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Abstract.

In this study, we investigate the use of ground penetrating radar (GPR) time-lapse monitoring of artificial soil infiltration

experiments. The aim is to evaluate this protocol in the context of estimating the hydrodynamic unsaturated soil parameter

values and their associated uncertainties. The originality of this work is to suggest a statistical parameter estimation approach

using MCMC to have direct estimates of the parameter uncertainties. The use of the GPR time data from the moving wetting5

front only does not provide reliable results. Thus, we propose to use additional information from other types of reflectors to

optimize the quality of the parameter estimation. Water movement and electromagnetic wave propagation in the unsaturated

zone are modeled using a one-dimensional hydrogeophysical model. The GPR travel time data are analyzed for different re-

flectors: a moving reflector (the infiltration wetting front) and three fixed reflectors located at different depths in the soil. Global

sensitivity analysis (GSA) is employed to assess the influence of the saturated hydraulic conductivity Ks, the saturated and10

residual water contents θs and θr, and the Mualem–van Genuchten shape parameters α and n of the soil on the GPR travel

time data of the reflectors. Statistical calibration of the soil parameters is then performed using the Markov chain Monte Carlo

(MCMC) method. The impact of the type of reflector (moving or fixed) is then evaluated by analyzing the calibrated model

parameters and their confidence intervals for different scenarios. GSA results show that the sensitivities of the GPR data to

the hydrodynamic soil parameters are different between moving and fixed reflectors, whereas fixed reflectors at various depths15

have similar sensitivities. Ks has a similar and strong influence on the data of both types of reflectors. Concerning the other

parameters, for the wetting front, only θs and α have an influence, and only at long times since the total variance is zero at

the very beginning of the experiment. On the other hand, for the fixed reflectors, the total variance is not zero at the very start

and the parameters θs, θr, α and n can have an influence from the very beginning of the infiltration. Results of parameter

estimation show that the use of calibration data from the moving or fixed reflectors alone does not allow a good identification20

of all soil parameters. With the moving reflector, the error between the estimated mean value and the exact target value for θr

and α are 9% and 45%, respectively, and less than 3% for the other parameters. The best reduction of the size of the parameter

distribution is obtained for n, with a posterior distribution 9 times smaller than the prior one. For the other ones, this reduction

ratio varies between 1 and 5. For the fixed reflectors, the estimated mean values are far from the target values for α, θr and

n, representing for a reflector located at 120 cm 15%, 27% and 121%, respectively. On the other hand, when both data are25
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combined, all soil parameters can be well estimated with narrow confidence intervals. For instance, when using both data from

the moving wetting front and a fixed reflector located at 120 cm for calibration, the estimated mean values errors of all param-

eters are less than 5%. Moreover, all parameter distributions are well reduced, with a maximum reduction for Ks, leading to a

posterior distribution being 46 times smaller than the prior one, and the worst but still satisfactory being for θr for which the

posterior distribution is 8 times smaller than the prior one. The methodology was applied to fine, medium and coarse sands30

with very good results, particularly for the finest soil. The thickness of the unsaturated zone was also tested (0.5 - 1 and 2 m)

and a better estimation of the hydrodynamic parameters is obtained when the water table is deeper. In addition, the height of

water applied in the infiltrometry test influences the speed of the test without affecting the performance of the proposed method.

Keywords: coupled hydrogeophysical model; time-lapse ground penetrating radar; unsaturated soil parameters; global sen-35

sitivity analysis; Bayesian parameter estimation; uncertainty quantification.

1 Introduction

The vadose zone is defined by the region between the ground surface and the groundwater table. Because of its location, it is

at the center of the interactive atmospheric-surface-underground water system. Hence, understanding water flow in the vadose

zone is crucial for hydrological modeling and forecasting that can be useful for water resources management, agricultural40

practices optimization, or geotechnical studies. The porous medium in the vadose zone is filled by both water and air phases.

The air phase is considered infinitely mobile and remains at atmospheric pressure. The movement of water has a non-linear

behavior and is characterized by two fundamental hydraulic relationships, namely, the water retention and the hydraulic con-

ductivity functions. Various mathematical expressions can describe these functions in terms of dependent variables and fitting

parameters. In this work, we use the Mualem-van Genuchten (Mualem 1976, van Genuchten 1980) hydraulic conductivity45

and water retention models. These models include the following unsaturated soil hydraulic parameters: the saturated hydraulic

conductivity, the saturated and residual water contents, and the Mualem–van Genuchten shape parameters α and n.

Different approaches can be applied to estimate the unsaturated soil parameters. In soil physics, the reference method relies

on laboratory measurements conducted on soil core samples. Such experiments can use various techniques such as thermo-

gravimetry or tensiometry, but common practices rely on hydraulic fluxes measurements (Vereecken et al., 2008). Laboratory50

measurements can provide direct measurements of the soil hydraulic properties or state variables and can therefore be of great

accuracy at the column scale. On the other hand, it is prone to certain limitations when the objective is to deduce the soil

parameter values at larger scales. Indeed, sample analysis through laboratory experiments is unlikely to provide parameter

estimates at field conditions since the volume of the analyzed samples is often not representative of the field heterogeneity at

the mesoscale (Scharnagl et al., 2011). In addition, the method is invasive and can be labor-intensive for deep or large scales55

investigations (Binley et al., 2015). Furthermore, the conservation of collected samples can be challenging because of issues of

compaction and changes in porosity.
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At the field scale, the soil hydraulic properties and state variables can be estimated using numerous approaches. Measure-

ments of the soil water content, water pressure, and hydraulic conductivity can show significant variations because of their

sensitivity to different hydrological processes. As a consequence, such measurements are convenient for the estimation of soil60

parameters of the subsurface at the field scale by inverse modeling. Soil hydraulic properties and state variables measuring

techniques can be classified into two categories, based on whether the measuring devices do have to be in direct contact or not

with the soil. In the first instance, when the measuring devices must be in direct contact with the soil, measurements can present

a spatial support around the micro (mm - cm) and local scale (cm - m) with water content sensing techniques (using thermal or

electromagnetic sensors, e.g., capacitance or time domain reflectometry, Jones et al., 2005; Belfort et al., 2019), water pressure65

measurements with tensiometers (Cassel and Klute, 1986) or psychometers (Rawlins and Campbell, 1986), and hydraulic con-

ductivity measurements with permeameters (Kodešová et al., 1998) and infiltrometers (Muntz et al., 1905). These techniques

can yield data with great resolution at one location and give information on the dynamics at the field scale (Vereecken et al.,

2008). In addition, measurements taken at various locations can help to describe the distribution of water content, and thus,

allow a good characterization of the state of the soil. For measurements with sensors, however, their installation is often labo-70

rious, time-consuming, and destructive (Huisman et al., 2003; Dal Bo et al., 2019). Furthermore, their reliability requires an

accurate calibration (Robinson et al., 2008).

Other techniques use non-invasive devices that don’t have to be in direct contact with the soil, like remote sensing and

hydrogeophysical methods. Remote sensing techniques use devices that operate remotely and relatively far from the ground,

such as unmanned aerial vehicles thermal infrared imagery (Zhang et al., 2019) or airborne ground penetrating radar (Edemsky75

et al., 2021). These methods provide the mapping of water content at a large scale and in locations where contact-based sensing

measurements cannot be conducted. However, remote sensing methods exhibit a penetration depth of only a few centimeters

and are often limited by the vegetation density (Vereecken et al., 2008; Robinson et al., 2008).

Common hydrogeophysical methods include electromagnetic induction (Doolittle and Brevik, 2014), direct current resis-

tivity (de Jong et al., 2020), nuclear magnetic resonance (Costabel and Günther, 2014), and ground penetrating radar (GPR)80

(Huisman et al., 2003; Klotzsche et al., 2018) methods. These techniques supply indirect information on hydraulic properties

or states, at various scales, from estimated geophysical properties. As mentioned by Binley et al. (2015), such conversion from

geophysical to hydraulic properties or states requires the use of robust petrophysical relationships to provide reliable estimates

of hydraulic parameters.

Nowadays, GPR is highly used in the field of hydrogeophysics. Different techniques have been reviewed and discussed by85

Huisman et al. (2003) and Klotzsche et al. (2018). Indeed, GPR is highly sensitive to water content, and, as such, it can close

the gap between the spatial scales covered by direct and remote sensing techniques (Klotzsche et al., 2018). Note however that

the hydraulic properties estimated from GPR data are subject to an inherent compromise between a deep investigation and a

fine spatial resolution. For instance, the lowest frequencies (typically from 1 GHz down to 100 MHz) allow deeper penetrations

(until a maximum depth between 1 m and 3 m in most organic media). The temporal variability of the soil water content can be90

characterized from time-lapse GPR measurements. In this case, the GPR method is applied in a static approach, where, instead

of classically imaging the spatial variation of the properties of the subsurface, the device is set immobile and captures how
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the properties of the soil change over time. GPR data can be collected during artificial hydraulic processes (e.g., infiltration,

runoff, drainage, imbibition) that can provide interesting information on the flow characteristics. Compared to other hydraulic

processes, artificially forced infiltration is particularly fast. It also induces a rapidly evolving transient hydraulic perturbation.95

Time-lapse GPR is characterized by a high spatial and temporal resolution and is therefore well adapted for monitoring such a

fast hydraulic process. Artificial infiltration process is also easy to establish since it only requires the application of a positive

water pressure head on the soil surface. Hence, time-lapse GPR monitoring of artificial infiltration experiment is usually

effortless and time-saving. Furthermore, except in the case of borehole investigations, the GPR device can be laid on or raised

above the surface. For these reasons, time-lapse GPR monitoring of artificial infiltration is fast and easy-to-apply and repeat at100

multiple locations, and, when used on or above the soil surface, non-destructive. Therefore, it is one of the cheapest approach

that fits well in the context of mapping the unsaturated soil parameters’ heterogeneity at a small catchment scale.

Various studies have investigated the monitoring of different types of flow processes with time-lapse GPR in the context of

evaluating the soil hydraulic states, hydraulic properties, or unsaturated soil parameters (e.g., Saintenoy et al., 2008; Moysey,

2010; Scholer et al., 2011; Busch et al., 2013; Tran et al., 2014; Jonard et al., 2015; Jaumann and Roth, 2018; Léger et al.,105

2014; 2016; 2020).

At the laboratory scale, Léger et al. (2020) have monitored imbibition-drainage experiments using a single-offset surface

GPR. Jaumann and Roth (2018) conducted similar experiments but at the test site scale, where they showed reasonable results

when estimating the soil unsaturated parameters and the subsurface architecture. As already pointed out however, this hydraulic

process can take longer than an infiltration to reach a steady state and is also practically harder to conduct at the field scale.110

Busch et al. (2013) calibrated the Mualem-van Genuchten parameters of their model by monitoring natural precipitation and

evapotranspiration events at the field scale. Such slow hydraulic process can last several days or months and is therefore not

suitable for easy and fast characterization. Infiltration experiments have been conducted at the laboratory scale by Moysey

(2010), where they considered the GPR two-way travel time (TWT) from various sources of reflection. They showed that the

Mualem-van Genuchten shape parameter n is the most poorly constrained among all unsaturated soil parameters. On the field,115

infiltration processes have been monitored with borehole GPR (Scholer et al., 2011), single-offset (Léger et al., 2014; 2016)

and multi-offset (Saito et al., 2018) surface GPR, or off-ground GPR (Jadoon et al., 2008, 2012; Jonard et al., 2015). For

practicality, surface GPR is preferred over off-ground and borehole GPR, the latter also being destructive by nature. Saito et

al. (2018) used a more complex multi-offset and multi-channel surface GPR to directly monitor the wetting front progression.

Mono-channel multi-offset technique is usually not suited for monitoring experiments with high temporal variability, as the120

offset must be adjusted between each measurement. The multi-channel technique has the advantage to be multi-offset and is,

therefore, able to simultaneously determine the propagation speed and the depths of reflectors.

In the present study, we are interested in using a quick, easy-to-apply, and cheap field scale method to characterize the

unsaturated soil parameters. To this end, time-lapse GPR monitoring of artificial infiltration is a well suited protocol. It is

similar to ring infiltrometry methods but with additional information from GPR measurements. In the literature, the work of125

Léger et al. (2014) is the closest one considering this protocol for parameter estimation. The authors have demonstrated the

relevance of such a methodology to evaluate the hydraulic parameters of sandy soil. They have investigated synthetic and
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field examples and showed that the inverted parameters were in agreement with the values obtained in the laboratory for soil

samples and with disk infiltrometer measurements. However, in their study, Léger et al. (2014) used an optimization-based

inversion algorithm which did not allowed to assess the reliability of the estimated values since the uncertainty associated with130

the calibrated parameters has not been evaluated. Furthermore, Léger et al. (2014) employed only the TWT data obtained from

the GPR reflection on the wetting front for the calibration of the soil parameters, which was satisfactory enough for them to

obtain such remarkable results. The original work presented here aims to extend the actual state of the art by:

– Considering different reflectors at different depths: a moving reflector which corresponds to the infiltration dynamic

wetting front and two fixed reflectors located at different depths in the soil.135

– Investigating the influence of all soil parameters (the saturated hydraulic conductivity, the saturated and residual water

contents, and the Mualem–van Genuchten shape parameters α and n) on the GPR TWT data of the three reflectors using

Global Sensitivity Analysis (GSA). The GSA allows estimating the soil parameters range where time-lapse GPR data

monitoring is sensitive to these parameters. It also provides some insight about which parameter is more sensitive at the

beginning of the infiltration experiment or at the end of the infiltration.140

– Performing statistical calibration of soil parameters using the Markov Chain Monte Carlo (MCMC) method and eval-

uating the reliability of the estimated parameters by analyzing not only the calibrated model parameters but also their

associated uncertainty.

– Evaluating the impact of the type of reflector (moving or fixed) by analyzing the calibrated model parameters and their

confidence intervals for different scenarios.145

The plan of the paper is as follows: Section 2 describes the test case as well as the mathematical and numerical hydrogeophys-

ical models. Section 3 reports on the GSA results of the different TWT signals. Then, Section 4 discusses the results of soil

parameter estimation with MCMC for different scenarios including varying soil types, water table depths and surface boundary

conditions.

2 Test case description and numerical solution150

2.1 Test case description

In this work, we conduct a synthetic study on the time-lapse GPR monitoring of artificial infiltration protocol, prior to applying

it in real conditions. The idea is to perform synthetic experiments under the same conditions of real experiments to better

understand the pertinence of the investigated protocol when used for estimating the unsaturated soil parameters. The test

case considered is a hypothetical one-dimensional experiment of water infiltration in a homogeneous sandy soil of 150 cm155

(Fig.1a). The approach used to drive the artificial infiltration is comparable to other techniques commonly used to estimate

the properties of the porous medium, such as single or double ring infiltrometry. As evidenced in other studies (e.g., Léger et
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Figure 1. Test case and experimental device illustration at an advanced time step (a). R50 and R120 are fixed reflectors considered in this

experiment. TX and RX refer to the transmitter and receiver antennas of the GPR system. Effective saturation Se (b) and reflection coefficient

r (c) profiles with depth.

al., 2014), the idea is to add information from the GPR data monitored during the infiltration to have access to more of the

hydrodynamic parameters. In the present synthetic case, a constant pressure head of 10 cm is applied at the surface of the

soil (i.e., a 10 cm water ponding Dirichlet-type boundary condition is maintained at the top). The medium is initially at the160

hydrostatic equilibrium with a water table maintained at 100 cm below the soil surface (Fig.1b). The domain is initially formed

by an unsaturated zone of 100 cm thick above a saturated zone of 50 cm thick. We assume the experiment to be monitored

with a surface GPR. The propagating time (i.e., the TWT) of the GPR waves reflected by two types of reflectors are considered

(Fig.1c): (i) the moving infiltration wetting front and (ii) two fixed reflectors corresponding to a local heterogeneity at two

different depths. For instance, these can be small objects that are artificially buried (e.g., moisture sensing probes) or naturally165

embedded (such as small rocks) in the porous medium. The fixed reflectors are supposed to be small enough compared to the

section of the infiltrated area, so they do not significantly perturb the vertical flow. The upper fixed reflector, R50, is located

in the initially unsaturated zone at 50 cm depth. The reflector R120 is located in the saturated zone, under the water table, at

a distance of 120 cm from the soil surface (Fig.1a). In the following, the time-lapse TWT signal for reflection caused by the

6



infiltration wetting front is noted TWTf and that from the two immovable diffracting points R50 and R120, are respectively170

noted TWT50 and TWT120.

2.2 The mathematical model

2.2.1 Unsaturated flow model

Water infiltration in unsaturated/saturated soils is governed by the one-dimensional Richards’ equation (Richards, 1931):

∂θ

∂t
=

∂

∂z

[
K(θ)

(
∂h

∂z
− 1

)]
(1)175

where h (cm) is the pressure head; z is the depth (cm), taken positive in the downward direction; t is the time (s), θ (cm3/cm3)

is the actual water content, and K(θ) (cm/s) is the hydraulic conductivity which is a function of water content. The initial

condition is a hydrostatic pressure distribution corresponding to a water table at 100 cm depth. The boundary condition at the

top of the domain is a fixed Dirichlet condition of 10 cm maintained during the experiment. The boundary condition at the

bottom is a piezometric head fixed at -100 cm which corresponds to the water table position (Fig.1).180

The interdependencies of the pressure head, conductivity, and water content are described using the standard models of

Mualem (1976) and van Genuchten (1980):

Se(h) =
θ(h)− θr
θs − θr

=

[1+ (α|h|)n]−m if h < 0

1 if h≥ 0
(2)

K(h) =

Ks ×Se(h)
L[1− (1−Se(h)

1/m)m]2 if h < 0

Ks if h≥ 0
(3)185

where Se(h) (-) is the effective saturation, θs and θr (cm3/cm3) are the saturated and residual water contents, respectively, Ks

(cm/s) is the saturated conductivity, m= 1− 1/n, α (1/cm), n (-) are the Mualem-van Genuchten shape parameters, and L (-)

is a parameter characterizing the tortuosity of the flow paths of moving water in the interconnected pores of the soil. It is set at

L= 0.5 here, following the works of Mualem (1976) and van Genuchten (1980).

2.2.2 Petrophysical and Geophysical relationships190

In GPR sounding, pulses of radiofrequency (MHz to GHz) electromagnetic waves are emitted from a transmitting antenna

through the sounded medium. The electromagnetic response is then acquired with a receiving antenna. With a surface GPR,

both antennas are installed at the surface of the soil (Fig.1). To monitor the experiment of water infiltration with time-lapse

GPR, the sounding system is set immobile above the infiltration zone in order to capture the time variation of the electromag-

netic response due to the change of saturation.195
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To describe the dependency of the dielectric permittivity on the water content, we use the complex refractive index model

(Birchak et al., 1974). This petrophysical relationship relates the dielectric constant ϵ (-) of a three-phase (water-solid-air)

medium to its water content by:√
ϵ(z, t) = θ(z, t)

√
ϵw +(1−ϕ)

√
ϵs + [ϕ− θ(z, t)]

√
ϵa (4)200

where ϕ (-) is the porosity, considered equal to the saturated water content θs, ϵw = 80, ϵs = 2.5 (Léger et al., 2014) and ϵa = 1

are the dielectric constants of water, silica (sand) and air, respectively.

In this work, the soil is considered as a linear and isotropic non-magnetic medium. When working with frequencies below 1

GHz, the soil electrical conductivity can be neglected. In this case, the electromagnetic waves propagate at a speed V (cm/ns)205

(Annan, 2003):

V =
c√
ϵ

(5)

where c≈ 30 cm/ns is the speed of electromagnetic waves in air, and ϵ (-) is the dielectric constant of the porous medium.

Equations (4) and (5) evidence that GPR waves propagate at a much lower speed in wet conditions. Any source of reflection

in the sounded soil produces a reflected wave that is recorded at a time corresponding to the duration of its propagation, from210

the transmitting antenna, down to the source of reflection, then back up to the receiving antenna, i.e., the TWT of the reflected

wave.

We consider a one-dimensional scenario (the offset between the antennas is null) and discretize the domain into N cells i,

centered at a depth zi, with element boundaries at zi−1/2 and zi+1/2. The TWT for the reflection occurring at the interface

(i− 1/2) between the elements i− 1 and i can be expressed as the sum of the vertical TWT in each element above i:215

TWT(zi−1/2) = 2

i−1∑
j=1

|lj |
Vj

(6)

in which |lj | (cm) is the length of the element j above i and Vj (cm/ns) is the GPR propagation speed in the element j.

A reflection occurs at the interface between two successive elements if the reflection coefficient is not zero. The reflection

coefficient expresses the contrast of dielectric constant (due to the contrast of water content) at the interface between the two

elements i−1 and i. When the offset between transmitting and receiving antennas is null, the reflection coefficient at interface220

(i− 1/2) is defined by:

r(zi−1/2) =
ϵ(zi)− ϵ(zi−1)

ϵ(zi)+ ϵ(zi−1)
(7)

where ϵ(zi) is the dielectric constant of the element i.

For an 800 MHz antenna, the wavelength can typically vary from 6 cm in a wet medium to around 18 cm in a dry medium. The

abrupt change in the reflection coefficient at the wetting front makes it easily detectable. This statement is true in the presented225

test case and for any parameter value taken from the prior distributions tested (Table 1). On the contrary, the water table may
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Figure 2. Hydrogeophysical model responses for Ks = 0.08 cm/s, θs = 0.4 (-), θr = 0.07 (-), α= 0.145 cm-1, n= 2.68 (-). TWTf corre-

sponds to the TWT signal for the wetting front, while TWT50 and TWT120 are the TWT signals for fixed objects located at 50 and 120 cm

below the surface, respectively.

be hidden due to the softer change in the reflection coefficient at the capillary fringe (Bano, 2006; Saintenoy and Hopmans,

2011).

Note that one could easily consider a non perpendicular incidence of the GPR wave at the interface, introducing the incidence

angle in Eq. 7. Nevertheless, the offset between the TX and RX antenna for a 800 MHz GPR system is typically around 10 cm.230

By simple trigonometry, the incidence angle is 5 deg at 50 cm depth, 2 deg at the deeper reflector, then the reflection coefficient

is very close to the normal incidence, and Eq. 7 is considered in the following. Considering more closely the physics of the

radar wave emission and propagation in porous media, if one needs to consider precisely the wave amplitude (such as in full

waveform inversion), one should consider the radiation pattern of the antenna. This later is linked to the dielectric contrast at the

surface and the antenna characteristics. Whether one needs to calculate it precisely or one should consider specific acquisition235

configuration to handle this effect (generally normalization of the signal by a reference signal). We choose to keep our approach

as simple as possible, to be applicable to any system easily, without the need of calibration. Hence, we have chosen to consider

only the travel time, and to not use the amplitude. Note that the later is more sensitive to attenuation (electrical conductivity)

than to the hydraulic parameters.

2.3 The numerical model240

The variation of the water content in the soil during the infiltration is computed using the WAMOS-1D code (Belfort et al.,

2018). The model describes the water movement in the porous medium using Richards’ equation (1), and the constitutive

relationships between the pressure, the hydraulic conductivity, and the volumetric water content given by Eq. (2) and Eq.
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(3). The domain of 150 cm depth is discretized with uniform elements of 1 cm thick with homogeneous properties. Such

discretization allows an appropriate model precision and a low enough computation time. The WAMOS-1D code solves the245

system of Eqs. (1)-(3) and yields the vertical distribution of water content at each time step. This distribution is then converted

into a vertical dielectric permittivity profile ϵ using the petrophysical relationship Eq. (4) and into a GPR wave propagation

speed profile V using Eq. (5). Then, the time-lapse TWT signals for the fixed objects, TWT50 and TWT120, are calculated at

each time step using Eq. (6) (dashed and dotted curves in Fig.2).

The time-lapse signal TWTf, induced by wave reflection on the wetting front because of the sharp water content variation250

at the front position is calculated in two steps. First, we search the wetting front position z∗i−1/2, which corresponds to the

interface position having the maximum reflection coefficient from Eq. (7) as illustrated in Fig.1. Then, the TWT signal of the

wetting front is obtained using TWTf = TWT(z∗i−1/2) from Eq. (6) (solid curve Fig.2).

Note that TWT50 and TWT120 signals are induced by fixed objects, thus, these signals exist regardless of the position of

the infiltration front. On the other hand, TWTf is induced by the infiltration wetting front whose position varies over time.255

Besides, contrarily to TWT50, and TWT120, the TWTf signal disappears when the wetting front reaches the water table. To

avoid numerical issues when simulations are performed with different soil parameter sets, the value of TWTf when the water

table is reached, is artificially maintained for the remaining time steps until the end of simulation time. The water table is

assumed to be reached when the maximum reflection coefficient of Eq. (7) is under a threshold of 10-2. This reflects a fully

saturated domain with an almost uniform water content distribution (solid curve Fig.2). An explanation of the computation of260

all TWT signals is summarized in Fig.3.

3 Global sensitivity analysis of TWT signals

3.1 GSA method

The GSA method evaluates how the outputs of a model are influenced by the variation of the input parameters (Mara and

Tarantola, 2008). Among the various forms of GSA, a variance-based sensitivity analysis, allowing the calculation of Sobol265

sensitivity indices (Sobol′, 2001) is employed. Such indices depict the contribution of the variation of any input variable x to

the total variance of an output variable y. In our case, the input variables are the unsaturated soil parameters (Ks, θs, θr, α, n)

and the output variables are the TWT signals (TWTf, TWT50, TWT120).

Given a model with a set of p independent random parameters X = {x1, x2, ..., xp} that yields a random response y(X),

the two variance-based sensitivity measures, also called Sobol indices (Sobol′, 2001) are:270

– the first-order sensitivity index:

Si =
Var [E [y(X)|xi]]

Var [y(X)]
∈ [0,1] (8)

– the total sensitivity index:

STi =
E [Var [y(X)|x−i]]

Var [y(X)]
∈ [0,1] (9)
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Figure 3. Summary of the working process of the forward hydrogeophysical model and how it is used to build the PCE surrogate model.

Ks (cm/s) θs (cm3/cm3) θr (cm3/cm3) α (1/cm) n (-)

[xmin - xmax] [0.001 - 0.15] [0.32 - 0.48] [0.01 - 0.13] [0.01 - 0.28] [1.5 - 10]

Table 1. Prior intervals of the unsaturated soil parameters for both GSA and Bayesian estimation.

where x−i =X \xi is the set of all parameters except xi, E() and E(.|.) are the expectation and the conditional expectation275

operators, respectively, Var() and Var(.|.) are the variance and the conditional variance, respectively. The first-order index Si

quantifies the contribution of the parameter xi alone to the total variance of y(X), while STi also includes all interactions of

xi with the other parameters x−i.

To perform a variance-based GSA, a practical approach (to save computational time) is to use Polynomial Chaos Expan-

sion (PCE; Wiener, 1938). The PCE approach consists in developing any signal y(X) as a set of orthonormal multivariate280

polynomials of a degree not exceeding D:

y(X) =
∑

|β|≤D

sβΨβ(X) (10)
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TWTf TWT50 TWT120

t= 50 s

Var_HYD_model 14 5 15.9

Var_PCE_model 13.4 5 15.8

Var_error 4.3% 0.9% 0.5%

t= 150 s

Var_hyd_model 54.6 5.5 23.3

Var_PCE_model 53.9 5.4 23.2

Var_error 1.3% 1.4% 0.4%

t= 2000 s

Var_hyd_model 28.8 1.5 9.9

Var_PCE_model 27.1 1.4 9.3

Var_error 5.7% 7.4% 5.2%

Table 2. Variance of TWTf, TWT50 and TWT120 signals at t= 50 s, 150 s and 2000 s calculated with the PCE surrogate model and with the

hydrogeophysical model.

where β = β1, β2, ..., βp ∈ Rp is a pth–dimensional index, sβ are the PC coefficients, Ψβ are the generalized polynomial chaos

of degree |β|=
∑p

i=1βi.

In this work, Legendre polynomials are used since uniform distributions are assumed for all uncertain parameters. Uniform285

distributions express the absence of prior information. This makes all parameter values in the given prior intervals equally likely.

Large prior distribution intervals are considered for all unsaturated soil parameters (Table 1). Such combination of parameters

investigated in the GSA is exhaustive and allows to consider a large panel of soil types. Notice that, while simulations with

values of n comprised between 1 and 1.5 would allow to investigate a wider range of porous media, they also take much longer

to end.290

The number of coefficients for a full PCE representation is P = (p+D)!/p!D!. A training dataset of M realizations of the

forward coupled hydrogeophysical model is used to build the PCE surrogate model of order D (Fajraoui et al, 2011; Shao et

al., 2017; Younes et al., 2013). The coefficients of the PCE are obtained by searching the best fit (in the least square sense)

of the PCE surrogate model to the hydrogeophysical model for the M realizations. To work with low-discrepancy sets, the

M realizations correspond to sets of input parameters sampled from their prior probability distributions, using quasi-random295

Sobol sequences (Shao et al., 2017). Because each parameter varies in its own range and has a proper unit, the parameter prior

intervals are normalized to [−1,1] during PCE computation. We illustrate the principle of the construction of the PCE with our

hydrogeophysical model in Fig.3.
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A PCE is constructed at each time step for all model responses (TWTf, TWT50, and TWT120) since we deal with transient

simulations. In this work, M = 2048 hydrogeophysical model realizations are employed to obtain PCEs of degrees D = 5300

containing P = 252 coefficients. The obtained PCEs are sufficiently accurate as the variance of the TWT output signals is

calculated with the surrogate PCE model and the forward hydrogeophysical model at three different times t= 50 s, 150 s, and

2000 s. The results of Table 2 show that the relative difference between the two variances is very small for all investigated times.

Note that although the relative variance error for the TWT50 at t= 2000 s is the largest (around 7%), it remains insignificant

since the total variance of the signal at this time is negligible (less than 2 ns2). The variance of the forward hydrogeophysical305

model is therefore well reproduced by the PCE surrogate model which will be employed for the GSA of the TWT signals using

the variance decomposition.

3.2 GSA results

The temporal distribution of the output variance of the three TWT signals (TWTf, TWT50 and TWT120) are represented Fig.4.

For each TWT signal, the variance is represented by the black curve and the relative contributions of the uncertain parameters310

to the variance are represented by the shaded area. The blank region between the variance curves and the shaded area represents

interactions between parameters.

TWTf has a different behavior from the TWT signals of fixed reflectors TWT50 and TWT120 (Fig.4). Although the TWT

signals of fixed reflectors have different variance magnitudes, they exhibit similar behavior (Fig.4b and 4c). The variance of

the TWT signal is five times more significant for TWT120 than for TWT50. This is in agreement with the physics since the zone315

of the porous medium affecting the GPR wave is more important for the TWT120 signal than for the TWT50. In addition, the

period of influence of the unsaturated parameters (θr, α, n) is also more important for TWT120 than for TWT50 since saturated

conditions for the reflector R120 are reached much later than for R50. Since fixed reflectors exhibit similar behavior, in the

following, we comment on the results of TWTf and TWT120 signals.

3.2.1 GSA of the TWTf signal320

TWTf variance is zero at the beginning of the infiltration (Fig.4a) which means that the TWTf signal is not affected by the

initial conditions. Indeed, the infiltration wetting front and the TWTf signal start at zero for all parameter sets. Then, the

variance of the signal increases until a maximum of 60 ns2, reached at around 3 min. After that, the variance decreases, but

keeps a significant value of around 25 ns2 (Fig.4a). Concerning parameter sensitivities, at the beginning, the TWTf signal is

mainly affected by Ks. The influence of this parameter decreases over time and reaches zero for long times when steady-state325

conditions (corresponding to a fully saturated soil) are reached. The parameter θs has a moderate influence on the TWTf signal.

Its influence is not observable at short times since unsaturated conditions occur. Overall, the most influential parameter on the

TWTf signal is the van Genuchten parameter α. This parameter seems influential even for saturated conditions. Note that this

numerical artifact is observed because the value of TWTf is artificially maintained when the infiltration wetting front reaches

the water table, while physically the signal disappears. The effects of the parameters θr and n are not observable (Fig.4a). The330

blank region between the variance curve and the shaded area in this figure is due to the interaction between the parameters.
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Figure 4. Time distribution of the variance of TWTf (a), TWT50 (b) and TWT120 (c). The shaded area under the variance curve represents

the partial marginal contributions of the uncertain parameters; the blank region between the shaded area and the variance curves represents

the contribution of interactions between the parameters. The marginal effects shown in Fig.6 are represented at three time steps t1 = 1 min,

t2 = 5 min, and t3 = 200 min, highlighted here (dotted black lines).

To estimate this interaction, we plot the difference between the total (STi) and the first order (Si) sensitivity indices for all

parameters (Fig.5a). This difference reflects the interaction between the parameters over time. Interactions between parameters

are negligible for all parameters (STi ≈ Si), except for Ks and α (Fig.5a). Hence, the interaction between these two parameters

affects the variance of the TWTf signal as represented by the blank region between the variance curve and the shaded area335

(Fig.4a).
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Figure 5. Difference between the total (STi) and the first order (Si) sensitivity indices for all parameters for the TWTf (a) and the TWT120

(b) signals.

To evaluate further the effect of the unsaturated soil parameters on the TWTf, we plot the marginal effect of each parameter

(Fig.6). The marginal effect can be easily derived from the PCE coefficients and reflects the effect of one parameter on the

output signal. Fig.6 depicts the marginal effects of each hydraulic parameter, i.e., their influence on the TWT signals as a

function of their value when they vary over the range of their prior distribution interval, while the other hydraulic parameters340

are kept fixed at their center value. This representation allows determining the regions of influence of the hydraulic parameters,

given that the stronger the slope of the marginal effect curve, the higher the influence of the parameter. These marginal effects

can vary over time, so we represent them at the three time steps (t1 = 1 min, t2 = 5 min, and t3 = 200 min) highlighted with

dotted vertical black lines in Fig.4. The oscillations are caused by numerical artifacts related to the degree of the polynomials

used in the PCE model. From Fig.6a, it can be noticed that:345

– Ks is highly influential at the beginning of the experiment. At t1 = 1 min, the TWTf signal varies almost linearly with

Ks. Indeed, at the beginning of the experiment, when Ks increases, the wetting front is more advanced, thus, the GPR

wave propagates at a lower speed and the TWTf signal increases. At t2 = 5 min, the TWTf signal is sensitive only for

small Ks values. Indeed, for high Ks values, the soil is fully saturated and the perturbation of the high value of Ks

doesn’t change the TWTf signal. At t3 = 200 min, the soil is fully saturated for almost all Ks values, thus, the TWTf350

signal becomes insensitive to Ks.

– θs has no influence at the first times (t1 = 1 min) since unsaturated conditions occur. For long times, the TWTf signal

is very sensitive to θs with an almost linear behavior. Indeed, when the soil is fully saturated, the dielectric permittivity

and thus the TWTf signal is almost proportional to θs.

– the sensitivity of TWTf to θr is moderate and can be observed only at the beginning of the experiment (unsaturated355

conditions) with an almost linear behavior observable at t= 1 min and 5 min. The positive slope of the curve is consistent
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Figure 6. Marginal effects of the unsaturated soil parameters Ks, θs, θr , α and n on the TWTf and TWT120 signals at three different times

t1 = 1 min, t2 = 5 min, and t3 = 200 min, highlighted in Fig.4.

with the physics of the process (when θr increases, the speed of the electromagnetic wave decreases, and the TWTf signal

increases).

– The van Genuchten parameter α is highly influential notably for long times (t3 = 200 min). A small variation of the

parameter α can induce a strong variation of the TWTf signal. Notably, the sensitivity of α is very high for α≤ 0.05360

cm-1.

– The sensitivity of TWTf to the parameter n is almost zero (flat curves) at all times (t= 1 min, 5 min, and 200 min).

The parameter n has therefore a negligible effect on the TWTf signal and, as a consequence, it is expected to be poorly

identifiable from the TWTf data. TWTf is sensitive to all Ks, θs and θr values tested (see table 1), but is also sensitive to

alpha < 0.05 cm-1 and n < 2. This means a wide range of soil types.365

3.2.2 GSA of the TWT120 signal

The variance of the TWT120 signal is nonzero at the beginning of the experiment which means that the TWT120 signal is

affected by the initial conditions (Fig.4c). Indeed, at the very beginning, the pressure distribution is hydrostatic and the water

content distribution in the column is obtained from Eq.2 which depends on all soil parameters except Ks. Therefore, the speed
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of the GPR wave depends on the initial water content distribution which is dependent on the unsaturated soil parameters θs,370

θr, α, and n. The most influential parameter at the beginning of the experiment is the parameter α. Over time, the effect of this

parameter reduces, whereas the effect of θs increases. For long times, θs becomes the only sensitive parameter. The parameter

Ks is also very sensitive. Its effect starts at zero, and increases until a maximum is reached at around 3 min, then it slowly

decreases and becomes negligible after 100 min. As with the TWTf signal, interactions between parameters are moderate. The

difference between the total and first-order Sobol indices is negligible for all parameters except after 1 min for the parameters375

Ks, α and θs (see Fig.5b). This interaction corresponds to the blank region, between the variance curve and the shaded area in

Fig.4c. The marginal effects of the soil parameters on the TWT120 signal are plotted in Fig.6b for t= 1 min, 5 min, and 200

min. The curves in this figure show that:

– As for the TWTf signal, Ks is highly sensitive, especially for t= 1 min and 5 min.

– The saturated water content θs is very influential for all times. The TWT120 varies almost linearly with θs even at the380

beginning (t1 = 1 min), since the fixed reflector is located in the lower saturated region.

– As for the TWTf signal, θr is sensitive only at the beginning of the experiment (unsaturated conditions) with an almost

linear behavior at t= 1 min and 5 min. When θr increases, the water content increases, and hence, the TWT120 increases.

– The van Genuchten parameter α is highly sensitive. However, contrarily to the TWTf signal where α is highly sensitive

at long times (t3 = 200 min), the sensitivity of α for the TWT120 signal is high at short times (t1 = 1 min). For long385

times, the influence of α disappears since the soil becomes fully saturated. The negative slope of the curve of the TWT120

signal as a function of α observed at the beginning of the experiment is consistent with the physics of the process. Indeed,

when α increases, the capillary fringe thickness decreases, hence, the water content in the unsaturated zone decreases,

and thus the TWT120 signal decreases.

– Surprisingly, and contrarily to the TWTf signal which showed a flat curve for the marginal effect of the parameter n for all390

parameter values and at all investigated times, the TWT120 signal is sensitive to n at the beginning of the experiment (t1 =

1 min) with a high sensitivity for n < 3.5 and a moderate sensitivity (the curve has a small slope) for n≥ 3.5. Finally,

TWT120 shows similar sensitivity for Ks, θs and θr but slightly higher than TWTf. For α, they show complementarity

which makes the procedure very efficient for α < 0.05 using all the infiltration experiment (early time for TWTf and late

time for TWT120). TWT120 is more sensitive to n, but until values 3.5. The GSA study shows that the monitoring of the395

infiltration using both the TWT from the infiltration front and (at least) a fixed reflector shows a significant sensitivity

for a wide range of soil types (see in Table 1 the hydraulic parameters range tested). Next section demonstrates the use

of this sensitivty to calibrate these parameters.
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4 Bayesian soil parameter estimation from the TWT signals

In this section, we estimate the unsaturated soil parameters in a Bayesian framework using the Markov Chain Monte Carlo400

(MCMC) sampler (Vrugt and Bouten, 2002; Vrugt et al., 2008). The statistical calibration is performed for a GPR monitored

infiltration experiment in order to address the following questions:

1. Can we obtain an appropriate estimation of all unsaturated soil parameters from TWT data?

2. What is the impact of the kind of TWT data (moving/fixed reflectors) and of the number of reflectors on the calibrated

model parameters and their confidence intervals?405

3. What is the optimal set of TWT measurements that yields good reliability of all unsaturated soil parameters?

The MCMC method has been successfully employed in various inverse hydrological problems (e.g., Fajraoui et al., 2011;

Younes et al., 2016; Younes et al., 2017; Younes et al., 2018). The method generates random sequences of parameter sets that

asymptotically converge toward the target joint posterior distribution by searching the ensemble of possible parameter sets

that satisfactorily fit the observations. The converged sets can then be used to assess the quality of the parameter estimation410

such as the optimal parameter values and the 95% Confidence Intervals (CIs) which allow for evaluating the reliability of the

parameters via uncertainty quantification.

In the sequel, the MCMC method is performed with the DREAM(ZS) (DiffeRential Evolution Adaptive Metropolis) software

(Laloy and Vrugt, 2012; Vrugt, 2016). This software samples the posterior probability density function (pdf) by running

multiple Markov chains simultaneously for global exploration of the parameter space. The prior distributions of the parameters415

are the same than in the GSA (Table 1). The DREAM(ZS) then automatically tunes the scale and orientation of the proposal

distribution until we get the posterior target pdf. A MATLAB toolbox of the DREAM(ZS) algorithm is available for Bayesian

inference in fields ranging from physics, chemistry and engineering, to ecology, hydrology, and geophysics. The vector of

unknowns is formed by the five unsaturated soil parameters (Ks, θs, θr, α, n). Compared to the GSA, which allows an

investigation of a large panel of soil types, the parameter estimation is demonstrated on a single synthetic case. A reference420

solution is generated by simulating the hydrogeophysical problem formed by the system of equations (1)-(6) using the following

reference parameter values K∗
s = 0.08 cm/s, θ∗s = 0.4, θ∗r = 0.07, α∗ = 0.145 cm-1, n∗ = 2.68, as shown in Table 3. These

parameter values corresponds to those of a sandy porous medium present in an experimental platform where we test the protocol

under real conditions. The modeled TWTf, TWT50, and TWT120 signals used as synthetic calibration data are deduced from

the results of the simulation using the reference parameter values. These TWT signals are then independently corrupted using425

a normally distributed noise with a standard deviation σ = 0.5 ns. This error corresponds to an uncertainty of 1 ns, which is

realistic in the instance of an 800 MHz GPR antenna.

The TWTf, TWT50 and TWT120 calibration signals, illustrated before noise corruption in Fig.2, increase almost linearly until

reaching a plateau. For the TWT50 signal, the plateau is reached when the infiltration front attains the R50 reflector and the

value of the plateau corresponds to the time needed by the electromagnetic wave to make a round trip from the surface to a 50430

cm depth of a full saturated porous medium. For the TWT120 signal, the plateau signal is reached when the infiltration front
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Ks (cm/s) θs (-) θr (-) α (1/cm) n (-)

X∗ 0.08 0.40 0.07 0.145 2.68

Scenario 1 0.081 0.39 0.076 0.211 2.75

TWTf (0.037) (0.031) (0.14) (0.167) (0.93)

4 5 1 2 9

Scenario 2 0.074 0.4 0.081 0.173 5.79

TWT50 (0.023) (0.008) (0.061) (0.269) (9.99)

6 19 2 1 1

Scenario 3 0.078 0.4 0.089 0.167 5.93

TWT120 (0.011) (0.007) (0.053) (0.195) (9.36)

13 24 2 1 1

Scenario 4 0.08 0.4 0.074 0.151 2.72

TWTf, (0.003) (0.004) (0.015) (0.029) (0.5)

TWT120 46 37 8 9 17

Scenario 5 0.079 0.4 0.073 0.149 2.68

TWTf, (0.003) (0.004) (0.015) (0.027) (0.49)

TWT50, 49 44 8 10 17

TWT120

Table 3. First line: Reference values used to build the synthetic calibration data. Then for the different scenarios: estimated mean values

(bold), size of the posterior confidence intervals (CIs) (between brackets), and ratio of prior to posterior intervals (italic).

attains the water table (the domain becomes fully saturated) and the value of the plateau corresponds to the time needed by the

electromagnetic wave to make a round trip from the surface to a 120 cm deep of a fully saturated porous medium. For TWTf,

the plateau value is also reached when the infiltration front attains the water table and the value of the plateau corresponds to

the time needed by the electromagnetic wave to make a round trip from the surface to the water table at 100 cm deep.435

The reliability of the unsaturated soil parameters is assessed for 5 different scenarios of measurement sets. In the first

scenario, only data of the wetting-front TWTf signal are used for the calibration. The second and third scenarios use only the

TWT50 and TWT120 signal, respectively, obtained from reflection on the fixed reflector R50 and R120. The fourth scenario

uses both data of TWTf and TWT120 as fitting data. The last scenario investigates the benefit of adding a fixed reflector by

using data of the TWTf, TWT50 and TWT120 signals as conditioning information.440

In the five scenarios, the MCMC sampler uses three parallel chains and a total number of 50000 runs. The last 25% of the

runs that adequately fit the model onto observations are used to estimate the joint posterior distribution.
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The MCMC results of the five studied scenarios are given in Table 3 which depicts, for each parameter, the mean estimated

value, its posterior CI size, and the ratio of prior to posterior intervals. Note that the CI and the last indicator are calculated

from the standard deviation by assuming a Gaussian posterior distribution. A small CI indicates an accurate estimation of the445

parameter. A significant difference between the prior and posterior intervals is a sign of the high sensitivity of the model to

that parameter (Dusek et al., 2015). The posterior histograms and the derived statistics are obtained from the the last 12500

simulations, as mentionned above, for which the Gelman Rubin (Gelman and Rubin, 1992) criterion is verified and the chains

are stable and not autocorrelated.

Results of table 3 for scenario 1 using only data of the TWTf signal for the estimation of the unsaturated soil parameters450

show that:

– An accurate estimation of Ks, the most sensitive parameter (Fig.4a), is obtained with a CI of 0.037 cm/s and a variation

interval reduced by 4.

– A fair estimate of the parameters θs with a standard deviation of 0.031 (-) and a reduction of the interval of variation by

5. This result is relatively surprising as this parameter did not show a strong influence on TWTf sensitivity (Fig.4a).455

– The parameter θr is not well estimated. Indeed, although its mean estimated value is very close to its reference value,

the associated uncertainty of 0.14 is large and the posterior interval is as large as the prior one, which indicates the low

reliability of the estimation.

– A poor estimation of α, while the sensitivity analysis showed it has a strong influence on TWTf (Fig.4a). Its CI is large,

with a value of 0.167 cm-1 and its posterior interval size is half the prior one.460

– The TWTf signal yields a mean estimated value n= 2.75± 0.47 which is close to the reference value n∗ = 2.68. The

parameter n is quite well identified since its posterior interval is 9 times smaller than the prior interval. This is relatively

surprising since the sensitivity of n is negligible (Fig.4a and 6a5). n values comprised between 1.5 and 3 could represent

silty loam, sandy loam or sand. Therefore, it is not obvious to consider this result as a good identification. We have

performed another estimation (the results are not presented here) with a target value of the n parameter equal to 6, which465

is located in the low sensitivity region of the parameter. In this case, the inversion led to a relatively good estimation

(estimated mean value of 6.97). However, the parameter was poorly identified since its posterior interval was still large,

though it was a bit smaller than the prior parameter interval.

In summary, using only data of the TWTf signal as conditioning information for the hydrogeophysical model calibration

yielded well mean estimated parameter values, close to the reference values for all unsaturated soil parameters. However, the470

examination of the associated uncertainties, showed that only Ks, θs, and n are correctly identified (with narrow posterior

intervals with respect to the prior ones). This points out the importance of statistical calibration methods for highly nonlinear

problems to investigate not only estimated parameter values but also the associated uncertainties.

The estimation of the unsaturated soil parameters for scenarios 2 and 3, using only data of the TWT50 or TWT120 signal for

the calibration shows that:475
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Figure 7. MCMC solutions using scenarios 1 (a1-a5), 3 (b1-b5), and 4 (c1-c5) for calibrating the hydrogeophysical model. The histograms

are built from the posterior distributions. The estimated mean values are represented in dotted black line and compared to the exact target

value (hard red line). The displayed parameter intervals correspond to the prior upper and lower limits of Table

1.

– The parameters Ks and θs, which are the most sensitive parameters during most of the experiment (Fig.4b and 4c), are

well identified with small CI size and strong reductions by at least 6 for Ks, and 19 for θs, of their intervals of variation.

We note that the TWT120 signal allows a much better estimate of both Ks and θs as their CIs are smaller than the ones

estimated with TWT50. It is especially true for Ks where there is almost a factor 2 between the reduction ratios.

– The soil parameters θr, α, and n, although sensitive (Fig.4b and 4c), cannot be identified from the TWT50 and TWT120480

signals since their posterior intervals are as large as, or at best two times smaller than their prior ones.

The results of scenario 4 which combines data of TWTf and TWT120 signals show that:

– Both parameters Ks, θs, and n are very well identified, with very narrow posterior intervals showing a strong reduction

by 46, 37, and 17 of their prior intervals, respectively.

– The parameters θr and α are reasonably well estimated with mean values very close to their reference and intervals of485

variation reduced by 8 and 9, respectively.
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Figure 8. MCMC solutions using TWTf, TWT50 and TWT120 signals for the calibration of the hydrogeophysical model. The diagonal plots

represent the inferred posterior parameter distributions, showing the estimated mean value (dotted black line) and the target value (hard red

line). The off-diagonal represents the pairwise correlations between parameters.

Fig.7 shows the posterior histograms obtained from the scenarios 1, 3, and 4. For all parameters, the displayed intervals

correspond to the prior upper and lower limits of Table 1.

Finally, the results of the last scenario which combines data of TWTf, TWT50 and TWT120 signals, show performances very

similar to scenario 4. Additional information from TWT50 helped to reduce slightly the posterior intervals of Ks, θs, and α490

that in that case show a reduction of 49, 44, and 10 times their prior intervals, respectively.

The results of MCMC for this last scenario are shown in Fig.8 where diagonal plots depict the inferred posterior parameter

distributions and the off-diagonal scatterplots represent the pairwise correlations in the MCMC draws. Almost bell-shaped
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posterior distributions are obtained for all unsaturated soil parameters. Negligible correlations are observed between the pa-

rameters, except moderate correlations observed between Ks and θr (r=-0.78) and between n and θr (r=0.64) .495

Note that the parameter n is relatively well estimated as the target reference value 2.68 is located in the high sensitivity

region (n < 3.5) (Fig.6). In the case of a reference value located in the low sensitivity region (n≥ 3.5), the calibration of the

hydrogeophysical model using TWTf and TWT120 signals yields a much poorer identification of the parameter n. For instance,

using scenario 5 with a reference value n∗ = 4.25, the estimated mean value is 4.84 with a posterior CI size of 3.6, which

corresponds to a reduction of the interval of variation by only 2.500

To complete the numerical study, the protocol was tested varying the boundary conditions. One can wonder how much the

thickness of the vadose zone would impact the calibration of the hydraulic parameters. For that purpose, 3 scenarios have been

considered, varying the water table depth from 50 cm to 1 m and 2 m and assuming a hydrostatic initial profil. Results of the

MCMC calibration depicted in Fig.9 show that the 5 parameters are even better estimated when the water table is deeper. We

explained this result because when the vadose zone is thicker, then the initial water content profile highlights a larger variation505

with depth which is perturbed when the infiltration propagates. In the shallowest case, with a 50 cm deep water table, α and n

could not be recovered because the water content (which directly affects the radar propagation) in the vadose zone is already

close to the saturation conditions. One should note that in this case, we maintained the fixed reflector at 120 cm depth, which

means it is above the water table in the 2 m case. In this latter case, a deeper fix reflector would enhance the result (as seen

in previous scenarii) but in field conditions, a deeper fixed reflector would be harder to be reliably detected. Nevertheless, we510

show here that it is not necessary to have a reflector below the water table to obtain an accurate calibration. We also vary the

surface boundary conditions by using different heights of water ponding at the surface, which would pratically mean varying

the height of the infiltration ring, from 5 cm to 10 cm and 20 cm. As one could expect, it only affects the duration of the

infiltration experiment without impact on the accuracy of the hydraulic parameters calibration. The infiltration duration could

be divided by 2 if the pressure head is doubled. This is worth to notice, especially for medium with low permeability, to515

speed-up the experiment.

Last, the efficiency of the protocol was numerically tested on 3 types of soils used in the experimental platform SCERES

in Strasbourg (Bohy et al., 2006). A coarse, a medium and a fine sand are considered (see Table 4). The permeability varies

over 2 orders of magnitude, θr is multipied by 4, α if multiply by 10 and n varies from 2.0 to 2.7. The results of the calibration

using the TWTf and TWT120 summarized in Table 4 shows that the parameters for the 3 materials are well estimated, even520

better when the sand is finer. All 5 hydraulic parameters are recovered here, considering a water table at 1 m depth.

These results evidences that the GPR signal data of both the wetting front and a fixed reflector can bring very different but

complementary information for the identification of the unsaturated soil parameters. They also point to the high benefit of

combining the GPR signal data of a fixed reflector, preferably located sufficiently deep in the soil, with the TWT signal of

the moving infiltration wetting front. This combination allows good reliability of almost all soil parameters with very narrow525

posterior intervals in comparison with the prior ones. In particular, the van Genuchten parameter n is relatively well identified

for investigated sandy soil where n < 3.5.
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Figure 9. MCMC solutions considering a water table at 50 cm, 1m and 2m depth (from top to bottom) for calibrating the hydrogeophysical

model. The histograms are built from the posterior distributions. The estimated mean values are represented in dotted black line and compared

to the exact target value (hard red line). The displayed parameter intervals are equal from each parameters (each column).

5 Conclusions

The aim of the present study was to optimize a cheap method used at the field scale to characterize the hydraulic parameters of

the porous medium. To this end, we investigated a particular protocol: time-lapse GPR monitoring of artificial infiltration exper-530

iments. Water infiltration into an initially unsaturated sandy soil has been simulated using a one-dimensional hydrogeophysical

model. GPR time signals have been analyzed from the reflection of the electromagnetic wave on the moving wetting front

and on two fixed reflectors located at different depths. GSA, based on PCE decomposition, has been used to assess the effect

of the unsaturated soil parameters (saturated hydraulic conductivity, saturated and residual water contents, and Mualem–van

Genuchten shape parameters α and n) on the different TWT signals. Statistical calibration of the unsaturated soil parame-535
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Ks (cm/s) θs (-) θr (-) α (1/cm) n (-)

Coarse sand

X∗ 0.6 0.38 0.15 0.145 2.0

0.578 0.379 0.161 0.21 1.947

(0.109) (0.013) (0.081) (0.194) (1.205)

9 12 2.5 1.5 7

Medium sand

X∗ 0.08 0.40 0.07 0.145 2.68

0.08 0.399 0.069 0.147 2.59

(0.003) (0.003) (0.02) (0.027) (0.426)

47 53 10 10 20

Fine sand

X∗ 0.005 0.43 0.036 0.016 2.5

0.005 0.43 0.049 0.016 2.511

(0.0) (0.002) (0.05) (0.001) (0.465)

300 80 4 279.5 18.5

Table 4. Hydraulic parameters for 3 types of sand, a coarse, medium and fine sand (from top to bottom): target values, the estimated mean

values, size of the posterior confidence intervals (CIs) and ratio of prior to posterior intervals.

ters has been performed with the MCMC sampler using corrupted synthetic observations to evaluate the reliability of the soil

parameters from the TWT signals.

The results of GSA showed that the TWTf signal of the wetting front is different from that of the two fixed reflectors which

had similar behavior. For the fixed reflectors, the magnitude of the variance (and therefore the sensitivity of the soil parameters)

is more pronounced for deeper reflectors. The TWTf signal is highly sensitive to Ks and α and moderately sensitive to θs. A540

low sensitivity was observed for θr, whereas the parameter n was insensitive. The TWT120 signal of the fixed reflector located

at 120 cm depth is highly sensitive to Ks, θs and α, and moderately sensitive to θr. The van Genuchten parameter n has a high

sensitivity for n < 3.5 and a poor sensitivity for n≥ 3.5. The GSA study shows that the monitoring of the infiltration using

both the TWT from the infiltration front and (at least) a fixed reflector has a significant sensitivity for a wide range of soil types.

The reliability of the unsaturated soil parameters has been assessed for 5 different scenarios of TWT measurement sets.545

When only data of the TWTf signal are used as conditioning information for the model calibration, all estimated parameter

values were very close to the reference values. However, analyzing the associated uncertainties showed that only Ks, θs, and

n were correctly identified (with narrow posterior intervals). Further, using only data of the TWT50 or TWT120 signals for the

calibration allows also only a good identification of Ks and θs with a strong reduction of their intervals of variation. The best

results, in terms of parameter reliability, are obtained with the combination of TWTf with at least one fixed reflector. In this550
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case, the four parameters Ks, θs, θr, and α are very well identified with very narrow posterior intervals. The van Genuchten

parameter n is estimated with a low uncertainty but its estimation degrades in the low sensitivity region n≥ 3.5. We note

that the deeper reflectors provide more information as the inversion of its signal furnishes parameters with lower uncertainty.

Then using two or three reflectors in addition to the wetting front signal doesn’t reduce consequently the uncertainty of the

parameters. The procedure has been applied for 3 types of soil ranging from coarse to fine sand and the results of MCMC555

simulations have shown its efficiency. The best estimate was obtained for the finest material. In field condition, one could

expect a higher clay content, which would decrease the electrical resistitivy and then would attenuate the GPR signal, limiting

the penetration depth of the radar wave. Hence, our numerical study shows that using a higher infiltration ring and applying

a greater pressure head could speed-up the protocol without any impact on the MCMC results. Furthermore it appears that a

deeper water table makes the calibration protocol more efficient and accurate. A limitation is observed for very shallow water560

table (for instance 50 cm) where the van Genuchten parameters α and n could not be estimated because the vadose is already

almost saturated.

The results of this study highlight the high benefit of combining TWT signals of fixed and moving (infiltration wetting front)

reflectors for very good identification of all the unsaturated soil parameters. It also points out the role of GSA to assess the

influence of the parameters on the output signals and the necessity to perform statistical calibration to assess the reliability of565

model parameters by evaluating not only estimated parameter values but also their associated uncertainties.
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