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Abstract. As the ability to make predictions of uncertainty information representing natural 21 

hazards increases, an important question for those designing and communicating hazard 22 

forecasts is how visualisations of uncertainty influence understanding amongst the intended, 23 

potentially varied, target audiences. End-users have a wide range of differing expertise and 24 

backgrounds, possibly influencing the decision-making process they undertake for a given 25 

forecast presentation. Our previous, linked study (Mulder et al., 2023), examined how the 26 

presentation of uncertainty information influenced end-user decision making. Here, we shift 27 

the focus to examine the decisions and reactions of participants with differing expertise 28 

(Meteorology, Psychology and Graphic Communication students) when presented with 29 

varied hypothetical forecast representations (boxplot, fan plot or spaghetti plot with and 30 

without median lines), using the same eye-tracking methods and experiments. Participants 31 

made decisions about a fictional scenario involving the choices between ships of different 32 

sizes in the face of varying ice thickness forecasts. Eye-movements to the graph area and 33 

key, and how they changed over time (early, intermediate, and later viewing periods), were 34 

examined. More fixations (maintained gaze on one location) and time fixating was spent on 35 

the graph and key during early and intermediate periods of viewing, particularly for boxplots 36 

and fan plots. The inclusion of median lines led to less fixations being made to all graph 37 

types during early and intermediate viewing periods. No difference in eye movement 38 

behaviour was found due to expertise, however those with greater expertise were more 39 

accurate in their decisions, particularly during more difficult scenarios. Where scientific 40 

producers seek to draw users to the central estimate, an anchoring line can significantly 41 

reduce cognitive load leading both experts and non-experts to make more rational decisions. 42 

When asking users to consider extreme scenarios or uncertainty, different prior expertise 43 

can lead to significantly different cognitive load for processing information with an impact on 44 

ability to make appropriate decisions. 45 

 46 

1. Introduction 47 

The importance of understanding the most ideal approach for communicating uncertainty 48 

information is a common across multiple domains in everyday life and across a range of 49 

sciences (Fischhoff, 2012) and is an established problem in geoscience communication 50 

(Stephens et al., 2012). This importance has been highlighted by the current COVID-19 51 

pandemic during which there has been a sharp increase in the use of unfamiliar 52 

visualizations of uncertainty presented to the public in order to explain the basis of decisions 53 

made to justify the response being asked of them to adopt modified and new behaviours in 54 

order to mitigate transmission. As more unfamiliar and detailed information is presented to 55 
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and interpreted by non-specialists, the decisions made as a result have a significant impact 56 

on health, society and the environment, so careful consideration of communication is 57 

essential (Peters, 2008). It is clear that people have trouble gaining an appropriate 58 

understanding of uncertainty information and how best to use this in order to support optimal 59 

decisions (e.g., Tversky and Kahneman, 1974; Nadav-Greenberg and Joslyn, 2009; 60 

Roulston and Kaplan, 2009; Savelli and Joslyn, 2013).  A great deal of research has been 61 

concerned with addressing the most appropriate way to communicate uncertainty to promote 62 

effective decision-making and understanding (Fischhoff, 2012; Milne et al., 2018). Deciding 63 

what uncertainty information should be included, what ought to be emphasized, and the 64 

manner in which it is best conveyed all have an important role to play (Bostrom et al., 2016; 65 

Broad et al., 2012; Morss et al., 2015; Padilla et al., 2015). Furthermore, there is a 66 

reluctance by authors, such as data scientists, journalists, designers and science 67 

communicators, to present visual representations of quantified uncertainty (Hullman, 2019). 68 

There is a belief that it will overwhelm the audience and the main purpose of the data, invite 69 

criticism and scepticism, and that it may be erroneously interpreted as incompetence and a 70 

lack of confidence which will encourage a mistrust of the science (Fischhoff, 2012; Gistafson 71 

andand Rice, 2019; Hullman, 2019). This research points to the lack of consistent 72 

recommendations and stresses the need for the form of communication being tailored to 73 

both the aims and desired outcomes of the communicator and the needs and abilities of the 74 

audience (Spiegelhalter et al., 2011; Lorenz et al., 2015; Harold et al., 2016; Petropoulos et 75 

al., 2022). 76 

Visualizing uncertainty in geoscience forecasts needs to balance robustness, richness, and 77 

saliency (Stephens, et al. 2012). Recently, numerous examples of this have focussed on 78 

creative ways to achieve this (Lorenz et al., 2015; Harold et al., 2016; Petropoulos et al., 79 

2022). Communication of uncertainty can take the forms of words, but this can lead to issues 80 

of ambiguity caused by the language used and the variation in user interpretation (Wallsten 81 

et al., 1986; Skubisz et al., 2009). However, there is clearly strength to this approach when it 82 

is needed. For example, taking a storyline approach has been shown to be a powerful 83 

technique for communicating risk when less focus is needed on probabilistic information and 84 

more emphasis is needed on plausible future events (Shepherd et al., 2018; Sillmann et al., 85 

2021). To overcome issues of ambiguity of words, numbers are often used to present 86 

uncertainty as probabilities in the form of fractions (1/100), natural frequencies (1 in 100), or 87 

percentages (1%), but these forms can lead to ratio bias or denominator neglect (Morss et 88 

al., 2008; Kurz-Milcke et al., 2008; Reyna and Brainerd, 2008; Denes-Raj and Epstein, 1994; 89 

Garcia et al., 2010), and the most effective form to use to aid understanding can depend on 90 

the context (Gigerenzer and Hoffrage, 1995; Joslyn and Nichols, 2009). Similarly presenting 91 
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uncertainty graphically can take many forms which means they have the advantage of 92 

flexibility of presentation, can be tailored for specific audiences, can help with differing levels 93 

of numeracy and can help people focus on the important gist of the information when using 94 

uncertainty to help reach a decision (Feldman-Stewart et al., 2007; Peters et al., 2007; 95 

Lipkus and Holland , 1999). As with the use of words, the choice of graphic to employ is 96 

dependent on the audience and intended message outcome (Spiegelhalter, 2017) and can 97 

lead to the overestimation of risk and negative consequences depending on the framing of 98 

the information (Vischers et al., et al., 2009). Pie charts are good for presenting proportions 99 

and part-to-whole comparisons and benefit from being intuitive and familiar to the public, but 100 

interpretation can sometimes be difficult (Nelson et al., 2009). Bar charts are useful for 101 

communicating magnitude and allowing comparisons (Lipkus, 2007) while line graphs are 102 

helpful in conveying trend information about the change in uncertainty over time. Icons can 103 

also be very useful, especially so for people with low numeracy and have been found to be 104 

effective when supplemented by a tree diagram (Galesic et al., 2009; Gigerenzer et al., 105 

2007; Kurz-Milcke et al., 2008). These types of graphical communication can also include 106 

information about the range of uncertainty (such as a “cone of uncertainty”, Morss et al., 107 

2016). 108 

Previous research has shown that including uncertainty information can aid users to make 109 

more rational decisions (Nadav-Greenberg et al., 2008; Nadav-Greenberg and Joslyn, 2009; 110 

Roulston and Kaplan, 2009; Savelli and Joslyn, 2013 St John et al., 2000). One way in which 111 

this is achieved is by use of heuristics (Tversky and Kahneman, 1974). If selected wisely 112 

then these can help simplify probabilistic information to bolster and speed decisions promote 113 

optimal interpretation of data. However, poor selection can hinder and encourage suboptimal 114 

decisions (Mulder et al., 2020). For example, providing an anchor value alongside data can 115 

help users interpret the data more efficiently by focussing them on that particular value (for 116 

example, focussing people on precipitation level on days like this as a start point to 117 

estimating rainfall) but if chosen poorly can encourage a more extreme and suboptimal 118 

interpretation (focussing on the maximum precipitation level on days like this would 119 

encourage higher estimates of rainfall). In terms of graphical visualization of uncertainty, 120 

providing a central line showing a likely hurricane track has been reported to distract users 121 

from possible hurricane tracks given by the cone of uncertainty. Equally, however, the cone 122 

of uncertainty has been sometimes misinterpreted as showing the extent of the storm (Broad 123 

et al., 2007). Beyond heuristics, other design choices have also been found to affect optimal 124 

and efficient decision-making (Speier, 2006; Kelton et al., 2010; Wickens et al., 2021). 125 

Different designs of boxplots and graphs showing the same information affect decisions and 126 

interpretations (Correll and Gleicher, 2014; Bosetti et al., 2017; Tak et al., 2013, 2015). 127 
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Forecasting maximum values from graphs was found to depend on graph type (Mulder et al., 128 

2020). Giving tornado warnings with probabilistic information about where a tornado may 129 

strike increased response in those areas compared with deterministic information (Ash et al., 130 

2014).  131 

Part I of this study, which from here will be called “companion paper” (Mulder et al., 2023), 132 

shows that, for all groups, great care is needed in designing graphical representations of 133 

uncertain forecasts. This is especially so when attention needs to be given to critical 134 

information, and the presentation of the data makes this more difficult. In particular, well 135 

known anchoring effects associated with mean or median lines can draw attention away 136 

from extreme values for particular presentation types (Broad et al., 2007; Nadav-Greenberg 137 

et al. 2008; Mulder et al., 2020). The availability of easy-to-use tools that make the 138 

development of complex graphical representations of forecasts quick and cheap to produce, 139 

poses new challenges for the geo-scientists. Within the environmental sciences, making 140 

forecasts of natural hazards (such as landfall of hurricanes, flooding, seismic risk and the 141 

changing climate) useful to end-users depends critically on communicating in a concise and 142 

informative way. Particularly as end-users have a wide range of differing expertise, spanning 143 

a spectrum between geo-physical scientists to those with no formal scientific training. 144 

Therefore, the way in which information is displayed is very important for avoiding 145 

misperceptions and ensuring appropriate steps are taken by end-users, especially when 146 

perceptions of natural hazards can differ between experts and non-experts (Fuchs et al., 147 

2009; Goldberg and Helfman, 2010). Here, we compare the response of three different 148 

groups of end-users with different levels of scientific expertise to the same series of forecast 149 

presentations to explore how more and less complex presentations influence decision 150 

making and perception. 151 

Expertise differences may be due to greater familiarity with the ways in which hazard 152 

information is made available. This enables experts to make more economically rational 153 

decisions and to interpret uncertainty information more effectively (Mulder et al., 2020). 154 

However, the role of expertise remains unclear with some studies showing no differences in 155 

decision-making tasks with both experts and non-experts able to process and use forecast 156 

information to make decisions, with the inclusion of uncertainty information found to be 157 

useful for both experts and non-experts (Nadav-Greenberg et al., 2008; Kirschenbaum et al., 158 

2014; Wu et al., 2014). Furthermore, it is unclear whether presentation of uncertainty 159 

information in visual formats results in benefits over using verbal and numerical expressions. 160 

For instance, uncertainty presented as pictograph or graphical representations may help with 161 

understanding and interpretation (Zikmund-Fisher et al., 2008; Milne et al., 2015; Susac et 162 

al., 2017). Additionally, research is required to examine differences in expertise, particularly 163 
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as deterministic construal errors can be made as observers are often unaware that 164 

uncertainty is being depicted within visualisations (Joslyn and Savelli, 2021). Inappropriate 165 

information that captures attention is also often relied on, which can distort judgements 166 

(Fundel et al., 2019).  167 

Experts are better at directing attention (through eye movements) to the important 168 

information required for making a decision. For example, in judgments of flight failures, 169 

expert pilots were found to make faster and more correct decisions, making more eye 170 

movements to the cues related to failures than non-experts (Schriver et al., 2008). Kang and 171 

Landry (2014) also found non-experts to improve after they were trained with the eye 172 

movement scan paths of experts; training led non-experts to make fewer errors (false 173 

alarms) on aircraft conflict detection tasks. However, there is little research examining eye 174 

movements when experts and non-experts are required to make decisions using graphical 175 

and numerical forecast information. It is not clear which aspects of forecast information are 176 

being examined and when, and equally which, are being ignored.  177 

More generally, research has shown that when viewing images, more fixations are made to 178 

informative regions and areas of interest (Unema et al., 2005). The times at which these 179 

fixations are made has been found to vary depending on task, decision type and expertise. 180 

Antes (1974) found that early fixations, in the first few seconds of viewing pictures, were 181 

towards informative areas. Goldberg and Helfman (2010) also showed that important regions 182 

of interest were fixated early during observation of different graphs. Experts have been 183 

shown to identify and fixate informative aspects of visual information more quickly and more 184 

often than non-experts (Maturi and Sheridan 2020; Charness, Reingold, Pomplun, and 185 

Stampe, 2001; Kundel, Nodine, Krupinski, and Mello-Thoms, 2008). As well as informative 186 

parts of a scene or image, Shimojo et al. (2003) reported that the likelihood that fixation 187 

would be made to the item preferred, increased over time, particularly in the final second 188 

before selection (see also Glaholt and Reingold, 2009; Simion and Shimojo, 2006; Williams 189 

et al., 2018). These results show that informative and preferred areas of images are 190 

selectively fixated early on, more often and for longer. As viewing evolves, fixations start to 191 

reflect final choices and preferences. The temporal development of this is task-dependent 192 

and influenced by expertise.  193 

Here, we explore eye movement behaviour to similar hypothetical scenarios but with 194 

particular interest on differences due to participant expertise/background, following the 195 

research discussed, of gaze to graph areas and keys over different time periods of the 196 

decision-making process. Regardless of expertise, the presence of a median line on graphs 197 

has been found to influence the location of participants gaze fixations moving their 198 
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distributions closer to the median line (Mulder et al., 2020). Depending on graph type the 199 

presence of a key can lead to errors which may be function of finding that the key is not 200 

directly fixated in those representations (Mulder et al., 2020.  Here we explore these 201 

patterns, in particular whether these are a function of expertise. As in our companion paper 202 

(Mulder et al., 2023), we examine gaze patterns when faced with the task of making 203 

decisions about a fictional scenario involving the choices between ships of different sizes in 204 

the face of varying ice thickness forecasts (30%,50%,70%), when presented in different 205 

formats (boxplot, fan plot or spaghetti plot, with and without median lines).  206 

We use eye-tracking techniques and exploration of the accuracy of decision tasks across 207 

expertise to address the following questions: 208 

1. Does the presence of a median line and expertise affect gaze over the course of the 209 

decision-making process?  210 

2. Does expertise affect gaze to the key over the course of the decision-making 211 

process?  212 

3. Does expertise affect accuracy of decisions? 213 

 214 

2. Methodology 215 

2.1 Participants 216 

Sixty-five participants took part in this study: twenty-two meteorology students, twenty-two 217 

psychology students and twenty-one graphic communication students recruited from the 218 

University of Reading (38 females, 27 males). Participants were aged 18–32 (M= 21.2) and 219 

had completed 0–4 (M=1.0) years of their respective degrees. Meteorology students are 220 

considered to have more training in graph reading, scientific data use, and quantitative 221 

problem solving as part of their degree and in qualifying for the course, than students on 222 

other degree courses which have less of a focus in these areas. Within this study, 223 

meteorology students were therefore considered to have greater expertise compared to the 224 

psychology and graphic communication students, although psychology students are also 225 

likely to have statistical knowledge and experience reading graphs. The research team 226 

involved academics who taught on each of these subjects and therefore can substantiate 227 

these generalisations. 228 

 229 

2.2 Design and Procedure  230 
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A hypothetical scenario of ice thickness forecast for a fictional location was provided to 231 

participants (see Mulder et al., 2023 for further details). This type of forecast was chosen as 232 

is very unlikely to be one that is familiar to our participants to minimize any effects of 233 

preconceived notions of uncertainty. Participants were informed that they were making 234 

shipments across an icy strait and, using ice-thickness forecasts, had to decide whether to 235 

send a small ship or large ship. The small ship could crush 1-meter thick ice whereas the 236 

large ship crushes ice larger than this. There was a differential cost involved in this decision 237 

with small ship costing £1000 to send and the large ship £5000. They were additionally 238 

made aware that if the ice was thicker than 1-meter and small ship was sent, this would incur 239 

a cost penalty of £8000.  240 

Ice thickness forecasts were presented in seven different types: deterministic line, box plot, 241 

fan plot and spaghetti plot. Each representation was presented with or without a median line. 242 

Each of these graph types was shown to represent 30%, 50%, and 70% probability of ice 243 

thickness exceeding 1 meter (See Fig. 1 for examples of each graph type).  In this paper we 244 

only examined the decision-task question where participants were asked to select which ship 245 

(small or large) to send across an icy strait 72 hours ahead of time using a 72-hour forecast 246 

of ice thickness (see our companion paper Mulder et al. (2023) for further details on the 247 

hypothetical scenarios). While performing this task, participants wore an Eye link II eye-248 

tracker headset which recorded eye movements of the right eye as they completed the 249 

survey. Head movements were restrained, and the eye tracker was calibrated to ensure 250 

accurate eye movement recording.  251 

 252 
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 253 

(b) Spaghetti Plot with Median (c) Spaghetti Plot without Median 

(d) Fan Plot with Median (e) Fan Plot without Median 

(f) Box Plot with Median (g) Box Plot without Median 

(a) Deterministic 
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Figure 1. The four forecast representations used in this analysis: (a) deterministic (using only the 254 
median line), (b) and (c) spaghetti plot, (d) and€) fan plot, and (f) and (g) box plot. Uncertainty 255 
forecasts were shown both with median lines (b,d,f) and without median lines (c,e,g). All forecasts 256 
represent the same information: three of 10 model runs show ice greater than 1-meter thick. The 257 
same plots were produced for 50% and 70% chance of ice greater than 1-meter thick (not shown). 258 
The dotted line in each graphic shows 1-meter ice thickness, the threshold the participants predicted. 259 

 260 

2.3 Eye tracking apparatus 261 

Participants wore an EyeLink II (SR Research Ltd) eye tracker headset (Fig 2) which 262 

recorded eye movements of the right eye at a rate of 500Hz as they completed the task. The 263 

EyeLink II is a high-resolution comfortable head-mounted video-based eye tracker with 0.5 264 

deg average accuracy (offset between actual gaze location and that recorded) and 0.01 deg 265 

resolution (dispersal of gaze locations during fixations) that gives highly accurate spatial and 266 

temporal resolution. Participants gaze was precisely calibrated and re-calibrated throughout 267 

the study as necessary to maintain accurate recording. Each forecast, and task were 268 

presented on a 21-inch colour desktop PC with a monitor refresh rate of 75Hz. Participants 269 

were seated at a distance of 57 cm from the monitor and their head movements were 270 

minimized by a chin rest (Fig 2). Fixation location and its duration were extracted after study 271 

completion. Fixation was defined as times when the eyes were still and not in motion (i.e., no 272 

saccades were detected). These measures were used as proxies of the aspects of the 273 

forecasts were being attended to by participants as they made their decisions. These give a 274 

direct insight into the information and visual features that are salient when participants are 275 

attempting to understand and use uncertainty in forecasting in order to make decisions. For 276 

more information on methods used in eye-tracking studies, see Holmqvist et al. (2011). 277 

 278 
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 279 

Figure 2. On the left are pictures of the head-mounted eye-tracker, EyeLink II (SR Research Ltd), 280 
used to record participant’s eye movements while taking part in the study with an example of boxplot 281 
trial shown on the display. On the right, composite heat maps are shown. These show the 282 
accumulation of the duration of eye fixations (in milliseconds) of all participants for the ship decision 283 
(a,b) and maximum ice thickness (c,d) tasks. Heat maps are shown only for the spaghetti plot with 284 
(a,c) and without (b,d) median lines. Heat maps for the other forecast representations can be found in 285 
the Appendix B of Mulder et al (2023). Please note that between each question, there was a cross 286 
present to help participants focus back to the centre of the screen prior to moving on to the next trial. 287 
This central start position resulted in collections of fixations in the centre of the displays and can be 288 
seen on all of the four heat maps shown. It is most clear on the top right heat map.  289 

 290 

2.4 Data analysis 291 

Two interest areas were formed from a post hoc classification to address our research 292 

questions (graph area and key). Three viewing periods across trials were created (early, 293 

intermediate, late). The exact definition of early, intermediate, and late differed by type of 294 

graph due to each style evoking slightly different viewing periods. Viewing periods for each 295 

specific graph type were of equal bins divided across the average time to complete the 296 

question and therefore ranged between 5 to 6 seconds. In this study, we report number of 297 

fixations and total fixation duration.  298 
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In our companion paper (Mulder et al., 2023), our analysis of gaze was across all 299 

experimental trials and all tasks. However, as we are concerned about the viewing period 300 

and want to avoid effects of learning, we examine gaze when participants were faced with 301 

each graph type for the first time. Repeated exposure to graph type and the demand to 302 

make the same judgement may influence gaze patterns as informative parts of the figures 303 

are located more swiftly. Therefore, six trials for each graph type for each participant were 304 

examined. We analysed the accuracy of responses to this question (making the safe and 305 

cost-effective choice of the two options) and gaze (number and total fixation duration). 306 

Based on the results of our companion paper (Mulder et al., 2023), we further explore the 307 

impact of the presence of a median line considering the viewing period, expertise and graph 308 

type. We then focus on fixation towards the keys including viewing period, expertise, graph 309 

type and the presence of a median line as variables. Data was analyzed using an Analysis of 310 

Variance (also known as ANOVA) approach which tests for differences across the mean 311 

responses in cases where there are multiple conditions or groups greater than two. Further 312 

post-hoc analyses examining differences between specific pairs of conditions or groups 313 

were carried out using t-tests which are Bonferroni corrected (this is a correction to the 314 

significance threshold criteria to control for the number of comparisons carried out. See 315 

Baguley (2012) for example). For both research questions a four-way mixed measures 316 

ANOVA was conducted including graph type, presence of a median line and viewing period 317 

as within-subject variables (i.e., all participants took part in all these conditions), and 318 

expertise as a between-subjects variable (participants were grouped by expertise). Finally, 319 

we report the accuracy of responses for the ice ship decision task highlighting any 320 

differences due to expertise. There are a number of components to the output of the analysis 321 

of variance (ANOVA). Below we provide a key which may help in understanding the output 322 

we report: 323 

 324 

3. Results 325 

 326 

3.1 Does the presence of a median line and expertise affect gaze over the course of 327 

the decision-making process?  328 
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Here, we examined how the presence of the median line influences eye movement 329 

behaviour when considered across the viewing period from early to late stages, and different 330 

levels of expertise, as well as the graph type. Table 1 shows a summary of the statistical 331 

outcomes detailed in the paragraphs below, along with a short description of what they 332 

show. 333 

A main effect of presence of a median line was found for number of fixations and total 334 

fixation duration made to the graph area, p's<0.015. More fixations were made, and more 335 

time was spent fixating on the graph area of the display when no median line was present 336 

(fixation count M=8.74; total duration M=2128.64) compared to when a median line was 337 

provided (fixation count M=7.89; total duration M=1887.47). 338 

A main effect of graph type was also found for number of fixations and total fixation duration 339 

made to the graph area, p’s<0.001. Boxplots elicited more fixations, and more time was 340 

spent fixating on boxplots (fixation count M=9.07; total duration M=2222.21) and fan plots 341 

(fixation count M=8.71; total duration M=2091.04) compared to spaghetti plots (fixation count 342 

M=7.17; total duration M=1710.92). 343 

There was also a main effect of the viewing period for number of fixations and total fixation 344 

duration made to the graph area, p’s<0.001. There was found to be a greater number of 345 

fixations with longer dwell times on the graph area during early (fixation count M=9.83; total 346 

duration M=2399.96) and intermediate (fixation count M=9.52; total duration M=2284.11) 347 

viewing periods compared to later periods (fixation count M=5.60; total duration M=1340.09).  348 

There was no main effect of expertise on fixation count and total fixation duration, p’s>0.05.  349 

As well as the main effects of median line, graph type and viewing period, there was an 350 

interaction between the median line and viewing period for total fixation duration, p=0.03. 351 

Less time was spent fixating the graph area during the early and intermediate stages of 352 

viewing when a median line was present (Early total duration M= 2174.97; Intermediate total 353 

duration M= 2137.79, p<0.001) compared to when no median line was present (Early total 354 

duration M= 2624.96; Intermediate total duration M= 2430.43, p=0.05). However, no 355 

differences were found due to the presence (later total duration M= 1349.65) or absence 356 

(later total duration M= 1330.54) of a median line during the later stages, p=0.896. No other 357 

interactions were found to be significant. These findings support that the median line can 358 

reduce cognitive load; impacting the total fixation duration and number of fixations made on 359 

the graph area, particularly during early stages of the decision-making process, and adds to 360 

results from our companion paper that showed how fixation location was towards the median 361 

line when present, regardless of the type of graph.  362 
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 363 

 364 

 Number of Fixations Total Fixation Duration 
 F df MSE p 

 
F df MSE p 

 

Main Effects: 
Median Line 
 

 
0.18 

 
1, 62 

 
7.57 

 
0.667 

 
0.003 

 
0.06 

 
1, 62 

 
543399 

 
0.805 

 
0.001 

Graph Type 42.9 2, 124 8.10 <0.001 0.409 42.4 2, 124 574225 <0.001 0.41 
Viewing 
Period 

18.0 2, 124 6.59 <0.001 0.225 21.0 2. 124 416719 <0.001 0.25 

Expertise 0.25 1, 62 10.1
9 

0.779 0.008 0.14 1, 62 730099 0.87 0.005 

Interaction: 
Graph Type 
and Viewing 
Period 

 
3.58 

 
4, 248 

 
4.72 

 
0.007 

 
0.055 

 
4.26 

 
4, 248 

 
330504 

 
0.002 

 
0.064 

Table 1. Shows a summary of the main significant statistical outcomes examining the effect of median 365 
line presence, graph type, viewing period and expertise on gaze behaviour as detailed in the text. All 366 
significant main effects and interactions are included along with important non-significant findings. 367 

Key to Analysis of Variance (ANOVA) output 368 

F: this is the inferential statistic test returned by the ANOVA which shows the proportion of variance in 369 
the participant data explained by a model of the data that includes the levels of the independent 370 
variable compared to that which can accounted for when that variable is not included (i.e., by chance 371 
alone). 372 

df: degrees of freedom are shown in brackets after the F value 373 

MSE: Mean Square Error, this is the mean of variance accounted for by chance alone 374 

p: shows the chances that the results would be found if there was actually no difference to be found. 375 
The common threshold being 0.05 (5%). A p value less than 0.05 would be commonly labelled as 376 
being significant, i.e., we were unlikely to have recorded the data we did if there was actually no 377 
difference caused by the independent variable(s). 378 

: partial eta-sqaured. A measure of effect size. This gives an insight into the strength of the effect 379 

of an independent variable. P values are affected by sample size whereas effect size measures are 380 
not and so allow comparisons to be made across variables. 381 

2h 2h

2h
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 382 

3.2 Is gaze to the key influenced by expertise and the viewing period during the 383 

decision-making process? 384 

In order to examine how gaze parameters on the graph key change throughout the viewing 385 

period prior to the final decision, we extracted the number of fixations made to the key and 386 

their duration. Table 2 shows a summary of the statistical outcomes detailed in the 387 

paragraphs below, along with a short description of what they show.  388 

A main effect of graph type was found for number of fixations and total fixation duration 389 

made to the key, p’s<0.001. More fixations were made, and more time was spent fixating on 390 

fan plot keys (fixation count M=2.45; total duration M=626.79) compared to both boxplot 391 

(fixation count M=1.48; total duration M=387.75) and spaghetti plot keys (fixation count 392 

M=0.56; total duration M=127.13), and more fixations and time spent on boxplot compared 393 

to spaghetti plot keys.  394 

There was a main effect of the viewing period on the number of fixations that were made to 395 

the key within the display, as well as the total amount of fixation, p’s<0.001 More fixations 396 

and longer dwell time to the key occurred during the early (fixation count M=1.61; total 397 

duration M=407.15) and intermediate (fixation count M=1.99; total duration M=515.33) 398 

viewing periods compared to later periods (fixation count M=0.90; total duration M=219.20).  399 

No main effect of the median line on either fixation count or total fixation durations was 400 

found, p’s>0.05. Nor was there a main effect of expertise on fixation count and total fixation 401 

duration, p’s>0.05.  402 

An interaction between the graph type and viewing period for fixation count and total fixation 403 

duration was found, p’s<0.008. More fixations were made, and more time was spent fixating 404 

the boxplot key during the early (fixation count M= 1.68; total duration M=423.76) and 405 

intermediate (fixation count M= 2.06; total duration M=577.11) stages of the viewing period 406 

compared to the later stage (fixation count M=0.71; total duration M=162.39), p’s<0.005. 407 

Similarly, more fixations were made, and more time was spent fixating the fan plot key 408 

during the early (fixation count M= 2.69; total duration M=695.64) and intermediate stages 409 

(fixation count M= 3.10; total duration M= 791.37) compared to the later stage (fixation count 410 

M=1.55; total duration M=393.37), p’s<0.005. However, no differences were found between 411 

viewing periods for spaghetti plots, p’s>0.05. The reason for less fixation being to spaghetti 412 

plot keys generally, and no differences overtime, could be due to the intuitiveness of this 413 

form of plot and the simplicity of the key.  414 
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 415 

 416 

Effect of… Number of Fixations Total Fixation Duration 
 F df MSE p 

 
F df MSE p 

 

Main Effects: 
Median Line 
 

 
0.18 

 
1, 62 

 
7.57 

 
0.68 

 
0.003 

 
0.06 

 
1, 62 

 
543399 

 
0.81 

 
0.001 

Graph Type 42.9 2, 124 8.1 <0.001 0.409 42.4 2, 124 574225 0.001 0.41 
Viewing 
Period 
 

18.0 1, 124 6.59 <0.001 0.225 21.0 2, 124 416720 <0.001 0.25 

Expertise 0.25 1, 62 10.2 0.78 0.008 0.14 1, 62 730099 0.87 0.005 
Interaction: 
Graph Type 
and Viewing 
Period 

 
3.58 

 
4, 248 

 
4.7 

 
0.007 

 
0.055 

 
4.3 

 
4, 248 

 
330504 

 
0.002 

 
0.064 

Table 2. Shows a summary of the main significant statistical outcomes examining the effect of median 417 
line presence, graph type, viewing period and expertise on gaze behaviour to the graph keys as 418 
detailed in the text. All significant main effects and interactions are included along with important non-419 
significant findings. 420 

 421 

3.3 Does expertise affect accuracy of decisions?  422 

Mulder et al. (2020) found no significant difference in accuracy of decisions made between 423 

the graph types, just in the amount of uncertainty interpreted from them. Here, accuracy 424 

responses on the number of times participants correctly identified which ship would be most 425 

economically rational to send were measured considering expertise and probability of risk.  426 

 427 

Table 3. presents accuracy results for all probabilities of risk for differing expertise. A small ship is the 428 
correct ship to send for a 30% risk of ice thickness and a large ship for 50% and 70% risk levels. 429 

 430 

Overall, participants were accurate in their choice of ship (Meteorology= 85.5%; 431 

Psychology= 77.9%; Graphic communication = 80.7%); however, some differences were 432 

apparent due to expertise. A one-way ANOVA shows differences in accuracy when 433 

2h 2h

 Meteorology  Psychology  Graphic 

Communication 

30% probability 74% 66.2% 75.5% 

50% probability 87% 70.1% 72.1% 

70% probability 95.4% 96.1% 94.6% 
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presented with 50% probability of risk, which is the most challenging task, F(2,64)= 4.029, 434 

MSE=2.27, p=0.023, =0.115. Multiple comparisons show meteorology students to be 435 

significantly more accurate than psychology students in choosing the large ship during these 436 

scenarios, p=0.035, and more accurate than graphic communication students, although this 437 

difference is not significant, p=0.08. No differences between expertise were found for the 438 

30% and 70% trials, p>0.05.  439 

 440 

4. Discussion and Conclusions 441 

As scientific information is increasingly being presented to non-specialists graphically, it is 442 

important to consider how this information is delivered. This approach to open science, less 443 

dependent on expert interpretation, is a natural development as general scientific literacy 444 

increases and is welcomed by both scientific producers and consumers. As this approach 445 

develops, it becomes much more important to have a clear understanding of the biases in 446 

interpretation that results from different forms of data presentation. While relevant to many 447 

fields of science, there is a particular need for this understanding in the environmental 448 

sciences as environmental hazards increase and change.  449 

Prior research presents mixed results, with some authors suggesting that when making 450 

slight variations to graph representations that display uncertainty, decisions and 451 

interpretations differ (Correll and Gleicher, 2014; Tak et al., 2015), whilst others show that 452 

despite greater discrepancies in forecast representation, such as between graphic 453 

visualisations and written forms, there are no differences (Nadav-Greenberg and Joslyn, 454 

2009). Furthermore, few studies explore how experts and non-experts interpret forecast 455 

information from different types of graphical forecast representations (Mulder et al., 2020). 456 

The current research examines these areas further by using eye-movement techniques 457 

considering expertise, and the viewing period during the decision-making process when 458 

observing a range of graph types.   459 

More economically rational responses to the ship decision were made by meteorology 460 

students (greater level of expertise) during the most difficult scenarios. We found 461 

participants, regardless of expertise, to spend less time fixating the overall graph when a 462 

median line was presented, particularly during early and intermediate stages of viewing. This 463 

provides more evidence for the anchoring bias suggested in previous papers (Mulder et al., 464 

2020). Participants focussed on the key for boxplots and fan plots more during early and 465 

intermediate stages compared to later stages. This provides evidence that early stages of 466 

2h
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viewing are more exploratory and towards informative areas (Buswell, 1935; Yarbus, 1967; 467 

Antes, 1974; Nodine et al., 1993; Locher, 2006; Locher et al., 2007; Locher, 2015; Goldberg 468 

and Helfman, 2010). However, considering the results and the differences found due to 469 

graph type, spaghetti plots appear to be simpler to interpret, potentially reducing cognitive 470 

load (Walter and Bex, 2021), corroborating the findings in Mulder et al. (2020) that the 471 

spaghetti plot helped users interpret extreme values.  472 

Overall, this study, together with the analysis in our companion paper (Mulder et al., 2023), 473 

demonstrate that there are many challenges when presenting natural hazard data to both 474 

experts and non-experts, the way that information is portrayed can impact interpretations 475 

and decisions. It is important to note that the graph area and key are specific to the particular 476 

tasks presented in this study and are used as indicators of the impact of expertise, graph 477 

type and the viewing period. Furthermore, course of study within higher education was used 478 

as a proxy for expertise, with meteorology students being regarded to have higher levels. 479 

However, future research would benefit from examining behaviour and decisions of 480 

academics and forecasters who would be considered as experts.  481 

Responses to the ship decision (small or large) based on economic rationality support the 482 

importance of expertise. While accuracy generally reduces dependent on the probability of 483 

ice thickness, those with greater expertise are less prone to this and are more accurate 484 

during more uncertain situations. While their accuracy was as low as others for 30% 485 

probability conditions, with a little less uncertainty (50% probability of risk) accuracy 486 

improved more so than the other groups. This suggests that they were able to use their 487 

expertise to understand the forecasts to inform their decisions more effectively than the other 488 

groups. However, expertise appears to have little impact on eye movement behaviour within 489 

our study. Differences between experts and non-experts on decisions and interpretations of 490 

best-guess forecasts and their inference of uncertainty have been reported previously 491 

(Mulder et al., 2020). However, Doyle et al. (2014) found no differences in the use of 492 

probabilistic information for forecasts of volcanic eruptions. Other contradictory evidence has 493 

also been reported testing numeracy as a predictor for making economically rational 494 

decisions (Roulston and Kaplan, 2009; Tak et al., 2015). Differences may be due to what 495 

“expert” means in these circumstances. As pointed out, our sample used years of study as 496 

the expertise proxy and while showing some effect may not reflect the decision-making and 497 

behaviour of those with many years of experience. Thus, it may well be the case that those 498 

with greater expertise would show a more effective use of forecast information provided both 499 

in terms of accuracy and more effective information extract shown through eye movement 500 

differences not found in our sample. 501 
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The results show how median lines can reduce cognitive load drawing users to the central 502 

estimate regardless of expertise. A median line reduces the perceived uncertainty in a 503 

graphic, even when explicitly presented (Mulder et al. 2020), so use of a median line should 504 

be used when the amount of uncertainty in the estimate is less critical to understand. Use of 505 

the key within graphical representations can also impact interpretations of data. For forecast 506 

providers this suggests that standard information design principles which seek to reduce 507 

visual noise in data presentation and draw the user to the critical parts can have major 508 

benefits for their ability to effectively communicate with both expert and non-expert end-509 

users. 510 

More broadly, taken together the results reported here and those reported by Mulder et al 511 

(2023) suggest that incorporating eye-tracking and other techniques from cognitive science 512 

into the process of the design of forecast communication tools could be extremely fruitful. 513 

These techniques are now well-established with technology that makes them relatively 514 

cheap to set up and use. Graphical presentation of geo-scientific forecasts can happen with 515 

a range of breadth and longevity of communication in mind. While eye-tracking and related 516 

techniques would not be appropriate for all purposes, where graphics are being developed 517 

for routine and wide use, for example routine weather forecasts, this kind of approach would 518 

be a very valuable addition to end-user engagement. One obvious extension to the work in 519 

the two parts of this study is applying the same techniques to well-known and widely used 520 

geo-scientific forecast graphics.  521 
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