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Abstract. As the ability to make predictions of uncertainty information representing natural 21 

hazards increases, an important question for those designing and communicating hazard 22 

forecasts is how visualisations of uncertainty influence understanding amongst the intended, 23 

potentially varied, target audiences. End-users have a wide range of differing expertise and 24 

backgrounds, possibly influencing the decision-making process they undertake for a given 25 

forecast presentation. Our previous, linked study (Mulder et al, 2023), examined how the 26 

presentation of uncertainty information influenced end-user decision making. Here, we shift 27 

the focus to examine the decisions and reactions of participants with differing expertise 28 

(Meteorology, Psychology and Graphic Communication students) when presented with 29 

varied hypothetical forecast representations (boxplot, fan plot or spaghetti plot with and 30 

without median lines), using the same eye-tracking methods and experiments. Participants 31 

made decisions about a fictional scenario involving the choices between ships of different 32 

sizes in the face of varying ice thickness forecasts. Eye-movements to the graph area and 33 

key, and how they changed over time (early, intermediate, and later viewing periods), were 34 

examined. More fixations (maintained gaze on one location) and time fixating was spent on 35 

the graph and key during early and intermediate periods of viewing, particularly for boxplots 36 

and fan plots. The inclusion of median lines led to less fixations being made to all graph 37 

types during early and intermediate viewing periods. No difference in eye movement 38 

behaviour was found due to expertise, however those with greater expertise were more 39 

accurate in their decisions, particularly during more difficult scenarios. Where scientific 40 

producers seek to draw users to the central estimate, an anchoring line can significantly 41 

reduce cognitive load leading both experts and non-experts to make more rational decisions. 42 

When asking users to consider extreme scenarios or uncertainty, different prior expertise 43 

can lead to significantly different cognitive load for processing information with an impact on 44 

ability to make appropriate decisions. 45 

 46 

1. Introduction 47 

The importance of understanding the most ideal approach for communicating uncertainty 48 

information is a common across multiple domains in everyday life and across a range of 49 

sciences (Fischhoff, 2012) and is an established problem in geoscience communication 50 

(Stephens et al, 2012). This importance has been highlighted by the current COVID-19 51 

pandemic during which there has been a sharp increase in the use of unfamiliar 52 

visualizations of uncertainty presented to the public in order to explain the basis of decisions 53 

made to justify the response being asked of them to adopt modified and new behaviours in 54 

order to mitigate transmission. As more unfamiliar and detailed information is presented to 55 
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and interpreted by non-specialists, the decisions made as a result have a significant impact 56 

on health, society and the environment, so careful consideration of communication is 57 

essential (Peters, 2008). It is clear that people have trouble gaining an appropriate 58 

understanding of uncertainty information and how best to use this in order to support optimal 59 

decisions (e.g., Tversky and Kahneman, 1974; Nadav-Greenberg and Joslyn, 2009; 60 

Roulston and Kaplan, 2009; Savelli and Joslyn, 2013).  A great deal of research has been 61 

concerned with addressing the most appropriate way to communicate uncertainty to promote 62 

effective decision-making and understanding (Fischhoff, 2012; Milne et al., 2018). Deciding 63 

what uncertainty information should be included, what ought to be emphasized, and the 64 

manner in which it is best conveyed all have an important role to play (Bostrom et al., 2016; 65 

Broad et al, 2012; Morss et al., 2015; Padilla et al., 2015). Furthermore, there is a reluctance 66 

by authors, such as data scientists, journalists, designers and science communicators, to 67 

present visual representations of quantified uncertainty (Hullman 2019). There is a belief that 68 

it will overwhelm the audience and the main purpose of the data, invite criticism and 69 

scepticism, and that it may be erroneously interpreted as incompetence and a lack of 70 

confidence which will encourage a mistrust of the science (Fischhoff, 2012; Gistafson & 71 

Rice, 2019; Hullman, 2019). This research points to the lack of consistent recommendations 72 

and stresses the need for the form of communication being tailored to both the aims and 73 

desired outcomes of the communicator and the needs and abilities of the audience 74 

(Spiegelhalter et al., 2011; Lorenz et al., 2015; Harold et al., 2016; Petropoulos et al., 2022). 75 

Visualizing uncertainty in geoscience forecasts needs to balance robustness, richness, and 76 

saliency (Stephens, et al. 2012). Recently, numerous examples of this have focussed on 77 

creative ways to achieve this (Lorenz et al., 2015; Harold et al., 2016; Petropoulos et al., 78 

2022). Communication of uncertainty can take the forms of words, but this can lead to issues 79 

of ambiguity caused by the language used and the variation in user interpretation (Wallsten 80 

et al, 1986; Skubisz et al., 2009). However, there is clearly strength to this approach when it 81 

is needed. For example, taking a storyline approach has been shown to be a powerful 82 

technique for communicating risk when less focus is needed on probabilistic information and 83 

more emphasis is needed on plausible future events (Shepherd et al., 2018; Sillmann et al., 84 

2021). To overcome issues of ambiguity of words, numbers are often used to present 85 

uncertainty as probabilities in the form of fractions (1/100), natural frequencies (1 in 100), or 86 

percentages (1%), but these forms can lead to ratio bias or denominator neglect (Morss et 87 

al., 2008; Kurz-Milcke et al., 2008; Reyna and Brainerd, 2008; Denes-Raj and Epstein, 1994; 88 

Garcia et al., 2010), and the most effective form to use to aid understanding can depend on 89 

the context (Gigerenzer & Hoffrage, 1995; Joslyn & Nichols, 2009). Similarly presenting 90 

uncertainty graphically can take many forms which means they have the advantage of 91 
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flexibility of presentation, can be tailored for specific audiences, can help with differing levels 92 

of numeracy and can help people focus on the important gist of the information when using 93 

uncertainty to help reach a decision (Feldman-Stewart et al., 2007; Peters et al, 2007; Lipkus 94 

and Holland , 1999). As with the use of words, the choice of graphic to employ is dependent 95 

on the audience and intended message outcome (Spiegelhalter, 2017) and can lead to the 96 

overestimation of risk and negative consequences depending on the framing of the 97 

information (Vischers et al, et al, 2009). Pie charts are good for presenting proportions and 98 

part-to-whole comparisons and benefit from being intuitive and familiar to the public, but 99 

interpretation can sometimes be difficult (Nelson et al., 2009). Bar charts are useful for 100 

communicating magnitude and allowing comparisons (Lipkus, 2007) while line graphs are 101 

helpful in conveying trend information about the change in uncertainty over time. Icons can 102 

also be very useful, especially so for people with low numeracy and have been found to be 103 

effective when supplemented by a tree diagram (Galesic et al., 2009; Gigerenzer et al, 2007; 104 

Kurz-Milcke et al., 2008). These types of graphical communication can also include 105 

information about the range of uncertainty (such as a “cone of uncertainty”, Morss et al., 106 

2016). 107 

Previous research has shown that including uncertainty information can aid users to make 108 

more rational decisions (Nadav-Greenberg et al., 2008; Nadav-Greenberg and Joslyn, 2009; 109 

Roulston and Kaplan, 2009; Savelli and Joslyn, 2013 St John et al., 2000). One way in which 110 

this is achieved is by use of heuristics (Tversky and Kahneman, 1974). If selected wisely 111 

then these can help simplify probabilistic information to bolster and speed decisions promote 112 

optimal interpretation of data. However, poor selection can hinder and encourage suboptimal 113 

decisions (Mulder et al., 2020). For example providing an anchor value alongside data can 114 

help users interpret the data more efficiently by focussing them on that particular value (for 115 

example, focussing people on precipitation level on days like this as a start point to 116 

estimating rainfall) but if chosen poorly can encourage a more extreme and suboptimal 117 

interpretation (focussing on the maximum precipitation level on days like this would 118 

encourage higher estimates of rainfall). In terms of graphical visualization of uncertainty, 119 

providing a central line showing a likely hurricane track has been reported to distract users 120 

from possible hurricane tracks given by the cone of uncertainty. Equally, however, the cone 121 

of uncertainty has been sometimes misinterpreted as showing the extent of the storm (Broad 122 

et al., 2007). Beyond heuristics, other design choices have also been found to affect optimal 123 

and efficient decision-making (Speier, 2006; Kelton et al., 2010; Wickens et al., 2021). 124 

Different designs of boxplots and graphs showing the same information affect decisions and 125 

interpretations (Correll and Gleicher, 2014; Bosetti et al., 2017; Tak et al., 2013, 2015). 126 

Forecasting maximum values from graphs was found to depend on graph type (Mulder et al., 127 
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2020). Giving tornado warnings with probabilistic information about where a tornado may 128 

strike increased response in those areas compared with deterministic information (Ash et al., 129 

2014).  130 

Part I of this study, which from here will be called “companion paper” (Mulder et al., 2023), 131 

shows that, for all groups, great care is needed in designing graphical representations of 132 

uncertain forecasts. This is especially so when attention needs to be given to critical 133 

information, and the presentation of the data makes this more difficult. In particular, well 134 

known anchoring effects associated with mean or median lines can draw attention away 135 

from extreme values for particular presentation types (Broad et al., 2007; Nadav-Greenberg 136 

et al. 2008; Mulder et al., 2020). The availability of easy-to-use tools that make the 137 

development of complex graphical representations of forecasts quick and cheap to produce, 138 

poses new challenges for the geo-scientists. Within the environmental sciences, making 139 

forecasts of natural hazards (such as landfall of hurricanes, flooding, seismic risk and the 140 

changing climate) useful to end-users depends critically on communicating in a concise and 141 

informative way. Particularly as end-users have a wide range of differing expertise, spanning 142 

a spectrum between geo-physical scientists to those with no formal scientific training. 143 

Therefore, the way in which information is displayed is very important for avoiding 144 

misperceptions and ensuring appropriate steps are taken by end-users, especially when 145 

perceptions of natural hazards can differ between experts and non-experts (Fuchs et al., 146 

2009; Goldberg & Helfman, 2010). Here, we compare the response of three different groups 147 

of end-users with different levels of scientific expertise to the same series of forecast 148 

presentations to explore how more and less complex presentations influence decision 149 

making and perception. 150 

Expertise differences may be due to greater familiarity with the ways in which hazard 151 

information is made available. This enables experts to make more economically rational 152 

decisions and to interpret uncertainty information more effectively (Mulder et al., 2020). 153 

However, the role of expertise remains unclear with some studies showing no differences in 154 

decision-making tasks with both experts and non-experts able to process and use forecast 155 

information to make decisions, with the inclusion of uncertainty information found to be 156 

useful for both experts and non-experts (Nadav-Greenberg et al., 2008; Kirschenbaum et al., 157 

2014; Wu et al., 2014). Furthermore, it is unclear whether presentation of uncertainty 158 

information in visual formats results in benefits over using verbal and numerical expressions. 159 

For instance, uncertainty presented as pictograph or graphical representations may help with 160 

understanding and interpretation (Zikmund-Fisher et al., 2008; Milne et al., 2015; Susac et 161 

al., 2017). Additionally, research is required to examine differences in expertise, particularly 162 

as deterministic construal errors can be made as observers are often unaware that 163 
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uncertainty is being depicted within visualisations (Joslyn & Savelli, 2021). Inappropriate 164 

information that captures attention is also often relied on, which can distort judgements 165 

(Fundel et al., 2019).  166 

Experts are better at directing attention (through eye movements) to the important 167 

information required for making a decision. For example, in judgments of flight failures, 168 

expert pilots were found to make faster and more correct decisions, making more eye 169 

movements to the cues related to failures than non-experts (Schriver et al, 2008). Kang and 170 

Landry (2014) also found non-experts to improve after they were trained with the eye 171 

movement scan paths of experts; training led non-experts to make fewer errors (false 172 

alarms) on aircraft conflict detection tasks. However, there is little research examining eye 173 

movements when experts and non-experts are required to make decisions using graphical 174 

and numerical forecast information. It is not clear which aspects of forecast information are 175 

being examined and when, and equally which, are being ignored.  176 

More generally, research has shown that when viewing images, more fixations are made to 177 

informative regions and areas of interest (Unema et al., 2005). The times at which these 178 

fixations are made has been found to vary depending on task, decision type and expertise. 179 

Antes (1974) found that early fixations, in the first few seconds of viewing pictures, were 180 

towards informative areas. Goldberg and Helfman (2010) also showed that important regions 181 

of interest were fixated early during observation of different graphs. Experts have been 182 

shown to identify and fixate informative aspects of visual information more quickly and more 183 

often than non-experts (Maturi & Sheridan 2020; Charness, Reingold, Pomplun, & 184 

Stampe, 2001; Kundel, Nodine, Krupinski, & Mello-Thoms, 2008). As well as informative 185 

parts of a scene or image, Shimojo et al. (2003) reported that the likelihood that fixation 186 

would be made to the item preferred, increased over time, particularly in the final second 187 

before selection (see also Glaholt & Reingold, 2009; Simion & Shimojo, 2006; Williams et al., 188 

2018). These results show that informative and preferred areas of images are selectively 189 

fixated early on, more often and for longer. As viewing evolves, fixations start to reflect final 190 

choices and preferences. The temporal development of this is task-dependent and 191 

influenced by expertise.  192 

Here, we explore eye movement behaviour to similar hypothetical scenarios but with 193 

particular interest on differences due to participant expertise/background, following the 194 

research discussed, of gaze to graph areas and keys over different time periods of the 195 

decision-making process. Regardless of expertise, the presence of a median line on graphs 196 

has been found to influence the location of participants gaze fixations moving their 197 

distributions closer to the median line (Mulder et al, 2020). Depending on graph type the 198 
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presence of a key can lead to errors which may be function of finding that the key is not 199 

directly fixated in those representations (Mulder et al., 2020.  Here we explore these 200 

patterns, in particular whether these are a function of expertise. As in our companion paper 201 

(Mulder et al., 2023), we examine gaze patterns when faced with the task of making 202 

decisions about a fictional scenario involving the choices between ships of different sizes in 203 

the face of varying ice thickness forecasts (30%,50%,70%), when presented in different 204 

formats (boxplot, fan plot or spaghetti plot, with and without median lines).  205 

We use eye-tracking techniques and exploration of the accuracy of decision tasks across 206 

expertise to address the following questions: 207 

1. Does the presence of a median line and expertise affect gaze over the course of the 208 

decision-making process?  209 

2. Does expertise affect gaze to the key over the course of the decision-making 210 

process?  211 

3. Does expertise affect accuracy of decisions? 212 

 213 

2. Methodology 214 

2.1 Participants 215 

Sixty-five participants took part in this study: twenty-two meteorology students, twenty-two 216 

psychology students and twenty-one graphic communication students recruited from the 217 

University of Reading (38 females, 27 males). Participants were aged 18–32 (M= 21.2) and 218 

had completed 0–4 (M=1.0) years of their respective degrees. Meteorology students are 219 

considered to have more training in graph reading, scientific data use, and quantitative 220 

problem solving as part of their degree and in qualifying for the course, than students on 221 

other degree courses which have less of a focus in these areas. Within this study, 222 

meteorology students were therefore considered to have greater expertise compared to the 223 

psychology and graphic communication students, although psychology students are also 224 

likely to have statistical knowledge and experience reading graphs. The research team 225 

involved academics who taught on each of these subjects and therefore can substantiate 226 

these generalisations. 227 

 228 

2.2 Design and Procedure  229 

Full methodological details are given in our companion paper, but to restate the core 230 

procedure: A hypothetical scenario of ice thickness forecast for a fictional location was 231 
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provided to participants. This type of forecast was chosen as is very unlikely to be one that is 232 

familiar to our participants to minimize any effects of preconceived notions of uncertainty. 233 

Participants were informed that they were making shipments across an icy strait and, using 234 

ice-thickness forecasts, had to decide whether to send a small ship or large ship. The small 235 

ship could crush 1-meter thick ice whereas the large ship crushes ice larger than this. There 236 

was a differential cost involved in this decision with small ship costing £1000 to send and the 237 

large ship £5000. They were additionally made aware that if the ice was thicker than 1-meter 238 

and small ship was sent, this would incur a cost penalty of £8000.  239 

Ice thickness forecasts were presented in seven different types: deterministic line, box plot, 240 

fan plot and spaghetti plot. Each representation was presented with or without a median line. 241 

Each of these graph types was shown to represent 30%, 50%, and 70% probability of ice 242 

thickness exceeding 1 meter (See Fig. 1 for examples of each graph type).  In this paper we 243 

only examined the decision-task question where participants were asked to select which ship 244 

(small or large) to send across an icy strait 72 hours ahead of time using a 72-hour forecast 245 

of ice thickness (see our companion paper Mulder et al. (2023) for further details on the 246 

hypothetical scenarios). While performing this task, participants wore an Eye link II eye-247 

tracker headset which recorded eye movements of the right eye as they completed the 248 

survey. Head movements were restrained, and the eye tracker was calibrated to ensure 249 

accurate eye movement recording.  250 

2.3 Eye tracking apparatus 251 

Participants wore an EyeLink II (SR Research Ltd) eye tracker headset (See Fig 2 for 252 

pictures of the eye-tracker used with an example boxplot trial shown on the display;SR 253 

Research Ltd: see https://www.sr-research.com/eyelink-ii/ for more details and pictures of 254 

the device) which recorded eye movements of the right eye at a rate of 500Hz as they 255 

completed the task. The EyeLink II is a high-resolution comfortable head-mounted video-256 

based eye tracker with 0.5 deg average accuracy and 0.01 deg resolution that gives highly 257 

accurate spatial and temporal resolution. Participants gaze was precisely calibrated and re-258 

calibrated throughout the study as necessary to maintain accurate recording. Each forecast, 259 

and task were presented on a 21-inch colour desktop PC with a monitor refresh rate of 260 

75Hz. Participants were seated at a distance of 57 cm from the monitor and their head 261 

movements were minimized by a chin rest. Fixation location and its duration were extracted 262 

after study completion. Fixation was defined as times when the eyes were still and not in 263 

motion (i.e., no saccades were detected). These measures were used as proxies of the 264 

aspects of the forecasts were being attended to by participants as they made their decisions. 265 

These give a direct insight into the information and visual features that are salient when 266 
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participants are attempting to understand and use uncertainty in forecasting in order to make 267 

decisions. For more information on methods used in eye-tracking studies, see Holmqvist et 268 

al. (2011). 269 

2.4 Data analysis 270 

Two interest areas were formed from a post hoc classification to address our research 271 

questions (graph area and key). Three viewing periods across trials were created (early, 272 

intermediate, late). The exact definition of early, intermediate, and late differed by type of 273 

graph due to each style evoking slightly different viewing periods. Viewing periods for each 274 

specific graph type were of equal bins divided across the average time to complete the 275 

question and therefore ranged between 5 to 6 seconds. In this study, we report number of 276 

fixations and total fixation duration.  277 

In our companion paper (Mulder et al., 2023), our analysis of gaze was across all 278 

experimental trials and all tasks. However, as we are concerned about the viewing period 279 

and want to avoid effects of learning, we examine gaze when participants were faced with 280 

each graph type for the first time. Repeated exposure to graph type and the demand to 281 

make the same judgement may influence gaze patterns as informative parts of the figures 282 

are located more swiftly. Therefore, six trials for each graph type for each participant were 283 

examined. We analysed the accuracy of responses to this question (making the safe and 284 

cost-effective choice of the two options) and gaze (number and total fixation duration). 285 

 286 

Based on the results of our companion paper (Mulder et al., 2023), we further explore the 287 

impact of the presence of a median line considering the viewing period, expertise and graph 288 

type. We then focus on fixation towards the keys including viewing period, expertise, graph 289 

type and the presence of a median line as variables. Data was analyzed using an Analysis of 290 

Variance approach which tests for differences across the mean responses in cases where 291 

there are multiple conditions or groups greater than two. Further post-hoc analyses 292 

examining differences between specific pairs of conditions or groups were carried out using 293 

t-tests which are Bonferroni corrected (this is a correction to the significance threshold 294 

criteria to control for the number of comparisons carried out. See Baguley (2012) for 295 

example). For both research questions a four-way mixed measures ANOVA was conducted 296 

including graph type, presence of a median line and viewing period as within-subject 297 
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variables (i.e., all participants took part in all these conditions), and expertise as a between-298 

subjects variable (participants were grouped by expertise). Finally, we report the accuracy of 299 

responses for the ice ship decision task highlighting any differences due to expertise. 300 

There are a number of components to the output of the analysis of variance (ANOVA). 301 

Below we provide a key which may help in understanding the output we report: 302 

Key to Analysis of Variance (ANOVA) output 303 

F: this is the inferential statistic test returned by the ANOVA which shows the proportion of variance 304 

in the participant data explained by a model of the data that includes the levels of the independent 305 

variable compared to that which can accounted for when that variable is not included (i.e., by 306 

chance alone). 307 

df: degrees of freedom are shown in brackets after the F value 308 

MSE: Mean Square Error, this is the mean of variance accounted for by chance alone 309 

p: shows the chances that the results would be found if there was actually no difference to be found. 310 

The common threshold being 0.05 (5%). A p value less than 0.05 would be commonly labelled as 311 

being significant, i.e., we were unlikely to have recorded the data we did if there was actually no 312 

difference caused by the independent variable(s). 313 

: partial eta-sqaure. A measure of effect size. This gives an insight into the strength of the 314 

effect of an independent variable. P values are affected by sample size where effect size 315 

measures are not and so allow comparisons to eb made across variables. 316 

 317 

3. Results 318 

Based on the results of our companion paper (Mulder et al., 2023), we further explore the 319 

impact of the presence of a median line considering the viewing period, expertise and graph 320 

2h
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type. We then focus on fixation towards the keys including viewing period, expertise, graph 321 

type and the presence of a median line as variables. For both research questions a four-way 322 

mixed measures ANOVA was conducted including graph type, presence of a median line 323 

and viewing period as within-subject variables, and expertise as a between-subjects 324 

variable. Finally, we report the accuracy of responses for the ice ship decision task 325 

highlighting any differences due to expertise. 326 

 327 

3.1 Does the presence of a median line and expertise affect gaze over the course of 328 

the decision-making process?  329 

Here, we examined how the presence of the median line influences eye movement 330 

behaviour when considered across the viewing period from early to late stages, and different 331 

levels of expertise, as well as the graph type. Table 1 shows a summary of the statistical 332 

outcomes detailed in the paragraphs below, along with a short description of what they 333 

show. 334 

A main effect of presence of a median line was found for number of fixations and total 335 

fixation duration made to the graph area, F(1, 62)= 6.403, MSE=32.747, p=0.014, 336 

=0.094; F(1, 62)= 7.125, MSE=2386741.96, p=0.01, =0.103. More fixations were made, 337 

and more time was spent fixating on the graph area of the display when no median line was 338 

present (fixation count M=8.74; total duration M=2128.64) compared to when a median line 339 

was provided (fixation count M=7.89; total duration M=1887.47). 340 

A main effect of graph type was also found for number of fixations and total fixation duration 341 

made to the graph area, F(2, 124)= 15.098, MSE=26.406, p<0.001, =0.196; F(2, 124)= 342 

16.810, MSE=1635280.256, p<0.001, =0.213. Boxplots elicited more fixations, and more 343 

time was spent fixating on boxplots (fixation count M=9.07; total duration M=2222.21) and 344 

fan plots (fixation count M=8.71; total duration M=2091.04) compared to spaghetti plots 345 

(fixation count M=7.17; total duration M=1710.92). 346 

There was also a main effect of the viewing period for number of fixations and total fixation 347 

duration made to the graph area, F(2, 124)= 59.608, MSE=36.762, p<0.001, =0.488; F(2, 348 

124)= 57.417, MSE=2294640.505, p<0.001, =0.481. There was found to be a greater 349 

number of fixations with longer dwell times on the graph area during early (fixation count 350 

2h

2h

2h

2h

2h

2h
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M=9.83; total duration M=2399.96) and intermediate (fixation count M=9.52; total duration 351 

M=2284.11) viewing periods compared to later periods (fixation count M=5.60; total duration 352 

M=1340.09).  353 

There was no main effect of expertise on gaze behaviour measured by both fixation count 354 

and total duration; F(1, 62)= 0.536, MSE=64.185, p=0.588, =0.017; F(1, 62)= 1.770, 355 

MSE=3970562.258, p=0.179, =0.054, respectively.  356 

As well as the main effects of median line, graph type and viewing period, there was an 357 

interaction between the median line and viewing period for total fixation duration, F(2, 124)= 358 

3.598, MSE=1543871.74, p=0.03, =0.055. Less time was spent fixating the graph area 359 

during the early and intermediate stages of viewing  when a median line was present (Early 360 

total duration M= 2174.97; Intermediate total duration M= 2137.79) compared to when no 361 

median line was present (Early total duration M= 2624.96; Intermediate total duration M= 362 

2430.43), p<0.001; p=0.05, respectively. However, no differences were found due to the 363 

presence (later total duration M= 1349.65) or absence (later total duration M= 1330.54) of a 364 

median line during the later stages, p=0.896. No other interactions were found to be 365 

significant. These findings support that the median line can reduce cognitive load; impacting 366 

the total fixation duration and number of fixations made on the graph area, particularly during 367 

early stages of the decision-making process, and adds to results from our companion paper 368 

that showed how fixation location was towards the median line when present, regardless of 369 

the type of graph.  370 

 371 

 Number of Fixations Total Fixation Duration Summary 
Main Effects    
Median Line: 
Not Present vs 
Present 

F(1, 62)= 6.403, MSE= 

32.747, p=0.014, 

=0.094 
 
Not present Mean (M) 
=8.74 
Present M=7.89 
 
 

F(1, 62)= 7.125, MSE= 

2386741, p=0.01, 

=0.103 
 
Not Present 
M=2128.64 
Present M=1887.47 
 

The presence of a median 
line on the graphs resulted 
in fewer fixations on the 
interest areas of the graph 
and key, with greater total 
fixation duration.  

Graph Type: 
Boxplot vs   
Fan Plot vs  
Spaghetti Plot 

F(2, 124)= 15.098, 
MSE= 26.406, p<0.001, 

=0.196 

 
Boxplots Mean (M) 
=9.07 

F(2, 124)=16.810, 
MSE= 1635280, 

p<0.001, = 0.213 

 
Boxplots M=2222.21 
Fan plots M=2091.04  

Boxplots elicited more 
fixations and more time 
spent fixating the graph 
and key compared with fan 
plots and spaghetti plots 

2h

2h

2h

2h 2h

2h 2h
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Fan plots M=8.71 
Spaghetti plots M=7.17 
 

Spaghetti plots 
M=1710.92 
 

Viewing Period: 
Early vs  
Intermediate vs 
Late 

F(2, 124)= 59.608, 
MSE= 36.762, p<0.001, 

=0.488 

 
Early M=9.83  
Intermediate M=9.52 
Late M=5.60  

F(2, 124)= 57.417, 
MSE= 2294640, 

p<0.001, = 0.481 

 
Early M=2399 
Intermediate 
M=2284.11 
Late M=1340.09 

Early viewing of plots 
shows a greater number of 
fixations on the graph and 
key with longer total 
fixation duration 

Expertise: 
Meteorology vs 
Psychology vs 
Graphic 
communication 

F(1, 62)= 0.536, MSE= 

64.185, p=0.588, 

=0.017 

F(1, 62)= 1.770, MSE= 
3970562.258, p=0.179, 

=0.054 

No significant differences 
found 

Interactions    
Median Line and 
Viewing Period 

No significant 
interactions 

F(2, 124)= 3.598, 
MSE= 1543871.74, 

p=0.03, =0.055 

 
Early viewing period 
when median line was 
present M= 2174.97 vs 
not present 
M=2624.96, p<0.001 
 
Intermediate, present 
M= 2137.79 vs not 
present M= 2430.43, 
p=0.05 
 
Late, present M= 
1349.65vs not present 
M= 1330.54, p=0.896 

Less time was spent 
fixating the graph area 
during the early and 
intermediate stages of 
viewing when a median line 
was present compared to 
when no median line was 
present 
 
No differences were found 
due to the presence or 
absence of a median line 
during the later stages 

Table 1. Shows a summary of the main significant statistical outcomes examining the effect 372 

of median line presence, graph type, viewing period and expertise on gaze behaviour as 373 

detailed in the text. All significant main effects and interactions are included along with 374 

important non-significant findings. 375 

 376 

3.2 Is gaze to the key influenced by expertise and the viewing period during the 377 

decision-making process? 378 

In order to examine how gaze parameters on the graph key change throughout the viewing 379 

period prior to the final decision, we extracted the number of fixations made to the key and 380 

their duration. Table 2 shows a summary of the statistical outcomes detailed in the 381 

paragraphs below, along with a short description of what they show.  382 
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A main effect of graph type was found for number of fixations and total fixation duration 383 

made to the key, F(2, 124)= 42.900, MSE=8.096, p<0.001, =0.409; F(2, 124)= 42.396, 384 

MSE=574225.040, p<0.001, =0.406. More fixations were made, and more time was 385 

spent fixating on fan plot keys (fixation count M=2.45; total duration M=626.79) compared to 386 

both boxplot (fixation count M=1.48; total duration M=387.75) and spaghetti plot keys 387 

(fixation count M=0.56; total duration M=127.13), and more fixations and time spent on 388 

boxplot compared to spaghetti plot keys.  389 

There was a main effect of the viewing period on the number of fixations that were made to 390 

the key within the display, as well as the total amount of fixation, F(2, 124)= 17.967, 391 

MSE=6.593, p<0.001, =0.225; F(2, 124)= 21.003, MSE=416719.669, p<0.001, 392 

=0.253. More fixations and longer dwell time to the key occurred during the early (fixation 393 

count M=1.61; total duration M=407.15) and intermediate (fixation count M=1.99; total 394 

duration M=515.33) viewing periods compared to later periods (fixation count M=0.90; total 395 

duration M=219.20).  396 

No main effect of the median line on gaze to the key, measured by both fixation count and 397 

total duration, was found; F(1, 62)= 0.175, MSE=7.574, p=0.677, =0.003; F(1, 62)= 398 

0.061, MSE=543399.152, p=0.805, =0.001, respectively. Nor was there a main effect of 399 

expertise on fixation count and total fixation duration; F(1, 62)= 0.251, MSE=10.191, 400 

p=0.779, =0.008; F(1, 62)= 0.141, MSE=730099.249, p=0.869, =0.005, respectively.  401 

An i€nteraction between the graph type and viewing period for fixation count and total 402 

fixation duration was found, F(4, 248) = 3.578, MSE=4.724, p=0.007, =0.055; F(4, 248) = 403 

4.260, MSE=330504.612, p=0.002, =0.064., respectively. More fixations were made, and 404 

more time was spent fixating the boxplot key during the early (fixation count M= 1.68; total 405 

duration M=423.76) and intermediate (fixation count M= 2.06; total duration M=577.11) 406 

stages of the viewing period compared to the later stage (fixation count M=0.71; total 407 

duration M=162.39  p<0.005. Similarly, more fixations were made, and more time was spent 408 

fixating the fan plot key during the early (fixation count M= 2.69; total duration M=695.64) 409 

and intermediate stages (fixation count M= 3.10; total duration M= 791.37) compared to the 410 

later stage (fixation count M=1.55; total duration M=393.37) p<0.005. However, no 411 

differences were found between viewing periods for spaghetti plots, p>0.05. The reason for 412 
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less fixation being to spaghetti plot keys generally, and no differences overtime, could be 413 

due to the intuitiveness of this form of plot and the simplicity of the key.  414 

 415 

Effect of… Number of Fixations Total Fixation Duration Summary 
Main Effects    
Median Line: 
Not Present vs  
Present 

F(1, 62)= 0.175, 
MSE=7.574, p=0.677, 

=0.003 

 

F(1, 62)= 0.061, MSE= 
543399.152, p=0.805, 

=0.001 

 

 No significant differences 
found 

Graph Type: 
Boxplot vs Fan 
Plot vs 
Spaghetti Plot 

F(2, 124)= 42.900, 
MSE=8.096, p<0.001, 

=0.409 

 
Boxplots M=1.48 
 
Fan plots M=2.45 
 
Spaghetti plots M=0.56 
 

F(2, 124)= 42.396, 
MSE= 574225.040, 

p<0.001, =0.406 

 
Boxplots 
M=626.79 
 
Fan plots M=387.75  
 
Spaghetti plots 
M=127.13 

Fan plots elicited more 
fixations and more time 
spent fixating the graph and 
key compared with boxplots 
and spaghetti plots 

Viewing 
Period: 
Early vs 
Intermediate vs 
Late 

F(2, 124)= 17.967, 
MSE=6.593, p<0.001, 

=0.225 

 
Early M=1.61  
 
Intermediate M=1.99 
 
Late M=0.90  

F(2, 124)= 21.003, 
MSE= 416719.669, 

p<0.001, =0.253 

 
Early M=407.5 
 
Intermediate M=515.33 
 
Late M=219.20 

Early and intermediate 
viewing of plots shows a 
greater number of fixations 
on the graph and key with 
longer total fixation duration 

Expertise: 
Meteorology vs 
Psychology vs 
Graphics 

F(1, 62)= 0.251, 
MSE=10.191, p=0.779, 

=0.008 

F(1, 62)= 0.141, MSE= 
730099.249, p=0.869, 

=0.005 

No significant differences 
found 

Interactions    
Graph Type 
and Viewing 
Period 

F(4, 248) = 3.578, 
MSE=4.724, p=0.007, 

=0.055 

 
Boxplot 
Early M= 1.68  
Intermediate M=2.06 
Late M=0.71 
p<0.0005 
 
Fan plot  
Early M= 2.69  
Intermediate M=3.10 
Late M=1.55 
p<0.0005 
 
Spaghetti plot  

F(4, 248) = 4.260, 
MSE= 330504.612, 

p=0.002, =0.064 

 
Boxplot 
Early M=423.76  
Intermediate M=577.11 
Late M=162.39 
p<0.0005 
 
Fan plot 
Early M=695.64  
Intermediate M=791.37 
Late M=393.37 
p<0.0005 
 
Spaghetti plot  

Boxplots and Fan Plots 
show fewer fixations with 
less total fixation duration 
over viewing period but 
there was no effect of 
viewing period for spaghetti 
plots 
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Early M= 0.45  
Intermediate M=0.79 
Late M=0.44  
p>0.05 

Early M=102.05  
Intermediate M=177.50 
Late M=101.84 
p>0.05 

Table 2. Shows a summary of the main significant statistical outcomes examining the effect 416 

of median line presence, graph type, viewing period and expertise on gaze behaviour to the 417 

graph keys as detailed in the text. All significant main effects and interactions are included 418 

along with important non-significant findings. 419 

 420 

3.3 Does expertise affect accuracy of decisions?  421 

Mulder et al. (2020) found no significant difference in accuracy of decisions made between 422 

the graph types, just in the amount of uncertainty interpreted from them. Here, accuracy 423 

responses on the number of times participants correctly identified which ship would be most 424 

economically rational to send were measured considering expertise and probability of risk.  425 

 426 

Table 31. presents accuracy results for all probabilities of risk for differing expertise. A small ship is 427 
the correct ship to send for a 30% risk of ice thickness and a large ship for 50% and 70% risk levels. 428 

 429 

Overall, participants were accurate in their choice of ship (Meteorology= 85.5%; 430 

Psychology= 77.9%; Graphic communication = 80.7%); however, some differences were 431 

apparent due to expertise. A one-way ANOVA shows differences in accuracy when 432 

presented with 50% probability of risk, which is the most challenging task, F(2,64)= 4.029, 433 

MSE=2.27, p=0.023, =0.115. Multiple comparisons show meteorology students to be 434 

significantly more accurate than psychology students in choosing the large ship during these 435 

scenarios, p=0.035, and more accurate than graphic communication students, although this 436 

difference is not significant, p=0.08. No differences between expertise were found for the 437 

30% and 70% trials, p>0.05.  438 

 439 

4. Discussion and Conclusions 440 

2h

 Meteorology  Psychology  Graphic 

Communication 

30% probability 74% 66.2% 75.5% 

50% probability 87% 70.1% 72.1% 

70% probability 95.4% 96.1% 94.6% 
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As scientific information is increasingly being presented to non-specialists graphically, it is 441 

important to consider how this information is delivered. This approach to open science, less 442 

dependent on expert interpretation, is a natural development as general scientific literacy 443 

increases and is welcomed by both scientific producers and consumers. As this approach 444 

develops, it becomes much more important to have a clear understanding of the biases in 445 

interpretation that results from different forms of data presentation. While relevant to many 446 

fields of science, there is a particular need for this understanding in the environmental 447 

sciences as environmental hazards increase and change.  448 

Prior research presents mixed results, with some authors suggesting that when making 449 

slight variations to graph representations that display uncertainty, decisions and 450 

interpretations differ (Correll & Gleicher, 2014; Tak et al., 2015), whilst others show that 451 

despite greater discrepancies in forecast representation, such as between graphic 452 

visualisations and written forms, there are no differences (Nadav-Greenberg & Joslyn, 453 

2009). Furthermore, few studies explore how experts and non-experts interpret forecast 454 

information from different types of graphical forecast representations (Mulder et al., 2020). 455 

The current research examines these areas further by using eye-movement techniques 456 

considering expertise, and the viewing period during the decision-making process when 457 

observing a range of graph types.   458 

More economically rational responses to the ship decision were made by meteorology 459 

students (greater level of expertise) during the most difficult scenarios. We found 460 

participants, regardless of expertise, to spend less time fixating the overall graph when a 461 

median line was presented, particularly during early and intermediate stages of viewing. This 462 

provides more evidence for the anchoring bias suggested in previous papers (Mulder et al., 463 

2020). Participants focussed on the key for boxplots and fan plots more during early and 464 

intermediate stages compared to later stages. This provides evidence that early stages of 465 

viewing are more exploratory and towards informative areas (Buswell, 1935; Yarbus, 1967; 466 

Antes, 1974; Nodine et al, 1993; Locher, 2006; Locher et al, 2007; Locher, 2015; Goldberg & 467 

Helfman, 2010). However, considering the results and the differences found due to graph 468 

type, spaghetti plots appear to be simpler to interpret, potentially reducing cognitive load 469 

(Walter and Bex, 2021), corroborating the findings in Mulder et al. (2020) that the spaghetti 470 

plot helped users interpret extreme values.  471 

Overall, this study, together with the analysis in our companion paper (Mulder et al., 2023), 472 

demonstrates that there are many challenges when presenting natural hazard data to both 473 

experts and non-experts, the way that information is portrayed can impact interpretations 474 

and decisions. It is important to note that the graph area and key discussed here are specific 475 
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to the particular tasks presented in this study and are used as indicators of the impact of 476 

expertise, graph type and the viewing period. Furthermore, course of study within higher 477 

education was used as a proxy for expertise, with meteorology students being regarded to 478 

have higher levels. However, future research would benefit from examining behaviour and 479 

decisions of academics and forecasters who would be considered as experts.  480 

Responses to the ship decision (small or large) based on economic rationality supports the 481 

importance of expertise as accuracy reduces dependent on the probability of ice thickness, 482 

with those with greater expertise being more accurate during more uncertain situations. 483 

While their accuracy was as low as others for 30% probability conditions, with a little less 484 

uncertainty (50% probability of risk) accuracy improved more so than the other groups. This 485 

suggests that they were able to use their expertise to understand the forecasts to inform 486 

their decisions more effectively than the other groups. However, expertise appears to have 487 

little impact on eye movement behaviour within our study. Differences between experts and 488 

non-experts on decisions and interpretations of best-guess forecasts and their inference of 489 

uncertainty have been reported previously (Mulder et al., 2020). However, Doyle et al. 490 

(2014) found no differences in the use of probabilistic information for forecasts of volcanic 491 

eruptions. Other contradictory evidence has also been reported testing numeracy as a 492 

predictor for making economically rational decisions (Roulston and Kaplan, 2009; Tak et al., 493 

2015). Differences may be due to what “expert” means in these circumstances. As pointed 494 

out, our sample used years of study as the expertise proxy and while showing some effect 495 

may not reflect the decision-making and behaviour of those with many years of experience. 496 

Thus, it may well be the case that those with greater expertise would show a more effective 497 

use of forecast information provided both in terms of accuracy and more effective 498 

information extract shown through eye movement differences not found in our sample. 499 

The results show how median lines can reduce cognitive load drawing users to the central 500 

estimate regardless of expertise. A median line reduces the perceived uncertainty in a 501 

graphic, even when explicitly presented (Mulder et al. 2020), so use of a median line should 502 

be used when the amount of uncertainty in the estimate is less critical to understand. Use of 503 

the key within graphical representations can also impact interpretations of data. For forecast 504 

providers this suggests that standard information design principles which seek to reduce 505 

visual noise in data presentation and draw the user to the critical parts can have major 506 

benefits for their ability to effectively communicate with both expert and non-expert end-507 

users. 508 

More broadly, taken together the results reported here and those reported by Mulder et al 509 

(2023) suggest that incorporating eye-tracking and other techniques from cognitive science 510 
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into the process of the design of forecast communication tools could be extremely fruitful. 511 

These techniques are now well-established with technology that makes them relatively 512 

cheap to set up and use. Graphical presentation of geo-scientific forecasts can happen with 513 

a range of breadth and longevity of communication in mind. While eye-tracking and related 514 

techniques would not be appropriate for all purposes, where graphics are being developed 515 

for routine and wide use, for example routine weather forecasts, this kind of approach would 516 

be a very valuable addition to end-user engagement. One obvious extension to the work in 517 

the two parts of this study is applying the same techniques to well-known and widely used 518 

geo-scientific forecast graphics.  519 
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 834 

Figure Legends 835 

Figure 1. The four forecast representations used in this analysis: (a) deterministic (using only 836 

the median line), (b) and (c) spaghetti plot, (d) and€) fan plot, and (f) and (g) box plot. 837 

Uncertainty forecasts were shown both with median lines (b,d,f) and without median lines 838 

(c,e,g). All forecasts represent the same information: three of 10 model runs show ice 839 

greater than 1-meter thick. The same plots were produced for 50% and 70% chance of ice 840 

greater than 1-meter thick (not shown). The dotted line in each graphic shows 1-meter ice 841 

thickness, the threshold the participants predicted. 842 

Figure 2. On the left are pictures of the head-mounted eye-tracker, EyeLink II (SR Research 843 

Ltd), used to record participant’s eye movements while taking part in the study with an 844 

example of boxplot trial shown on the display. Note that the small diagonal line visible on the 845 

top right of the display screen (bottom left photo) is an artefact of the photograph and the 846 

refresh rate of the monitor. On the right, composite heat maps are shown. These show the 847 

accumulation of the duration of eye fixations (in milliseconds) of all participants for the ship 848 

decision (a,b) and maximum ice thickness (c,d) tasks. Heat maps are shown only for the 849 

spaghetti plot with (a,c) and without (b,d) median lines. Heat maps for the other forecast 850 

representations can be found in the Appendix B of Mulder et al (2023). Between each 851 

question, there was a cross present to help participants focus back to to the centre of the 852 

screen prior to moving on. Artefacts of this centering can be seen on the heat maps. 853 
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