and amplify the combined 685 

negative AO and Ural blocking pattern.    

 

5. Discussion and conclusion 

The land snow over the Northern Hemisphere is investigated in four observational datasets and in two 

large multi-model ensembles of atmosphere-only experiments, one with prescribed SST, sea ice and 690 

external forcing during the 1979-2014 period, and the other in which sea ice variations are replaced by 

their climatology. Although models simulate different mean states forhave biases in representing the snow 

cover, the observations show an important spread as found by Mudryck et al. (2017), and both simulated 

trend and mean state are within the observational spread.observed snow cover trend is overall well 

reproduced. In the multi-model ensemble mean, the trend is mainly driven by the external forcings and 695 

the associated SST warming. The, while sea ice loss only drives a small and insignificant fraction of snow 

cover trends. The sea ice loss only produces a decreasing snow cover trend located south and downstream 

of Scandinavia in January and April, and east of Scandinavia downstream of the Barents Sea in 

November.anomalies. Cohen et al. (2014), among others, proposed that snow anomalies might amplify 

or damp the mid-latitude atmospheric circulation response to sea ice loss, but in our experiments, the SIC 700 

has little influence in driving the snow cover. However, the lack of two-way coupling between 

atmosphere, sea-ice and the ocean in our experiments does not allow reproducing realistic links between 
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snow and sea ice anomalies. Analogous analyses need to be conducted in AOGCMs to further investigate 

the links between SIC and snow cover.  

 705 

The 1979-2014 investigated period shows a transition from a warm to a cold IPO phase and from a cold 

to a warm Atlantic multidecadal variability (AMV) phase (Luo et al. 2022). Our analysis suggests that 

the IPO has a consistent influence among models on the North American snow cover, through the PNA 

teleconnection pattern. The results for the Eurasian snow cover are ambiguous and cannot be specifically 

attributed to the SST anomalies or the external forcings. The investigation of simulations focusing on the 710 

role of external forcing, such as those realized in the RFMIP (Pincus et al., 2016) panel of CMIP6 would 

be necessary to distinguish between them. Sensitivity simulations using the observed changes in the AMV 

and IPO would also be helpful. In addition, including the period after 2014 would be important to 

understand the climate impacts of the observed reduction in spring snow cover (Mudryk et al. 2020). The 

simulations investigated here end in 2014 and cannot be used to fully understand this change. A similar 715 

multi-model investigation with simulation extended to present- day could be pursuedpursue in future 

works.  

 

The snow cover variability due to internal atmosphere-land variability is analyzed in the large ensembles 

of simulation after removing the ensemble mean separately in each model. Lacking a better method, the 720 

internal variability is quantified in observations by removing the quadratic trend. We performed an EOF 

analysis of the Eurasian snow cover and used regression of atmospheric fields on the associated PCs to 

investigate the atmosphere-snow coupling. We found that the models reproduce well the main 

atmospheric modes responsible for the forcing of the snow cover in observations, with Ural blocking 

anomalies embedded with wave-like anomalies leading to dipolar snow cover anomalies in early spring 725 

and early winter. In mid-winter, the NAO has the dominant influence, increasing the snow cover over 

eastern Europe and inducing a widespread Eurasian cooling for negative NAO phases. In both 

observations and modelsIn observation, we found no robust circulation pattern following that the 

November snow anomalies. This seems to contradictleads to AO-like anomalies by one month. Such a 

relationship is not reproduced in models, seemingly contradicting the results of Gastineau et al. (2017), 730 
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wherewhen CMIP5 preindustrial control simulations were found to partly reproduce the observed 

influence of November Eurasian snow. This emphasizes the need to better explore the observational 

uncertainties, using various data sets. However influence. However, as mentioned above, sea ice 

concentration and SST anomalies are prescribed in our atmosphere-only simulations and cannot respond 

to the atmospheric forcing as. This is different in observations or coupled simulations, where snow cover, 735 

sea ice and SST are driven by the atmosphere, and provide concomitant forcings. Both models and 

observations show that January eastern European snow cover anomalies are linked to AO-like anomalies 

one month later. The relationship remains significant at a lag of two months in models. The outputs from 

one of the models reveal that the Ural blocking pattern acts as a common driver for the Eastern Europe 

snow and the polar vortex anomalies. A stratospheric warming (cooling) event and a polar vortex 740 

weakening (strengthening) areis, therefore, found to precede by two months the snow cover and negative 

(positive) AO changes in January. The stratospheric warming is found to explain a larger AO variance 

fraction than the snow cover.  The lead-lag relationship between snow cover and atmosphereThis lead-

lag relationship might only stem from the internal atmospheric variability, as proposed by Blackport and 

Screen (2021) for the case of the sea-ice atmosphere interaction that shares a large similarity with the 745 

interaction discussed here. However, we note that polar vortex anomalies (Fig. 15) are reinforced in 

February, one month after snow cover anomalies, and are much weaker before January. Such asymmetry 

suggests that the snow cover intensifies acts as a positive feedback onto the combined AO-Ural blocking 

pattern, intensifying the stratospheric warming and the resulting AO-like anomalies produced by 

downward propagation one month later. This mechanism is supported by the intensification of the upward 750 

propagating planetary waves following a larger snow cover extent in January, as found by Lü et al. (2020). 

This suggests a two-way coupling between the snow cover and the internal atmospheric 

variabilityatmosphere, where the snow cover anomalies amplify the AO-Ural blocking anomalies that 

generated them, acting. This coupling with snow cover might act as a positive feedback infor the internal 

variability of the land-troposphere-stratosphere system. This conclusion agrees with the results from 755 

subseasonal forecasts (Orsolini et al., 2015; Garfinkel et al., 2020), where the snow cover through 

troposphere-stratosphere interaction reinforces and prolongs the NAO. 
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Further investigating causality and the specific role of the snow coverInvestigating these hypotheses 

would require sensitivity experiments controlling the land snow cover, or the use of specific statistics to 

investigate the causation (San Liang, 2014; Runge et al., 2015).  760 

 

 

Code and data availability 

This study is based on publicly available data for observations. The climate model simulations are 

available upon request from the authors of this study. Matlab code for data analysis and scripts used to 765 

generate the map (ferret and python) can be obtained upon request from the corresponding author. The 

Plumb wave activity flux is calculated using the code from Kazuaki Nishii (http://www.atmos.rcast.u-

tokyo.ac.jp/nishii/index.html). 
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Table 1. Summary of the AGCMs used in this study. The short name is used in the text of this study 
instead of the full model name. 

Model Name 
(short name) # Institution 

Horizontal 
resolution 
(lat x lon) 

# of vertical 
levels 

(top level) 

# of 
members 

Adjustment 
of SST/SIC 

Snow 
cover 

available 

CMIP6 External 
Forcing used Reference 

EC-Earth3 
(EC-Earth3) 1 DMI 

T255 
(~80 km) 

91 
(0.01 hPa) 20 Yes No CMIP6 Döscher et al., (2022) 

HadGEM3-
GC3.1 

(HadGEM3) 
2 UoS 0.83o x 0.55o 

(~60 km) 
85 

(85 km) 
10 No No HighResMIP Walters et al. (2017) 

ECHAM6.3 
(ECHAM6) 

3 MPI-M T127 
(~100km) 

95 
(0.01hPa) 

10 Yes No CMIP6 Stevens et.al.(2013) 
Mueller et. al. (2018) 

IAP4.1 
(IAP4) 

4 IAP 1.4 o x1.4 o 30 
(2.2hPa) 

15 Yes No 

1979-2005: CMIP5 
historical 

2006-2013: CMIP5 
RCP8.5 

Sun et al. (2012) 

LMDZOR6 
(LMDZOR6LMD

ZZ6) 
5 LOCEAN-IPSL 1.26o x 2.5o 

(~150 km) 
79 

(0.01 hPa) 
30 Yes Yes HighResMIP Hourdin et al. (2020) 

NorESM2-
CAM6 

(NorESM) 
6 NERSC 0.94o x 1.25o 

(~100 km) 
32 

(3.4 hPa) 30 Yes Yes CMIP6 Bentsen et al. (2013) 
Seland et al. (2020) 

CESM2-
WACCM6 
(CESM2) 

7 WHOI-NCAR 
0.94o x 1.25o 

(~100 km) 
70 

(4.5x10-6 hPa) 30 Yes Yes CMIP6 
Gettelman et al. 

(2019) 

CMCC-CM2-
HR4 

(CMCC) 
8 CMCC 0.9° x 1.25° 

(~100 km) 
30 

(2 hPa) 10 No Yes HighResMIP Cherchi et al. (2018) 
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Figure 1: (Top) Seasonal cycle of the area covered by snow, in 106 km2, in (a) North America and (b) Eurasia. (Bottom) Seasonal 
cycle of the Northern Hemisphere snow mass, in 1012 kg, in (c) North America and (d) Eurasia. Color curves show results from 
models. Thick black curves show observations. The grey shade provides the observational spread obtained from CanSISE. 
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Figure 2: (a) Mean January snow cover in CanSISE, in fraction. (b-i) Meanmean snow cover (color shade) bias in January, in 
fraction, calculated as the ALL ensemble mean minus CanSISE for each model. The contours indicate the mean snow cover fraction 
in CanSISE (contour interval 0.2) shown in (a). 
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Figure 3: Same as Fig. 2, but for the snow water equivalent, in m. 
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Figure 4: Time series of the anomalous area covered by snow in 106 km2 (first row)  and anomalous snow mass in 1012 kg (second 
row)  in winter (from November to April),) , in (right) North America and (left) Eurasia in observation and the simulation ALL. 
(Third row) Same as first row, but for ALL minus NoSICvar. (FourthNoSIC. (Forth row) Same as the second row, but for the 45 
difference ALL minus NoSICvarNoSIC. Note the different scale in the y-axis for (left axis, black line) models and (right axis, blue 
line) ERA5-Land and CanSISE observations. The grey shading indicates the range between the minimum and the maximum values 
among the eight models. The black curve is the multi-model ensemble mean. The correlation between the multi-model mean and 
ERA5-Land is given in the bottom left corner of each panel, the star symbol indicating a p-value below 5%. 
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Figure 5: Trend in Northern Hemisphere (trend in a) snow mancover extent and (b) snow extentmass. Correlation betweenwith 
ERA5-Land and simulated values for (c) snow masscover extent and (d) snow extentmass. Red (blue) symbol denotes the simulation 
ALL ( ALL minus NoSICvarNoSIC) for 1979-2014. Grey symbol denotes the CanSISE observations for 1979-2010. Orange (blue 55 
sky) symbol is for the simulation ALL (ALL minus NoSICvarNoSIC) when using linearly detrended fields. Northern Hemisphere 
trend in snow cover, in % per decade-1, for the multi-model mean of simulations (e-g) ALL and (h-j) the difference of (h-j) ALL 
minus NoSICvarNoSIC; in (e) (h) November (f) (i) January and (g) (j) April. In (a-d), the size of the symbol is large (small) if the 
significance of the trends is below (above) 5%. In (e-j), black contours indicate where the p-values are lower than 5%.  
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Figure 6: Variance fraction (in %) of the interannual snow coverwater equivalent anomalies explained by SST, external forcing and 65 
sea ice concentration; for (a) November, (b) January and (c) April. The thick black curve indicates where the p-value of the ANOVA 
test is lower than 5% for at least 5 models out of 8. Variance fraction (in %) of the snow cover area over Eurasia (Eur) and North 
America (NAm) calculated for each model separatelyseparatly for (d) November, (e) January and (f) April. The number from 1 to 
8 designates the model (see table 1 for correspondence with model name). The symbol star indicates when 30 members are available 
for both ALL and NoSICvar. Theeffect of the factor t, representing the influence of SST and external forcings, is referredrefered to 70 
as SST/ext. The effect of the factor e, representing the influence of SIC on the time mean snow, is referredrefered to as SIC. The 
effect of the factor t:e, representing the influence of SIC on the time- varying snow, is referredrefered to as SST/Ext:SIC. Numbers 
are given in bold font if the ANOVA test has a p-value below 5%.  
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Figure 7: (Left column) First and (center column) second EOFs of Northern Hemisphere snow cover anomalies in ERA5-Land 
during 1981-2014 for (first row) November, (second row) January and (third row) April. The variance explained by the EOFs is 80 
indicated. (Right column) Pattern correlation between the (blue bar) EOF1 and (orange bar) EOF2 of ERA5-Land and that found 
in other observational datasets MERRA2, NOAA-CDR and CanSISE. 
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Figure 8: (Left column) First EOFBC of the snow cover anomalies associated with sea surface temperature and external forcing 85 
anomalies and (center column) first EOFSIC associated with sea ice concentration anomalies, for (first row) November, (second row), 
January and (third row) April. (Right column) Correlation between the observed snow cover PC1/2 and PC1 BC and between the 
observed PC1/2 and PC1SIC when using (blue and orange bars) ERA5-Land, (green cross) MERRA2, (blue cross) NOAA-CDR and 
(red cross) CanSISE. The blue (orange) bars and the associated crosses provide the results when using PC1 (PC2) from observations. 
The dashed line providesprovide the 5% and level of statistical significance for the correlation when using ERA5-Land, MERRA2 90 
or NOAA-CDR in 1981-2014 (32 degrees of freedom). The dotted line is the same as the dashed line but when using CanSISE in 
1981-2010 (28 degrees of freedom).  
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Figure 9: (a) (b) (c) Regression of the SST, in °C (gray contours and color shade) on PC1BC; (d) (e) (f) Regression of the SST, in °C 
(color shade)  and sea level pressure, in hPa (black contour, contour interval 2 hPa; dotted contours for negative values), on PC1BC. 
(g) (h) (i) Regression of the SIC, in % (gray contours and color shade), and sea level pressure, in hPa (black contour, contour interval 
2 hPa; dotted contours for negative values), on PC1SIC. In all panels, color shade indicates p-value below 5% for the regression of 100 
the SST or SIC. Dots indicateindicates p-values below 5% for the SLP regression in panels (d)-(i). Left panels are for November. 
Center panels are for January. Right panels are for April. 
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Figure 10: (First column from left) First EOF of the detrended Eurasian snow cover in ERA5-Land, shown as the regression of the 105 
snow cover, in %, onto the first PC. (Second column) Regression of the observed (color shade and grey contours) surface air 
temperature, in °C, and (black contour; contour interval 1 hPa) sea level pressure in hPa on PC1 at lag=0, and (third column) at lag 
= 1, i.e. for PC1 leading by one month the atmospheric fields. (Forth column) Pattern correlation of the EOF1s and of the regressions 
of surface air temperature or sea level pressure on the Eurasian snow cover PC1 between ERA-Land and other snow cover datasets. 
T2M0  and SLP0 designate the pattern correlation of the regressions at lag = 0; T2M1 and SLP1 designate the pattern correlation at 110 
lag = 1. The firstFirst row is for November, the second row for January and the third row for April. In the second and third columns, 
color shadings indicate p-value below 5% for the surface air temperature regression. 
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 115 
 
Figure 11: (First row) First and (second row) second EOFInt of the Eurasian snow cover, in %, associated with internal atmospheric 
variability in the simulations ALL and NoSICvarNoSIC. The patterns are the average patterns of the eight models. The numbers 
displayed on top are the minimum and maximum variance explained by that EOF among the eight models. Dots indicate the locations 
where 7 models out of 8 have EOFInt anomalies with the same sign. (Last row) Spatial pattern correlation between the EOFInt 120 
obtained from each model and that of the model average. The blue (orange) bar shows the results when using the first (second) EOF. 
The numbers on the x-axis designatedesignates each model (see Table 1 for the corresponding model names). The symbol star 
indicates when 30 members are available for both ALL and NoSICvarNoSIC; for (left column) November, (center column) January 
and (right column) April.  
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Figure 12: Regression of the (color shade) 2 m air temperature (T2m), in °C, and (black contour, contour interval 0.5 hPa) SLP, in 
hPa, on (a) (b) (c) PC1Int and (c) (d) (e) PC2Int, for (left) November, (center) January and (right) April. All regressions are calculated 
at no lag (lag = 0 mth), and only use the T2m and SLP anomalies associated with the internal atmosphere-land variability, after the 
removal of the corresponding multi-model mean. The regression shows the multi-model mean regression map, with dots indicating 130 
when the sign of SLP anomalies is consistent in at least 7 models out of eight. The color shades are masked if the sign of T2m is not 
consistent in at least 7 models out of eight.  
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Figure 13: Same as Fig. 12a-c12, but at (a) (b) (c) lag 1 and (d) (e) (f) lag 2, when the atmosphere follows by one month the (left) 
November, (center) January and (right) April snow cover index, as provided by PC1Int. The last row shows the spatial pattern 135 
correlation north of 20°N between the SLP regression obtained from each model and that of the model average. The blue (green) 
bar shows the results at lag 1 (2). The numbers on the x-axis designate each model (see Table 1 for the corresponding model names). 
The symbol star indicates when 30 members are available for both ALL and NoSICvar; for (g) November, (h) January and (i) April. 
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Figure 14: Same as Fig. 12a-c12, but using PC2Int instead of PC1Int at lag = 1 month, when the atmosphere follows by one month the 
(a) (d) November, (b) (e) January and (c) (f) April snow cover. The last row shows the spatial pattern correlation north of 20°N 
between the SLP regression obtained from each model and that of the model average. The blue bar shows the results at lag 1. The 
numbers on the x-axis designate each model (see Table 1 for the corresponding model names). The symbol star indicates when 30 145 
members are available for both ALL and NoSICvar; for (g) November, (h) January and (i) April. 

 

 

 
 150 
Figure 15: (a) Regression of the daily air temperature anomalies over the polar cap (north of 60°N), in °C,) onto the First PC of the 
snow cover internal atmospheric variability, PC1Int, in January and in LMDZOR6. The black line indicates the local statistical 
significance at the 5% level. The vertical dashed black line shows the days corresponding to January. (b) Explained variance fraction 
of the Arctic Oscillation defined as the first EOF of the sea level pressure north of 20°N, for a regression using PC1Int, PCT50 and 
both PCTInd and PCT50 as predictors. The explained variance fraction is significant at the 5% level in the three cases. 155 
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Figure 16: Regression of the (a,d) snow cover, in %, and sea level pressure (SLP; b,e) anomalies, in hPa, onto the January polar cap 
(north of 60°N) 50-hPa temperature anomalies in LMDZOR6. (c,f) Regression of the sea level pressure (SLP) anomalies, in hPa, 165 
onto the First PC of the snow cover internal atmospheric variability, PC1Int, in January and LMDZOR6. The lag indicated is negative 
and given in month, indicating that the polar cap 50-hPa geopotential height or the PC1Int lags. The color shades are masked if the 
local statistical significance is above 5%.  


