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Abstract.

The global acceleration of sea-level rise (SLR) during the 20th century is now established. On the local scale, this is harder

to establish as several drivers of SLR play a role which can mask the acceleration. Here, we study the rate of SLR along the

coast of the Netherlands from the average of six tide gauge records covering the period 1890–2021. To isolate the effects of

the wind field variations and the nodal tide from the local sea-level trend, we use four generalised additive models (GAMs)5

which include different predictive variables. From the sea-level trend estimates, we obtain the continuous evolution of the rate

of SLR and its uncertainty over the observational period. The standard error in the estimation of the rate of SLR reduces when

we account for nodal tide effects and reduces further when we also account for the wind effects meaning these provide better

estimates of the rate of SLR. A part of the long-term SLR is due to wind forcing related to a strengthening and northward shift

of the jet stream, but this SLR contribution decelerated over the observational period. Additionally, we detect wind-forced sea-10

level variability on multidecadal time scales with an amplitude of around 1 cm. Using a coherence analysis, we identify both

the North Atlantic Oscillation and the Atlantic Multidecadal Variability as its drivers. Crucially, accounting for the nodal tide

and wind effects changes the estimated rate of SLR, unmasking a SLR acceleration that started in the 1960s. Our best-fitting

GAM, which accounts for nodal and wind effects, yields a rate of SLR of about 1.7 2.2
1.3 mm/yr in 1900–1919 and 1.5 1.9

1.2 mm/yr

in 1940–1959 compared to 2.9 3.5
2.4 mm/yr in 2000–2019 (where the lower and upper bounds denote the 5th and 95th percentile).15

If we discount for the nodal tide, wind and fluctuation effects and assume a constant rate of SLR, then the probability (p-value)

of finding a rate difference between 1940–1959 and 2000–2019 of at least our estimate is smaller than 1%. Consistent with

global observations and the expectations based on the physics of global warming, our results show unequivocally that SLR

along the Dutch coast has accelerated since the 1960s.
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1 Introduction

Understanding the current and past rates of sea-level rise (SLR) is essential to make reliable sea-level projections and to adapt

accordingly. In the Netherlands, the current rate of SLR is used to estimate the volume of sand that must be supplied to maintain

the coastline and avoid a retreat of dunes. It also estimates how much salt and gas mining can be allowed under the Wadden

Sea. In addition, local sea-level measurements are important to evaluate sea-level projections (Vries et al., 2014). The rate of25

SLR could be used as an early warning indicator for adaptation measures to uncertain climate change (Haasnoot et al., 2018).

There is now high confidence in an acceleration of global SLR in the 20th century compared to the previous three millennia

and in the period 2006–2018 compared to 1971–2018 (Fox-Kemper et al., 2021). Dangendorf et al. (2019) found the global

rate of SLR to accelerate from the 1960s. More recently, Walker et al. (2022) estimated that the rates of SLR emerged from the

background variability of the Common Era (0–2000 CE) in the middle of the 19th century for the globe and in the middle of30

the 20th century for the North-East Atlantic.

Focusing on sea-level change along the coast of the Netherlands, the existence of an acceleration of SLR is still debated

(Baart et al., 2011; Wahl et al., 2013; Steffelbauer et al., 2022). There are multiple lines of evidence that an acceleration should

already be detectable or will be detectable soon. The increasing thermal expansion of oceans and faster melting glaciers and

ice sheets drive the global acceleration of SLR. These mechanisms are also expected to contribute to SLR in the North Sea.35

However, the contribution of mass loss from the Greenland Ice Sheet is much smaller than the globally averaged contribution,

due to gravitational effects (Slangen et al., 2012). The contribution of glaciers to SLR in the North Sea is below the global mean

value as the North Sea is relatively close to glaciers which are mostly based on the Northern Hemisphere (Slangen et al., 2012).

Additionally, the ocean dynamic sea level is expected to rise along the North-East Atlantic (Lyu et al., 2020; Hermans et al.,

2022) and dynamic sea-level projections based on climate models from the Coupled Model Intercomparison Project (CMIP540

and CMIP6) also expect an acceleration. Combined, the expectation for the climate-driven sea-level change along the Dutch

coast is close to the global mean changes (Vries et al., 2014; Fox-Kemper et al., 2021).

The data availability along the Dutch coast is much better than for reconstructed global sea level (Dangendorf et al., 2019;

Frederikse et al., 2020). There are six tide gauges, homogeneously distributed along the coast, measuring sea level with very

little missing data since at least 1890 which is favourable for a study of regional SLR acceleration. We study the average of45

the six tide gauges to estimate the rate of SLR along the Dutch coast. Averaging helps to increase the signal-to-noise ratio

and avoids considering processes that drive differences for local rates of SLR like vertical land motion and small-scale ocean

processes. Furthermore, because of their proximity, long-term changes at these stations are expected to be similar (e.g. the

differences are not resolved in the CMIP6 climate models), and an average for the Dutch coast is sufficient to weigh up adapta-

tion choices. However, the rates of SLR for the individual tide gauges are included in the appendix. The issue with detecting a50

regional acceleration of SLR comes from the large interannual to multidecadal variability from atmospheric forcing, especially

important for shallow seas like the North Sea (Gill, 1982; Hermans et al., 2020) and from similar variations in local steric sea

level (Bingham and Hughes, 2012). Detecting the acceleration of SLR requires understanding the sources of interannual-to-

multidecadal variability and removing them from tide gauge records (Haigh et al., 2014). To this end, various authors have
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used multilinear regression models between sea levels and atmospheric variables like sea surface pressure gradients, zonal and55

meridional velocities and, at times, precipitation. For example, this approach was applied to Cuxhaven in the German Bight

by Dangendorf et al. (2013) and multiple regions by Calafat and Chambers (2013). Nevertheless, there is no generally agreed

approach for detecting a SLR acceleration from tide gauge stations. Sometimes the observed records are extended by sea-level

projections and the acceleration is defined as a rate of SLR significantly larger than observed, which only allows for finding

an acceleration in the future (Haigh et al., 2014; Dangendorf et al., 2014a). Some studies compared the rates of linear SLR60

over two different periods (Calafat and Chambers, 2013; Steffelbauer et al., 2022) and others fitted a second-degree polyno-

mial to the data (Haigh et al., 2014; Dangendorf et al., 2019). In general, the sea-level variability due to atmospheric forcing

is estimated first by linearly detrending the time series. After that, the variability is removed from the sea-level data before

estimating the trend and acceleration. Many previous studies of SLR in the North Sea did not find evidence of a significant

SLR acceleration (Calafat and Chambers, 2013; Wahl et al., 2013; Haigh et al., 2014; Ezer et al., 2016) whereas Steffelbauer65

et al. (2022) did. To detect the acceleration of SLR in the North Sea, Steffelbauer et al. (2022) analysed the 100-year time

series (1919–2018) of eight tide gauges and found a common breakpoint in the early 1990s. The average rate of SLR of the

stations increases at the breakpoint from 1.7� 0.3 to 2.7� 0.4mm/yr, which implies an acceleration of SLR. However, the

prior distribution adopted for the rate of SLR before and after the breakpoint assumes that the latter rate can not be smaller

than the former rate, which implies that acceleration is assumed from the beginning.70

In this paper, we use a new time series approach which uses a Generalised Additive Model (GAM), which allows us to esti-

mate a nonlinear trend and the optimal multilinear regression model simultaneously. The nodal tide and zonal and meridional

wind are included in the GAM as predictive variables. Both the zonal and meridional wind are used to reduce the uncertainty

in the estimated rate of SLR. Other authors did not always include the nodal tide as a predictive variable. Using the GAM, we

avoid making strong assumptions about the shape of the sea-level trend like the piecewise linear shape assumed by Calafat and75

Chambers (2013) and Steffelbauer et al. (2022). The sea-level trend is obtained as a smooth curve representing the long-term

change in the data. This curve is differentiated to compute the rate of SLR as it evolved over the observational period; this has

not been obtained before. We also apply a rigorous parametric bootstrap method to estimate the uncertainty in the rate of SLR,

which avoids the assumption that the noise is serially uncorrelated. Furthermore, comparing estimates of the rate of SLR with

and without the effects of wind and nodal tide allows us to study the influence of these processes on SLR. We also discuss the80

physical mechanisms driving the wind-driven sea-level variations in the North Sea.

2 Data

2.1 Tide Gauge Observations

Annual-mean sea-level measurements are used as the average of the six reference tide gauges along the coast of the Netherlands:

Delfzijl, Den Helder, Harlingen, IJmuiden, Hoek van Holland and Vlissingen (Fig. 1a). These stations are used for operational85

sea level monitoring because of their extended temporal coverage and homogeneous distribution along the Dutch coast (Baart

et al., 2019). The measurements are made by Rijkswaterstaat and provided by the Permanent Service for Mean Sea Level and
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set to the Revised Local Reference (Holgate et al., 2013). They were retrieved on November 1st, 2021 from http://www.psmsl.

org/data/obtaining/. The readings at these stations start between 1862 and 1872 and are gauged with respect to the mean sea

level. However, the data before 1885 are gauged with respect to readings of the mean tide which could result in a jump in90

the data (Woodworth, 2017). Therefore, we only use the tide gauge data after 1890 as was done for Frederikse and Gerkema

(2018); Baart et al. (2019).

2.2 Atmospheric Reanalysis

We use the monthly mean zonal and meridional wind at 10 m and atmospheric pressure at sea level from two atmospheric

reanalysis products. The �rst product, the ERA5 reanalysis, from the Copernicus Climate Change service Climate Data Store,95

is available from 1979 to 2022 with a backward extension to 1950 (Hersbach et al., 2020; Bell et al., 2021). ERA5 has a spatial

resolution of 0.25°� 0.25°. The second product, the Twentieth Century Reanalysis Version 3 (20CRv3) from the National

Oceanographic and Atmospheric Administration (NOAA), is available from 1836 to 2015 (Slivinski et al., 2019). The data

from this analysis has a spatial resolution of 1.0°� 1.0°.

3 Method100

3.1 Statistical Models

Four statistical models were developed and used to separate the in�uence of different chosen predictive factors on SLR and to

extract the resulting background sea-level trend. All models are based on the Generalised Additive Model (GAM, Hastie and

Tibshirani (2017); Wood (2020)) and are estimated by penalised maximum likelihood. Compared to a multi-linear regression

model, a GAM replaces the strict assumption of a linear or quadratic shape of the sea-level trend by a sum of many smooth105

functions. This offers the advantage that we are not required to make a priori assumptions about the shape of the sea-level trend.

In our four models, the GAM represents the annual-mean sea level averaged over the six tide gauges as a smooth curve (a linear

combination of many smooth cubic B-spline basis functions) plus terms representing the in�uence of the predictive variables.

An overview of the four models and their mathematical description is given in Tbl. 1. The smooth curve (trend), given by the

�rst term in the equations in Tbl. 1, represents the background variation in sea level to be estimated; its exact meaning depends110

on the choice of the predictive variables. Its smoothness is controlled by a penalty term subtracted from the log-likelihood,

which is proportional to the time-integral of the squared curvature of the smooth term (Wood, 2020). The penalty term was

assigned a weight tuned to match the variance of the smooth curve to the variance of a 30-year average.

The �rst model (Tr) estimates the sea-level trend only without using any predictive variables. This setup makes no assump-

tions about the drivers of SLR. We use this model as a reference to evaluate the improvements achieved by increasing the115

model complexity. In the second model, the in�uence of the lunar nodal tide on sea level is added (TrNt). A sinusoidal wave

with unknown amplitude and phase and a �xed period of 18.613 years, the period of the nodal tide potential, are included as a

predictive variable for the nodal tide in the GAM. There has been some debate in the literature about the best way to estimate
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the in�uence of the nodal tide on the sea level in the North Sea. Using linear regression to estimate the effect of the nodal tide

along the Dutch coast shows an increased magnitude and shift in the phase compared to the equilibrium tides (Baart et al.,120

2011). However, using a closed sea-level budget, Frederikse et al. (2016) suggested there is no indication that the nodal tide

deviates from the equilibrium tide in the North Sea between 1958 and 2014. We �nd that assuming equilibrium tides leaves a

large amount of energy in the spectrum close to the period of the nodal tide (see App. A). Therefore, we decide to use a linear

regression model with an undetermined phase and amplitude but a �xed period as in Baart et al. (2011) even though it might

remove some additional variability around the period of nodal tides. Using this second model, the in�uence of the nodal tide125

on the trend and variability of sea level can be studied.

The third and fourth models combine trend, nodal tide and wind. For the third model (TrNtW), wind effects are included by

addingujuj andvjvj (Tbl. 1), whereu andv are, respectively, the zonal and meridional wind from reanalysis obtained from the

closest grid cell of each tide gauge and averaged for the six stations (Fig. 1a). The wind expression is inspired by the wind stress

formulation (Dangendorf et al., 2019). Along the Dutch coast, the zonal wind is much more important for sea-level changes130

than the meridional wind (Figs. 7 and 8 from Frederikse and Gerkema (2018) and Fig. 4 from Dangendorf et al. (2014a).

However, including both the zonal and meridional wind components reduces the uncertainty in the estimated rate of SLR more

than only including the zonal component. The fourth model (TrNtPd) uses a large-scale pressure gradient as the predictive

variable for the wind effect on sea level. As in Dangendorf et al. (2014b), we compute the Pearson correlation coef�cient

between linearly detrended sea level along the Dutch coast and atmospheric pressure at sea level (Fig. 1b). This shows a135

similar pattern as was previously obtained for the German bight (Dangendorf et al., 2014b). The pattern is characterised by a

region of negative correlation over Scandinavia and a positive correlation over southern Europe/northern Africa. Each of these

regions de�nes a box where the average pressure is computed. Then, instead of using the pressure in both boxes as predictive

variables as in Dangendorf et al. (2014b), we take the difference between the southern and northern boxes. This adds only one

variable to the model and is physically motivated by the fact that the pressure gradient is to some extent related to wind by140

geostrophy. We combine the variables representing wind effects from the two reanalysis datasets using a linear bias correction

method (Casanueva et al., 2013) to obtain one dataset covering the full period of atmospheric data from 1836 to 2022. The

ERA5 dataset is used as reference data for the correction. The mean and standard deviation of the 20CRv3 pressure and wind

time series are adjusted to match the means and standard deviations of 20CRv3 and ERA5 over the overlap period 1950–2015.

3.2 Analysis of Model Output145

Using our four GAMs including different predictive variables enables us to study the background sea-level trend, the in�uence

of the nodal tide on sea level and the wind in�uence on sea level. The wind in�uence on sea level can be obtained from the

results ofTrNtW andTrNtPd. It is described by the third plus fourth term (TrNtW) or the �fth term (TrNtPd) in the model

equations given in Table 1. We obtain the regression coef�cients from our GAMs over the period from 1890 to 2021. Using

these coef�cients and the wind data, we can obtain the wind in�uence on sea level from 1836 to 2022, the period covered by150

the atmospheric reanalyses. From this, we obtain the trend of wind-driven sea level using a 3rd-degree polynomial �t to the

annual-mean data. Also, a spectral analysis is performed on the detrended annual-mean data. The spectra are obtained using a
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Table 1. Overview of the equations describing the four GAMs and summary of the statistical model performance. In the model equations,

� t is the average sea level for the yeart, � jt is the value of the smooth B-spline basis function� j for the yeart and� j is the corresponding

coef�cient. � j are the coef�cients of the predictive variables for wind.A is the amplitude ,T = 18 :613y is the period and� is the phase of

the nodal tide. In these equations, the �rst term describes the sea level trend, the second term describes the in�uence of the nodal tide on sea

level and the third plus fourth or �fth term gives the wind in�uence on sea level. The number of degrees of freedom includes the number of

predictive variables and the number of basis functions used by the B-spline method. The deviance is a generalisation of the sum of squares

of residuals used to compare linear regression models.

Model Components Performance

sea

level

trend

(spline)

nodal tide zonal

wind

meridional

wind

pressure

difference

Degrees of

freedom

Deviance

Tr � t =
P

j � j � jt 4.7 1167.0

TrNt � t =
P

j � j � jt + A sin(2�t=T + ' ) 6.6 1033.0

TrNtW � t =
P

j � j � jt + A sin(2�t=T + ' ) + � 1 jut jut + � 2 jvt jvt 8.6 423.0

TrNtPd � t =
P

j � j � jt + A sin(2�t=T + ' ) + � 3 � pt 7.6 652.0

multitaper method (Lees and Park, 1995). To obtain the low-frequency wind in�uence on sea level, the detrended annual-mean

sea level data is smoothed using local polynomial regression (LOWESS, Cleveland and Devlin (1988)) with a window of 21

years that effectively removes high-frequency variability.155

Using our four statistical models, we obtain the background sea-level trend (the �rst term in the equations in Tbl. 1. As a

next step, the rate of SLR is obtained by differencing these estimated smooth sea-level trends using a three year step. Since a

window of three years is used, the rates cannot be computed for the �rst and last years of the time series. The rates of SLR

resulting from the different models do not include the same physical processes. The resulting rates ofTrNtWandTrNtPddo not

include the contribution from wind and nodal effects andTrNt does not include nodal effects whileTr includes all processes.160

3.3 Uncertainty Computation

To estimate our models from the data, we use a generic method for likelihood-based estimation of GAM (Wood, 2020). It treats

the unknown noise terms, the residuals, as independent identically distributed normal random variables. However, checks of the

residuals reveal that they are serially correlated, so the independence assumption is not warranted. This does not invalidate the

method: since only marginal parameters are estimated, the estimator is consistent under weak assumptions on the dependence165

(Section 2 of Cox and Reid (2004)). However, serial dependence of the noise affects the covariance of the estimated model

parameters, so for deriving con�dence intervals and for testing hypotheses, we must account for it. Our estimator for the rate

of SLR (the derivative of the smooth spline estimate of the variation in sea level) is particularly sensitive to low-frequency

components of the noise. Our error analysis must account for these subtle aspects of serial dependence. Therefore, we apply a

parametric bootstrap method based on the noise spectrum, similar to the Wild Bootstrap version of the technique in Kirch and170
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