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Abstract. This contribution explores a new approach to forecast multivariate covariances for atmospheric chemistry through

the use of the parametric Kalman filter (PKF). In the PKF formalism, the error covariance matrix is modelized by a covariance

model relying on parameters, for which the dynamics is then computed. The PKF has been previously formulated in univariate

cases, and a multivariate extension for chemical transport models is explored here. This contribution focuses on the situation

where the uncertainty is due to the chemistry but not due to the uncertainty of the weather. To do so, a simplified two-5

species chemical transport model over a 1D domain is introduced, based on the nonlinear Lotka-Volterra equations, which

allows to propose a multivariate pseudo covariance model. Then, the multivariate PKF dynamics is formulated and its results

are compared with a large ensemble Kalman filter (EnKF) in several numerical experiments. In these experiments, the PKF

accurately reproduces the EnKF. Eventually, the PKF is formulated for a more complex chemical model composed of six

chemical species (Generic Reaction Set). Again, the PKF succeeds at reproducing the multivariate covariances diagnosed on10

the large ensemble.

Copyright statement. TEXT

1 Introduction

Data assimilation aims to provide an estimation of the true state of a system. This estimation, called the analysis, is a com-

promise between the forecast of the state and the available observations. The optimal combination of the forecast and the15

observations relies on their respective error covariance matrices as given by the Kalman filter equations (Kalman, 1960). The

accuracy of the analysis is directly related to the quality of these two matrices.

In atmospheric chemistry applications, the system to study is the concentration of multiple chemical species in the atmo-

sphere. In most cases, chemical transport models (CTMs) are used to forecast the concentrations, as the operational model

MOCAGE used in Meteo-France (Josse et al., 2004). CTMs make predictions based on the transport by the wind (the fields20

are provided by NWP models) and the chemical interactions of the species (Hauglustaine et al., 1998) ; and takes into account
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multiple other important processes e.g. the diffusion, the emissions, the deposition or the interaction with clouds. However, in

CTMs chemistry do not influence the meteorology, which is of course a crude approximation of the true atmosphere. The ad-

vantage of a CTMs is that it allows air quality prediction at a low numerical cost, and is used in several operational centers. For

instance, the CAMS regional air quality production 1, which daily forecast a multi-model ensemble of 11 members that covers25

the following 4 days, is performed from the integration of 11 models from which 10 are CTMs. Note that each member of the

ensemble relies on its own data assimilation system for providing its surface analysis, while all models process the same set

of surface observations, and all model forecasts are based on the same meteorological forcings from ECMWF high resolution

weather forecasts. In particular, members of the CAMS multi-model ensemble are not used within an EnKF to provide its own

assimilation system.30

In this context, the forecast-error covariance matrix contains the correlations of the forecast errors within and between the

chemical species. In multivariate covariance modeling applied in meteorology, these correlations are respectively denoted by

autocorrelations and cross-correlations (Derber and Bouttier, 1999). Accurately describing the auto and cross correlation is a

key component for improving the overall quality of the analysis. Indeed, strong correlations exist between different chemical

species, and the analysis could benefit from them: an observation for a given species might also correct other concentrations35

and reduce their error amplitude at the same time. Note that in operational applications, chemical species are often assimilated

separately e.g. in CAMS 2.40, the univariate 3DVar system of MOCAGE is used for the assimilation of ozone, nitrogen

dioxide, sulphur dioxide, and fine particulate matter PM2.5 and PM10 (following a configuration similar to the one used for

MACII detailed by Marécal et al. (2015)). Note also that simplifications are often introduced to represent a flow dependency of

the background term e.g. in several studies using MOCAGE, the 3DVar background error standard deviations are specified as a40

percentage of the first guess field (Amraoui et al., 2020; Aabaribaoune et al., 2021; Peiro et al., 2018) – which is very different

from the forecast error variance in an EnKF that results from the ensemble estimation and the dynamics of the uncertainty

along the previous analysis and forecast cycles.

However, the estimation and the modelling of multivariate covariances in air quality is a complex topic (Emili et al., 2016).

But this is not specific to air quality, and two main approaches are found in data assimilation. The first one relies on balance45

operators and has been introduced in variationnal data assimilation. These balance operators establish a relation between the

state variables and allow for the modelling of cross-covariances from the design of univariate covariances. Such operators

exist in numerical weather prediction (Derber and Bouttier, 1999; Fisher, 2003) as well as for the ocean (Weaver et al., 2006),

but as far as we know, no balance operators are used in atmospheric chemistry applications. The second approach relies on

the ensemble method (Evensen, 2009) where an ensemble of forecasts is used to estimate the multivariate covariance matrix50

(Coman et al., 2012). The ensemble method offers a flow dependent estimation of the error statistics and leads to a practical

implementation of the Kalman filter, that is the ensemble Kalman filter (EnKF) (Evensen, 1994). The EnKF applies to a wide

range of problems, from a simple Lorenz 63 model (Lorenz, 1963) to the numerical prediction of the atmosphere or the ocean.

1https://atmosphere.copernicus.eu/cams-european-air-quality-ensemble-forecasts-welcomes-two-new-state-art-models, associated with CAMS2.40

https://confluence.ecmwf.int/display/CKB/CAMS+Regional%3A+European+air+quality+analysis+and+forecast+data+documentation see here for scientific

description – last access to web references: 15 March 2023)
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At the same time, this advantage may be seen as a limitation: the EnKF not necessarily takes advantage of the particular

set of equations of a problem e.g. the continuity of physical fields which leads to simplification not available in the usual55

matrix formulation of the EnKF equations. Moreover the ensemble method presents some drawbacks. For instance, since the

estimation often relies on a small ensemble, the statistical estimations are polluted by a spurious sampling noise which requires

the introduction of filtering (Berre et al., 2007) and localization (Houtekamer and Mitchell, 1998, 2001). In air quality, it may

be preferable to set the ensemble estimation of the multivariate correlation to zero, to avoid polluting the resulting analysis

state (Tang et al., 2011; Gaubert et al., 2014), except at the globe surface (Eben et al., 2005) or when the chemical species are60

strongly correlated (Miyazaki et al., 2012). Note that additional treatments can be required as inflation of the variance in order

to represent effects of model errors (Anderson and Anderson, 1999; Whitaker and Hamill, 2003). As another drawback, the

numerical computation of the EnKF is costly since it relies on the several time integrations of a numerical model, which are

often computed in parallel at lower resolution.

Recently, a new approximation of the KF has been introduced, the parametric Kalman filter (PKF), where the error covariance65

matrices are approximated by a covariance model fitted with a set of parameters e.g. the grid-point variance and the local

anisotropy (Pannekoucke et al., 2016). In the PKF, the dynamics of the parameters are described all along the forecast and

analysis steps of the assimilation cycle (Pannekoucke, 2021). This approach does not rely on ensembles, and the dynamics of

the parameters is deduced from the partial differential equations that govern the physical system. Hence, the PKF opens the way

to understanding the physics of uncertainties. However, the construction of the parameter dynamics is the most difficult part for70

the design of the PKF. When the parameters are the variance and the local error-correlation anisotropy, a systematic formalism

for deducing PKF’s equations based on a Reynolds decomposition (or Reynolds averaging technique see e.g. Lesieur, chap.

4) has been introduced associated with a Python package, SymPKF (Pannekoucke and Arbogast, 2021), and is based on the

Python computer algebra system Sympy (Meurer et al., 2017). But, modeling the physics of uncertainties often comes with

closure problems. To alleviate this issue, another numerical framework, PDE-Netgen has been introduced to be able to close75

problems using a deep learning approach (Pannekoucke and Fablet, 2020).

Applying the PKF approach for CTMs is attractive because the parametric dynamics is known for the transport equations

(Cohn, 1993; Pannekoucke et al., 2018), and this leads to a better understanding of the forecast-error covariance dynamics e.g.

a better understanding of the model-error covariance due to the numerical integration (Pannekoucke et al., 2021), and the loss

of variance which appears in the EnKF (Ménard et al., 2021). Moreover, an application of the PKF has been recently proposed80

for the assimilation of GOSAT methane in the hemispheric CMAQ model (Voshtani et al., 2022a, b), showing the potential

of the PKF in nearly operational applications where only the error variance evolved. Compared to specifying the background

variance as a percentage of the first guess, as mentioned above for the MOCAGE assimilation, the PKF could provide a flow

dependence more consistent with the KF theoretical framework, but without the numerical cost of using an ensemble as with

an EnKF.85

While the PKF has been formulated for univariate statistics, a first attempt in multivariate statistics has been proposed, based

on the balance operator approach (Pannekoucke, 2021). However, applying such a balance operator is a challenge for chemical

reactions where no simple relation exists as the geostrophic balance in weather forecasting. Hence, the aim of this contribution
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is to explore how to extend the univariate PKF into a multivariate formulation adapted to CTMs. To do so, a multivariate

covariance model adapted to air quality prediction is first proposed and then it is validated by a twin experiment based on an90

EnKF using a large ensemble.

This contributions only focuses on the uncertainty dynamics due to the chemistry without accounting for the part of the

uncertainty of the weather e.g. we do not take into account the uncertainty of the wind that transports the chemical species.

The paper is organized as follows. Section 2 reminds basic concepts in data assimilation with the formalism of the Kalman

Filter and its parametric approximation in univariate statistics. Then, in Section 3, a simplified two species multivariate CTM95

is introduced for which a multivariate parametric assimilation is first proposed then validated based on a comparison with an

ensemble approach. A six-species chemical scheme is considered in Section 4 to evaluate the PKF multivariate forecast in a

more complex context. The conclusions of the contribution are given in Section 5

2 Background on the Parametric Kalman Filter

The parametric Kalman filter (PKF) is a recent implementation of the Kalman filter where the covariance matrices are approx-100

imated by some covariance model. For the sake of consistency, this section first recaps the basics of the Kalman filter, then it

reminds the diagnosis of covariance matrix in large dimension and covariance models to introduce the formalism of the PKF

in univariate statistics. The section ends with a numerical example of interest for air quality that illustrates the PKF.

2.1 Analysis and forecast step in the Kalman filter

Here we consider a system whose state is denoted by X and governed by the evolution equation105

∂tX =M(X ). (1)

Time integration from a time tq to a time tq+1 of the dynamics Eq. (1) defines the propagatorMtq+1←tq , that maps a stateX (tq)

to the prediction of Eq. (1), X (tq+1) =Mtq+1←tqX (tq). In geophysics, X stands for the multivariate fields that represent the

state of the ocean, the atmosphere or chemical species concentration for air quality. The dynamicsM is then given by a system

of partial differential equations. After spatial discretization,M becomes a system of ordinary differential equations, and X is110

a vector of dimension n. Thereafter, X can be seen either as a collection of continuous fields with dynamics given by Eq. (1)

or a discrete vector of dynamics the discretized version of Eq. (1).

Because of the spatio-temporal sparsity of observations, as well as modeling, chaotically amplification of initial error in

forecast and measurement errors, the exact actual state at a time t= tq , X t
q , is unknown.

Data assimilation aims to provide the analysis state, X a
q , that is an estimation of X t

q performed from the observations and115

the forecast state. The analysis state is decomposed into X a
q = X t

q + εaq where εaq is the analysis error, which is modeled as

a random error of zero mean and covariance matrix Pa
q = E

(
εaq (εaq )T

)
, with E (or its shorthand ·) the expectation operator,

and T the transpose operator. This analysis state X a
q can be obtained by combining the forecast state X f

q and the observations

Yobs
q . Similarly, to the analysis state, the forecast and the observations can be written as X f

q = X t
q + εfq and Yobs

q = Y t
q + εobsq
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introducing the forecast (the observation) error εfq (εobsq ), both modelled as random errors of zero mean and covariance matrices120

Pf
q = E

(
εfq (εfq )T

)
and Rq = E

(
εobsq (εobsq )T

)
respectively. In the case where the dynamic of X t is assumed linear, replacing

M by its matrix version M in Eq. (1); and when the errors are Gaussian, uncorrelated in time, and errors between observations

and forecast are independent, the Kalman filter’s equations (KF) describe the evolution of the uncertainty over time (Kalman,

1960).

The process of estimating the analysis state from a forecast and some observations is called the analysis step. The forecast125

error covariance matrix denoted by Pf
q and the observation error covariance matrix Rq associated respectively with X f

q and

Yobs
q , are used to produce the optimal estimation (analysis) X a

q of X t
q , and the associated analysis-error covariance matrix Pa

q .

The equations of this procedure are:

X a
q = X f

q +Kq

(
Yobs
q −HqX f

q

)
, (2a)

Pa
q = (In−KqHq)Pf

q , (2b)130

where Kq = Pf
qH

T
q

(
HqP

f
qH

T
q +Rq

)−1
is the Kalman gain matrix with Hq the linear observation operator that maps the

state vector into the observation space; Pa
q is the analysis error covariance matrix ; and In the identity matrix in dimension n.

Next, the forecast step pushes the uncertainty forward in time. The analysis state X a
q is propagated using the linear dynamics

M to obtain the forecast X f
q+1 at time tq+1 leading to an estimation of the true state system X t(tq+1). The Gaussian error

statistics for this forecast are given by the Kalman filter forecast step135

X f
q+1 = Mq+1←qX a

q , , (3a)

Pf
q+1 = Mq+1←qP

a
q (Mq+1←q)

T
+Qq, (3b)

where Qq is the model error covariance matrix. Thereafter, no model error is considered i.e. Q is zero.

While the Kalman filter formalism is based on simple vector algebra equations, it is not easy to understand the statistical

content of the error covariances, which would require representing each covariance function and exploring their temporal140

evolution. Fortunately, simple diagnosis can be introduced to summarize the statistical relationship between points in the

geographic domain. In turn, these diagnostics can be used as parameters of covariance models, as detailed now.

2.2 Diagnosis and modelling of covariance matrix in large dimension

In data assimilation, two diagnoses for the error covariance matrices are often introduced: the variance field, and the anisotropy

of the correlation functions which corresponds to the principal axes of the spatial correlation. These diagnoses are used for the145

description of the forecast-error covariance matrix.

The forecast error variance field, V f , is defined by V f (x) = E
(
(εf (x))2

)
where x denotes the coordinate of a grid point.

The variance field also corresponds to the diagonal of Pf . The field of variance characterizes the magnitude of the error at a

given position.
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When the forecast-error is a differential random field, the anisotropy of the correlation is characterized by the so-called local150

forecast-error metric tensor gf (x) that appears in the Taylor expansion of the correlation function (Daley, 1991)

ρf (x,x+ δx)≈ 1− 1

2
||δx||2gf (x), (4)

where || · ||g stands for the Euclidean norm associated with a metric g and defined from ||x||2g = xTgx The local metric tensor

gf (x) is a symmetric positive-definite matrix that prevents the correlation value from being larger than one. There is one local

metric tensor at each grid location x. The metric tensor is related to the statistics of the random field εf according to the formula155

(Berre et al., 2007):

gf
ij(x) = E

[
∂xi

(
εf

σf

)
∂xj

(
εf

σf

)]
(x), (5)

where σf =
√
V f is the forecast-error standard deviation, and where xi’s are the coordinate functions associated with the

coordinate system x.

In practice, the direction of the largest correlation anisotropy corresponds to the principal axe of the smallest eigenvalue for160

the metric tensor: the metric tensor is contravariant. It it thus useful to introduce the local aspect tensor (Purser et al., 2003)

whose geometry goes as the correlation, and is defined as the inverse of the metric tensor:

sf (x) =
(
gf (x)

)−1
, (6)

where the superscript −1 denotes the matrix inverse. Note that in a 1D domain, the square root of s is homogeneous to a length,

leading to the so called length-scale l =
√
s which is often introduced in diagnoses.165

One of the motivations behind the diagnosis of the variance and the local anisotropy tensor is that they can be used as

parameters of covariance models, the VLATcov models (Pannekoucke, 2021). For instance, for the covariance model based on

a diffusion equation (Weaver and Courtier, 2001), the anisotropy tensor has been used as a proxy for setting the heterogeneous

diffusion tensor field of the covariance model based on a heterogeneous diffusion equation (Pannekoucke and Massart, 2008;

Mirouze and Weaver, 2010). This covariance model is used in variation data assimilation to generate heterogeneous covariances170

where correlation functions vary between grid points. While there is no analytical expression for the covariance functions

based on the diffusion operator, analytical heterogeneous VLATcov models exist, for instance the heterogeneous Gaussian-like

covariance model

Phe.gauss(V,s)(x,y) =
√
V (x)V (y)

|s(x)|1/4|s(y)|1/4

| 12 (s(x) + s(y))|1/2
exp

(
−1

2
||x−y||2[ 12 (s(x)+s(y))]−1

)
, (7)175

with | · | denoting the matrix determinant (Paciorek and Schervish, 2006).

Heterogeneous covariance models are important because they provide a way to produce non-obvious correlation functions

from a set of parameters. Hence, approximating a covariance matrix, as the forecast-error covariance at a given time, by a

covariance model is reduced to the knowledge of a set of parameters. The parameteric Kalman filter takes advantage of this

kind of approximation to reproduce the Kalman filter dynamics as now explained.180
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2.3 Formalism of the parametric Kalman filter

A covariance model is first considered, P(P), where P denotes a set of parameters. For instance, when the PKF is designed

from a VLATcov models, the set of parameters P is given by the field of variance and of the local anisotropic tensors i.e.

P = (V,s) or P = (V,g).

To describe the sequential evolution of error covariance matrices along the assimilation cycles we assume that the fore-185

cast error-covariance matrix at a time tq , Pf
q , is approximated by the covariance model, P(Pf

q ), where Pf
q denotes a set of

parameters so that P(Pf
q )≈Pf

q .

At an abstract level, the parametric Kalman filter consists of the following sequential steps (Pannekoucke, 2021). The PKF

analysis step, equivalent to Eq. (2), consists to determine the analysis state X a
q and the parameters Pa

q from X f
q , Pf

q and the

observations. In practice, this step consists in a sequential processing of observations, similar to the one often encountered in190

EnKF (Houtekamer and Mitchell, 2001), that is a sequential assimilation of single observations based on Eq. (2a) for the mean

accompanied with an update of the covariance parameters so that, at the end of the analysis step, P(Pa
q ) approximates the

analysis error covariance of the Kalman filter Eq. (2b) i.e. P(Pa
q )≈Pa

q . Note that this sequential assimilation of observations

can be performed in parallel as for the EnKF, with the difference that the EnKF often assimilates a batch of observations in

place of a single observation. Of course, for the PKF this step only relies on the update of the parameters, with no ensemble.195

For instance, when considering a VLATcov model P(V,s), the PKF analysis of a single observation at position xl, of value yo

and observation-error variance V o(xl), writes (at time tq) (Pannekoucke, 2021)

X a(x) = X f (x) +σf (x)ρfxl
(x)

σf (xl)

V f (xl) +V o(xl)
(yo−X f (xl)), (8a)

V a(x) = V f (x)

(
1− [ρfxl

(x)]2
V f (xl)

V f (xl) +V o(xl)

)
, (8b)

sa(x)≈ V a(x)

V f (x)
sf (x), (8c)200

where the function ρfxl
(x) = ρ(sf )(xl,x) is the correlation function between the observation location and each model gridpoint

x, associated with the covariance matrix P(V f ,sf ) ; σf =
√
V f is the field of forecast-error standard deviation ; and where

Eq. (8c) is the leading order approximation of the anisotropy update (Pannekoucke, 2021).

Then, the forecast step of the PKF, equivalent to Eq. (3), consists of finding the dynamics of the parameters in order to predict

Pf
q+1 from Pa

q , so that P(Pf
q+1) approximates the forecast-error covariance matrix of the Kalman filter i.e. P(Pf

q+1)≈Pf
q+1.205

The equation for the mean is the Eq. (3a) of the KF.

2.4 PKF for advection equation of passive tracer

An illustration of the PKF is now proposed for an univariate advection problem, with a focus on the forecast step. This

introduction of an intermediate problem aims to give the reader a good understanding of the PKF, its advantages and difficulties,

which will be necessary to address the more complex problem encountered in multivariate CTM.210
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For a one-dimensional (1D) and periodic domain, of coordinate x, the conservative advection of a tracer, X (t,x), by a

stationary heterogeneous wind field u(x), can be described by the partial differential dynamics

∂tX + ∂x(uX ) = 0, (9a)

or equivalently by

∂tX +u∂xX =−X∂xu. (9b)215

The forecast step of the PKF is illustrated for the conservative dynamics where the covariance matrices are approximated by

a VLATcov model. The computation of the PKF dynamics can be performed from using SymPKF (Pannekoucke and Arbogast,

2021), and reads as

∂tX +u∂xX =−X∂xu, (10a)

∂tV +u∂xV =−2V ∂xu, (10b)220

∂ts+u∂xs= 2s∂xu. (10c)

where here X stands for the mean state X and where the forecast-error upper-script (·)f has been removed for V and s for

the sake of simplicity. Note that the PKF system Eq. (10), which is decoupled, corresponds to the true uncertainty dynamics

for the advection problem (Cohn, 1993; Pannekoucke et al., 2016, 2018). This is not true in general where closure issue can

appear e.g. for a diffusion equation, because of the second-order derivative, an unknown term appears in the dynamics of the225

metric and has to be closed (Pannekoucke et al., 2018).

In the following, a numerical test-bed shows the ability of the PKF to predict the uncertainty dynamics compared to a

reference ensemble estimation (EnKF).

The numerical experiment studies of the time propagation of an uncertainty at time t= 0, featured by a mean state X 0 and

an error covariance P0, to an arbitrary time T . Here, the initial error covariance is defined as the covariance P0 = P(V 0,s0),230

where P(V,s) is the VLATcov model based on the heterogeneous Gaussian like model Eq. (7), for (V 0,s0) given.

To assess the PKF ability to forecast the error statistics, we compare its results with diagnoses obtained from the forecast

of a large ensemble, {X f
k }1≤k≤Ne

, of size Ne = 6400, which implies a relative error of 1.25%, according to the central limit

theorem. At t= 0, the ensemble is populated for each k as X f
k (0) = X 0 +P

1/2
0 ζk, where P

1/2
0 is the square-root of the initial

covariance matrix P0, and ζk a Gaussian sample with zero mean and covariance matrix In where n is the dimension of the235

vector X i.e. ζk ∼N (0,In). Then, each member X f
k is computed from the time integration of Eq. (9b) starting from X f

k (0).

Note that, for the linear dynamics Eq. (9a), the full computation of the KF covariance prediction could have been considered, but

the ensemble approximation has been preferred since it introduces the methodology adapted to the nonlinear setting explored

for the multivariate situation in Section 3.

Hence, from the ensemble, the variance at a given time is then estimated from its unbiased estimator240

V̂ f (x) =
1

Ne− 1

Ne∑
k=1

(
εfk

)2

, (11)
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with εfk = X f
k (x)−X̂ f (x) and where X̂ f = 1

Ne

∑Ne

k=1X
f
k is the empirical mean. The metric tensor, defined from Eq. (5), is

estimated by

ĝf (x) =
1

Ne

Ne∑
k=1

(∂xε̃
f
k(x))2, (12)

where ε̃fk = 1√
V̂ f

(X f
k −X̂ f ) is the normalized error, and is used to computed the estimation of the aspect tensor ŝf (x) =245

1/ĝf (x) and of the length-scale l̂f (x) = 1/

√
ĝf (x) =

√
ŝf (x).

The numerical framework used to forecast both the ensemble and the PKF system is now described. The periodic domain

is [0,D) with D = 1000km. It is regularly discretized with Nx = 241 grid points, which corresponds to a meshsize ∆x of

size 4.15km. The dynamics Eq. (9b) and Eq. (10) are discretized with a finite difference method, where spatial derivatives are

approximated using a centred scheme of order 2. The time integration is done using a fourth-order Runge-Kutta (RK4) scheme250

of time step ∆t verifying the Courant-Friedrichs-Lewy condition (CFL) (Weisstein, 2002) ∆t= ∆x/Umax, where Umax is

the maximum wind speed magnitude of u.

Figure 1. Predefined heterogeneous and stationary wind field u(x) used for the transport simulations.

For this experiment, the mean state X , the variance field V and the aspect-tensor field s are initialized homogeneously with

values X 0 = 1, V 0 = (σ0)2 where σ0 = 0.1, and s0 = (l0h)2 where l0h = 15∆x' 62.2km. This initial setting also corresponds

to the initial state of the PKF dynamics Eq. (10). In regards of the domain chosen, this setting for the length-scale is in agreement255

with practical estimations often encountered (Ménard et al., 2016). The wind field considered, shown in Fig. 1, is defined by

u(x) = (35+15cos(2πx))/D, and modelizes a wind of average intensity 35kmh−1 and of max speed Umax = 50kmh−1. The

characteristic time τadv is defined by τadv =D/u' 28.5h, and approximately corresponds to the time of a revolution of the

tracer around the periodic domain. The simulation time horizon T = tend is set to tend = 3τadv .

The dynamics of the uncertainty shows, Fig 2, that the tracer tends to concentrate in the deceleration zones (see Fig. 1260

from x= 0 to x= 0.5), and to dilute in the acceleration zones (from x= 0.5 to x= 1.0) (Fig 2(a) ). This observation also

applies to the standard-deviation field Fig 2(b), as it is governed by the same dynamic as the tracer’s concentration (it is

9



Figure 2. Comparison of the (low resolution) forecasts (Nx = 241) of the mean state (panel a), the forecast-error standard-deviation σ =
√
V

(panel b) and the forecast-error length-scale l = 1/
√
g =
√
s (panel c), shown at times t= [0.6,1.2,1.8,2.4,3.0]τadv , computed from the

PKF (red lines) and compared with the diagnoses on an ensemble of Ne = 6400 forecasts (cyan dash-dotted lines). The more transparent the

curve, the closer it is to t= 0. The horizontal grey lines represent the initial conditions.

straightforward to calculate the dynamics of σ using the dynamics of the variance Eq. (10b)). On Fig 2(c), the length-scales

(1D equivalent of the anisotropy) are subject to two processes: a pure transport term, (l.h.s. of Eq. (10c)), and a production term

related to the wind sheer (r.h.s. of Eq. (10c)). This production term is positive (negative) when the wind field is accelerating265

(decelerating), indicating an increase (decrease) of the length-scales in the accelerating (decelerating) wind regions. In contrary

to the concentrations and standard-deviation fields (governed by a conservative transport), the average value of the length-scales

varies in time, however numerical experiments (not shown here) have shown that it oscillates around the initial value.

Regarding the performances of the two methods, the PKF forecast results for the error statistics are quite similar to the one

diagnosed from the ensemble i.e. the EnKF for this test-bed. The forecasts of the concentrations Fig 2(a) are identical for270

both methods. Although the dynamics for the variance Eq. (10b) and the anisotropy Eq. (10c) are exact in the PKF system, a

significant difference is observed between the forecasts of the two methods (Fig 2(b) and Fig 2(c) ) which is due to the model

error that affects the EnKF and can be corrected by performing high-resolution simulations (Nx= 723, see Appendix A for

details). This highlights some of the limitations of the numerical validation of the PKF by an ensemble method in presence of

model error. This numerical experiment shows that the PKF is able to produce high quality forecasts of the diagnoses of the275

forecast-error statistics, a result that is confirmed by looking at the forecast-error correlation functions (see Appendix B).

This example shows the motivation behind the PKF: it is able to predict the (main parameters of the) error covariance with a

good skill and at a low numerical cost. This low numerical cost first concerns the computer memory: the information contained

in a covariance matrix of sizeO(N2
x) in the ensemble case, is reduced by the covariance model Eq. (7) which only needs a few

parameters of size of order O(Nx) (with O being the Big O notation, meaning "proportional to"). But the low numerical cost280

concerns also the time consumed to predict the uncertainty: the PKF only relies on the single time integration of Eq. (10), that

represents the cost of 3 time integrations of the initial dynamics Eq. (9b), compared to the 6400 time integrations required for

the ensemble used here.
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As another advantage, the PKF provides informations about the physics of the uncertainty: when ensemble diagnosis only

observes the time evolution of the statistics without any explications, the PKF provides a simplified proxy that details the origin285

of these statistical evolutions with only three equations and by thus the PKF improves our knowledge of uncertainty dynamics.

3 Toward a multivariate formulation of the PKF

The exploration of the multivariate extension is now addressed. For multivariate problems, a modelization of the cross-

correlation functions (or inter-species correlation functions) is needed. Moreover, it would be convenient to introduce a mul-

tivariate covariance model that extends the univariate VLATcov model, as the heterogeneous Gaussian model (Eq. 7), to take290

advantage of the PKF dynamics of univariate statistics.

Because multivariate modelling is a difficult topic, a multivariate covariance model is proposed in a simplified test-bed in

Section 3.1, where a data-driven modeling is considered to determine a multivariate covariance model and its parameters.

Next the mutivariate PKF is formulated, detailing the prediction and the analysis steps in Section 3.2. Finally, two numerical

assimilation experiments are conducted in Section 3.3295

3.1 Development of a proxy multivariate covariance model

3.1.1 Introduction of the simplified chemical transport model

To explore a multivariate formulation of the PKF, a simplified chemical transport model is introduced that mimics the MOCAGE

framework. This simplified CTM contains the essential features of what can be found in a more realistic CTM, that is advection,

multiple chemical species and non-linearities.300

To do so, a 1D periodic domain of coordinate x is considered, where two non-linearly reactive chemical species, A(t,x) and

B(t,x), are advected in a conservative way by a heterogeneous and stationary wind field u(x). The non-linear reaction is given

by the Lotka-Volterra (LV) equations (see Appendix C), which leads to the coupled dynamics

∂tA+u∂xA=−A∂xu+ k1A− k2AB, (13a)

∂tB+u∂xB =−B∂xu+ k2AB− k3B. (13b)305

where the transport is written following the univariate 1D example Eq. (9b), and where the LV reaction appears as the last

two terms in the right hand side of each prognostic equations. The constants k1, k2 and k3 characterize the reaction rates: k1

corresponds to the rate at which A is produced; constant k2 represents the rate at which the chemical reactions between A

and B produces 2B; and k3 describes the decay rate for specie B. Note that at a formal level, the state vector associated with

Eq. (13) is then X (t,x) = (A,B)(t,x).310

Considered as a dynamical system of ordinary equations and represented in the phase space (A,B), the solutions of the

Lotka-Volterra’s dynamics are periodical orbits flowing around the critical point of coordinates (Ac,Bc) =
(

k3

k1
, k1

k2

)
, as shown

in Fig. 3. This is the kind of time evolution observed at each grid point when there is no wind (u= 0).
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Figure 3. Numerical simulations of the Lotka-Volterra dynamical system whose solutions are periodical orbits (purple curves with different

transparencies), flowing counter clockwise around the critical point (Ac,Bc) =
(
k3
k1
, k1
k2

)
(black dot).

In this multivariate framework, the error-covariance matrix P = E
(
εX (εX )T

)
associated with the state X = (A,B), of error

εX = (εA,εB), reads as a block matrix315

P =

 PA (PAB)
T

PAB PB

 , (14)

where PA and PB are the auto-covariance matrices of the errors, and PAB the cross-covariance matrix, or the inter-species

covariance matrix, of the errors. Note that, in general, PAB is not symmetric i.e. (PAB)
T 6= PAB . The two-points cross

covariance function PAB(x,y) = εA(x)εB(y) between grid points of coordinate x and y writes

PAB(x,y) =
√
VA(x)

√
VB(y)ρAB(x,y), (15)320

where

ρAB(x,y) =
PAB(x,y)√
VA(x)

√
VB(y)

, (16)

is the cross-correlation function. The cross-correlation function is not symmetric in general i.e. ρAB(x,y) 6= ρAB(y,x). In

particular, if CAB denotes the associated cross-correlation matrix, then CAB 6= (CAB)
T.

At a covariance modelling point of view, and in the perspective of the PKF, the univariate covariances PA and PB could be325

approximated by a VLATcov model e.g. P(VA,sA). Moreover, the single-point cross-covariance field defined as VAB(x) =

εA(x)εB(x) will appear in the dynamics of VA and VB because of the coupling due to LV equations, and should be considered

as a natural parameter for a multivariate PKF. At this stage, the question is whether it is possible to approximate the two-points

cross-covariance functions PAB(x,y) knowing the parameters (A,B,VA,VB ,VAB ,sA,sB) which are functions of x.

Since no multivariate modelling extending the VLATcov model is available. A numerical exploration of the dynamics of330

multivariate statistics is performed for the LV-CTM, so then to guess a proxy for the cross-covariance functions.
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3.1.2 Ensemble of multivariate forecasts

Compared to the univariate experiment described in Section 2.4, without a multivariate covariance model, it is not possible to

sample a multivariate ensemble. For this reason, the error for the two chemical species are assumed decorrelated at the initial

time t= 0, so that the error-covariance matrix, P0, is the block diagonal335

P0 =

P0
A 0

0 P0
B

 , (17)

where P0
A

(
P0

B

)
is the univariate covariance associated with error onA (B). Following the ensemble generation of Section 2.4,

the univariate covariance matrices are chosen as the two VLATcov P0
A = P(V 0

A,s
0
A) and P0

B = P(V 0
B ,s

0
B). Then, an ensemble

of Ne = 6400 initial conditions (X 0
k )k∈[1,Ne] is sampled, with for each k, X 0

k = X 0 +
(
P0
)1/2

ζk, where X 0 = (A0,B0) and(
P0
)1/2

is the block diagonal matrix
(
P0
)1/2

= diag
(
P(V 0

A,s
0
A)1/2,P(V 0

B ,s
0
B)1/2

)
. This time, ζk is a sample of N (0,In)340

with n= 2Nx. The domain is discretized in Nx = 723 grid points.

For the simulation, the fields A0 and B0 are set to the constants A0 = 1.2 and B0 = 0.8. The univariate parameters are

set to σ0
A = 0.1 ·A0, σ0

B = 0.1 ·B0, s0
A = s0

A = l2h with lh = 45∆x' 62km. The reaction rates of LV are set to (k1,k2,k3) =

(0.075,0.065,0.085). The time integration follows the numerical setting used for the univariate simulation presented in Sec-

tion 2.4, and leads to an ensemble of Ne = 6400 multivariate forecasts.345

While there is no cross-correlation at the initial condition, the coupling provided by the LV equations should introduce

a non-zero cross-correlation between errors on A and B, and this can be diagnosed from the computation of the ensemble

estimation of the two-points forecast-error cross-covariance function PAB(x,y) at time t, given by

P̂AB(t,x,y) =
1

Ne− 1

Ne∑
k=1

εA,k(t,x)εB,k(t,y), (18)

with εA,k(t,x) =Ak(t,x)−Â(t,x) and εB,k(t,y) =Bk(t,y)−B̂(t,y), where Â and B̂ are the empirical means of the ensemble350

of forecasts (Ak) and (Bk) , from which an estimation of the cross-correlation functions ρ̂AB(t,x,y) and matrix ĈAB(t) can

be deduced.

Figure 4 shows the time evolution of the cross-correlation with respect to the grid point xl = 0.5 i.e. the function ρAB(xl, ·).

As it has been specified, the cross-correlation is zero at t= 0 (Fig. 4(a) ). Then, as it is expected, the cross-correlation evolves

along the time, presenting an anti cross-correlation at t= 0.6τadv (Fig. 4(b) ), then a positive one at t= 1.8τadv (Fig. 4(d) ).355

At t= 2.4τadv (Fig. 4(e) ), the cross-correlation appears clearly asymmetric, while reaching its maximum value at a y strictly

lower than xl.

3.1.3 Formulation of a proxy for the cross-correlation

Now, a proxy for the cross-correlation is introduced from the data set of multivariate forecasts.
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Figure 4. Evaluation of the cross-correlation model rAB(xL, ·) (bold orange line) versus the ensemble estimation of the cross-correlation

ρAB(xL, ·) (blue dashed line) with respect to the location xl = 0.5 and times t= [0.0,0.6,1.2,1.8,2.4,3.0]τadv .

After a trial-and-error process, and inspired from the VLATcov model Eq. (7), the following expression360

rAB(x,y) =
1

2

(
VAB(x)

σA(x)σB(x)
+

VAB(y)

σA(y)σB(y)

)
exp

(
−||x−y||2[ 14 (sA(x)+sB(x)+sA(y)+sB(y))]−1

)
, (19)

as function of the known parameters P = (VA,VB ,VAB ,sA,sB), has been proposed as a proxy for the cross-correlation ρAB

i.e. rAB(x,y)≈ ρAB(x,y). It consists in an interpolation by the mean of the cross-correlation values at location x and y,

multiplied by a gaussian kernel, where the univariate aspect-tensor has been substituted by the mean of the aspect-tensors of365

all chemical species. The resulting proxy for the cross-correlation matrix is denoted by Cproxy
AB (P).

One of the main advantages of considering a simple analytic formula is its can be extended to a problem with more chemical

species and for a domain of higher dimension.

Note that formulation Eq. (19) is symmetric (rAB(x,y) = rAB(y,x)), while cross-correlations are not symmetric in general

(ρAB(x,y) 6= ρAB(y,x)), but this expression leverages on all the parameters known at locations x and y. However, the function370

rAB,x(δx) = rAB(x,x+ δx) is not necessarly symmetric in δx, where in general rAB,x(δx) 6= rAB,x(−δx).

To assess the skill of the proxy, Fig. 4 shows the functions rAB(xl, ·) (computed from Eq. (19) with the ensemble-estimated

parameters P̂(t) = (V̂A, V̂B , V̂AB , ŝA, ŝB)(t)), compared with the ensemble estimated cross-correlation ρAB(xl, ·). At a quali-

tative level, the functions rAB are in accordance with the cross-correlation ρAB of reference for all the panels. Note that, while

rAB is symmetric, the functions rAB(xl, ·) can be asymmetric as it appears in Fig. 4(c) and Fig. 4(f).375
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Figure 5. Time evolutions of the relative errors between the empirical cross-correlation matrix (EnKF) and the proxy-generated cross-

correlation matrix fitted with EnKF-diagnosed parameters, for two different settings of the initial length scales: equal length-scales with

l0A = l0B = 45∆x≈ 66km (turquoise line) and different length-scales with l0A = 45∆x and l0B = 66∆x≈ 91km (mauve line). The results

being dominated by sampling noise for t < 0.45, they are not retained (grey hatching) for the computing of the temporal averages (dashed

segments).

At a quantitative level, Fig. 5 shows the time evolution of the relative error ||ĈAB(t)−Cproxy
AB (P̂(t))||

||ĈAB(t)||
, where ||U||=

√
Tr(UUT)

is the Frobenius matrix norm where Tr is the trace operator; ĈAB(t) is the ensemble estimation of the cross-correlation matrix

; and Cproxy
AB (P̂(t)) is the proxy for the cross-correlation matrix fitted with ensemble-estimated parameters P̂(t). Two differ-

ent experiments are shown depending on whether the initial length-scale for a A and B are equal, l0A = l0B = 45∆x≈ 66km

(turquoise lines) ; or different, l0A ≈ 66km but l0B = 66∆x≈ 91km (purple lines).380

As the two multivariate error fields are uncorrelated at the initial time, the true cross-correlation matrix CAB(t= 0) is zero.

However, the ensemble used in the estimation of ĈAB(t= 0) being finite, this produces spurious non-zero cross-correlation

leading to a non-zero matrix and to a relative error larger than 80%. Then, the first instants of the simulation are dominated by

the sampling noise, and they are excluded for the analysis of the results (grey hatching). After t' 0.45, the experiments offer

valid results and lead to temporal averages of 23.1% when l0A = l0B (turquoise dashed line) and 31.3% when l0A 6= l0B . Note that385

the effect of the sampling noise can leads to an overestimation of 8% for this kind of experiment (Pannekoucke, 2021).

According to our knowledge, no proxy of cross-correlations similar to Eq. (19) has been introduced up to now as a possible

proxy of cross-correlations. As mentioned above, rAB does not share the same property of the cross-correlation (e.g. rAB is
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symmetric while ρAB is not), and thus, there is no guarantee that a multivariate covariance model based on the proxy rAB leads

to a true covariance matrix: such a multivariate covariance model is symmetric because rAB is symmetric, but not necessarily390

positive definite, although it may not be essential for the PKF applications.

Despite of the limitations of the proxy, a multivariate extension of the univariate VLATcov model is explored below, where

the cross correlation is approximated by the proxy Eq. (19). This leads to a multivariate VLATcov model of parameters the

fields (VAB ,VA,VB ,sA,sB) for which we can formulate a PKF.

3.2 Formulation and simplification of the parameters dynamics and analysis395

3.2.1 PKF dynamics for LV-CTM

The computation of the PKF dynamics leverages on the SymPKF package which applied to the dynamics Eq. (13), provides

the following system of coupled equations

∂tA+u∂xA=−A∂xu+ k1A− k2AB− k2VAB (20a)

∂tB+u∂xB =−B∂xu− k3B+ k2AB+ k2VAB (20b)400

∂tVAB +u∂xVAB =−2VAB∂xu+VAB(k1− k2B− k3 + k2A) + k2VAB− k2VBA (20c)

∂tVA +u∂xVA =−2VA∂xu+ 2[VA(k1− k2B)− k2AVAB ] (20d)

∂tVB +u∂xVB =−2VB∂xu+ 2[VB(−k3 + k2A) + k2BVAB ] (20e)

∂tsA + u∂xsA︸ ︷︷ ︸
TA,adv−1

= 2sA∂xu︸ ︷︷ ︸
TA,adv−2

− 2k2AVABsA
VA︸ ︷︷ ︸

TA,chem−1

+
2k2AσBs

2
A∂xε̃A∂xε̃B
σA︸ ︷︷ ︸

TA,chem−2

+
k2As

2
Aε̃B∂xε̃a∂xVB
σAσB︸ ︷︷ ︸

TA,chem−3

− k2AσBs
2
Aε̃B∂xε̃A∂xVB

V
3
2

A︸ ︷︷ ︸
TA,chem−4

+
2k2σBs

2
Aε̃B∂xε̃A∂xA

σA︸ ︷︷ ︸
TA,chem−5

(20f)405

∂tsB + u∂xsB︸ ︷︷ ︸
TB,adv−1

= 2sB∂xu︸ ︷︷ ︸
TB,adv−2

+
2k2BVABsB

VB︸ ︷︷ ︸
TB,chem−1

− 2k2BσAs
2
B∂xε̃A∂xε̃B
σB︸ ︷︷ ︸

TB,chem−2

− k2Bs
2
B ε̃A∂xε̃B∂xVA
σAσB︸ ︷︷ ︸

TB,chem−3

+
k2BσAs

2
B ε̃A∂xε̃B∂xVB

V
3
2

B︸ ︷︷ ︸
TB,chem−4

− 2k2s
2
B ε̃A∂xε̃B∂xB

σB︸ ︷︷ ︸
TB,chem−5

(20g)

where the overline of the mean statesA andB have been discarded for the sake of simplicity. The PKF is a second order filter

in which the variance of the fluctuations modify the time evolution of the mean states e.g. by the term −k2VAB of Eq. (20a).

For the dynamics of the anisotropy, Eq. (20f) and Eq. (20g), the contributions due to the transport (to the chemistry) are410

labeled as T(·),adv−(·) (T(·),chem−(·)) to be identified.
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Note that the dynamics induced by the transport process is exact as mentioned in Sec. 2.4. In the PKF system Eq. (20) the

dynamics of the mean concentrations A and B, variances VA and VB and cross-covariance VAB , Eq. (20a) to Eq. (20e), are

independent of anistotropy field Eq. (20f) and Eq. (20g). The reciprocal is not true: the anisotopy fields dynamics (Eq. (20f)-

Eq. (20g)) are forced by the means, the variances, the cross-covariances and their spatial heterogeneity. Eq. (20a) and Eq. (20b)415

also indicate an interaction between the cross-covariance and the mean concentrations.

The dynamics of the aspect tensors, Eq. (20f) and Eq. (20g), are not closed: some terms are expressed as expectations of

the normalized errors ε̃A = εA/
√
VA and ε̃B = εB/

√
VB . These open terms can not be directly expressed using the available

parameters, preventing the forecast of the error statistics.

3.2.2 Closure of the PKF dynamics420

A closure is proposed for the LV-CTM multivariate PKF dynamics. Note that the open terms of the PKF dynamics Eq. (20)

can be related to spatial derivatives of the cross-correlation Eq. (16) e.g. ε̃A∂xε̃B(x) = (∂xρAB)(x,x) or ∂xε̃A∂xε̃B(x) =

(∂xyρAB)(x,x), leading to a closure of the PKF dynamics when the proxy rAB Eq. (19) is used in place of the true cross-

correlation ρAB . However, numerical investigation of this closure did not lead to good results (not shown here).

From a detailed quantification of the impact of the chemistry alone (see Appendix D1) and of the relative contributions425

comparing the importance of the advection versus the chemistry (see Appendix D2), it results that the advection contributes

to 80% of the anisotropy dynamics while 20% are due to the chemistry. Since the advection mainly leads the dynamics of the

anisotropy, this suggests to remove the contribution of the chemistry in Eq. (20f) and Eq. (20g), which leads to a closure of the

PKF dynamics Eq. (20) as

∂tA+u∂xA=−A∂xu+ k1A− k2AB− k2VAB (21a)430

∂tB+u∂xB =−B∂xu− k3B+ k2AB+ k2VAB (21b)

∂tVAB +u∂xVAB =−2VAB∂xu+VAB(k1− k2B− k3 + k2A) + k2VAB− k2VBA (21c)

∂tVA +u∂xVA =−2VA∂xu+ 2[VA(k1− k2B)− k2AVAB ] (21d)

∂tVB +u∂xVB =−2VB∂xu+ 2[VB(−k3 + k2A) + k2BVAB ] (21e)

∂tsA =−u∂xsA + 2sA∂xu (21f)435

∂tsB =−u∂xsB + 2sB∂xu (21g)

3.2.3 Extension of the PKF analysis step for multivariate assimilations

For multivariate statistics, the update Eq. (8) presented in Section 2 have to be modified: they can be applied to update the uni-

variate error statistics (mean concentrations, variances, aspect-tensors) but do not indicate how to update the cross-covariance

fields. To apply the formulas Eqs. (8) in multivariate contexts, the xl must refer to the observation of a species Zl at observation440

location, while x refers to any species at any location.
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For an observation at location xl of the chemical species Zl, the cross-covariance field between two species Z1 and Z2

updates (see Appendix F):

V a
Z1Z2

(x) = V f
Z1Z2

(x)−
(
σf
Z2

(x)ρfZ2Zl,l
(x)σf

Z1
(x)ρfZ1Zl,l

(x)
) V f

Zl
(xl)

V f
Zl

(xl) +V o
Zl

(xl)
, (22)445

where ρfZiZl,l
(x) is the forecast cross-correlation function between Zl and Zi at location xl, defined by

ρfZiZl,l
(x) = E

[
εfZl

(xl)ε
f
Z1

(x)
]
/
(
σf
Zl

(xl)σ
f
Z1

(x)
)
. (23)

Note that Eq. (22) also applies when one of the two chemical species Z1 or Z2 coincides with Zl. This leads to a new

formulation of the algorithm PKFO1 (given by the alg. 1 in Appendix F).

3.3 Numerical experiments: simple forecast and data assimilation over several cycles450

In this section, two numerical experiments, labeled FCST and DA, are proposed to evaluate the multivariate formulation of

the PKF for the LV-CTM. Again, a large EnKF will be used as a reference to be compared with regarding the error statistics

produced. The first experiment, FCST, focuses on the forecast step alone. Therefore, the PKF dynamics (Eq. (21)) and the

EnKF for equations (Eq. (13)) are forecasted. Then, in DA, 5 complete data assimilation cycles are performed to test the

PKF capacity to produce multivariate analysis. DA only differs from FCST by the assimilations of observations, otherwise the455

configurations are identical. The next section details the setup of the experiments.

3.3.1 Settings of the numerical experiments

In both experiments, the EnKF relies on 6400 members. The total time of the simulation is tmax = 5τadv/3' 47.5 hours (τadv

is the characteristic time defined in section 2.4). A high resolution with Nx = 723 grid points is used. The settings of the wind

field, chemical rates, initial concentrations, initial variances and cross-covariance, time scheme, space grid etc. are identical to460

those used in section 3.1.2. The initial length-scale fields are homogeneously initialized at l0A = l0B = 45∆x.

For the data assimilation experiment, a network of 4 sensors regularly spaced on the right hand side of the domain is

considered to generate observations of the chemical species A. Each τadv/3 hours, observations are generated from an in-

dependent nature run and assimilated for both filters. The nature run is initialized with fields concentrations A and B set

respectively to 1.2 + 0.12ζA and 0.8 + 0.08ζB , where ζA and ζB are structured Gaussian random field of zero mean, standard-465

deviation 1 and length-scale 45∆x (i.e. sampled from P
(
1,(45∆x)2

)
in Eq. (7)). The synthetic observations are consid-

ered uncorrelated in space and time (i.e. at a given time R is diagonal), and generated at the analysis time ta according

to: Aobs(xl, ta) =Af
NR(xl, ta) +σobsζta , where σobs = 10% is the observations standard-deviation, ζta is a sample from the

standard Gaussian distribution, and Af
NR is the forecast of the nature run for location xl. The model error is neglected in this

experiment (i.e. Q = 0 in Eq. 3b). For the PKF, the observations are assimilated using the PKF O1 algorithm.470
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Figure 6. Results of the forecast numerical experiment. PKF errors statistics (solid red lines) and EnKF diagnosed error statistics (dashed

blue lines) at times t= [0.50,1.00]tmax. These times correspond approximately to t=23h45min and t=47h40min.

3.3.2 Results

The results for the FCST experiment are shown in Fig. 6. The figure presents the state vector (Fig. 6(a) and Fig. 6(b) ) and five

error statistics (Fig. 6 panels (c)-(g) ) for the EnKF and the PKF at t= 0.5tmax and t= tmax. The error statistics presented

are, from panel Fig. 6(c) to Fig. 6(g), the two standard-deviations, the cross-correlation field and the two length-scales, rather

than the raw PKF parameters. A horizontal grey line on each panel is here to represent the initial setting of the corresponding475

quantity.

The forecasts of the means match perfectly for both methods (see Fig. 6(a) and Fig. 6(b) ). Similarly to the univariate

advection experiment (section 2.4, see Fig 2), an accumulation of the tracers is observed in the low wind speeds region (center

of the domain). The standard-deviations (panels Fig. 6(c)-(d) ) observe a similar behaviour although the effects of the chemistry

appear more clearly: the curves show some quite localized deformations, especially for the standard deviation of A (compare480

with Fig 2(b)). The cross-correlation field Fig. 6(e), specific to the multivariate case, is predicted with great accuracy by the

PKF dynamics. It indicates that, starting from decorrelated error fields for A and B, the chemistry dynamic has allowed non-

zero cross-correlations to emerge by coupling the chemical species, in a non-linear fashion. While being less accurate than

for the means, the filters coincide at estimating the standard-deviation as well as for the cross-correlation fields. The forecasts

of the length-scales (Fig. 6(f) and (g) ) show a general accordance between the two methods, even though a difference can485

be observed in A’s case Fig. 6(f). This gap is due to the simplification of the anisotropy dynamics in the PKF formulation

Eqs. (21), which does not permit to represent such behaviours. The equation of the anisotropy dynamics of A in the original

19



formulation of the PKF Eq. (20f) suggests an explanation to the spikes presented on the EnKF curves on Fig. 6(f) which are

absent for the PKF. The terms labeled TA,chem−3 and TA,chem−4 indicate a forcing of the spatial derivatives of the variance VA.

Looking at Fig. 6(c), it appears that the variance ofA presents some strong spatial heterogeneity (x= 0.45 for t= 0.5tmax, and490

x= 0.60 for t= tmax), causing important magnitudes for ∂xVA and thus for TA,chem−3 and TA,chem−4. This produces a local

deformation on A’s length-scales which is effectively observed for the same times and locations on Fig. 6(f). However, these

gaps between the EnKF and PKF curves are local and of a reasonable magnitude: overall, the PKF forecast for the anisotropy

reproduces the EnKF results.

Figure 7. Results of the data assimilation numerical experiment. Nature run (dash dotted green lines, only on panels (a) and (b) ), PKF

errors statistics (solid red lines) and EnKF diagnosed error statistics (dashed blue lines) at times t= [0.50,1.00]tmax. These times cor-

respond approximately to t=23h45min and t=47h40min. At time t= 0.5tmax, two analysis steps have already been performed. At time

t= 1.00tmax, the fifth analysis step is being realized, the generated observations are represented by black dots on panel (a). The vertical

grey lines correspond to the sensors locations.

The outcome of the DA experiment Fig. 7 is now exposed, where five assimilation cycles are done over the period [0, tmax]495

(one assimilation after each τadv/3 time integration, with tmax = 5τadv/3). The results are presented similarly to the FCST

experiment, except four vertical grey lines have been added to indicate the sensors locations. Also, time t= tmax corresponds

to a time for which synthetic observations for A are generated (see Fig. 7(a) ).

For the DA experiment (Fig. 7), the resulting means on Fig. 7(a) and Fig. 7(b) are identical for the PKF and EnKF. This

indicates similar forecasts and analysis for both methods during the five assimilation cycles. However, the corrections brought500

by the observations are not very significant given the neglected model error, the small amplitude of the forecast variance and

the observation error. This configuration implied the generated observations to be very close to the forecasted concentrations,
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therefore the means are not significantly different than in the FCST experiment. The impact of the different analysis is more

visible on the rest of the error statistics. For instance, the standard deviation of species A Fig. 7(c) presents important down-

spikes which result from the uncertainty reduction during the analysis. This reduction of the uncertainty is also visible, with a505

reduced amplitude, on specie B Fig. 7(d) for which we do not have observations. The ability to reduce the uncertainty of B

and to correct its concentration when A is observed is the signature of the multivariate character of the analysis. The amplitude

of the reduction of σB and correction of B is related to the strength of the cross-correlation at the moment of assimilation. The

cross-correlation field Fig. 7(e) is also impacted by the observation but it is less obvious to say in which manner. Looking at

Fig. 7(f), an important gap between the PKF and EnKF for the length-scales of A can be observed. It is caused by two reasons,510

the major one being the approximation in the anisotropy update formula Eq. (8c). This simplified formula is less accurate

than its second order version Eq. (10) from Pannekoucke (2021), but offers more robustness during numerical simulations (see

panel (e) of Fig. 13 from Pannekoucke (2021) and the discussion in their section 4.4). The second reason is the reduction

of the anisotropy dynamics to the transport process in the PKF formulation (compare Section 3.2). Compared to the FCST

experiment, the assimilation of observations has had the effect of reducing the length-scales.515

In both of these experiments, the PKF has shown itself able to reproduce the results of a large ensemble Kalman Filter.

Again, these qualitative results of the PKF were obtained at a low numerical cost: the equivalent of 3 time integrations of

Eq. (13) compared to 6400 for the EnKF.

It would be interesting to assess the robustness of the results, including whether the advection terms remain dominant under

different conditions, such as weaker winds or accelerated chemistry, from a set of operational CTM predictions.520

4 A more realistic chemical model: the generic reaction set (GRS) model

The simplified LV-CTM has allowed for a multivariate PKF assimilation, validated in numerical experiments. To explore the

ability of the PKF to apply to a more complex chemical scheme, an intermediate chemical model is now introduced, the generic

reaction set (Azzi et al., 1992; Haussaire and Bocquet, 2016) (GRS), then used to validate the PKF forecast.
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4.1 Description of the GRS model525

GRS describes the dynamics of a reduced number of chemical species or pseudo-species. Hence, six species are considered

and interact as

ROC +hν
k1(t)→ RP +ROC (24a)

RP +NO
k2→NO2 (24b)

NO2 +hν
k3(t)→ NO+O3 (24c)530

NO+O3
k4→NO2 (24d)

RP +RP
k5→RP (24e)

RP +NO2
2·k6→ S(N)GN (24f)

where ROC, RP and S(N)GN respectivily mean Reactive Organic Compound, Radical Pool et Stable (Non-) Gaseous Nitro-

gen product. In this chemical model, additional processes such as photolysis rate variation, ground deposits or atmospheric535

emissions of certain pollutants are represented.

The system of equations of the GRS-CTM writes:

∂t[ROC] =−∂x (u · [ROC])−λ[ROC] +EROC (25a)

∂t[RP ] =−∂x (u · [RP ])−λ[RP ] + k1(t)[ROC]− [RP ] (k2[NO] + 2k6[NO2] + k5[RP ]) (25b)

∂t[NO] =−∂x (u · [NO])−λ[NO] +ENO + k3(t)[NO2]− [NO] (k2[RP ] + k4[O3]) (25c)540

∂t[NO2] =−∂x (u · [NO2])−λ[NO2] +ENO2
+ k4[NO][O3] + k2[NO][RP ]− [NO2] (k3(t) + 2k6[RP ]) (25d)

∂t[O3] =−∂x (u · [O3])−λ[O3] + k3(t)[NO2]− k4[NO][O3] (25e)

∂t[S(N)GN ] =−∂x (u · [S(N)GN ])−λ[S(N)GN ] + 2k6[NO2][RP ] (25f)

where for a specie Z: [Z](t,x) denotes the concentration field ; and for Z ∈ {ROC,NO,NO2}, EZ(x) = E0
Zµ(x) denotes

the stationary emission field modulated by the smooth ocean/land mask µ(x) ∈ [0,1] shown in Fig. 8(b), and of maximum545

emission E0
Z whose value is given in Table 1 (right column). The ground deposition is represented by terms in λ, with a

magnitude of 2% per day. Kinetic parameters and chemical reaction rates are set as follows: since Eq. (25a) and Eq. (25c)

depends on the solar radiation, k1 and k3 evolve in time to represent the diurnal cycle while they are related by k1 = 0.152k3

(Fig. 8(c)); the other rates are constant and given in Table 1.

4.2 The PKF for the GRS chemical transport model550

In a new numerical experiment, the PKF forecasts will be compared with those of an EnKF (of size 1600). There is no

observation assimilation in this simulation.

Given the complexity of the set of equations Eq. (25), and the increased number of species in comparison to the LV-CTM

Eq. (13), the equations of the PKF dynamics for the GRS-CTM are not presented in this article, but can be found in additional
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k3(t) 0.624 exp
(
− |(t≡24)−12|3

100

)
k1(t) 0.00152k3(t)

k2 12.3 E0
ROC 0.0235

k4 0.275 E0
NO 0.243

k5 10.2 E0
NO2

0.027

k6 0.12 λ 0.02day−1

In k3 definition, the symbol≡ corresponds to the modulo operator. Emission rates in

ppbCday−1 for ROC or ppbday−1 for NOx, and the kinetic rates in ppb−1min−1,

except for k3 and k1 in min−1.
Table 1. GRS settings

Figure 8. Settings of the GRS-CTM, with the predefined heterogeneous and stationary wind field (panel a) and emission inventories mask

(panel b); and with the diurnal cycle of the photolysis rate k3 (min−1) (panel c), as they are used for the simulation.

material2. In this context, the PKF system describes the dynamics of 33 pronostics parameters: 6 mean fields, 6 univariate555

variances fields, 6 anisotropy fields and 15 cross-covariances fields (corresponding to the number of pairs of chemical species).

In terms of complexity, the PKF dynamics for the GRS-CTM is similar to the simplified LV-CTM: the transport part is the

same, while the chemical part presents the same kind of interactions between the chemical species. However, the stationary

heterogeneous emissions, not present in LV-CTM, imply a forcing in the dynamics of the mean concentrations in GRS-CTM,

but without effect on the uncertainty because the emissions are not stochastic here. Note that uncertainties on emission inven-560

tories can be introduced in a PKF formulation e.g. as a source term in the variance dynamics, and is related to the specification

of boundary conditions in a PKF (Sabathier et al., 2022). Similarly to the LV-CTM, the dynamics of the anisotropy is closed by

removing the terms due to the chemistry. Hence, latter, the dynamics of anisotropy in GRS-CTM is only due to the transport.

4.3 Numerical experiment: forecast

For the settings of this numerical experiments, the resolution of the grid has been reduced to Nx = 241 grid points, and the565

time step to ∆t= 10−4h to support the stiffness of the GRS equations. Some parameters remain unchanged: RK4 temporal

2https://github.com/opannekoucke/pkf-multivariate
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scheme, finite differences to approximate spatial derivatives, choice of the wind field (Fig. 8(a) ). The forecast starts at t0 = 00h

(midnight) and ends at t= t0 + 72h.

Realistic heterogeneous initial concentration fields are constructed as follows. First, starting from zero concentrations, a

chemical equilibrium state is computed from a 4 weeks time integration of a 0D version of Eq. (25) where the transport has570

been switched off while the concentrations are forced by their respective emissions EO
(·). The resulting concentrations are

denoted by [Z]4weeks
0D . Then, 1D concentration fields are constructed, defined to be constant and equal for each species to the

final value of the 0D integration. The resulting homogeneous concentration fields are then independently perturbed to produce

heterogeneous concentration fields, more realistic than the homogeneous concentrations: for any species Z of the 6 chemical

species, the resulting 1D perturbed field [Z]0(x) = [Z]4weeks
0D (1 + 0.15e(x)) where e= P1/2ζ with P is an homogeneous575

Gaussian correlation version of Eq. (7) with variance 1 and constant length-scale lh = 12∆x ; and ζ is a sample of Gaussian

random vector N (0,INx). These perturbed 1D fields of concentrations correspond to the initial condition at t0 = 00h of the

GRS-CTM simulations.

The initial condition for the PKF is set as follows. The mean state is given by the six 1D fields [Z]0(x). The multivariate

initial uncertainty is set as univariate (no cross-correlation) with a magnitude of σ0(Z) = 0.15[Z]4weeks
0D for each of the six580

species, with univariate homogeneous Gaussian correlation of length-scale 15∆x (60km), the length-scale are identical for all

species.

For the validation, an ensemble of 1600 initial conditions has been populated, consistently from the PKF intial conditions,

by adding univariate perturbations to the GRS-CTM initial condition. For each member k of the ensemble and each field Z

that is to perturb, [Z]0k(x) = [Z]0(x) + 0.15[Z]4weeks
0D ek(x)) where ek = P1/2ζk with P is an homogeneous version of Eq. (7)585

with variance 1 and constant length-scale lh = 15∆x ; and ζ is a sample of Gaussian random vector N (0,INx
).

Fig. 9 shows the statistics produced by the PKF and the EnKF experiments at two instants: at t= 00h+ 60h, and at t=

00h+ 66h. These times corresponds to 12h00 and 18h00 of day 2. Each row features the uncertainty for a specie Z with

respectively: the mean, the standard-deviation, the length-scale and a selection of four cross-correlation functions with NO2,

ρNO2
Z ; that is the autocorrelation when Z is NO2 itself. The choice of NO2 for the cross-correlation is arbitrary and other590

cross-correlations present the same behaviour (not shown).

Regarding the behaviour of the error statistics, the impact of the chemistry appears: the chemical reactions led to non-zero

cross-correlations visible on the right column (except Fig. 9(p) which corresponds to autocorrelations).

The impact of chemistry leads to non-zero cross-correlations between all pairs of species (Fig. 9, right column, except the

autocorrelation in Fig. 9(p) ) Also, the small-scale spatial variation, that was originally only present on the means, has been595

transferred to the standard-deviations fields, except for ROC. The effect of the transport is also present: it produces spatial

heterogeneities on the means (left column), standard-deviations (second column) and length-scales (third column).

Compared to the EnKF, the PKF offers a high quality forecast at a very low computational cost. The means (left column)

are in perfect accordance in both methods. Slight differences can be observed regarding the standard-deviations fields (second

column), but as established in Sec. 2.4 (see Appendix A), the EnKF diagnoses are biased by the numerical model error that600

is significant when using the low-resolution grid (Nx = 241 grid points in this simulation). The same argument applies to
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the length-scales (third column), although they may also be govern by some underlying chemical dynamics similar to those

described for Fig. 6(f) in section 3.3.2). Since the PKF formulation considered here is closed by removing the contribution of the

chemistry on the length-scale dynamics (following the simplification discussed in Sec.3.2.2), the length-scale dynamics is the

same for all species. Moreover, starting from the same initial constant length-scale field lh, the length-scale fields predicted by605

the PKF are the same for all species. Nevertheless, it does not prevent the PKF from estimating the auto and cross correlation

functions (right column). The last column presents an important result: the cross-correlation functions estimations by the

proxy are in great accordance with the EnKF. The proxy reproduces the variety of cross-correlation functions such as negative

correlations, small amplitudes, asymmetric structures. Despite differences in length-scales estimations, the proxy shows itself

robust and delivers satisfying modeled cross-correlation functions (at a qualitative level). This has been observed for other610

cross-correlation functions (not shown here). It demonstrates the capacity of the PKF to forecast the cross-covariance fields.

Note that the specific behavior of the ROC error-variance can be understood from the PKF equations for GRS-CTM (not

detailed here but available on the github repository3), where the dynamics of VROC , which reads as

∂tVROC +u∂xVROC =−2VROC∂xu− 2λVROC , (26)

is only governed by decay (term in λ) and transport (terms in u), and is not coupled with any means – while a coupling with the615

means is present for other chemical species. Again, this illustrates the ability of the PKF to explain the physics of uncertainties.

5 Summary and conclusions

This work explored a multivariate formulation of the PKF for atmospheric chemistry needs, when the PKF is formulated from

the variance and the anisotropy tensor.

While a significant portion of the air quality uncertainty is due to meteorology (e.g. the uncertainty of the wind used for the620

transport), the present work focuses on the situation where the uncertainty in chemical variables is due solely to chemistry as

it evolves along a given meteorological situation.

A simplified univariate chemical transport model has been introduced in a 1D periodical domain with a heterogeneous

wind field and a conservative dynamics, illustrating the impact of the transport on the error statistics, and in particular the

evolution of the variance and of the anisotropy (length-scale) due to the wind heterogeneity. Compared with an estimation625

from a large ensemble of 6400 forecasts, the PKF has been shown able to reproduce the variance and the anisotropy, and also

able to provide a proxy for the correlation functions. The PKF prediction has been obtained at a lower numerical cost compared

with the cost of the ensemble. In addition, the PKF has been shown less sensitive to a dispersive model error encountered for

this simulation that required computing the ensemble at a high resolution to mitigate the effect of the dispersive term on the

ensemble estimation. This simplified model proposed a proxy for multivariate covariance to approximate cross-covariances,630

which extends the univariate covariance model parameterized from variance and anisotropy, but there resulting multivariate

covariance is symmetric with no guarantee of positiveness.

3see https://github.com/opannekoucke/pkf-multivariate/blob/master/notebooks/annexe_notebooks/computing_grs_dynamics_with_sympkf.ipynb
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Then a simplified multivariate chemical transport model has been introduced to tackle multivariate error statistics. Based on

Lottka-Volterra (LV) dynamics, this testbed reproduces non-linear coupling between chemical species as well as the transport

due to the wind, as it can be observed in real chemical transport model. Then a multivariate PKF formulation has been proposed,635

which made appear a closure issue related to the chemical part, but not to the transport, and concerns the dynamics of the

anisotropy. A detailed analysis of the effect of the chemistry on the dynamics of the anisotropy led to an analytical solution of

the multivariate evolution of the uncertainty in a 1D harmonic oscillator, which helps to understand the transfer of uncertainty

from one species to another.

The PKF has permitted the understanding of the uncertainties dynamics: it offered equations that described the time evo-640

lutions of variances, cross-covariances and anisotropies. The impact of the advection and of the chemistry have been clearly

identified in the dynamics of the error statistics, allowing for a better comprehension of the overall problem. Since the relative

contribution of the transport was larger than the one of the chemistry in the trend of the anisotropy, a closed form has been

considered by removing the terms related to the chemistry in the dynamics of the anisotropy.

Despite of this approximation, a validation test-bed using an ensemble method shown the that PKF dynamics is able to645

predict the uncertainty dynamics for two chemical schemes based on LV. Moreover, several assimilation cycles have been

conducted for the LV chemical scheme, showing the a multivariate PKF assimilation is possible, which is promising.

A final multivariate example, focused on the forecast step, has been introduced to evaluate the potential of the multivariate

PKF formulation to a larger system. In this case, the chemical scheme (GRS) describe the interaction of six species. Again,

this example has shown the ability of the PKF to reproduce the EnKF error statistics.650

To go further, it will be interesting to see if the advection terms remain dominant under different conditions like weaker wind

or accelerated chemistry from an ensemble of forecasts of operational CTMs, where isotropic and homogeneous correlations

are often considered in variational data assimilation.

In addition, since we have focused on the uncertainty due to chemistry, it would be interesting to address the part of the

uncertainty due to meteorology. For a CTM like MOCAGE, this could be done by considering an ensemble of weather forecasts655

with each member used as a forcing for a single CTM forecast. However, this solution would lead to multiple CTM forecasts,

which would be expensive. Therefore, from the perspective of using a PKF (applied to a CTM), a less expensive solution

would be to consider a single PKF forecast where the wind is uncertain (stochastic advection wind), with the wind uncertainty

characterized by the variance and anisotropy tensor estimated from the weather forecast ensemble. The challenge will be to

find an appropriate closure for the unknown terms in the dynamics, including the cross-correlation between the wind error and660

chemical species, with the help of this contribution on multivariate statistics.

This work is a milestone in the development of a multivariate assimilation based on the PKF and applied to air quality, and is

an important step in extending the univariate PKF implementation to complex operational CTMs like the operational transport

model MOCAGE at Meteo-France. The work also highlight a drawback of the PKF: the cost of the current multivariate PKF

formulation scales as the square of number of chemical species which appears as a limitation, at least if all the chemical species665

are considered in the multivariate uncertainty prediction. Hence, it would be interesting to test a PKF formulation on a reduced

chemical scheme of interest for the data assimilation.
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Moreover, while this contributions focused on air quality, it contributes to improve our understanding of multivariate statis-

tics e.g. with the analytical solution of the 1D harmonic oscillator. It would be interesting to extend this multivariate PKF

formulation to other geophysical applications e.g. the numerical weather prediction ; with a particular attention on the ex-670

tension of the multivariate cross-covariance proxy to the 2D or 3D domains. Compared with air quality where the chemical

reactions are point-wise, geophysical equations make appear local interactions that have to be studied in view of the PKF

approach e.g. the geostrophic balance in the barotropic model.

Code and data availability. The code developed and used to generate the experiments is available under https://github.com/opannekoucke/

pkf-multivariate675

Appendix A: Limits of the numerical validation of the PKF in presence of model error

The exploration of the uncertainty dynamics from numerical experiments, as made here to validate the PKF from an ensemble

method, faces some limits. Figure 2 has shown a gap between the PKF and EnKF regarding the forecast of the error statistics

(standard deviation Fig 2(b) and length-scales Fig 2(c) ). We now justify this observation, relating it to a model error.

As the problem is discretized for numerical simulations, the actual equation that is simulated is not exactly Eq. (9a), but680

rather an implicit modified equation induced by the use of finite differences for the spatial and the temporal discretisation.

Focusing on the spatial discretization, the modified equation writes

∂tX =−u∂xX −X∂xu−
∆x2

6
u∂3

xX −
∆x2

6
X∂3

xu+O(∆x3), (A1)

which shows additional dispersive terms not present in the initial dynamics (Eq. 9a). Note that Eq. (A1) is not the full modified

equation of the discretized model, in particular it does not represent the effect of the RK4 time scheme, but the error associated685

to fourth-order time scheme should be negligible compared with the spatial numerical error (second-order). Hence, Eq. (A1)

should be close to the true modified equation, and the presence of additional processes may explain the significant differences

observed in Fig. 2-(b) and (c): the dispersive term −∆x2

6 u∂3
xX contributes to reduce the speed of the transport to a value lower

than u, while the term −∆x2

6 X∂
3
xu implies a local exponential growing (damping) of X (t,x) where ∂3

xu is negative (positive).

This exponential evolution only contributes to the magnitude of the forecast-error i.e. it modifies the variance field but it has690

no influence on the length-scale (Pannekoucke et al., 2018). At the opposite, the dispersive term influences both the variance

and the length-scale as it can be observed in Fig. 2-(c): the EnKF curves appear slightly late behind the PKF ones (the wind

transports the curves toward the right), presenting a negative shift in the amplitude.

This can be understood as follows. Since Eq. (A1) is linear, it is the dynamics of the mean and of the errors in the numerical

experiment. But the typical scale of the mean and of the error are different: in this simulation, the spatial scale of the mean695

state is large, of the order of D, while the spatial scale of the errors is of order lh ≈D/16, where 16≈ 241/15 ; this implies

that the magnitude of the negative phase shift due to the dispersive term is larger for the error than for the mean (see e.g. KdV

Eq. (1.19) in Whitham (1999), p.9).
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This justifies why the dispersion does not affect the prediction of the mean state – the estimation for the means coinciding

for the two methods on Fig. 2-(a) –, while it acts on the EnKF predictions of the variance and of the length-scale, related to the700

error dynamics. In this simulation, the PKF Eq. (10) is not influenced by the dispersion because the spatial scale of the variance

and of the length-scale fields is large (order of D). This points out the sensitivity of the EnKF to numerical model error.

Since the magnitude of the dispersive term scales as O(∆x2), a simulation at high resolution could damp this term and

would lead to attributing the gap observed in Fig. 2 to the model error.

This is demonstrated by comparing the PKF statistics to a high resolution forecast of the EnKF with a grid of three times the705

original resolution i.e. Nx = 3× 241 = 723 grid points. To be consistent with the initial low resolution experiment, the initial

length-scale of the high resolution is set to l0h = 3×15∆x= 45∆x' 62.2km. The time step has been adapted in consequence

to match the CFL condition. The results of this new simulation, in Fig. A1, show that predicting the ensemble at high resolution

leads to the same variance (Fig. A1(b) ) and length-scale (Fig. A1(c) ) fields as the ones predicted by the PKF, while the latter

is computed at low resolution. A PKF at high resolution has been computed (not shown here) and has been found equivalent710

to the PKF computed at low resolution, with a relative error at the end of the forecast window lower than 0.2% for the mean,

0.3% for the standard-deviation, and 0.05% for the length-scale ; where the relative error of fields has been computed as

||PKFLR−PKFHR||/||PKFHR||, with || · || the L2 norm. This demonstrates the quality of the forecasted error statistics

for the PKF, even at a low resolution. Figure B1 also shows the correlation functions computed from the high resolution

EnKF forecast. The correlation functions represented are in better accordance with the PKF modelled correlation functions715

than for the low resolution ensemble forecast, see e.g. Fig. B1(d) to Fig. B1(f). This shows that the PKF is little subject to

numerical model error as the error statistics forecasts directly results from their time-integration. Compared to previous studies

that focused only on the comparison of variance and anisotropy error statistics, here we have shown the ability to reproduce

complex heterogeneous correlation functions using the PKF formulation in 1D domain.

Appendix B: Validation of correlation functions in univariate situations720

Figure B1 compares the correlation functions at position xl = 0.5, estimated from the ensemble for the EnKF and modeled

from the predicted parameters for the PKF when using Eq. (7), at different times. At a qualitative level, the PKF is able

to approximate the correlation functions, the latter being only known to within a sampling noise because of the ensemble

estimation which is assumed low due to the ensemble size. In particular, the PKF is able to reproduce the large (the small)

spread of the symmetric correlations present in Fig. B1(a) (Fig. B1(b) ). But the PKF is also able to represent the anisotropy of725

the correlations as the one shown e.g. in Fig. B1(e) where the correlation function at that time appears broader on its right part

(corresponding to x larger than xl) than on its left part (corresponding to x smaller than xl).

Appendix C: Lotka-Volterra chemical model

We consider four chemical species A,B,X and Y governed by the chemical reactions:
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X +A
k1→ 2A, (C1)730

A+B
k2→ 2B, (C2)

B
k3→ Y. (C3)

The kinetic of the reaction, deduced from the mass action law for reaction rate writes:

d[A]

dt
= k1[X][A]− k2[A][B] (C4a)

d[B]

dt
= k2[A][B]− k3[B] (C4b)735

where [·] denotes the concentration. When the concentrations of X and Y are constant, the system simplifies as:

d[A]

dt
= k1[A]− k2[A][B] (C5a)

d[B]

dt
= k2[A][B]− k3[B] (C5b)

which is a Lotka-Volterra system.

Appendix D: Contribution of the chemistry to the uncertainty dynamics in the LV-CTM740

This section contributes to evaluate the impact of chemistry on the dynamics of uncertainty with respect to the effect due to

advection, leading to a closure for the PKF applied to the multivariate LV-CTM.

D1 Impact of the chemistry alone on the dynamics of the anisotropies for homogeneous statistical initial conditions

Regarding the dynamics of the anisotropy fields presented in the prognostic equations (Eq. (20f)-Eq. (20g)), the part due to

transport in T (·)
adv−(·) is already well understood, as it comes down to the univariate case presented in Sec. 2.4. However, the745

role of the chemistry in T (·)
chem−(·) is unclear at this time. The transport process is removed to focus on the dynamics of the

anisotropy due to the chemistry.

In the PKF dynamics in Eq. (20), when there is no transport and when the variance fields are homogeneous at the initial

condition, the homogeneity is preserved during the time evolution. Hence, the spatial derivatives of the variance and of the

cross-variance fields are null, which leads to simplify the dynamics of the anisotropy (Eq. (20f)-Eq. (20g)) as750

∂tsA =
2k2AsA
σA

(
σBsA∂xε̃A∂xε̃B −

VAB

σA

)
, (D1a)

∂tsB =
2k2BsB
σB

(
VAB

σB
−σAsB∂xε̃A∂xε̃B

)
. (D1b)
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To focus on the contribution of the chemistry on the dynamics of the anisotropies, an ensemble ofNe= 1600 high resolution

forecasts is performed (Nx = 723), with only the chemistry part. Hence, the transport terms are set to zero in Eq. (13). Two

numerical experiments are conducted: first, the initial length-scales are equal for both species with l0A = l0B = 45∆x' 62km755

(results are shown in Fig. D1), then different with l0A = 45∆x and l0B = 66∆x' 91km (results in Fig. D2). The initial condi-

tions for the concentrations, and the multivariate statistics are chosen homogeneous over the domain in both cases. Therefore,

only the time series of the spatial average are shown for the variance, the cross-correlation, the length-scale and the open term

∂xε̃A∂xε̃B which is estimated from the ensemble by

̂∂xε̃A∂xε̃B =
1

Ne

Ne∑
k=1

∂xε̃A,k∂xε̃B,k, (D2)760

where ε̃A,k = εA,k/V̂A and ε̃B,k = εB,k/V̂B .

In the first experiment, Fig. D1, the magnitude of the error, given by the standard deviations Fig. D1(a), oscillates with a

phase shift where the magnitude of the error in A advances the one of B. The cross-correlation Fig. D1(c) and the unclosed

term ∂xε̃A∂xε̃B Fig. D1(g) oscillate in a similar way. In this experiment, where the initial length-scales are identical for A and

B, there is no time evolution of the length-scales, except the fluctuations that are due to the sampling noise (see Fig. D1(e) ).765

The second experiment, Fig. D2, shows roughly the same picture, except that this time, with initial length-scales of different

values, oscillations are appearing Fig. D2(e). Since, a priori, it is not easy to track the reason for the change of behaviour

observed on the length-scale dynamics, an analytical investigation of the harmonic oscillator (HO)

∂tA(t,x) =−kB(t,x), (D3a)

∂tB(t,x) = kA(t,x), (D3b)770

is introduced, with k = k2. The comparison with HO is relevant since it is an example of analytical multivariate dynamics and

also because it mimics the periodic oscillations of LV, explaining the numerical results. For HO, it is possible to calculate the

time evolution of the statistics analytically (see Appendix E for details), which writes as

VA(t) = cos(kt)2V 0
A + sin(kt)2V 0

B , (D4a)

VB(t) = sin(kt)2V 0
A + cos(kt)2V 0

B , (D4b)775

VAB(t) = cos(kt)sin(kt)
(
V 0
A −V 0

B

)
, (D4c)

sA(t) = VA(t)

[
cos(kt)2V

0
A

s0
A

+ sin(kt)2V
0
B

s0
B

]−1

, (D4d)

sB(t) = VB(t)

[
sin(kt)2V

0
A

s0
A

+ cos(kt)2V
0
B

s0
B

]−1

, (D4e)

∂xε̃A∂xε̃B(t) =
cos(kt)sin(kt)

σA(t)σB(t)

[
V 0
A

s0
A

− V 0
B

s0
B

]
. (D4f)

Numerical results computed for the HO are represented in Fig. D1 and Fig. D2, and show some of the behaviour encountered780

for the nonlinear LV equations. For instance, the oscillations of the variance are visible. Moreover, the length-scales oscillate
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depending on the initial condition: when the initial length-scales are equal, there is no oscillation (see Fig. D1-(f)) that appear

from the analytical computation of sA and sB ; in contrast, for different values of the initial length-scales, oscillations appear

(see Fig. D2-(f)). These different behaviours of the anisotropy based on the initial settings of the length-scales are explained

by the analytical solutions of the error statistics for the harmonic oscillator. For instance, when plugging the identical initial785

condition for the length-scales s0
A = s0

B and the analytical solution of VA(t) (Eq. D4a) into the r.h.s. of Eq. (D4d), it simplifies

to sA(t) = s0
A. The same result applies for sB(t). This simplification no longer holds when C 6= s0

B , leading to non-constant

length-scales which is effectively observed.

Note that for equal initial length-scales, the anisotropy appears stationary (see Fig. D1(e) ), which suggests a closure for

the open term ∂xε̃A∂xε̃B : since the anisotropy is equal and constant, sA(t) = sB(t) = sA(t)+sB(t)
2 = s0

A = s0
B =

s0A+s0B
2 , then790

from the stationarity of the anisotropy, ∂tsA = ∂tsB = 0, the right-hand side of Eqs. (D1) leads to the expression

∂xε̃A∂xε̃B =
VAB(x)

σA(x)σB(x)

2

sA(x) + sB(x)
. (D5)

This closure indicates that the term ∂xε̃A∂xε̃B is proportional to the cross-correlation in this particular case. This is confirmed

in Fig. D1, where ∂xε̃A∂xε̃B Fig. D1(g) appears to evolve as the cross-correlation Fig. D1(c). For this specific case, Eq. (D5)

also applies for the error statistics of the harmonic oscillator: using s0
A = s0

B and the time evolution of the cross-covariance795

VAB (Eq. D4c) allows to solve for the open term in Eq. (D4f), obtaining the same expression as in Eq. (D5).

The time evolution of the HO error statistics makes appear an alternate transfer of the error statistics between the two

components A and B, which qualitatively reproduces the evolution observed in the LV dynamics. The transfer of uncertainty

from one component to the other is provided by the cross-covariance VAB when the error variance is different for each of the

two species.800

D2 Detailed contribution of each processes in the dynamics of the anisotropy

The following section aims at identifying the dominant terms, or processes in the dynamics of the anisotropy, Eq. (20f) and

Eq. (20g).

Two different evaluations are performed. The first one evaluates the relative contribution WZ,j of the term TZ,j with respect

to all other terms in the dynamics of the anisotropy of Z, which reads as805

WZ,j(t) =
||TZ,j(t)||1∑
k ||TZ,k(t)||1

, (D6)

where ||v||1 = 1
Nx

∑
j=1,...,Nx |vj | is the L1 norm on the discretized domain [0,D). The second one evaluates the relative

contribution of each physical processes in the dynamics of the anisotropy e.g. the relative contribution of the advection in the

dynamics of the anisotropy of Z, WZ,adv , reads as

WZ,adv(t) =
||
∑2

k=1TZ,adv−k(t)||1
||
∑2

k=1TZ,adv−k(t)||1 + ||
∑5

k=1TZ,chem−k(t)||1
, (D7)810
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from which the relative contribution of the chemistry writes WZ,chem(t) = 1−WZ,adv(t). Note that the normalization is

different between Eq. (D6) and Eq. (D7).

The computation of these relative contributions will rely on ensemble of forecasts. They will be used to diagnose a poste-

riori the PKF parameters (A,B,VA,VB ,VAB ,sA,sB) as well as the three open terms (∂xε̃A∂xε̃B , ε̃A∂xε̃B , ε̃B∂xε̃A) to then

reconstruct all the terms in the anisotropy dynamics (Eq. (20f)-Eq. (20g)).815

The quantifications of the relative contribution by term and by process will be performed for equal and different initial

length-scales for A and B, as they lead to different dynamics for the anisotropy. Thus, two ensembles are forecasted, with

initial length-scales set to l0A = l0B = 45∆x in the first, and l0A = 45∆x and l0B = 66∆x in the second. A high resolution grid

is considered (Nx = 723) to reduce numerical model error; the time step has been adapted in consequence to match the CFL.

The other settings as well as the numerical configuration for this experiment are unchanged from previous ensemble forecast820

performed in Sec. 3.1.2.

The results of the relative contributions presented in Fig. D3 (Fig. D4) for the equal (different) length-scale configuration

are now discussed. Regarding the relative contribution by process experiment, the comparison between panels Fig. D3(c)

(Fig. D3(d) ) and Fig. D4(c) (Fig. D4(d) ) indicates that when the initial length-scales are different, l0A 6= l0B , the chemistry

has a more significant role (Wchem is about 21%) compared when the length-scales are equal (Wchem is about 10%) in the825

dynamics of the anisotropies. That difference was expected following the results obtained in Appendix D1. Now focusing

on the relative contribution by term on panels (a) and (b) of Fig. D3 and Fig. D4, it is noticeable that only the two terms,

WZ
chem−1 and WZ

chem−2, have a significant role in the dynamics. The rest of the chemistry-related terms magnitudes are

negligible. For equal initial length-scales, as the chemistry-related part of the anisotropy dynamics can be neglected compared

to the advection part (Fig. D3c,d), and as this part is mainly driven by WZ
chem−1 and WZ

chem−2 (Fig. D3a,b), this means an830

approximate compensation of the two terms. Eventually, this approximation simplifies to Eq. (D5), which is in accordance

with the previous results of Appendix D1. However, this approximation becomes invalid in the heterogeneous case: the terms

WZ
chem−1 and WZ

chem−2 no longer compensate each other as the gap between their corresponding curves increases in panels

Fig. D4(c) and Fig. D4(d). In some other numerical trials (not shown here), this approximation was used regardless of the

length-scales initial configuration, and the remaining open terms were set to zero. These trials produced incoherent forecasts835

for the anisotropy, pointing out the incapacity of the approximation to capture the true complexity of the unknown terms.

Subsequently, this approximation is no longer retained.

Appendix E: Dynamics of the error statistics for the Harmonic Oscillator

The harmonic oscillator equations writes:

∂tA=−kB, (E1a)840

∂tB = kA, (E1b)
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with A=A(t,x) and B =B(t,x) being functions of time and 1D space. As this problem is linear, the dynamic is identical

for the errors,

∂tεA =−kεB , (E2a)

∂tεB = kεA. (E2b)845

Their analytical solution is given by:

εA(t,x) = cos(kt)εA(0,x)− sin(kt)εB(0,x), (E3a)

εB(t,x) = sin(kt)εA(0,x) + cos(kt)εB(0,x). (E3b)

At the initial time, we consider the case where the error are uncorrelated V 0
AB = E

[
ε0
Aε

0
B

]
= 0 and where the variance and

length-scale fields are homogeneous, i.e. ∂xV 0
A = ∂xV

0
B = ∂xg

0
A = ∂xg

0
B = 0 ; where the upper-script ·0 is a shorthand for850

denoting the fields a initial time.

From the analytical solution for the errors Eq. (E3), we deduce solutions for the error statistics.

VA(t,x) = E
[
(εA(t,x))

2
]

(E4a)

= cos2(kt)E
[
ε2
A

]
(0,x)− 2cos(kt)sin(kt)E [εAεB ] (0,x) + sin2(kt)E

[
ε2
B

]
(0,x) (E4b)

= cos2(kt)V 0
A − 2cos(kt)sin(kt)V 0

AB︸︷︷︸
=0

+sin2(kt)V 0
B (E4c)855

= cos2(kt)V 0
A + sin2(kt)V 0

B (E4d)

Following the same process, we deduce that VB(t,x) = sin2(kt)V 0
A + cos2(kt)V 0

B and VAB(t,x) = cos(kt)sin(kt)(V 0
A −

V 0
B). We can now determine the dynamics of the metric tensor:

gA(t,x) = E

[(
∂x

(
εA√
VA

))2
]

(t,x) (E5a)

= E

(∂xεA√
VA
− εA∂xVA

2V
3/2
A

)2
(t,x) (E5b)860

As we consider homogeneous fields, we have that ∂xVA = 0, simplifying the expression to

gA(t,x) =
1

VA
E
[
(∂xεA)2

]
(t,x) (E6a)

=
1

VA(t,x)
E
[
cos2(kt)

(
∂xε

0
A

)2− 2cos(kt)sin(kt)∂xε
0
A∂xε

0
B + sin2(kt)

(
∂xε

0
B

)2]
(x) (E6b)

Then, at t= 0, E
[(
∂xε

0
A

)2]
simplifies to V 0

Ag
0
A and E

[(
∂xε

0
B

)2]
= V 0

Bg
0
B . The independence of ε0

A and ε0
B also implies

E
[
∂xε

0
A∂xε

0
B

]
= 0. Finally, we obtain that:865

gA(t,x) =
1

VA(t,x)

[
cos2(kt)V 0

Ag
0
A + sin2(kt)V 0

Bg
0
B

]
. (E7)
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We can also deduce an analytical solution for the term E [∂xε̃A∂xε̃B ] which reads, under assumption of homogeneity, as:

E [∂xε̃A∂xε̃B ] (t,x) = E
[(
∂x

εA√
VA

)
∂x

(
εB√
VB

)]
(t,x) (E8a)

=
1

(
√
VA
√
VB)(t,x)

E [∂xεA∂xεB ] (t,x) (E8b)

=
1

σA(t)σB(t)
E
[
cos(kt)sin(kt)

((
∂xε

0
A

)2− (∂xε0
B

)2)
+ ∂xε

0
A∂xε

0
B

(
cos2(kt)− sin2(kt)

)]
(t,x)

(E8c)

870

=
1

σA(t)σB(t)

cos(kt)sin(kt)

E
[(
∂xε

0
A

)2]︸ ︷︷ ︸
V 0
Ag0

B

−E
[(
∂xε

0
B

)2]︸ ︷︷ ︸
V 0
Bg0

B

+E
[
∂xε

0
A∂xε

0
B

]︸ ︷︷ ︸
=0

(
cos2(kt)− sin2(kt)

)
(t,x)

(E8d)

=
cos(kt)sin(kt)

(σAσB)(t,x)

(
V 0
Ag

0
B −V 0

Bg
0
B

)
. (E8e)

Note that we could have derived analytical solutions in the case of heterogeneous initial fields, but for the sake of simplicity

we chose to consider only the homogeneous case. However, obtaining analytical solution when the initial error fields are

correlated seems more difficult.875

Appendix F: Cross-covariance analysis formula demonstration

By introducing the true state and the error fields X a = X t + εa,X f = X t + εf and Yo(xl) = X t(xl) + εo(xl), the analysis

equation (8a) becomes:

εa(x) = εf (x) +σf (x)ρfxl
(x)

σf (xl)

V f (xl) +V o(xl)

(
εo(xl)− εf (xl)

)
(F1)

which can be adapted to the multivariate case:880

εaZ1
(x) = εfZ1

(x) +σf
Z1

(x)ρfZ1Zl,l
(x)

σf
Zl

(xl)

V f
Zl

(xl) +V o
Zl

(xl)

(
εoZl

(xl)− εfZl
(xl)

)
(F2)

whereZl is the chemical species that is observed,Z1 can be any chemical species, and ρfZ1Zl,l
(x) = E

[
εfZl

(xl)ε
f
Z1

(x)
]
/
(
σf
Zl

(xl)σ
f
Z1

(x)
)

is the forecast cross-correlation function between Zl and Z1 at location xl. Writing the same equation for another chemical Z2

εaZ2
(x) = εfZ2

(x) +σf
Z2

(x)ρfZ2Zl,l
(x)

σf
Zl

(xl)

V f
Zl

(xl) +V o
Zl

(xl)

(
εoZl

(xl)− εfZl
(xl)

)
(F3)885
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and using the definition of the analysis error covariance field V a
Z1Z2

(x) = E
[
εaZ1

(x)εaZ2
(x)
]

leads to

V a
Z1Z2

(x) = E
[
εfZ1

(x)εfZ2
(x)
]

︸ ︷︷ ︸
=V f

Z1Z2
(x)

+
σf
Zl

(xl)

V f
Zl

(xl) +V o
Zl

(xl)
E
[(
σf
Z2

(x)ρfZ2Zl,l
(x)εfZ1

(x) +σf
Z1

(x)ρfZ1Zl,l
(x)εfZ2

(x)
)(

εoZl
(xl)− εfZl

(xl)
)]

+

(
σf
Zl

(xl)
)2

(
V f
Zl

(xl) +V o
Zl

(xl)
)2σ

f
Z1

(x)ρfZ1Zl,l
(x)σf

Z2
(x)ρfZ2Zl,l

(x)E
[(
εoZl

(xl)− εfZl
(xl)

)2
]

(F4a)

Then, using the definition of the cross-correlation function E
[
εfZl

(xl)ε
f
Z1

(x)
]

= σf
Zl

(xl)σ
f
Z1

(x)ρfZ1Zl,l
(x), the independence

between the forecast and observation errors E
[
εfZl

(xl)ε
o
Z1

(xl)
]

= 0, and the definitions of the observation error variance890

V o
Zl

(xl) = E
[(
εoZl

(xl)
)2]

and forecast error V f
Zl

(xl) = E
[(
εfZl

(xl)
)2
]

, we obtain that:

V a
Z1Z2

(x) = V f
Z1Z2

(x)−
σf
Zl

(xl)

V f
Zl

(xl) +V o
Zl

(xl)

(
σf
Z2

(x)ρfZ2Zl,l
(x)σf

Zl
(xl)σ

f
Z1

(x)ρfZ1Zl,l
(x) +σf

Z1
(x)ρfZ1Zl,l

(x)σf
Zl

(xl)σ
f
Z2

(x)ρfZ2Zl,l
(x)
)

+
V f
Zl

(xl)(
V f
Zl

(xl) +V o
Zl

(xl)
)2σ

f
Z1

(x)ρfZ1Zl,l
(x)σf

Z2
(x)ρfZ2Zl,l

(x)
(
V o
Zl

(xl) +V f
Zl

(xl)
)

(F5a)

= V f
Z1Z2

(x)−
V f
Zl

(xl)

V f
Zl

(xl) +V o
Zl

(xl)
2
(
σf
Z2

(x)ρfZ2Zl,l
(x)σf

Z1
(x)ρfZ1Zl,l

(x)
)

+
V f
Zl

(xl)

V f
Zl

(xl) +V o
Zl

(xl)
σf
Z1

(x)ρfZ1Zl,l
(x)σf

Z2
(x)ρfZ2Zl,l

(x) (F5b)895

= V f
Z1Z2

(x)−
(
σf
Z2

(x)ρfZ2Zl,l
(x)σf

Z1
(x)ρfZ1Zl,l

(x)
) V f

Zl
(xl)

V f
Zl

(xl) +V o
Zl

(xl)
. (F5c)

The update of the variance in the multivariate situation leads to a new version of the PKFO1 as detailed in Algorithm 1
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Algorithm 1 Sequential process building the analysis state and its error covariance matrix for the first-order PKF (PKFO1)

with pseudo multivariate covariance model.

Require: Univariate fields of X fZ ,s
f
Z and V fZ for all species Z. Cross-covariance field V fZ1Z2

of all pairs of species Z1 and Z2. Variance

V oZl,l
of the species Zl and locations xl of the p observations to assimilate.

1: for each observation l do

2: 0 - Initialization of the intermediate quantities

3: YoZl,l
= YoZl

(xl), X fZl,l
= X fZl

(xl)

4: V fZl,l
= V fZl,xl

, V oZl,l
= V oZl,xl

5:

6: 1 - Computation of the analysis univariate statistics

7: for each species Z do

8: a) Set the correlation function (auto or cross)

9: ρZZl,l(x) = ρ(V fZlZ
,V fZl

,V fZ ,s
f
Zl
,sfZ)(xl,x)

10:

11: b) Computation of the analysis state and its univariate error statistics

12: X aZ,x = X fZ,x +σfZ,xρZZl,l(x)
σ
f
Zl,l

V
f
Zl,l

+V o
Zl,l

(
YoZl,l

−X fZl,l

)
,

13: V aZ,x = V fZ,x

(
1− [ρZZl,l(x)]2

V
f
Zl,l

V
f
Zl,l

+V o
Zl,l

)
14: saZ,x =

V a
Z,x

V
f
Z,x

sfZ,x

15: end for

16:

17: 2 - Computation of the analysis multivariate statistics

18: for each pair of species (Zi,Zj , with i < j) do

19: a) Set the cross-correlation functions

20: ρZiZl,l(x) = ρ(V fZlZi
,V fZl

,V fZi
,sfZl

,sfZi
)(xl,x)

21: ρZjZl,l(x) = ρ(V fZlZj
,V fZl

,V fZj
,sfZl

,sfZj
)(xl,x)

22:

23: b) Compute the Zi Zj analysis cross-covariance field

24: V aZiZj
(x) = V fZiZj

(x)−
(
σfZj

(x)ρZjZl,l(x)σfZi
(x)ρZiZl,l(x)

) V
f
Zl

(xl)

V
f
Zl

(xl)+V
o
Zl

(xl)

25: end for

26:

27: 3 - Update of the forecast state and its error statistics

28: for each species Z do

29: X fZ,x←X
a
Z,x

30: V fZ,x← V aZ,x

31: sfZ,x← saZ,x

32: end for

33:

34: for each pair of species (Zi,Zj) do

35: V fZiZj
(x)← V aZiZj

(x)

36: end for

37: end for
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Amraoui, L. E., Sič, B., Piacentini, A., Marécal, V., Frebourg, N., and Attié, J.-L.: Aerosol data assimilation in the MOCAGE chemical910

transport model during the TRAQA/ChArMEx campaign: lidar observations, Atmospheric Measurement Techniques, 13, 4645–4667,

https://doi.org/10.5194/amt-13-4645-2020, 2020.

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations

and forecasts, Mon. Wea. Rev., 127, 2741–2758, 1999.

Azzi, M., Johnson, G., and Cope, M.: An introduction to the generic reaction set photochemical smog mechanism, Proceedings of the915

International Conference of the Clean Air Society of Australia and New Zealand, 3, 451–462, 1992.

Berre, L., Pannekoucke, O., Desroziers, G., Stefanescu, S., Chapnik, B., and Raynaud, L.: A variational assimilation ensemble and the spatial

filtering of its error covariances: increase of sample size by local spatial averaging, in: ECMWF Workshop on Flow-dependent aspecyts

of data assimilation, 11-13 June 2007., edited by ECMWF, pp. 151–168, Reading, UK, 2007.

Cohn, S.: Dynamics of Short-Term Univariate Forecast Error Covariances, Monthly Weather Review, 121, 3123–3149,920

https://doi.org/10.1175/1520-0493(1993)121<3123:DOSTUF>2.0.CO;2, 1993.

Coman, A., Foret, G., Beekmann, M., Eremenko, M., Dufour, G., Gaubert, B., Ung, A., Schmechtig, C., Flaud, J. M., and Bergametti, G.:

Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe, Atmospheric Chemistry Physics, 12,

2513–2532, https://doi.org/10.5194/acp-12-2513-2012, 2012.

Daley: Atmospheric Data Analysis, 1991.925

Derber, J. and Bouttier, F.: A reformulation of the background error covariance in the ECMWF global data assimilation system, Tellus A, 51,

195–221, https://doi.org/10.3402/tellusa.v51i2.12316, 1999.

Eben, K., Jurus, P., Resler, J., Belda, M., Pelikán, E., Krüger, B. C., and Keder, J.: An ensemble Kalman filter for short-term forecasting of

tropospheric ozone concentrations, Quarterly Journal of the Royal Meteorological Society, 131, 3313–3322, 2005.

Emili, E., Gürol, S., and Cariolle, D.: Accounting for model error in air quality forecasts: an application of 4DEnVar to the assimilation930

of atmospheric composition using QG-Chem 1.0, Geoscientific Model Development, 9, 3933–3959, https://doi.org/10.5194/gmd-9-3933-

2016, 2016.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics,

Journal of Geophysical Research, 99, 10 143–10 162, 1994.

Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-642-03711-935

5, 2009.

Fisher, M.: Background error covariance modelling, in: Proc. ECMWF Seminar on "Recent developments in data assimilation for atmosphere

and ocean", edited by ECMWF, pp. 45–63, Reading, UK, 2003.

Gaubert, B., Coman, A., Foret, G., Meleux, F., Ung, A., Rouil, L., Ionescu, A., Candau, Y., and Beekmann, M.: Regional scale ozone

data assimilation using an ensemble Kalman filter and the CHIMERE chemical transport model, Geoscientific Model Development, 7,940

283–302, https://doi.org/10.5194/gmd-7-283-2014, 2014.

38

https://doi.org/10.5194/amt-14-2841-2021
https://doi.org/10.5194/amt-14-2841-2021
https://doi.org/10.5194/amt-14-2841-2021
https://doi.org/10.5194/amt-13-4645-2020
https://doi.org/10.1175/1520-0493(1993)121%3C3123:DOSTUF%3E2.0.CO;2
https://doi.org/10.5194/acp-12-2513-2012
https://doi.org/10.3402/tellusa.v51i2.12316
https://doi.org/10.5194/gmd-9-3933-2016
https://doi.org/10.5194/gmd-9-3933-2016
https://doi.org/10.5194/gmd-9-3933-2016
https://doi.org/10.1007/978-3-642-03711-5
https://doi.org/10.1007/978-3-642-03711-5
https://doi.org/10.1007/978-3-642-03711-5
https://doi.org/10.5194/gmd-7-283-2014


Hauglustaine, D., Brasseur, G., Walters, S., Rasch, P., Müller, J.-F., Emmons, L., and Carroll, M.: MOZART: A global chemical transport

model for ozone and related chemical tracers, Journal of Geophysical Research, 1032, 28 291–28 336, https://doi.org/10.1029/98JD02398,

1998.

Haussaire, J.-M. and Bocquet, M.: A low-order coupled chemistry meteorology model for testing online and offline data assimilation945

schemes: L95-GRS (v1.0), Geoscientific Model Development, 9, 393–412, https://doi.org/10.5194/gmd-9-393-2016, 2016.

Houtekamer, P. and Mitchell, H.: A sequential ensemble Kalman filter for atmospheric data assimilation, Monthly Weather Review, 129,

123–137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2, 2001.

Houtekamer, P. L. and Mitchell, H. L.: Data Assimilation Using an Ensemble Kalman Filter Technique, Monthly Weather Review, 126,

796–811, https://doi.org/10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2, 1998.950

Josse, B., Simon, P., and Peuch, V.-H.: Radon global simulations with the multiscale chemistry and transport model MOCAGE, Tellus, 56,

339–356, 2004.

Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems, Journal Basic Engineering, 82, 35–45,

https://doi.org/10.1115/1.3662552, 1960.

Lesieur, M.: Turbulence in Fluids, Springer.955

Lorenz, E. N.: Deterministic nonperiodic flow, Journal Atmospheric Sciences, 20, 130–141, https://doi.org/10.1175/1520-

0469(1963)020<0130:DNF>2.0.CO;2, 1963.

Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado,

A., Chéroux, F., Colette, A., Coman, A., Curier, R. L., van der Gon, H. A. C. D., Drouin, A., Elbern, H., Emili, E., Engelen, R. J., Eskes,

H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly, M., Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek,960

K., Kuenen, J., Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., Menut, L., Moinat, P., Morales,

T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S., Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M.,

Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Á., van Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A regional

air quality forecasting system over Europe: the MACC-II daily ensemble production, Geoscientific Model Development, 8, 2777–2813,

https://doi.org/10.5194/gmd-8-2777-2015, 2015.965

Ménard, R., Deshaies-Jacques, M., and Gasset, N.: A comparison of correlation-length estimation methods for the objec-

tive analysis of surface pollutants at Environment and Climate Change Canada, Journal Air Waste Management Association,

https://doi.org/10.1080/10962247.2016.1177620, 2016.

Ménard, R., Skachko, S., and Pannekoucke, O.: Numerical discretization causing error variance loss and the need for inflation, Quarterly

Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.4139, 2021.970
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Figure 9. Multivariate forecasts statistics for the GRS-CTM, PKF outputs (colored lines) and ensemble estimations from Ne = 1600 fore-

casts (black dashed lines) for times t= 00h +{60,66}h. As we consider a simulation that starts at midnight of day 0, t= 00h +60h (slight

transparency on the curves) corresponds to midday of day 2, and t= 00h +66h (no transparency) to 18h00 of day 2. From left to right,

the columns correspond to the forecasts of: the mean concentration, the standard-deviation, the length-scales (normalized by ∆x), and the

correlation functions (auto and cross) with NO2 at locations x= [0.1,0.36,0.63,0.9]D, for each of the six species (rows).
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Figure A1. Same experiment as Fig. 2, except the EnKF forecast has been simulated using a higher grid definition (Nx = 723) to reduce

numerical model error.

Figure B1. Correlation functions at location xl = 0.5 and times t= [0.0,0.6,1.2,1.8,2.4,3.0]τadv , computed with PKF correlation model

fitted with low resolution (Nx = 241) PKF forecast for error statistics (red lines) and diagnosed on the low-resolution (Nx = 241) ensemble

(cyan dash-dotted lines) and high resolution (Nx = 723) ensemble (blue dashed lines), of ensemble size Ne = 6400.
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Figure D1. Time series of the spatial average of the error statistics: from the ensemble forecast with Ne = 1600 for Lotka-Volterra (LV, left

panels) and Harmonic Oscillator analytical solutions (HO, right panels). Equal initial length-scales: l0A = l0B = 45∆x.

Figure D2. Time series of the spatial average of the error statistics: from the ensemble forecast with Ne = 1600 for Lotka-Volterra (LV, left

panels) and Harmonic Oscillator analytical solutions (HO, right panels). Different initial length-scales: l0A = 45∆x and l0B = 66∆x.
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Figure D3. Numerical results for the case l0A = l0B = 45∆x. Time evolution for the relative contribution by term (resp. by process) computed

from Eq. (D6) (from Eq. (D7)) involved in the anisotropy dynamics for species A and B on panels (a) and (b) (resp. panels (c) and (d)).
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Figure D4. Numerical results for the case l0A = 45∆x and l0B = 66∆x. Time evolution for the relative contribution by term (resp. by process)

computed from Eq. (D6) (from Eq. (D7)) involved in the anisotropy dynamics for species A and B on panels (a) and (b) (resp. panels (c) and

(d)).
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