
Reply to Annika Vogel

First of all, we would like to thank Annika Vogel for her review and for giving us the opportunity to
improve our paper. We added our acknowledgements to Annika Vogel for her evaluation of our
contribution in the new manuscript.

Now, we organized the answer to the comments as follows. First, we list some changes afford to the
manuscript then detail our answers to the questions raised by the referee.

List of changes for the revision

Minor changes

Errors in the label of some figures in the text have been corrected:
L491 Fig.8-(d) -> Fig. 8-(f)
L493 Fig.9-(d) -> Fig. 9-(f)

The figures have been re-rendered to improve their quality (size of legend, title,..). Because of the
sampling  noise  inherent  to  the  ensemble  estimation,  the  values  they  show can  have  changed,
without modifying the meaning or the robustness of the results. For instance, in Fig. 7, the averages
where 22,8% for l_A=l_B while it is 23,1% now. As another example, the curves in Fig. 10 or 11
are not strictly the same as for the first version of the manuscript while we recognize the same
patterns and conclusions. 

Differences between the two versions of the manuscript

To facilitate the comparison between the two version of the manuscript, a companion version of the
manuscript lists all the modifications where old (new) statements are in red (blue). But the line
numbers will refer to the revised version of the manuscript (not to the companion version).

Answer to the question of the referees

We copied your commentary in italics below, we reply in normal blue font.

General comments:

1)  The  submitted  manuscript  “Toward  a  multivariate  formulation  of  the  PKF  assimilation:

application  to  a  simplified  chemical  transport  model”  by  Perrot  et  aline   contributes  to  the

developments of a parametric Kalman Filter (PKF) in which the error statistics of a geophysical

system  are  represented  in  form  of  a  few  parameters  of  the  statistics.  Specifically,  the  main

contribution of this paper is the extension of previously published PKF formulations to multivariate

problems in which cross-covariances between the individual prognostic fields occur. This is a very

important step towards the application to real problems like complex chemical transport models

(CTMs) and makes the manuscript highly valuable to the scientific community.

Thank you for your motivating remarks.

2) The quality of the research and the way of its presentation is good, but the manuscript is too long

and overloaded. It appears that the authors aimed at putting too much content into one manuscript.



I would suggest division it into two (or even three) manuscripts, each specifically focusing on one

aspect, eg:

• General aspects of multivariate PKF, including theoretical validation and limits (until end

of Sect.2) 

• Application  to  simplified  chemistry,  including  proxy  for  cross-correlation  function,

contribution of individual terms and closure (mainly Sect.3 and maybe Sect.4) 

• Maybe: application to more complex chemistry (Sect.4) 

Thanks to the referee comments, we improved the quality of the manuscript while preferring to
keep it as a whole. From our estimation, the resulting manuscript in two-column is less than 30
pages (28 pages when latex is compiled using the npg template without the “manuscript” option).

3)  Besides  that,  some  parts  presented  in  the  manuscript  could  be  shortened  significantly  by

referring to previous literature and focusing on the new aspects of this work (especially in Sec.2,

see specific comments). The manuscript also contains a number of inconsistencies in the notation

and some grammar/wording mistakes (see technical corrections) which makes it sometimes difficult

for the reader to follow the details.

This has been corrected point by point following your recommendations. Thank you.

Specific comments:

1) Different quantities are used for error statistics in different equations and plots. Eg. in Sec. 2.3,

variance V and metric tensor g are used in Equation (8) whereas standard deviation and length

scale are used in Fig.2.  Additionally,  the aspect tensor s is used in Equation (21) whereas the

metric tensor is used in Equation (24). It would increase the readability significantly if the authors

would stick  to  one quantity  thought  the manuscript  were  possible,  or  at  least  within  the same

evaluation (eg.  to increase the consistency between Equation (21),(24) and (25) in Sec.3.3).  In

addition,  the  correlation  length  scale  (eg.  in  Fig.2  and  LINE  247)  was  not  defined  and  its

connection to the other correlation quantities (metric and aspect tensor) remains unclear.

This has been modified along the manuscript which is now focused on the aspect tensor (see e.g.
equations 8, 25), that is directly connected to the length-scale in 1D domain. Moreover, the length-
scale is now defined after Eq.(6).

2) Section 2: The main new scientific contribution of this section appears to be the comparison to

the enKF with two different spatial resolutions showing that the PKF is able to produce reasonable

statistics already at coarse resolutions. Thus, the section can be significantly shortened by focusing

on the new aspects and the most essential information required for those:

2.1) The main content of Sec.2.2 and 2.3 was previously formulated in Pannekoucke2021. I

suggest shortening the introduction of the PKF univariate equations by referring to this

paper and just providing equations which are essential for the new aspect (i.e. numerical

limits in Sec.2.4.3)

Since section 2 is devoted to recalling the context of the PKF and the definition we need for the
understanding of the manuscript, we find it difficult to delete sections 2.2 and 2.3, and prefer to
keep them, for self-consistency of the manuscript.

However, in the new version of the manuscript, we simplified the introduction of the PKF dynamics
for the advection and suppressed the previously dedicated section 2.4.1. Now Sec. 2.4.1 refers to the
numerical validation with the EnKF.



2.2)  Section 2.4.2 seems to contain mainly results were already demonstrated in previous

publications.  Eg.  LINE 257: The ability  of  the PKF to produce high  quality  univariate

forecasts of error statistics was already shown in Pannekoucke2016,2018,2021. Although

the description presents the main aspects and advantages of the PKF in a well-formulated

way, it appears to be more suitable for a review or textbook-like article than as part of a

scientific manuscript. Here, the description can be shortened significantly, focusing on new

aspects.

Compared with previous works, one of the contribution of  Sec. 2.4.2 (now the section 2.4.1) is to
validate the correlation functions provided by the PKF, compared by the one estimated from the
EnKF.

This now clearly appears in the manuscript : « Compared to previous studies that focused only on
the  comparison  of  variance  and  anisotropy  error  statistics,  here  we  have  shown the  ability  to
reproduce complex heterogeneous correlation functions using the PKF formulation in 1D domain. »
Line 316-318

This section introduces the numerical framework that is used throughout the manuscript as well as
the estimation of the variance and anisotropy of an ensemble. Therefore, removing this description
here would have required introducing it later in the manuscript without saving space. 

Moreover, the section presents the behavior of the error statistics is case where the dynamics is a
conservative  equation  (that  was  not  the  case  of  previous  published  works).  This  behavior  is
complex since it makes appear variations of the magnitude of the mean and of the error variance
because of the heterogeneity of the wind and of the conservation. We chose this configuration, with
an heterogeneous wind, because it offers a simple but rich framework for the exploration of CTM
uncertainty  dynamics.  The  description  helps  to  interpret  the  results  that  will  come  in  the
multivariate  setting,  and  for  which  the  complexity  increases  because  of  the  coupling  between
chemical species. For these reasons we consider that the section is important for the reader that is
not used to the PKF, and for the self-consistency of the manuscript, while we agree that scientists
with a strong background in PKF will find this part less interesting for themselves – however this is
still the introduction of the PKF.

2.3) The main conclusion of Sec.2.4.3 is that the PKF is able to produce reasonable error

statistics also for coarse spatial resolutions (LINE 302f, LINE 307f). No validation with true

statistics  is  available  for  this  setup  and  the  conclusion  is  based  on  comparison  of

comparison of the low resolution PKF with high- and low resolution enKF. In this setup, the

agreement between low resolution PKF and high resolution enKF does not necessarily proof

good  performance  because  both  resolutions  could  be  insufficient.  The  easiest  way  to

indicate convergence of the methods, and thus the accuracy of the solution, would be to

make sure that the solution of the PKF remains the same for high resolution simulations.

This would indicate the convergence of the PKF to a solution which is well approximated by

the low resolution simulation. Ideally, the convergence of the enKF to the same solution

could also be indicated by performing even more high resolution simulations. But given the

computational efforts, it might be sufficient to verify that the high resolution PKF solution

agrees with the low resolution PKF and the high resolution enKF solutions.

We computed the high resolution of the PKF, and compared it to the low resolution results. We
observed that there is no difference at eye from the low and the high resolution simulation, at a



quantitative  level,  the  relative  error  of  the  low  vs.  high  solution  (the  high  resolution  being
considered as the reference here) is less than 1 % in relative error (computed from the L2 norm). 

This is now mentioned in the manuscript: “A PKF at high resolution has been computed (not shown
here) and has been found equivalent to the PKF computed at low resolution, with a relative error at
the end of the forecast window lower than 0.2% for the mean, 0.3% for the standard-deviation, and
0.05% for the length-scale ; where the relative error of fields has been computed as $||PKF_{LR} -
PKF_{HR}||/||PKF_{HR}||$, with $||\cdot||$ the L2 norm.” in L309-312

2.4) Given the length of Section 2.4, I would suggest making it a new main Section (->Sec.3,

if  not significantly shortened according to other comments above.  This comment is also

related to the main general comment of dividing the manuscript.) In addition, the title might

be misleading, as it appears to include only the advection process as part of the forecast

step and not the full PKF with forecast and analysis step. Maybe something like: “PKF for

advection equation of passive tracer” would be a more appropriate section title.

We have retained but reduced Sec. 2.4 and modified the title as suggested.

3)  Section 3: This section is much too long. Following the general comments (above),  I would

suggest taking this section as a paper on its own, which would be of appropriate length (17 pages

+introduction,  conclusions  etc).  In  any way,  Sec.3.3+3.4 as  well  as  Sec.3.5 could be separate

sections each, i.e. dividing Sec.3 into three sections, eg: 1) Sec.3.1+3.2, 2) Sec.3.3+3.4, 3) Sec.3.5.

We chose to refactor section 3 into 3 subsections, by merging  1) Sec.3.1+3.2, 2) Sec.3.3+3.4, 3)

Sec.3.5,  as proposed.

4)  In Sec.3.3.2 and Sec.3.5.2  it  remains  unclear  how much the  results  can be  generalized are

subject to the specific setup of the experiments. For example, it would be interesting to see if the

advection terms remain dom inant  under  different  conditions  like  weaker  wind  or  accelerated

chemistry.  This  becomes  also  important  for  verifying  the  neglection  of  chemistry  part  in  the

anisotropy for the GRC CTM in Sec.4.2.

We agree on the importance of these points, and we have added them in the conclusion of the report
to guide the remaining investigations on the subject, which we have not conducted here.  

5) Section 5: The discussion section only partly includes an actual discussion. 

5.1)  The first paragraph of the discussion refers only to a specific part of the study, not to the

complete  work.  I  suggest  moving  it  to  the  referring  Sec.3.2.2  (maybe  as  new  subsection  if

necessary).

The beginning of the paragraph was mentioned in sec. 3.2.2; while the end has been moved in the
conclusion.

5.2)  The rest of the section is a conclusion rather than a discussion and should be moved to the

conclusion section.

It has been moved in the conclusion that has been rephrased so to include specific the points that
was not already present e.g. the extension to 2D/3D domains.

6) Appendix D: This appendix provides no added value for this paper because the equation is not

used and can be found in Pannekoucke2021 for reference. Remove appendix and refer only to the

equation in Pannekoucke2021 paper in Sect. 3.5.2 (LINE 638) 



We removed the appendix and referred to Pannekoucke2021 paper for the equation.

Technical corrections:

General technical corrections (at multiple locations in the manuscript):

1. Suggest replacing “modelized” by “modelled” and “modelizes” by eg “models” or similar

(LINE 2, LINE 239) 

We preferred to let the version in ‘z’. 

2. Inconsistent typing w.r.t. hyphen. The manuscript composition guidelines suggest the form

without hyphen (eg. “auto correlations” and “cross correlations” in LINE 21, “forecast

error” in LINE 117, “length scale” in LINE 247,…) 

Thank  you  very  much.  However,  we  did  not  find  this  recommandation  in
https://www.nonlinear-processes-in-geophysics.net/submission.html#english,  where  it  is
seems to only concern : adverb ending in –ly, Latin phrases or abbreviated units. Will check
this with the proof-editing services after acceptance of the manuscript. 

3. Replace “validated from” eg with “validated by” or “validated w.r.t.” (LINE 66, LINE 188)
This has been corrected, thank you.

4. The formulation “so to” should be replaced eg by “to” or “in order to” (LINE 74, LINE

148, LINE 356, LINE 436, LINE 449, LINE 452, LINE 458, LINE 698) 

This has been corrected, thank you.

5. There are inconsistent indications of locations in different variables. Eg. subscript like V_x

vs. in brackets like g(x) in Equation (7) whereas V(x) was used in LINE 118 (same in LINE

191 vs LINE 195, and Equation (20)). Suggest sticking to common indication (either as

subscript or in brackets) for all variables, or to point out specifically the difference between

the two types of variables (eg. discrete vs continuous?) 

This has been corrected, thank you.

6. Suggest avoiding double use of brackets, if possible (eg. P(V,s)(x,y) in Equation (7) and

rho(g^f) (x_L,x) in LINE 169) 

We preferred to keep the notation, thank you.

7. Figure captions need to be extended in order to describe the figure sufficiently, that it can be

understood independent of the text. 

• 1:  missing  information  that  this  is  a  predefined  and  stationary  wind  field  and

description of axes incline normalization. 

• 6:  missing  description  of  individual  lines,  unclear:  cross-correlations  to  which

species at which location x=0.5? 

• 14: analog to Fig.1 for wind field and emissions inventory mask 

This has been corrected. Thank you.

8. (Related to point 7): Label sizes need to be increased, especially for axes and legends (all
figures). 
This has been modified. Thank you.

9. (Related to point 7): Purely technical figure descriptions should be removed from the text,

and put in the figure caption instead (eg. LINE 306 “cyan dash-dotted lines”, LINE 379,

LINE 398, …, including LINE 623-624, LINE 713-715, LINE 716f). 

This has been corrected. Thank you.

https://www.nonlinear-processes-in-geophysics.net/submission.html#english


10.Often,  subsections  are finished by a sentence introducing the following subsection.  This

hinders the flow of reading. I would suggest removing these sentences and, were necessary,

motivating/introducing  the  new  subsection  in  its  beginning  (LINE 242-243,  LINE 275f,

LINE 309f, LINE 446f, LINE 509f, LINE 552, LINE 563, LINE 577, LINE 645f, LINE 675,

LINE 688, LINE 739) 

This has been modified. Thank you.

11.When referring to figures in the text, the authors often only indicate the subplot panel and

not the actual Figure number, eg “(panel a)”. Although the Figure number was mentioned

before  in  the  text,  it  is  standard to  refer  to  subfigures  by  eg “(Fig.1a)” (compare  also

manuscript preparation guidelines) which also makes it easier for the reader to follow the

argumentation. (LINE 245, LINE 247, and many more…) 

This has been modified along the manuscript

12.The  word  “paragraph”  should  be  replaced  by  “Sect.”  according  to  the  manuscript

preparation guidelines (LINE 257, LINE 439, LINE 449, LINE 452, LINE 457, LINE 529,

LINE 534) 

This has been corrected, thank you.

13.The naming convention of (cross)(co)variances is  sometimes confusion.  I  would suggest

using different names or at least clearly highlighting the differences, eg V_A(x) variances

(between  same  species,  same  location  =diagonal  elements  of  P_A),  P_A(x,y)

(auto-)covariances (same species, different locations), V_AB(x) cross-variances (different

species, same location =diagonal elements of P_AB), P_AB(x,y) cross-covariance (different

species,  different  locations),  or  similar.  Eg.  in  LINE  351,  V_AB(x)  is  named  cross-

covariance without mentioning that is refers to the same location, and in LINE 440, V_AB is

named covariance although is refers to different species. 

We checked along the manuscript and do the appropriate modifications using the following
terminology: V_A == Variance, V_AB == single-point cross-variance, P_AB == two-point
cross-covariance. Hence, now, V_AB is a function of $x$ alone and V_AB(x,y) is replaced
by P_AB(x,y) everywhere.

14.The two species indicators are sometimes written as lower and sometimes as upper index,

eg. V_AB vs V^AB in LINE 351 vs LINE 353. Again if these are different quantitates, it

should be clarified in the text, if not, please check the whole document for a consistent

notation. 

This has been corrected. Thank you.

15.Replace “independant” by “independent” and “independance” by “independence” (LINE

441, LINE 591, LINE 831, LINE 855) 

This is now corrected, thank you.

Content-related technical corrections:

1) LINE 137: Add reference to Weaver&Courtier2001: https://doi.org/10.1002/qj.49712757518

Weaver  and Courtier  2001 introduced the  use  of  the  diffusion  equation,  but  the  setting  of  the
diffusion coefficient that is the purpose of this line is not addressed in WC01. So we added the
reference to WC01 before we discussed the setting of the diffusion tensors from the anisotropy.

https://doi.org/10.1002/qj.49712757518


2)  Equation  (8)+LINE  170-171:  add  reference  to  derivation  of  equations,  Pannekoucke2021:

https://doi.org/10.1080/16000870.2021.1926660

The reference has been added.

3) LINE 3: suggest adding “has previously been” to make clear that this is not part of the present

work

This has been modified.

4)  LINE  18-19:  state-of-the-art  CTMs  are  much  more  complex  than  transport  and  chemical

reactions (eg. diffusion, emissions, deposition, interaction with clouds, …). I suggest reformulating

the sentence to make clear that transport and chemistry are some of multiple processes, which are

however considered dominant for most applications.

The sentence has been completed to mention the complexity of a CTM with an explicit mention to
the diffusion, emissions, desposition and interaction with clouds.

5) LINE 39ff: The sentence beginning with “In air quality,…” makes a jump in the chronology of

the text. Based on the previous sentence, it is not clear to what the word “them” is referring. Please

reformulate.

This has been modified, as follows: “In air quality, it may be preferable to set  to zero the ensemble
estimation of the multivariate correlation, so to avoid polluting the resulting analysis state”. (L47-
48)

6) LINE 44: The context of the word “but” is not clear in this sentence.  Suggest replacing by

something like “…a numerical model, which are often computed in parallel at lower resolution.”, if

this fits the statement.

This has been modified as proposed. Thank you.

7) LINE 85: Sparse observations and modelling errors are not the only reasons for the unknown

true  state.  I  would  suggest  reformulating,  for  example  adding  that  all  available  information

(observations and model forecasts) contain errors.

This  as  been rephrased as “Because of the spatio-temporal  sparsity  of observations,  as  well  as
modeling, prediction and measurement errors, the exact actual state at a time $t=t_q$, $\X^t_q$, is
unknown.” (L97-98)

8) LINE 87: The formulation “estimation of X^t_q coming from the past” is unclear and unspecific.

Does it refer to the forecast state?

Yes, it refers to the forecast state, this has been modified. Thank you

9) LINE 94: The Kalman Filer also assumes independent errors between observations and forecast.
This has been modified. Thank you.

10) LINE 118: The definition of eps^f (x) is inconsistent with Sec.2.1 were it was a discrete vector. If

a continuous formulation is used here, this should be introduced accordingly. If not, the transposed

notation should also be used here.

The use of  the  continuous /  discrete  versions  of  the quantities  is  now better  introduced in the
beginning of Section 2.1 with : « Thereafter, $\X$ can be seen either as a collection of continuous
fields with dynamics given by Eq.(1) or a discrete vector of dynamics the discretized version of Eq.
(1). ». Hence, the definition of the variance field as it is specified by using eps^f(x) is now well
defined.

https://doi.org/10.1080/16000870.2021.1926660


11) Equation (4)+Equation (7): The norm is not defined. Suggest a short note on the norm and the

meaning of its lower index, maybe with reference to literature if needed.

The  norm  is  now  defined  as  follows:  “where ||  ·  ||g stands  for  the  Euclidean  norm  associated  with

a metric g and defined from ||x||2 g = xT gx.” L 137

12) LINE 122+130: Suggest adding “at each grid location x” to make clear that g is a tensor at

each location.

We added that “There is one local metric tensor at each grid location $\x$” L138-139

13)  Equation  (5):  A  note  on  the  meaning  of  x_i  and  x_j  (indication  of  derivatives  into  two

directions?) is missing.

We explained that this notation refers to the coordinate functions as follows: “where $\x_i$'s are the
coordinate functions associated with the coordinate system $\x$.” L142-143

14) LINE 137-139: This sentence is too long and repetitive. Suggest reformulating, eg. something

like: "This covariance model is used in variation DA to generate heterogeneous covariances were

correlation functions vary between grid points."

We replaced the sentence by your proposition. Thank you. (see L154-155)

15) LINE 147: formulation remains unclear: “leads to sum up the statistical content into a set of

parameters”. Reformulate for clarification.

We  rephrased  as  follows:  “Hence,  approximating  a  covariance  matrix,  as  the  forecast-error
covariance  at  a  given  time,  by  a  covariance  model  is  reduced  to  the  knowledge  of  a  set  of
parameters”. L162-163

16) LINE 165+Equation (8): Although it is referred to a single observation here, I would suggest

adding the indication of the observation location for the observation variance “V^o(x_L)” to be

consistent to the other quantities at observation location (eg. “V^f(x_L)”).

This has been added. Thank you.

17) LINE 169: Suggest adding “is the correlation function between the observation location and

each model gridpoint x”.

This has been modified. Thank you

18) LINE 186: The formulation “to predict the uncertainty dynamics, the latter being estimated

from an  ensemble  method  introduced  to  provide  a  reference.”  is  quite  complicated  and  long.

Suggest  reformulation,  eg  something  like  “to  predict  the  uncertainty  dynamics  compared  to  a

reference ensemble estimation (enKF)."

This has been modified. Thank you.

19)  LINE 291-292:  The  reasoning  of  the  statement  “the  dispersive  term  influences  both,  the

variance and the length scale” remains unclear because Equation (13) only refers to the mean

state. Maybe is could be described a bit more how the authors come to this statement.

We detailed as follows: “The reason is that Eq.(13) being linear, it also governs the error field, as
the one predicted by the EnKF, and for which the magnitude of the dispersion is more intense as the
error correlation length-scale is short. In this simulation, the scale of the mean state is large (of the
order of $D$), so the effect of the dispersion is much less intense than for the errors whose typical
scale of oscillations is $l_h$ (of order $D/10$). This justifies why the dispersion does not affect the
prediction of the mean state -- the estimation for the means coinciding for the two methods on Fig2-
(a) --, while it acts on the EnKF predictions of the variance and of the length-scale, related to the
error dynamics.”L295-301



20)  LINE 296ff:  The  statement  of  the  sentence  starting  with  “Therefore,  as  with  the  PKF…”

remains unclear. How does the fact that error statistics are forecasts equivalently to state forecasts

in the PKF relate to the sensitivity of the enKF to model errors? This seems to be two different

aspects. Please reformulate or clarify.

We rephrased this sentence and moved it at the end of the discussion mentioned added it the last
point 19): “In this simulation, the PKF is not influenced by the dispersion because the spatial scale
of the variance and of the length-scale is large (order of $D$). This points out the sensitivity of the
EnKF to numerical model error.” L301-302

21) Equation (16),(17): The notation is confusion w.r.t. P_AB(x,y) and V_AB(x,y). Both are defined

in the text as “two-point cross covariance.” If the same quantity is meant, the same variable should

be used, if not, the different should be made clearer. 

P_AB is  the  cross-covariance  matrix.  This  is  now mentioned  in  the  manuscript  following  the
modification made from answer to your General technical corrections 13).

22)  LINE  398:  Generation  of  “ensemble  estimated  cross-correlation”  unclear.  Is  the  cross-

correlation model applied to each ensemble realization? 

Here we mean that the computation of the proxy r_AB of the cross-correlation rho_AB is computed
from Eq.(20) by using the estimation of the statistics needed for the relation Eq.(20). This is made
more clear now:
“To assess the skill of the proxy, Fig. 6 shows the functions $r_{AB}(x_l,\cdot)$ (computed from
Eq.(20)  with  the  ensemble-estimated  parameters  $\widehat{\mathcal{P}}(t)=(\widehat{V_A},  \
widehat{V_B},  \widehat{V_{AB}},  \widehat{s_A},  \widehat{s_B})(t)$),  compared  with  the
ensemble estimated cross-correlation $\rho_{AB}(x_l,\cdot)$.” L405-406
 The proxy for the cross-correlation is not used to sample the ensemble since the initial errors are
decorrelated following Eq.(18).

23) LINE 470,Fig.8: How is the open term calculated? Eg. from the truth or the ensemble mean?

It is calculated from the ensemble mean, as it is done for the other statistics (e.g. the variance Eq.
(11)). The detail of the computation of the open term has been introduced in Eq.(23)

24) LINE 482: For clarification, I would suggest noting that these are analytical expressions, eg

“evolution of the statistics analytically” or “an analytical evolution of the statistics” 

This has been modified. Thank you.

25)  Equation  (24f):  Inconsistent  notation.  Up  to  now  the  overbar  was  used  to  indicate  the

expectation, whereas the E[ . ] notation was used here. Please stick to one notation for the entire

manuscript.

This has been modified. Thank you.

26) Equation (26),(27),Fig.10: The different normalization of the weights by term in Equation (26)

and by process in Equation (27) might lead to confusion when looking at Fig.10. For example, the

relative contribution of the two advection terms seams to be only slightly higher than the chemistry

terms in Fig.10a (~55% vs 45%), but advection is highly dominant in Fig.10c (~80% vs 20%). I

would suggest  noticing the different  normalization in  the text  or maybe even consider  using a

common normalization for both, if that makes sense.

The use of a different normalization is now indicated: “Note that the normalization is different
between Eq.(27) and Eq.(28).” L523-524

27) LINE 546ff: The discussion of different approaches for closure is spited into Sec.3.3.2 (LINE

546-551) and Sec.3.3.3. I would suggest moving LINE 546-551 into Sec.3.3.3 and renaming this



section eg “closure of the PKF dynamics”.

We moved as proposed and renamed the section 3.3.3. Thank you.

28) LINE 568: The formulation beginning with “the subscript l must be …” is slightly confusing.

Suggest  reformulation  for  clarification.  x:  element  w.r.t.  any  species  at  any  location,  x_L:

observation of a species Z_L at observation location?

This is now modified. Thank you.
“To apply the formulas Eq.(8) in multivariate contexts, the $x_l$ must refer to the observation of a
species $Z_l$ at observation location, while $\x$ refers to any species at any location.” L569-570

29) LINE 573: Is there a reason for having the second species index Z_1 as superscript in rho

whereas is it written as subscript for all other variables? I would suggest putting it as subscript for

consistency reasons.

This has been modified and corrected where ever the cross-correlation appeared (e.g. in appendix
C).

30) Algorithm 1: Inconsistent syntax for loops. Eg. line 1 should be “for each observation l do” to

be consistent with the other (or the other way around)

This has been modified. Thank you.

31) LINE 595: Is each observation sampled independently for each time or are they temporally

correlated? In addition to describing in the text, it might be useful to add the time index to make

this clear in the equation.

The time index has been added. Thank you.

32) LINE 623: It remains unclear if only one assimilation of the four observations is performed at

time t=t_max or if several assimilation cycles are performed during the simulation. Please add this

information.

There are five assimilation cycles during the simulation. The total simulation window Is [0,t_max]
where  t_max  =  5tau_adv/3,  and  an  assimilation  is  performed  after  each  time  integration  of
tau_adv/3 .Hence, at t=t_max, five assimilations have been performed.
While it  has been indicated in the beginning of section 3.5.1, we recalled the detail of the DA
experiment here, so the sentence has been rephrased as:
“The outcome of the DA experiment Fig. 13 is now exposed, where five assimilation cycles are
done over the period $[0, t_{max}]$ (one assimilation after each $\tau_{adv}/3$ time integration,
with $t_{max}=5\tau_{adv}/3$)” (see L564-565)

33) LINE 686f: Was any investigation done if the dominating impact of dynamics vs chemistry also

holds for the GRS-CTM? (compare specific comment 5a)

Since  the  PKF  was  able  to  reproduce  the  ensemble  estimation,  we  did  not  investigate  the
dominating impact  of the dynamics  vs  chemistry that  has been detailed for the LV-CTM case.
However,  following the answer to point 4) of your specific comment, it  has been added in the
conclusion as an interesting experiment to consider in real CTM.

34) LINE 722: Context, the description in the previous sentences appears to describe the general

behavior. A conclusion of the performance of the PKF requires mentioning the fact that the PKF is

able to reproduce all features described above. It also remains unclear if this statement only refer to

chemistry or also to transport. I would suggest adding a related sentence and moving into the next

paragraph (eg LINE 725ff), if that fits the content, and reformulating accordingly.

The discussion about the particular form of the dynamics of ROC appeared as a digrassion at this
step while it is important to highlight the benefice of the PKF. To simplified, we chose to move the
explanation of the V_ROC in a note (“Note that the specific behavior of the ROC ..” LINE 739-



743). Now the paragraph better addresses the respective contribution of the chemistry and of the
transport. The conclusion of the performance have been removed toward the conclusion section .

35) LINE 728,Fig.15: It looks like the PKF produces the same length-scales for all species. It this is

the case, it would be interesting to mention and explain.

Yes, the length-scale fields are the same for all  chemical species because they follow the same
dynamics (only the transport is considered for the length-scale evolution, not the chemistry) and
start from the same initial homogeneous length-scale value (here l_h=12 Delta x).
This is made clearer with the sentence “Since the PKF formulation considered here is closed by
removing  the  contribution  of  the  chemistry  on  the  length-scale  dynamics  (following  the
simplification discussed in Sec.3.2.4), the length-scale dynamics is the same for all species. ” LINE
730-732

36) LINE 734: Suggest replacing the word “Indirectly” by a more specific formulation. Does this

refer to the other cross-correlations, which are also well captured by the PKF but not shown here?

The sentence has been rephrased in two ones: “This has been observed for other cross-correlation
functions (not shown here). It demonstrates the capacity of the PKF to forecast the cross-covariance
fields.” L 737-738

37) LINE 759ff: I don’t see a connection of this statement to the content of the paper. While not

being wrong, it seems to appear without any explanation. Therefore, I would suggest removing it

here.

It has been removed.

38) LINE 762: Sec.6 also includes a short summary (first part of this section). Therefore, I would

rename the section “Summary and conclusions”

The title of the section is a default standard in the NPG template used. 

39) LINE 767-773: The paragraph deals with the first experiment with simplified chemistry (eg the

evaluation of transport vs chemistry). This needs to be mentioned in order to put the conclusions

into context. I would suggest reformulating the sentence in LINE 774-777 accordingly and moving

it to the beginning of this paragraph.

The  paragraph  is  not  clear  and  we  rephrased  the  conclusion  for  the  introduction  of  the  three
experiments and their results.

40) LINE 779: Formulation “feeds the reflection on” is unclear. Does it mean that this work is an

important  step  in  extending  the  univariate  implementation  to  complex  operational  CTMs  like

MOCAGE? Reformulate.

This  has  been  rephrased  as:  “and  is  an  important  step  in  extending  the  univariate  PKF
implementation to complex operational CTMs like the operational transport model MOCAGE at
Meteo-France” L 778-780

41) LINE 780: Sentence starting with “In particular” seems to refer to a different aspect, which is

actually a drawback of the method. This should be made more clear in this sentence.

This has been rephrased as: “The work also highlight a drawback of the PKF: the cost of the current
multivariate PKF formulation scales as the square of number of chemical species which appears as
a  limitation,  at  least  if  all  the  chemical  species  are  considered  in  the  multivariate  uncertainty
prediction. Hence, it would be interesting to test a PKF formulation on a reduced chemical scheme
of interest for the data assimilation.” L 780-783



42)  Equation  (B3),(B4):  The  expectations  of  eps_A^2,  eps_B^2  and  eps_A*eps_B  denote  the

boundary  condition  at  time  t  for  x=0.  Instead,  it  should  be  the  initial  condition  V_A^0  =

E[eps_A^2] (0,x) were eps_A(0,x) = eps_A^0, right? 

Yes, sorry for the typos. It has been corrected. Moreover we added the definition of the upper-script
^0. Thank you.

43) Equation (B5b): If I’m not mistaken, there is a square root missing for V_A in the second term

of the numerator: “- eps_A d_x sqrt(V_A)”

The typos has been corrected. Thank you.

44) LINE 830: The assumption of homogeneous initial fields remains unclear here. Doesn't E[(d_x

eps_A^0)^2] = V_A^0 g_A^0 follow directly from Equation (B6a) evaluated at t=0 ??

This has been rephrased as: “Then, at t=0, E[..” since the assumption of homogeneity has been
introduced at this step. (see L 830)

45) Equation (B8b): The homogenous assumption is used in this step. 

The assumption has been added. Thank you.

Individual purely technical corrections:

1. LINE 14: put reference in brackets “(Kalman, 1960)”  -- Done

2. LINE 18: put reference in brackets: “(Josse et aline , 2004)” -- Done

3. LINE 20:  suggest  replacing  “features”  eg.  by  “contains”  or  “includes”  (if  this  fits  the
statement) – Done, replaced by contains.

4. LINE 24: remove final “s” from “others” -- Done

5. LINE 35: “On the other hand” should only be used when following “On the one hand”.
Suggest replacing eg. by “At the same time” or “But”, “However”, … -- Done

6. LINE 38: suggest replacing “needs to introduce” eg. by “requires the introduction of”  --
Done

7. LINE 54: replace the word “leveraged”. Meaning unclear.  -- Done: replaced by “is based

on”

8. LINE 55: “an other” -> “another” -- Done

9. LINE 71: grammar, replace “before to conclude” with eg. “before concluding remarks” or
similar -- Done

10. LINE 90+104: wrong symbol for X^a_q -- Done

11. LINE 116: wording, replace “recalled here for the forecast-errors covariance matrix” eg by
"applied to forecast-error covariance matrices" or "used for the description of the forecast-
error covariance matrix", or similar. -- Done

12. LINE 112: remove “,” before “that” – Done at line 122

13. LINE 158: wording “sketch”, replace eg with “In practice, this step consists…” if fitting the
statement. – Done

14. LINE 175: Suggest less metaphoric formulation replacing “To put some flesh on the bone” –
Done

15. LINE 185: grammar, replace “In what follows” eg with “In the following” – Done

16. LINE 240: inconsistent units for tau_adv [s] vs 1/u [s/m]. – Done, it is a typos: tau is D/u.

17. Fig.  2  caption:  “low resolution  forecast”  might  be  confusing  here  because  the  different
resolutions were not mentioned yet. Suggest putting it into brackets here. – Done

18. LINE 264-265: The explanation of correlation anisotropy beginning with “e.g. in panel (e)
were the …” is unnecessary. Suggest removing it. – We preferred to keep the formulation as

it is because it explains what is meant by anisotropy here.

19. LINE 266: wording, suggest replacing “covariance error” by eg “(main parameters of the)
error covariance” to avoid confusion with the uncertainty of the covariance estimate. – Done

20. LINE 269: bracket “(with O being … “proportional to”)” unnecessary, suggest removing. –



We preferred to keep the definition of the notation, from our experiment of previous article

feedbacks.

21. LINE 278: referring to the general technical correction 10, Sect.2.4.3 could be introduced

eg by something like “As described in Sect.2.4.2, the experiments show a gab between …”

(just a suggestion)  

We preferred to keep as initially proposed. Thank you.

22. LINE 299: Connection to previous sentence unclear (may be due to unclear statement, see
content  comment-related  technical  comment  about  previous  sentence).  Suggest
reformulating, maybe eg “This is demonstrated by comparing the PKF statistics to a high
resolution forecast of the EnKF, ...” 

The sentence has been modified as proposed.
23. LINE  323:  Formulation  “non-linearly”  unclear.  Is  something  like  "non-linear  reactive

chemical species" or "non-linearly reacting chemical species" meant? Suggest rewording. – 

This has been modified as proposed.
24. Fig. 5 caption: complicated formulation “with one orbit by level of purple transparency

magnitude”.  Maybe it  can be replaced by  something like  “purple  curves  with  different

transparencies”. – This has been modified as proposed.
25. LINE 351: typo, replace “Morover” by “Moreover” – Done

26. LINE 354: it might be useful to note that all parameters are a function of model space (not

only V_AB) –  This has been modified as proposed
27. LINE 372: I guess, “computation of the cross-covariance” refers to the enKF. If so, I would

suggest  replacing  eg.  by  "ensemble  cross-covariance"  or  "sample  cross-covariance"  to
emphasis the calculation from enKF. –  This has been modified as proposed

28. LINE 388: “as function of” – Done

29. LINE 389: “an interpolation” – Done

30. Fig. 7: Suggest y-axis ranging from 0% to 100% to avoid the visual impression that the
relative error almost vanished to zero at certain times.  We preferred to keep as initially

proposed. Thank you.

31. LINE 410: “are excluded” – Done

32. LINE 412: Complicated and unclear formulation. What is meant with “the true value of the

averages”? Is “by an amount of 8 points of percent” equivalent to just writing “by 8%”?  –
This has been modified as proposed, by writing 8%.

33. LINE  414:  Unscientific  formulation,  suggest  reformulation  (assuming  that  sufficient
literature  search  has  been  performed):  eg  "According  to  our/the  authors  knowledge,  no
proxy of cross-correlations similar to Equation (20) has been introduced up to now." – Done

34. LINE 736-738: This paragraph is a conclusion which should be moved to the conclusion

section. – The idea detailed in the paragraph being in the conclusion, the paragraph has been
removed. 

35. Equation (21): The order of terms is inconsistent between the individual subequations. In
Equation (21a)-(21e), the transport term is on the left hand side, while the T_adv are on the
right  hand  side  in  Equation  (21f)-(21g).  Suggest  putting  on  the  same  side  for  all
subequations. –  This has been modified as proposed

36. LINE 436-438: Sentence about the notation of terms starting with “Hence, each term…” is
unnecessary. Suggest removing. – It has been removed.

37. LINE 441: remove “s” from “fields” – Done

38. LINE 450: remove “,” after “dynamics” – Done

39. LINE 453: suggest adding “in Sec.3.3.3”, eg something like “simplified dynamics of the
anisotropy are used in Sec.3.3.3 to close the PKF dynamics” – Done

40. LINE 457-458: remove the two “,” after T_adv and T_chem, respectively. – Done

41. LINE 460: “dynamics in Equation (21)” – Done

42. LINE 460: remove “,” after “transport” – Done

43. LINE 492: Suggest replacing “at the opposite” with eg “in contrast” – Done



44. LINE 506: Unspecific formulation “makes appear a swing”. Reformulate. – Done

45. LINE 508:  Unclear  formulation  “along each specie”.  Meaning a  different  magnitude of
uncertainty (=stdev?) for each of the two species? – Done – it has been rephrased.

46. LINE 512: Formulation, replace “What follows aim” eg by something like "The following
section aims at..." or "In the following, we aim at..." – Done 

47. LINE 513: Wording, suggest replacing “among” with eg ”with respect to” – Done 

48. LINE 537f: Suggest adding “can be neglected compared to the advection part (Fig.10c,d)”
and “by W_chem-1 and W_chem-2 (Fig.10b,d)” to support the relation between statement
and plot. – Done

49. Equation (28), LINE 540: Suggest removing Equation (28) and referring to Equation (25)
instead of writing the same equation again. – Done

50. LINE 555: “Equation (21g), which leads to a closure of the PKF dynamics” – Done

51. LINE 566: “Equation (8) presented in 2” – Done

52. LINE 569: typo: “location x_L of the chemical species” – Done

53. LINE 573: suggest “is the forecast cross-correlation function” – Done

54. LINE 585: suggest replacing “settings” by “setup” – Done

55. LINE 600:  I  would suggest  replacing  “Fig.12 are  now discussed” by eg  “are shown in
Fig.12”. – Done

56. LINE 611: Wording, suggest replacing “With less exactitude ” eg with "While being less
accurate" or "With less accuracy" – Done

57. LINE 612f: Removing “The last two panels (f) and (g) which correspond to” and adding
reference to figure in brackets “of the length scales (Fig.12f,g) show a general…” would
increase the readability of the sentence. – Done

58. LINE 630: For readability, it is most important to name the field rather than the subplot in
the text. Add name of field and refer to subplot in brackets, eg "For instance, the standard
deviation of species A (Fig.13c) shows important …" – Done

59. LINE 632: similarly to above, I would suggest adding “specie B (Fig.13d) for which ...” and
remove last part of sentence “as panel (d) shows”. – Done

60. LINE 640:  “which  has  been  detailed  in  paragraphs  3.3.1-3.3.3”  could  be  shortened  to
“(compare Sec.3.3)” – just a suggestion. – Done

61. LINE 680: “terms” – Done

62. LINE 697: replace “, set as” by “, by setting as” or “defined to be” – Done

63. LINE 698: replace “produced” by “produce” – Done

64. LINE 705: remove “one” -> “for each of the six” – Done

65. LINE  713:  suggest  removing  “of  the  six  ones”  because  it  provides  no  additional
information. – Done

66. LINE 718f: Missing “s ” in “appears”. The rather long sentence could also be shortened
significantly  eg  to  something  like  “The  impact  of  chemistry  leads  to  non-zero  cross-
correlations between all pairs of species (Fig.15, right column, except the auto-correlation in
Fig.15p)." – Done

67. LINE 719: The word “roughness” is quite unspecific. Suggest replacing by eg “small-scale
spatial variation” if that fits the content. – Done

68. LINE 727: missing “ 2.4.3” – Done

69. LINE 730: remove additional bracket “)” after “Sec.3.5.2” – Done

70. LINE 753: remove final “s” from “describes” – Done

71. LINE 757: missing “s” in “reduces” – Done

72. LINE 787: replace “study” by eg “studied” or “investigated” – Done

73. LINE 792: typo, “We consider four chemical species, …” – Done

74. LINE 799: meaning of “(that is in excess)” unclear. Reformulate or remove. – Done

75. LINE 815: double use of word “initial”. Remove. – It has been rephrased.

76. LINE 818: remove additional “)” – Done

77. LINE 822: empty subequation. Remove. – Done



78. LINE 824: remove final “s” in “tensors” – Done

79. LINE 843: replace “X^f+eps_f” with “X^f = X^t + eps_f”? – Done

80. LINE 844: remove double “a” -> “Equation (8a)” – Done

81. LINE  856f:  V^o  is  the  observation  error  variance.  Reformulate,  eg.  “observation  and
forecast error variances V_ZL^o (x_L) = ...., V_ZL^f (x_L) + ...” or similar. – Done



Toward a multivariate formulation of the PKF assimilation:

application to a simplified chemical transport model
version of: January 12, 2023, 7:32pm

Antoine Perrot1, Olivier Pannekoucke1,2,3, and Vincent Guidard1

1CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
2CERFACS, Toulouse, France
3INPT-ENM, Toulouse, France

Correspondence: Olivier Pannekoucke (olivier.pannekoucke@meteo.fr)

Abstract. This contribution explores a new approach to forecast multivariate covariances for atmospheric chemistry through

the use of the parametric Kalman filter (PKF). In the PKF formalism, the error covariance matrix is modelized by a covariance

model relying on parameters, for which the dynamics is then computed. The PKF has been
✿✿✿✿✿✿✿✿

previously
✿

formulated in univariate

cases, and a multivariate extension for chemical transport models is explored here. To do so, a simplified two-species chemical

transport model over a 1D domain is introduced, based on the nonlinear Lotka-Volterra equations, which allows to propose a5

multivariate pseudo covariance model. Then, the multivariate PKF dynamics is formulated and its results are compared with a

large ensemble Kalman filter (EnKF) in several numerical experiments. In these experiments, the PKF accurately reproduces

the EnKF. Eventually, the PKF is formulated for a more complex chemical model composed of six chemical species (Generic

Reaction Set). Again, the PKF succeeds at reproducing the multivariate covariances diagnosed on the large ensemble.

Copyright statement. TEXT10

1 Introduction

Data assimilation aims to provide an estimation of the true state of a system. This estimation, called the analysis, is a compro-

mise between the forecast of the state and the available observations. The optimal combination of the forecast and the observa-

tions relies on their respective error covariance matrices as given by the Kalman filter equations Kalman (1960)
✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kalman, 1960)

. The accuracy of the analysis is directly related to
✿✿

the
✿

quality of these two matrices.15

In atmospheric chemistry applications, the system to study is the concentration of multiple chemical species in the atmo-

sphere. In most cases, chemical transport models (CTMs) are used to forecast the concentrations, as the operational model

MOCAGE used in Meteo-France Josse et al. (2004)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Josse et al., 2004). CTMs make predictions based on the transport by the

wind (the fields are provided by NWP models) and the chemical interactions of the species (Hauglustaine et al., 1998) ;
✿✿✿✿

and

✿✿✿✿

takes
✿✿✿✿

into
✿✿✿✿✿✿✿

account
✿✿✿✿✿✿✿

multiple
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿✿

processes
✿✿✿✿

e.g.
✿✿✿

the
✿✿✿✿✿✿✿✿

diffusion,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

emissions,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

deposition
✿✿

or
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

interaction
✿✿✿✿

with20

✿✿✿✿✿✿

clouds.
✿✿✿✿✿✿✿✿

However,
✿✿

in
✿✿✿✿✿✿

CTMs
✿✿✿✿✿✿✿✿

chemistry
✿✿✿

do
✿✿✿

not
✿✿✿✿✿✿✿✿

influence
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

meteorology,
✿✿✿✿✿

which
✿✿

is
✿✿

of
✿✿✿✿✿✿

course
✿✿

a
✿✿✿✿✿

crude
✿✿✿✿✿✿✿✿✿✿✿✿

approximation
✿✿

of
✿✿✿

the
✿✿✿✿

true

1



✿✿✿✿✿✿✿✿✿✿

atmosphere.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

advantage
✿✿

of
✿✿

a
✿✿✿✿✿✿

CTMs
✿✿

is
✿✿✿

that
✿✿

it
✿✿✿✿✿✿

allows
✿✿✿

air
✿✿✿✿✿✿

quality
✿✿✿✿✿✿✿✿

prediction
✿✿✿

at
✿

a
✿✿✿✿

low
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿

cost,
✿✿✿

and
✿✿

is
✿✿✿✿

used
✿✿✿

in
✿✿✿✿✿✿

several

✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿

centers.
✿✿✿

For
✿✿✿✿✿✿✿

instance,
✿✿✿

the
✿✿✿✿✿✿

CAMS
✿✿✿✿✿✿✿

regional
✿✿✿

air
✿✿✿✿✿✿

quality
✿✿✿✿✿✿✿✿✿

production 1
✿

,
✿✿✿✿✿

which
✿✿✿✿

daily
✿✿✿✿✿✿✿

forecast
✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

of
✿✿

11
✿✿✿✿✿✿✿✿

members

✿✿✿

that
✿✿✿✿✿✿

covers
✿✿✿

the
✿✿✿✿✿✿✿✿

following
✿

4
✿✿✿✿✿

days,
✿✿

is
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

integration
✿✿

of
✿✿✿

11
✿✿✿✿✿✿

models
✿✿✿✿

from
✿✿✿✿✿✿

which
✿✿

10
✿✿✿

are
✿✿✿✿✿✿

CTMs.

In this context, the forecast-error covariance matrix features
✿✿✿✿✿✿

contains
✿

the correlations of the forecast errors within and25

between the chemical species. These correlations are respectively denoted by auto-correlations and cross-correlations. Ac-

curately describing the auto and cross correlation is a key component for improving the overall quality of the analysis.

Indeed, strong correlations exist between different chemical species, and the analysis could benefit from them: an observa-

tion for a given species might also correct others concentrations and reducing
✿✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿✿

concentrations
✿✿✿✿

and
✿✿✿✿✿✿

reduce their error

amplitude at the same time.
✿✿✿✿

Note
✿✿✿✿

that
✿✿

in
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿✿✿✿✿

applications,
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿

species
✿✿✿

are
✿✿✿✿✿

often
✿✿✿✿✿✿✿✿✿✿

assimilated
✿✿✿✿✿✿✿✿✿

separately
✿✿✿✿✿✿

e.g. in30

✿✿✿✿✿✿

CAMS
✿✿✿✿✿

2.40,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

univariate
✿✿✿✿✿

3DVar
✿✿✿✿✿✿✿

system
✿✿

of
✿✿✿✿✿✿✿✿✿✿

MOCAGE
✿✿

is
✿✿✿✿

used
✿✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

of
✿✿✿✿✿✿

ozone,
✿✿✿✿✿✿✿✿

nitrogen
✿✿✿✿✿✿✿

dioxide,
✿✿✿✿✿✿✿

sulphur

✿✿✿✿✿✿✿

dioxide,
✿✿✿✿

and
✿✿✿

fine
✿✿✿✿✿✿✿✿✿

particulate
✿✿✿✿✿✿

matter
✿✿✿✿✿✿

PM2.5
✿✿✿

and
✿✿✿✿✿

PM10
✿✿✿✿✿✿✿✿✿

(following
✿✿

a
✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿

the
✿✿✿

one
✿✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿

MACII
✿✿✿✿✿✿✿

detailed
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Marécal et al. (2015)
✿

).

However, the estimation and the modelling of multivariate covariances in air quality is a complex topic (Emili et al., 2016).

But this is not specific to air quality, and two main approaches are found in data assimilation. The first one relies on balance35

operators and has been introduced in variationnal data assimilation. These balance operators establish a relation between the

state variables and allow for the modelling of cross-covariances from the design of univariate covariances. Such operators

exist in numerical weather prediction (Derber and Bouttier, 1999; Fisher, 2003) as well as for the ocean (Weaver et al., 2006),

but as far as we know, no balance operators are used in atmospheric chemistry applications. The second approach relies on

the ensemble method (Evensen, 2009) where an ensemble of forecasts is used to estimate the multivariate covariance matrix40

(Coman et al., 2012). The ensemble method offers a flow dependent estimation of the error statistics and leads to a practical

implementation of the Kalman filter, that is the ensemble Kalman filter (EnKF) (Evensen, 1994). The EnKF applies to a wide

range of problems, from a simple Lorenz 63 model (Lorenz, 1963) to the numerical prediction of the atmosphere or the ocean.

On the other hand
✿✿

At
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿

time, this advantage may be seen as a limitation: the EnKF not necessarily takes advantage of the

particular set of equations of a problem e.g. the continuity of physical fields which leads to simplification not available in the45

usual matrix formulation of the EnKF equations. Moreover the ensemble method presents some drawbacks. For instance, since

the estimation often relies on a small ensemble, the statistical estimations are polluted by a spurious sampling noise which needs

to introduce
✿✿✿✿✿✿✿

requires
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

introduction
✿✿

of
✿

filtering (Berre et al., 2007) and localization (Houtekamer and Mitchell, 1998, 2001).

In air quality, it may be preferable to set them to zero
✿✿

to
✿✿✿✿

zero
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿✿

correlation, to avoid

polluting the resulting analysis state (Tang et al., 2011; Gaubert et al., 2014), except at the globe surface (Eben et al., 2005) or50

when the chemical species are strongly correlated (Miyazaki et al., 2012). Note that additionnal
✿✿✿✿✿✿✿✿

additional
✿

treatments can be

required as inflation of the variance so
✿✿

in
✿✿✿✿✿

order to represent effects of model errors (Anderson and Anderson, 1999; Whitaker

and Hamill, 2003). As another drawback, the numerical computation of the EnKF is costly since it relies on the several time

integrations of a numerical model, but most of time the integrations are made at a lower spatial resolutionand in parallel
✿✿✿✿✿

which

✿✿

are
✿✿✿✿✿

often
✿✿✿✿✿✿✿✿

computed
✿✿

in
✿✿✿✿✿✿✿

parallel
✿✿

at
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿

resolution.55

1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

https://atmosphere.copernicus.eu/cams-european-air-quality-ensemble-forecasts-welcomes-two-new-state-art-models,
✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿✿✿✿✿✿✿

CAMS2.40
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Recently, a new approximation of the KF has been introduced, the parametric Kalman filter (PKF), where the error covariance

matrices are approximated by a covariance model fitted with a set of parameters e.g. the grid-point variance and the local

anisotropy (Pannekoucke et al., 2016). In the PKF, the dynamics of the parameters are described all along the forecast and

analysis steps of the assimilation cycle (Pannekoucke, 2021). This approach does not rely on ensembles, and the dynamics of

the parameters is deduced from the partial differential equations that govern the physical system. Hence, the PKF opens the way60

to understanding the physics of uncertainties. However, the construction of the parameter dynamics is the most difficult part for

the design of the PKF. When the parameters are the variance and the local error-correlation anisotropy, a systematic formalism

for deducing PKF’s equations based on a Reynold decomposition
✿✿✿✿✿✿✿✿

Reynolds
✿✿✿✿✿✿✿✿✿✿✿✿

decomposition
✿✿✿

(or
✿✿✿✿✿✿✿✿

Reynolds
✿✿✿✿✿✿✿✿

averaging
✿✿✿✿✿✿✿✿✿

technique

✿✿✿

see
✿✿✿

e.g.
✿✿✿✿✿✿

Lesieur
✿

,
✿✿✿✿✿

chap.
✿✿

4) has been introduced associated with a Python package, SymPKF (Pannekoucke and Arbogast, 2021),

and leveraged
✿

is
✿✿✿✿✿

based
✿

on the Python computer algebra system Sympy (Meurer et al., 2017). But, modeling the physics of65

uncertainties often comes with closure problems. To alleviate this issue, an other
✿✿✿✿✿✿

another numerical framework, PDE-Netgen

has been introduced to be able to close problems using a deep learning approach (Pannekoucke and Fablet, 2020).

Applying the PKF approach for CTMs is attractive because the parametric dynamics is known for the transport equations

(Cohn, 1993; Pannekoucke et al., 2018), and this leads to a better understanding of the forecast-error covariance dynamics e.g.

a better understanding of the model-error covariance due to the numerical integration (Pannekoucke et al., 2021), and the loss70

of variance which appears in the EnKF (Ménard et al., 2021).
✿✿✿✿✿✿✿✿✿

Moreover,
✿✿

an
✿✿✿✿✿✿✿✿✿

application
✿✿✿

of
✿✿

the
✿✿✿✿✿

PKF
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿

recently
✿✿✿✿✿✿✿✿

proposed

✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

of
✿✿✿✿✿✿✿

GOSAT
✿✿✿✿✿✿✿

methane
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

hemispheric
✿✿✿✿✿✿✿

CMAQ
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Voshtani et al., 2022a, b)
✿

,
✿✿✿✿✿✿✿

showing
✿✿✿

the
✿✿✿✿✿✿✿✿

potential
✿✿

of

✿✿

the
✿✿✿✿✿

PKF
✿✿

in
✿✿✿✿✿

nearly
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿✿✿

where
✿✿✿✿

only
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿✿

variance
✿✿✿✿✿✿✿

evolved.
✿

While the PKF has been formulated for univariate statistics, a first attempt in multivariate statistics has been proposed, based

on the balance operator approach (Pannekoucke, 2021). However, applying such a balance operator is a challenge for chemical75

reactions where no simple relation exists as the geostrophic balance in weather forecasting. Hence, the aim of this contribution

is to explore how to extend the univariate PKF into a multivariate formulation adapted to CTMs. To do so, a multivariate

covariance model adapted to air quality prediction is first proposed and then it is validated from
✿✿

by
✿

a twin experiment based on

an EnKF using a large ensemble.

The paper is organized as follows. Section 2 reminds basic concepts in data assimilation with the formalism of the Kalman80

Filter and its parametric approximation in univariate statistics. Then, in Section 3, a simplified two species multivariate CTM

is introduced for which a multivariate parametric assimilation is first proposed then validated based on a comparison with

an ensemble approach. A six-species chemical scheme is considered in Section 4 to evaluate the PKF multivariate forecast

in a more complex context. A discussion of the results is proposed in Section ?? before to conclude
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

conclusions
✿✿✿

of
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

contribution
✿✿✿

are
✿✿✿✿✿

given in Section 5 .85

2 Background on the Parametric Kalman Filter

The parametric Kalman filter (PKF) is a recent implementation of the Kalman filter where the covariance matrices are approx-

imated by some covariance model. For the sake of consistency, this section first recaps the basics of the Kalman filter, then

3



it reminds the diagnosis of covariance matrix in large dimension and covariance models so to introduce the formalism of the

PKF in univariate statistics. The section ends with a numerical example of interest for air quality that illustrates the PKF.90

2.1 Analysis and forecast step in the Kalman filter

Here we consider a system whose state is denoted by X and governed by the evolution equation

∂tX =M(X ). (1)

Time integration from a time tq to a time tq+1 of the dynamics Eq. (1) defines the propagator Mtq+1←tq , that maps a state X (tq)

to the prediction of Eq. (1), X (tq+1) =Mtq+1←tqX (tq). In geophysics, X stands for the multivariate fields that represent the95

state of the ocean, the atmosphere or chemical species concentration for air quality. The dynamics M is then given by a system

of partial differential equations. After spatial discretization, M becomes a system of ordinary differential equations, and X is

a vector of dimension n.
✿✿✿✿✿✿✿✿✿

Thereafter,
✿✿

X
✿✿✿✿

can
✿✿

be
✿✿✿✿

seen
✿✿✿✿✿

either
✿✿

as
✿✿

a
✿✿✿✿✿✿✿✿

collection
✿✿✿

of
✿✿✿✿✿✿✿✿✿

continuous
✿✿✿✿✿

fields
✿✿✿✿

with
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿

given
✿✿✿

by Eq. (1)

✿✿

or
✿

a
✿✿✿✿✿✿✿

discrete
✿✿✿✿✿

vector
✿✿

of
✿✿✿✿✿✿✿✿✿

dynamics
✿✿✿

the
✿✿✿✿✿✿✿✿✿

discretized
✿✿✿✿✿✿

version
✿✿

of
✿

Eq. (1)
✿

.

Because of the spatio-temporal sparsity of the observations
✿✿✿✿✿✿✿✿✿✿✿

observations, as well as the error of modelling
✿✿✿✿✿✿✿✿✿

modeling,
✿✿✿✿✿✿✿✿

prediction100

✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

measurement
✿✿✿✿✿

errors, the exact true
✿✿✿✿✿

actual
✿

state at a time t= tq , X t
q , is unknown.

Data assimilation aims to provide the analysis state, X a
q , that is an estimation of X t

q performed from the observations and

estimation of X t
q coming from the past

✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿

state. The analysis state is decomposed into X a
q = X t

q + εaq where εaq is

the analysis error, which is modeled as a random error of zero mean and covariance matrix Pa
q = E

(
εaq (ε

a
q )

T
)
, with E (or its

shorthand ·) the expectation operator, and T the transpose operator. This analysis state Xa
q ✿✿✿

X a
q can be obtained by combining105

the forecast state X f
q and the observations Yobs

q . Similarly, to the analysis state, the forecast and the observations can be

written as X f
q =Xt

q + εfq ✿✿✿✿✿✿✿✿✿✿✿✿

X f
q = X t

q + εfq and Yobs
q = Y t

q + εobsq introducing the forecast (the observation) error εfq (εobsq ), both

modelled as random errors of zero mean and covariance matrices Pf
q = E

(
εfq (ε

f
q )

T
)

and Rq = E
(
εobsq (εobsq )T

)
respectively.

In the case where the dynamic of X t is assumed linear, replacing M by its matrix version M in Eq. (1); and when the errors

are Gaussianand ,
✿

uncorrelated in time
✿✿

and
✿✿✿✿

that
✿✿✿✿✿

errors
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿

and
✿✿✿✿✿✿✿

forecast
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

independent, the Kalman filter’s110

equations (KF) describe the evolution of the uncertainty over time (Kalman, 1960).

The process of estimating the analysis state from a forecast and some observations is called the analysis step. The forecast

error covariance matrix denoted by Pf
q and the observation error covariance matrix Rq associated respectively with X f

q and

Yobs
q , are used to produce the optimal estimation (analysis) X a

q of X t
q , and the associated analysis-error covariance matrix Pa

q .

The equations of this procedure are:115

X a
q = X f

q +Kq

(
Yobs
q −HqX f

q

)
, (2a)

Pa
q = (In −KqHq)P

f
q , (2b)

where Kq =Pf
qH

T
q

(
HqP

f
qH

T
q +Rq

)−1
is the Kalman gain matrix with Hq the linear observation operator that maps the

state vector into the observation space; Pa
q is the analysis error covariance matrix ; and In the identity matrix in dimension n.

4



Next, the forecast step pushes the uncertainty forward in time. The analysis state Xa
q ✿✿✿

X a
q is propagated using the linear120

dynamics M , so to obtain the forecast X f
q+1 at time tq+1 leading to an estimation of the true state system X t(tq+1). The

Gaussian error statistics for this forecast are given by the Kalman filter forecast step

X f
q+1 =Mq+1←qX a

q , , (3a)

P
f
q+1 =Mq+1←qP

a
q (Mq+1←q)

T
+Qq, (3b)

where Qq is the model error covariance matrix. Thereafter, no model error is considered i.e. Q is zero.125

While the Kalman filter formalism is based on simple vector algebra equations, it is not easy to understand the statistical

content of the error covariances, which would require representing each covariance function and exploring their temporal

evolution. Fortunately, simple diagnosis can be introduced to summarize the statistical relationship between points in the

geographic domain. In turn, these diagnostics can be used as parameters of covariance models, as detailed now.

2.2 Diagnosis and modelling of covariance matrix in large dimension130

In data assimilation, two diagnosis
✿✿✿✿✿✿✿✿

diagnoses
✿

for the error covariance matrices are often introduced: the variance field, and the

anisotropy of the correlation functions which corresponds to the principal axes of the spatial correlation. These diagnosis are

recalled here for the
✿✿✿✿✿✿✿

diagnoses
✿✿✿

are
✿✿✿✿✿

used
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

description
✿✿

of
✿✿✿

the forecast-error covariance matrix.

The forecast error variance field, V f , is defined by V f (x) = E
(
(εf (x))2

)
where x denotes the coordinate of a grid point.

The variance field also corresponds to the diagonal of Pf . The field of variance characterizes the magnitude of the error at a135

given position.

When the forecast-error is a differential random field, the anisotropy of the correlation is characterized by the so-called local

forecast-error metric tensor gf (x) , that appears in the Taylor expansion of the correlation function (Daley, 1991)

ρf (x,x+ δx)≈ 1− 1

2
||δx||2gf (x)., (4)

✿✿✿✿✿

where
✿✿✿✿✿

|| · ||g
✿✿✿✿✿

stands
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Euclidean
✿✿✿✿

norm
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿

with
✿

a
✿✿✿✿✿✿

metric
✿✿

g
✿✿✿

and
✿✿✿✿✿✿

defined
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿

||x||2g = xTgx The local metric tensor140

gf (x) is a symmetric positive-definite matrix that prevents the correlation value from being larger than one.
✿✿✿✿✿

There
✿✿

is
✿✿✿

one
✿✿✿✿✿

local

✿✿✿✿✿

metric
✿✿✿✿✿

tensor
✿✿

at
✿✿✿✿

each
✿✿✿✿

grid
✿✿✿✿✿✿✿

location
✿✿

x. The metric tensor is related to the statistics of the random field εf according to the formula

(Berre et al., 2007):

g
f
ij(x) = E

[
∂xi

(
εf

σf

)
∂xj

(
εf

σf

)]
(x), (5)

where σf =
√
V f is the forecast-error standard deviation

✿

,
✿✿✿

and
✿✿✿✿✿✿

where
✿✿✿✿

xi’s
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿✿✿✿

functions
✿✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿

with
✿✿✿

the145

✿✿✿✿✿✿✿✿

coordinate
✿✿✿✿✿✿

system
✿✿

x.

In practice, the direction of the largest correlation anisotropy corresponds to the principal axe of the smallest eigenvalue for

the metric tensor: the metric tensor is contravariant. It it thus useful to introduce the local aspect tensor (Purser et al., 2003)

whose geometry goes as the correlation, and is defined as the inverse of the metric tensor:

sf (x) =
(
gf (x)

)−1
, (6)150
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where the superscript −1 denotes the matrix inverse.
✿✿✿✿

Note
✿✿✿

that
✿✿

in
✿

a
✿✿✿

1D
✿✿✿✿✿✿✿

domain,
✿✿✿

the
✿✿✿✿✿✿

square
✿✿✿✿

root
✿✿

of
✿

s
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿

to
✿✿

a
✿✿✿✿✿✿

length,

✿✿✿✿✿✿

leading
✿✿

to
✿✿✿

the
✿✿

so
✿✿✿✿✿

called
✿✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿✿

l =
√
s
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿

often
✿✿✿✿✿✿✿✿✿

introduced
✿✿

in
✿✿✿✿✿✿✿✿✿

diagnoses.

One of the motivations behind the diagnosis of the variance and the local anisotropy tensor is that they can be used as

parameters of covariance models, the VLATcov models (Pannekoucke, 2021). For instance,
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿

model
✿✿✿✿✿

based
✿✿✿

on

✿

a
✿✿✿✿✿✿✿✿

diffusion
✿✿✿✿✿✿✿

equation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Weaver and Courtier, 2001)
✿

, the anisotropy tensor has been used as a proxy for setting the heterogeneous155

diffusion tensor field of the covariance model based on a heterogeneous diffusion equation (Pannekoucke and Massart, 2008;

Mirouze and Weaver, 2010). The covariance model based on a heterogeneous diffusion equation is an example of covariance

model used in variational data assimilation and introduced to build heterogeneous covariance model, that is a covariance

model for which the
✿✿✿

This
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

model
✿✿

is
✿✿✿✿

used
✿✿

in
✿✿✿✿✿✿✿

variation
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

to
✿✿✿✿✿✿✿

generate
✿✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿✿✿✿✿✿✿

covariances
✿✿✿✿✿✿

where

correlation functions vary from one geographical point to another
✿✿✿✿✿✿

between
✿✿✿✿

grid
✿✿✿✿✿

points. While there is no analytical expression160

for the covariance functions based on the diffusion operator, analytical heterogeneous VLATcov models exist, for instance the

heterogeneous Gaussian-like covariance model

Phe.gauss(V,s)(x,y) =
√
VxVy

|sx|1/4|sy|1/4
| 12 (sx + sy)|1/2

√
V (x)V (y)

|s(x)|1/4|s(y)|1/4
| 12 (s(x)+ s(y))|1/2

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

exp

(
−1

2
||x−y||2[ 1

2
(sx+sy)]−1 [ 1

2
(s(x)+s(y))]−1

✿✿✿✿✿✿✿✿✿✿✿✿

)
,

(7)

with | · | denoting the matrix determinant (Paciorek and Schervish, 2006).165

Heterogeneous covariance models are important because they provide a way to produce non obvious
✿✿✿✿✿✿✿✿✿✿

non-obvious correlation

functions from a set a
✿

of
✿

parameters. Hence, approximating a covariance matrix, as the forecast-error covariance at a given

time, by a covariance model leads to sum up the statistical content into
✿

is
✿✿✿✿✿✿✿

reduced
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

knowledge
✿✿

of
✿

a set of parameters. The

parameteric Kalman filter takes advantage of this kind of approximation so to reproduce the Kalman filter dynamics as now

explained.170

2.3 Formalism of the parametric Kalman filter

A covariance model is first considered, P(P), where P denotes a set of parameters. For instance, when the PKF is designed

from a VLATcov models, the set of parameters P is given by the field of variance and of the local anisotropic tensors i.e.

P = (V,s) or P = (V,g).

To describe the sequential evolution of error covariance matrices along the assimilation cycles we assume that the fore-175

cast error-covariance matrix at a time tq , Pf
q , is approximated by the covariance model, P(Pf

q ), where Pf
q denotes a set of

parameters so that P(Pf
q )≈Pf

q .

At an abstract level, the parametric Kalman filter consists of the following sequential steps (Pannekoucke, 2021). The PKF

analysis step, equivalent to Eq. (2), consists to determine the analysis state X a
q and the parameters Pa

q from X f
q , Pf

q and

the observations. The sketch of
✿✿

In
✿✿✿✿✿✿✿✿

practice, this step consists in a sequential processing of observations, similar to the one180

often encountered in EnKF (Houtekamer and Mitchell, 2001), that is a sequential assimilation of single observations based on

Eq. (2a) for the mean accompanied with an update of the covariance parameters so that, at the end of the analysis step, P(Pa
q )
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approximates the analysis error covariance of the Kalman filter Eq. (2b) i.e. P(Pa
q )≈Pa

q . Note that this sequential assimilation

of observations can be performed in parallel as for the EnKF, with the difference that the EnKF often assimilates a batch of

observations in place of a single observation. Of course, for the PKF this step only relies on the update of the parameters, with185

no ensemble. For instance, when considering a VLATcov model P(V,g)
✿✿✿✿✿✿

P(V,s), the PKF analysis of a single observation at

position xl, of value yo and observation-error variance V o
✿✿✿✿✿

V o(xl), writes (at time tq)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pannekoucke, 2021)

X a(x) = X f (x)+σf (x)ρfxl
(x)

σf (xl)

V f (xl)+V o

σf (xl)

V f (xl)+V o(xl)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(yo −X f (xl)), (8a)

V a(x) = V f (x)


1− [ρfxl

(x)]2
V f (xl)

V f (xl)+V o

V f (xl)

V f (xl)+V o(xl)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿


 , (8b)

gsa(x)≈ V f (x)

V a(x)
g
V a(x)

V f (x)
s

✿✿✿✿✿✿

f (x), (8c)190

where the function ρfxl
(x) = ρ(gf )(xl,x)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ρfxl
(x) = ρ(sf )(xl,x)

✿

is the correlation function
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿

location

✿✿✿

and
✿✿✿✿

each
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

gridpoint
✿✿✿

x, associated with the covariance matrix P(V f ,gf )
✿✿✿✿✿✿✿✿✿

P(V f ,sf ) ; σf =
√
V f is the field of forecast-

error standard deviation ; and where Eq. (8c) is the leading order approximation of the anisotropy update
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pannekoucke, 2021)

.

Then, the forecast step of the PKF, equivalent to Eq. (3), consists of finding the dynamics of the parameters so
✿✿

in
✿✿✿✿✿

order to195

predict Pf
q+1 from Pa

q , so that P(Pf
q+1) approximates the forecast-error covariance matrix of the Kalman filter i.e. P(Pf

q+1)≈
P

f
q+1. The equation for the mean is the Eq. (3a) of the KF.

To put some flesh on the bone, an
✿✿

An
✿

illustration of the PKF is now proposed for an univariate advection problem, with a

focus on the forecast step. This introduction of an intermediate problem aims to give the reader a good understanding of the

PKF, its advantages and difficulties, which will be necessary to address the more complex problem encountered in multivariate200

CTM.

2.4 Advection of a passive tracer with the PKF

For a one-dimensional (1D) and periodic domain, of coordinate x, the conservative advection of a tracer, X (t,x), by a stationary

heterogeneous wind field u(x), can be described by the partial differential dynamics

∂tX + ∂x(uX ) = 0, (9a)205

or equivalently by

∂tX +u∂xX =−X∂xu. (9b)

The forecast step of the PKF is illustrated for the conservative dynamics where the covariance matrices are approximated by

a VLATcov model. In what follows, the PKF dynamics for the variance and the anisotropy is first presented. Then, a numerical

test-bed shows the ability of the PKF to predict the uncertainty dynamics, the latter being estimated from an ensemble method210

7



introduced to provide a reference. This example ends by highlighting some of the limitations of the numerical validation of the

PKF from an ensemble method in presence of model error.

2.4.1 Formulation of the forecast step of PKF

In this 1D univariate context based on VLATcov model, the PKF dynamics for the forecast step is composed of three equations:

one for the mean state X , and two for the parameters of the VLATcov model, that is the variance field V (t,x) and the anisotropy215

field s(t,x). Note that in 1D domain, the anisotropy is a scalar.

To obtain the dynamics of PKF’s parameters, we proceed using a Reynold’s decomposition. A Reynold’s decomposition

consists in rewriting a random field X as a mean field plus a perturbation, that is X = X + ε with ε= 0. Then, by using the

definition of the variance field Vx = ε2x, and plugging it into the problem equation , one can obtain its dynamics. An equivalent

process leads to the dynamics of the metric tensor gx and of the aspect tensor sx, but its hand computation requires long220

expressions that can be difficult to handle. To facilitate the
✿✿✿

The
✿

computation of the VLATcov PKF dynamics , a computer

algebra tool, the Python package SymPKF (Pannekoucke and Arbogast, 2021), has been specifically design to derive the PKF

system dynamics. Note that a splitting strategy can be introduced so to simplify the computation of the full PKF dynamics

(Pannekoucke and Arbogast, 2021). For nonlinear dynamics, SymPKF compute the PKF dynamics from the tangent-linear

evolution.225

Leveraging on SymPKF , the PKF system for the advection
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿

performed
✿✿✿✿

from
✿✿✿✿✿

using
✿✿✿✿✿✿✿

SymPKF
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Pannekoucke and Arbog

✿

,
✿✿✿

and reads as

∂tX +u∂xX =−X∂xu, (10a)

∂tV +u∂xV =−2V ∂xu, (10b)

∂ts+u∂xs= 2s∂xu. (10c)230

where the overline of
✿✿✿

here
✿✿

X
✿✿✿✿✿✿

stands
✿✿✿

for the mean state X has been dropped
✿✿✿

and
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿✿

upper-script
✿✿✿✿

(·)f
✿✿✿

has

✿✿✿✿

been
✿✿✿✿✿✿✿

removed
✿✿✿

for
✿✿

V
✿✿✿

and
✿✿

s for the sake of simplicity. Note that the PKF system Eq. (10), which is decoupled, corresponds to the

true uncertainty dynamics for the advection problem (Cohn, 1993; Pannekoucke et al., 2016, 2018). This is not true in general

where closure issue can appear e.g. for a diffusion equation, because of the second-order derivative, an unknown term appears

in the dynamics of the metric and has to be closed (Pannekoucke et al., 2018).235

A numerical experiment is now conducted to evaluate the PKF ability to forecast the error statistics
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿✿

following,
✿✿

a

✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

test-bed
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿

ability
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

PKF
✿✿

to
✿✿✿✿✿✿

predict
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿

a
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿✿✿

estimation
✿✿✿✿✿✿✿✿

(EnKF).
✿✿✿✿

This
✿✿✿✿✿✿✿

example
✿✿✿✿✿

ends
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿

highlighting
✿✿✿✿✿

some
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

limitations
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿

validation
✿✿

of
✿✿✿✿

the
✿✿✿✿

PKF
✿✿✿

by

✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

method
✿✿

in
✿✿✿✿✿✿✿✿

presence
✿✿

of
✿✿✿✿✿✿

model
✿✿✿✿

error.
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2.4.1 Numerical validation of the PKF240

The numerical experiment studies of the time propagation of an uncertainty at time t= 0, featured by a mean state X 0 and

an error covariance P0, to an arbitrary time T . Here, the initial error covariance is defined as the covariance P0 =P(V 0, s0),

where P(V,s) is the VLATcov model based on the heterogeneous Gaussian like model Eq. (7), for (V 0, s0) given.

To assess the PKF ability to forecast the error statistics, we compare its results with diagnoses obtained from the forecast

of a large ensemble, {X f
k }1≤k≤Ne

, of size Ne = 6400, which implies a relative error of 1.25%, according to the central limit245

theorem. At t= 0, the ensemble is populated for each k as X f
k (0) = X 0+P

1/2
0 ζk, where P

1/2
0 is the square-root of the initial

covariance matrix P0, and ζk a Gaussian sample with zero mean and covariance matrix In where n is the dimension of the

vector X i.e. ζk ∼N (0,In). Then, each member X f
k is computed from the time integration of Eq. (9b) starting from X f

k (0).

Note that, for the linear dynamics Eq. (9a), the full computation of the KF covariance prediction could have been considered, but

the ensemble approximation has been preferred since it introduces the methodology adapted to the nonlinear setting explored250

for the multivariate situation in Section 3.

Hence, from the ensemble, the variance at a given time is then estimated from its unbiased estimator

V̂ f (x) =
1

Ne − 1

Ne∑

k=1

(
εk

f
✿

)2
, (11)

with εk = X f
k (x)−X̂ f (x)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

εfk = X f
k (x)−X̂ f (x)

✿

and where X̂ f = 1
Ne

∑Ne

k=1X
f
k is the empirical mean. The metric tensor,

defined from Eq. (5), is estimated by255

ĝf (x) =
1

Ne

Ne∑

k=1

(∂xε̃
f
k(x))

2, (12)

where ε̃fk = 1√
V̂ f

(X f
k −X̂ f ) is the normalized error,

✿✿✿✿

and
✿

is
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿✿

computed
✿✿

the
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿

aspect
✿✿✿✿✿✿

tensor
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ŝf (x) = 1/ĝf (x)

✿✿✿

and
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

l̂f (x) = 1/

√
ĝf (x) =

√
ŝf (x).

The numerical framework used to forecast both the ensemble and the PKF system is now described. The periodic domain

is [0,D) with D = 1000km. It is regularly discretized with Nx = 241 grid points, which corresponds to a meshsize ∆x of260

size 4.15km. The dynamics Eq. (9b) and Eq. (10) are discretized with a finite difference method, where spatial derivatives are

approximated using a centred scheme of order 2. The time integration is done using a fourth-order Runge-Kutta (RK4) scheme

of time step ∆t verifying the Courant-Friedrichs-Lewy condition (CFL) (Weisstein, 2002) ∆t=∆x/Umax, where Umax is

the maximum wind speed magnitude of u.

For this experiment, the mean state X , the variance field V and the aspect-tensor field s are initialized homogeneously with265

values X 0 = 1, V 0 = (σ0)2 where σ0 = 0.1, and s0 = (l0h)
2 where l0h = 15∆x≃ 62.2km. This initial setting also corresponds

to the initial state of the PKF dynamics Eq. (10). In regards of the domain chosen, this setting for the length-scale is in agreement

with practical estimations often encountered (Ménard et al., 2016). The wind field considered, shown in Fig. 1, is defined by

u(x) = (35+15cos(2πx))/D, and modelizes a wind of average intensity 35kmh−1 and of max speed Umax = 50kmh−1. The

9



Figure 1. Wind
✿✿✿✿✿✿✿

Predefined
✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿

and
✿✿✿✿✿✿✿✿

stationary
✿✿✿✿

wind field u
✿✿✿✿

u(x)
✿✿✿

used
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

transport
✿✿✿✿✿✿✿✿✿

simulations.

characteristic time τadv is defined by τadv = 1/u≃ 28.5h
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

τadv =D/u≃ 28.5h, and approximately corresponds to the time of270

a revolution of the tracer around the periodic domain. The simulation time horizon T = tend is set to tend = 3τadv .

Figure 2. Comparison of the (low resolution)
✿

forecasts (Nx = 241)
✿✿

of
✿✿

the
✿✿✿✿✿

mean
✿✿✿

state
✿✿✿✿✿

(panel
✿✿

a),
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

standard-deviation
✿✿✿✿✿✿✿

σ =
√
V

✿✿✿✿

(panel
✿✿✿

b)
✿✿✿

and
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿✿✿✿✿✿✿✿

l = 1/
√
g =
√
s
✿✿✿✿✿

(panel
✿✿✿

c),
✿✿✿✿✿

shown
✿

at times t= [0.6,1.2,1.8,2.4,3.0]τadv ,
✿✿✿✿✿✿✿✿

computed from the

PKF (red lines)
✿✿

and
✿✿✿✿✿✿✿✿

compared
✿

with the diagnoses on the
✿

an
✿

ensemble forecast
✿

of
✿✿✿✿✿✿✿✿✿

Ne = 6400
✿✿✿✿✿✿✿

forecasts (cyan dash-dotted lines). The more

transparent the curve, the closer it is to t= 0. The horizontal grey lines represent the initial conditions.

The general behaviour of the error statistics regardless of the method employed is first addressed, then the performances of

the PKF and EnKF are compared.

The experiment shows

✿✿✿

The
✿✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿✿✿✿

shows,
✿✿✿

Fig
✿✿✿

2, that the tracer tends to concentrate in the deceleration zones (see Fig. 1275

from x= 0 to x= 0.5), and to dilute in the acceleration zones (from x= 0.5 to x= 1.0)
✿✿✿

(Fig
✿✿✿✿

2(a)
✿

). This observation also

applies to the standard-deviation field (panel
✿✿✿

Fig
✿✿

2(b), as it is governed by the same dynamic as the tracer’s concentration

(it is straightforward to calculate the dynamics of σ using the dynamics of the variance Eq. (10b)). On panel
✿✿

Fig
✿✿

2(c), the

length-scales (1D equivalent of the anisotropy) are subject to two processes: a pure transport term, (l.h.s. of Eq. (10c)), and a

10



production term related to the wind sheer (r.h.s. of Eq. (10c)). This production term is positive (negative) when the wind field280

is accelerating (decelerating), indicating an increase (decrease) of the length-scales in the accelerating (decelerating) wind

regions. In contrary to the concentrations and standard-deviation fields (governed by a conservative transport), the average

value of the length-scales varies in time, however numerical experiments (not shown here) have shown that it oscillates around

the initial value.

Regarding the performances of the two methods, the PKF forecast results for the error statistics are quite similar to the one285

diagnosed from the ensemble i.e. the EnKF for this test-bed. The forecasts of the concentrations (panel
✿✿

Fig
✿✿✿

2(a) are identical

for both methods. Although the dynamics for the variance Eq. (10b) and the anisotropy Eq. (10c) are exact in the PKF system, a

significant difference is observed between the forecasts of the two methods (panels band c
✿✿✿

Fig
✿✿✿

2(b)
✿✿✿✿

and
✿✿✿

Fig
✿✿✿

2(c)
✿

). We justify this

gap in the next paragraph
✿✿✿

Sec.
✿

2.4.2. This numerical experiment shows that the PKF is able to produce high quality forecasts

of the diagnoses of the forecast-error statistics, a result that is confirmed by looking at the forecast-error correlation functions.290

Figure 3. Correlation functions at location xl = 0.5 and times t= [0.0,0.6,1.2,1.8,2.4,3.0]τadv , computed with PKF correlation model

fitted with low resolution (Nx = 241) PKF forecast for error statistics (red lines) and diagnosed on the low-resolution (Nx = 241) ensemble

(cyan dash-dotted lines) and high resolution (Nx = 723) ensemble (blue dashed lines),
✿✿

of
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

size
✿✿✿✿✿✿✿✿✿

Ne = 6400.

Figure
✿

3 compares the correlation functions at position xl = 0.5, estimated from the ensemble for the EnKF (dash-dotted

cyan lines) and modeled from the predicted parameters for the PKF (solid red lines) when using Eq. (7), at different times. At

a qualitative level, the PKF is able to approximate the correlation functions, the latter being only known to within a sampling

11



noise because of the ensemble estimation which is assumed low due to the ensemble size. In particular, the PKF is able to

reproduce the large (the small) spread of the symmetric correlations present in panel
✿✿✿

Fig.
✿

3(a) (panel b)
✿✿✿

Fig.
✿✿✿✿

3(b)
✿✿

). But the295

PKF is also able to represent the anisotropy of the correlations as the one shown e.g. in panel
✿✿✿

Fig.
✿✿

3(e) where the correlation

function at that time appears broader on its right part (corresponding to x larger than xl) than on its left part (corresponding to

x smaller than xl).

This example shows the motivation behind the PKF: it is able to predict the covariance error
✿✿✿✿

(main
✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

of
✿✿✿

the)
✿✿✿✿✿

error

✿✿✿✿✿✿✿✿✿

covariance with a good skill and at a low numerical cost. This low numerical cost first concerns the computer memory: the300

information contained in a covariance matrix of size O(N2
x) in the ensemble case, is resumed

✿✿✿✿✿✿

reduced by the covariance model

Eq. (7) which only needs a few parameters of size of order O(Nx) (with O being the Big O notation, meaning "proportional

to"). But the low numerical cost concerns also the time consumed to predict the uncertainty: the PKF only relies on the single

time integration of Eq. (10), that represents the cost of 3 time integrations of the initial dynamics Eq. (9b), compared to the

6400 time integrations required for the ensemble used here.305

As another advantage, the PKF provides informations about the physics of the uncertainty: when ensemble diagnosis only

observes the time evolution of the statistics without any explications, the PKF provides a simplified proxy that details the origin

of these statistical evolutions with only three equations and by thus the PKF improves our knowledge of uncertainty dynamics.

Next, we would like to warn the reader about the

2.4.2
✿✿✿✿✿✿

Limits
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿

validation
✿✿

of
✿✿✿

the
✿✿✿✿✿

PKF
✿✿

in
✿✿✿✿✿✿✿✿

presence
✿✿

of
✿✿✿✿✿✿

model
✿✿✿✿✿

error310

✿✿✿

The
✿

exploration of the uncertainty dynamics from numerical experiments, as made here to validate the PKF from an ensemble

method, that faces some limits.

2.4.3 Limits of the numerical validation of the PKF in presence of model error

Figure
✿✿✿✿✿

Figure
✿

2 has shown a gap between the PKF and EnKF regarding the forecast of the error statistics (standard deviation

and
✿✿✿

Fig
✿✿✿✿

2(b)
✿✿✿

and
✿

length-scales , panels band c
✿✿

Fig
✿✿✿✿

2(c) ). We now justify this observation, relating it to a model error.315

As the problem is discretized for numerical simulations, the actual equation that is simulated is not exactly Eq. (9a), but

rather an implicit modified equation induced by the use of finite differences for the spatial and the temporal discretisation.

Focusing on the spatial discretization, the modified equation writes

∂tX =−u∂xX −X∂xu−
∆x2

6
u∂3

xX − ∆x2

6
X∂3

xu+O(∆x3), (13)

which shows additional dispersive terms not present in the initial dynamics (Eq. 9a). Note that Eq. (13) is not the full modified320

equation of the discretized model, in particular it does not represent the effect of the RK4 time scheme, but the error associated

to fourth-order time scheme should be negligible compared with the spatial numerical error (second-order). Hence, Eq. (13)

should be close to the true modified equation, and the presence of additional processes may explain the significant differences

observed in Fig. 2-(b) and (c): the dispersive term −∆x2

6 u∂3
xX contributes to reduce the speed of the transport to a value lower

than u, while the term −∆x2

6 X∂3
xu implies a local exponential growing (damping) of X (t,x) where ∂3

xu is negative (positive).325
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This exponential evolution only contributes to the magnitude of the forecast-error i.e. it modifies the variance field but it has

no influence on the length-scale (Pannekoucke et al., 2018). At the opposite, the dispersive term influences both the variance

and the length-scale as it can be observed in Fig. 2-(c): the EnKF curves appear slightly late behind the PKF ones (the wind

transports the curves toward the right), presenting a negative shift in the amplitude.

Since the magnitude of the dispersive term scale as O(∆x2), a simulation at high resolution could damp this term and would330

lead to attribute the gap observed in Fig. 2 to the model error . Note that only the error statistics are significantly affected

by the numerical model error,
✿✿✿

The
✿✿✿✿✿✿

reason
✿✿

is
✿✿✿✿

that
✿

Eq. (13)
✿✿✿✿✿

being
✿✿✿✿✿

linear,
✿✿

it
✿✿✿✿

also
✿✿✿✿✿✿✿

governs
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿

field,
✿✿✿

as
✿✿✿

the
✿✿✿✿

one
✿✿✿✿✿✿✿✿

predicted

✿✿

by
✿✿✿

the
✿✿✿✿✿✿

EnKF,
✿✿✿

and
✿✿✿

for
✿✿✿✿✿✿

which
✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dispersion
✿✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿

intense
✿✿

as
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿

is
✿✿✿✿✿

short.
✿✿✿

In

✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

simulation,
✿✿✿

the
✿✿✿✿✿✿

spatial
✿✿✿✿

scale
✿✿✿

of
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿

state
✿✿

is
✿✿✿✿✿

large
✿✿✿

(of
✿✿✿

the
✿✿✿✿✿

order
✿✿

of
✿✿✿✿

D),
✿✿

so
✿✿✿

the
✿✿✿✿✿✿

effect
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dispersion
✿✿

is
✿✿✿✿✿

much
✿✿✿✿

less

✿✿✿✿✿✿

intense
✿✿✿✿

than
✿✿✿

for
✿✿✿

the
✿✿✿✿✿

errors
✿✿✿✿✿✿

whose
✿✿✿✿✿✿

typical
✿✿✿✿✿✿

spatial
✿✿✿✿

scale
✿✿✿

of
✿✿✿✿✿✿✿✿✿

oscillations
✿✿

is
✿✿

lh
✿✿✿

(of
✿✿✿✿✿

order
✿✿✿✿✿✿✿

D/10).
✿✿✿✿

This
✿✿✿✿✿✿✿

justifies
✿✿✿✿

why
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dispersion335

✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿

affect
✿✿✿

the
✿✿✿✿✿✿✿✿✿

prediction
✿✿

of
✿✿✿

the
✿✿✿✿✿

mean
✿✿✿✿

state
✿✿

– the estimation for the means coinciding for the two methods on Fig. 2-(a) .

Therefore, as with the PKF the numerical forecast of any error statistic is treated equivalently as a state vector forecast, that

is a direct time-integration, this
✿

–,
✿✿✿✿✿

while
✿✿

it
✿✿✿✿

acts
✿✿

on
✿✿✿

the
✿✿✿✿✿

EnKF
✿✿✿✿✿✿✿✿✿✿

predictions
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿✿✿✿

and
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

length-scale,
✿✿✿✿✿✿

related
✿✿

to
✿✿✿

the

✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

dynamics.
✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

simulation,
✿✿✿

the
✿✿✿✿

PKF
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿

influenced
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dispersion
✿✿✿✿✿✿✿

because
✿✿✿

the
✿✿✿✿✿

spatial
✿✿✿✿✿

scale
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿✿✿✿

and
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

length-scale
✿

is
✿✿✿✿✿

large
✿✿✿✿✿

(order
✿✿

of
✿✿✿✿

D).
✿✿✿✿

This points out the sensitivity of the EnKF to numerical model error.340

✿✿✿✿

Since
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

magnitude
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dispersive
✿✿✿✿

term
✿✿✿✿✿✿

scales
✿✿

as
✿✿✿✿✿✿✿✿

O(∆x2),
✿✿

a
✿✿✿✿✿✿✿✿✿

simulation
✿✿

at
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿✿✿

could
✿✿✿✿✿

damp
✿✿✿✿

this
✿✿✿✿

term
✿✿✿✿

and

✿✿✿✿✿

would
✿✿✿✿

lead
✿✿

to
✿✿✿✿✿✿✿✿✿

attributing
✿✿✿

the
✿✿✿

gap
✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿

Fig.
✿✿

2
✿✿

to
✿✿✿

the
✿✿✿✿✿

model
✿✿✿✿✿

error.
✿

Figure 4. Same experiment as Fig. 2, except the EnKF forecast has been simulated using a higher grid definition (Nx = 723) to reduce

numerical model error.

Thus,
✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

demonstrated
✿✿✿

by
✿✿✿✿✿✿✿✿✿

comparing
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿

statistics
✿✿

to
✿

a high resolution forecast of the EnKF is now performed, with

a grid of three times the original resolution i.e. Nx = 3×241 = 723 grid points. To be consistent with the initial low resolution

experiment, the initial length-scale of the high resolution is set to l0h = 3× 15∆x= 45∆x≃ 62.2km. The time step has been345

adapted in consequence to match the CFL condition. The results of this new simulation, in Fig. 4, show that predicting the

ensemble at high resolution leads to the same variance
✿✿✿✿

(Fig.
✿✿✿✿

4(b)
✿

)
✿

and length-scale
✿✿✿✿

(Fig.
✿✿✿✿

4(c)
✿

)
✿

fields as the ones predicted

by the PKF, while the latter is computed at low resolution.
✿

A
✿✿✿✿✿

PKF
✿✿

at
✿✿✿✿

high
✿✿✿✿✿✿✿✿✿

resolution
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿

computed
✿✿✿✿

(not
✿✿✿✿✿✿

shown
✿✿✿✿✿

here)

✿✿✿

and
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿

found
✿✿✿✿✿✿✿✿

equivalent
✿✿✿

to
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿

computed
✿✿

at
✿✿✿✿

low
✿✿✿✿✿✿✿✿✿

resolution,
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿

relative
✿✿✿✿

error
✿✿

at
✿✿✿

the
✿✿✿✿

end
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿✿

window
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✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿✿

0.2%
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

mean,
✿✿✿✿✿

0.3%
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

standard-deviation,
✿✿✿

and
✿✿✿✿✿✿

0.05%
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

length-scale
✿

;
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

relative
✿✿✿✿

error
✿✿✿

of350

✿✿✿✿

fields
✿✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

computed
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

||PKFLR −PKFHR||/||PKFHR||,
✿✿✿✿

with
✿✿✿✿

|| · ||
✿✿✿

the
✿✿✿

L2
✿✿✿✿✿✿

norm. This demonstrates the quality of

the forecasted error statistics for the PKF, even at a low resolution. Figure 3 also shows the correlation functions (blue dashed

lines) computed from the high resolution EnKF forecast. The correlation functions represented are in better accordance with

the PKF modelled correlation functions than for the low resolution ensemble forecast(cyan dash-dottes lines), see e.g. panels

✿✿✿

Fig.
✿✿

3(d) to
✿✿✿

Fig.
✿

3(f). This shows that the PKF is little subject to numerical model error as the error statistics forecasts directly355

results from their time-integration.

Hence, this numerical exploration of the PKF, applied to the conservative dynamics, has
✿✿✿✿✿✿✿✿✿

Compared
✿✿

to
✿✿✿✿✿✿✿

previous
✿✿✿✿✿✿

studies
✿✿✿✿

that

✿✿✿✿✿✿

focused
✿✿✿✿

only
✿✿✿

on
✿✿

the
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

of
✿✿✿✿✿✿✿

variance
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

anisotropy
✿✿✿✿

error
✿✿✿✿✿✿✿✿

statistics,
✿✿✿

here
✿✿✿

we
✿✿✿✿

have
✿

shown the ability of the PKF to provide

an accurate prediction of univariate error statistics.
✿

to
✿✿✿✿✿✿✿✿✿

reproduce
✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

functions
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿

PKF

✿✿✿✿✿✿✿✿✿

formulation
✿✿

in
✿✿✿

1D
✿✿✿✿✿✿✿

domain.
✿

360

3
✿✿✿✿✿✿✿

Toward
✿

a
✿✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

of
✿✿✿

the
✿✿✿✿✿

PKF

The exploration of the multivariate extension is now addressed.

4 Toward a multivariate formulation of the PKF

For multivariate problems, a modelization of the cross-correlation functions (or inter-species correlation functions) is needed.

Moreover, it would be convenient to introduce a multivariate covariance model that extends the univariate VLATcov model, as365

the heterogeneous Gaussian model (Eq. 7), so to leverage on
✿

to
✿✿✿✿

take
✿✿✿✿✿✿✿✿✿

advantage
✿✿

of
✿

the PKF dynamics of univariate statistics.

Because multivariate modelling is a difficult topic, a
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

model
✿✿

is
✿✿✿✿✿✿✿✿

proposed
✿✿

in
✿✿

a
✿

simplified test-bed

dynamics is first introduced in Section 3.1.1. Then,
✿✿✿

3.1,
✿✿✿✿✿✿

where
✿

a
✿✿✿✿✿✿✿✿✿✿

data-driven
✿✿✿✿✿✿✿✿

modeling
✿✿

is
✿✿✿✿✿✿✿✿✿✿

considered to determine a multi-

variate covariance model and its parameters, a data-driven modeling is considered in Section ??. Next the mutivariate PKF is

formulated, detailing the prediction step in Section ?? and the analysis step
✿✿✿✿

steps in Section 3.2.1
✿✿

3.2. Finally, two numerical370

assimilation experiments are conducted in Section 3.3 .

3.1 Introduction
✿✿✿✿✿✿✿✿✿✿✿

Development
✿

of the simplified chemical transport
✿

a
✿✿✿✿✿✿

proxy
✿✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿✿

covariance model

3.1.1
✿✿✿✿✿✿✿✿✿✿✿

Introduction
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿

model

To explore a multivariate formulation of the PKF, a simplified chemical transport model is introduced. This simplified CTM

contains the essential features of what can be found in a more realistic CTM, that is advection, multiple chemical species and375

non-linearities.

To do so, a 1D periodic domain of coordinate x is considered, where two non-linearly reactive chemical species, A(t,x) and

B(t,x), are advected in a conservative way by a heterogeneous and stationary wind field u(x). The non-linear reaction is given

14



Figure 5. Numerical simulations of the Lotka-Volterra dynamical system whose solutions are periodical orbits (purple curves , with one

orbit by level of purple transparency magnitude
✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿✿✿

transparencies), flowing counter clock-wisely
✿✿✿✿✿✿✿✿

clockwise around the critical point

(Ac,Bc) =
(

k3

k1
, k1

k2

)

(black dot).

by the Lotka-Volterra (LV) equations (see Appendix A), which leads to the coupled dynamics

∂tA+u∂xA=−A∂xu+ k1A− k2AB, (14a)380

∂tB+u∂xB =−B∂xu+ k2AB− k3B. (14b)

where the transport is written following the univariate 1D example Eq. (9b), and where the LV reaction appears as the last

two terms in the right hand side of each prognostic equations. The constants k1, k2 and k3 characterize the reaction rates: k1

corresponds to the rate at which A is produced; constant k2 represents the rate at which the chemical reactions between A

and B produces 2B; and k3 describes the decay rate for specie B. Note that at a formal level, the state vector associated with385

Eq. (14) is then X (t,x) = (A,B)(t,x).

Considered as a dynamical system of ordinary equations and represented in the phase space (A,B), the solutions of the

Lotka-Volterra’s dynamics are periodical orbits flowing around the critical point of coordinates (Ac,Bc) =
(

k3

k1
, k1

k2

)
, as shown

in Fig. 5. This is the kind of time evolution observed at each grid point when there is no wind (u= 0).

Thanks to this simplified multivariate framework, a proxy for the cross-covariance is now proposed.390

3.2 Development of a proxy multivariate covariance model

In this multivariate framework, the error-covariance matrix P= E
(
εX (εX )

T
)

associated with the state X = (A,B), of error

εX = (εA, εB), reads as a block matrix

P=


 PA (PAB)

T

PAB PB


 , (15)
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where PA and PB are the auto-covariance matrices of the errors, and PAB the cross-covariance
✿✿✿✿✿

matrix, or the inter-species395

covariance
✿✿✿✿✿✿

matrix, of the errors. Note that, in general, PAB is not symmetric i.e. (PAB)
T 6=PAB . The two-point cross

covariance
✿✿✿✿✿✿✿✿✿

two-points
✿✿✿✿

cross
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

PAB(x,y) = εA(x)εB(y) between grid points of coordiante
✿✿✿✿✿✿✿✿✿

coordinate x and

y writes

PAB(x,y) =
√
VA(x)

√
VB(y)ρAB(x,y), (16)

where400

ρAB(x,y) =
VAB(x,y)√

VA(x)
√

VB(y)

PAB(x,y)√
VA(x)

√
VB(y)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

, (17)

is the cross-correlation function, with VAB(x,y) = εA(x)εB(y) the two-point cross covariance. The cross-correlation function

is not symmetric in general i.e. ρAB(x,y) 6= ρAB(y,x). In particular, if CAB denotes the associated cross-correlation matrix,

then CAB 6= (CAB)
T.

At a covariance modelling point of view, and in the perspective of the PKF, the univariate covariances PA and PB could405

be approximated by a VLATcov model e.g. P(VA, sA). Morover, the
✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

single-point
✿

cross-covariance field

V AB(x) = εAx ε
B
x ✿✿✿✿✿✿

defined
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

VAB(x) = εA(x)εB(x)
✿

will appear in the dynamics of VA and VB because of the coupling

due to LV equations, and should be considered as a natural parameter for a multivariate PKF. At this stage, the question is

whether it is possible to approximate the
✿✿✿✿✿✿✿✿

two-points
✿

cross-covariance functions V AB(x,y)
✿✿✿✿✿✿✿✿

PAB(x,y)
✿

knowing the parameters

(A,B,VA,VB ,VAB , sA, sB) (where in this notation VAB denotes the field VAB(x))
✿✿✿✿✿

which
✿✿✿

are
✿✿✿✿✿✿✿

functions
✿✿✿

of
✿

x.410

Since no multivariate modelling extending the VLATcov model is available. A numerical exploration of the dynamics of

multivariate statistics is performed for the LV-CTM, so then to guess a proxy for the cross-covariance functions.

3.1.1 Ensemble of multivariate forecasts

3.1.2
✿✿✿✿✿✿✿✿

Ensemble
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿

forecasts

Compared to the univariate experiment described in Section 2.4.1, without a multivariate covariance model, it is not possible to415

sample a multivariate ensemble. For this reason, the error for the two chemical species are assumed decorrelated at the initial

time t= 0, so that the error-covariance matrix, P0, is the block diagonal

P0 =


P0

A 0

0 P0
B


 , (18)

where P0
A

(
P0

B

)
is the univariate covariance associated with error on A (B). Following the ensemble generation of Sec-

tion 2.4.1, the univariate covariance matrices are chosen as the two VLATcov P0
A =P(V 0

A, s
0
A) and P0

B =P(V 0
B , s

0
B). Then,420

an ensemble of Ne = 6400 initial conditions (X 0
k )k∈[1,Ne] is sampled, with for each k, X 0

k = X 0 +
(
P0
)1/2

ζk, where X 0 =

(A0,B0) and
(
P0
)1/2

is the block diagonal matrix
(
P0
)1/2

= diag
(
P(V 0

A, s
0
A)

1/2,P(V 0
B , s

0
B)

1/2
)
. This time, ζk is a sample

of N (0,In) with n= 2Nx. The domain is discretized in Nx = 723 grid points.
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For the simulation, the fields A0 and B0 are set to the constants A0 = 1.2 and B0 = 0.8. The univariate parameters are

set to σ0
A = 0.1 ·A0, σ0

B = 0.1 ·B0, s0A = s0A = l2h with lh = 45∆x≃ 62km. The reaction rates of LV are set to (k1,k2,k3) =425

(0.075,0.065,0.085). The time integration follows the numerical setting used for the univariate simulation presented in Sec-

tion 2.4.1, and leads to an ensemble of Ne = 6400 multivariate forecasts.

While there is no cross-correlation at the initial condition, the coupling provided by the LV equations should introduce a

non-zero cross-correlation between errors on A and B, and this can be diagnosed from the computation of the cross-covariance

of the forecast-errors V AB(x,y)
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

two-points
✿✿✿✿✿✿✿✿✿✿✿✿

forecast-error
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariance
✿✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿✿✿

PAB(x,y) at430

time t, estimated by
✿✿✿✿✿

given
✿✿

by
✿

ABP̂AB
✿✿

(t,x,y) =
1

Ne − 1

Ne∑

k=1

εA,k(t,x)εB,k(t,y), (19)

with εA,k(t,x) =Ak(t,x)−Â(t,x) and εB,k(t,y) =Bk(t,y)−B̂(t,y), where Â and B̂ are the empirical means of the ensemble

of forecasts (Ak) and (Bk) , from which an estimation of the cross-correlation functions ρ̂AB(t,x,y) and matrix ĈAB(t) can

be deduced.435

Figure 6. Evaluation of the cross-correlation model at
✿✿✿✿✿✿✿✿

rAB(xL, ·)
✿✿✿✿✿

(bold
✿✿✿✿✿

orange
✿✿✿✿

line)
✿✿✿✿✿

versus
✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-correlation

✿✿✿✿✿✿✿✿

ρAB(xL, ·)
✿✿✿✿

(blue
✿✿✿✿✿✿

dashed
✿✿✿✿

line)
✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿

the
✿

location xl = 0.5 and times t= [0.0,0.6,1.2,1.8,2.4,3.0]τadv .

Figure
✿

6 shows the time evolution of the cross-correlation with respect to the grid point xl = 0.5 i.e. the function ρAB(xl, ·)(blue

dashed line). As it has been specified, the cross-correlation is zero at t= 0 (panel a)
✿✿✿✿

Fig.
✿✿✿

6(a)
✿✿

). Then, as it is expected, the
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cross-correlation evolves along the time, presenting an anti cross-correlation at t= 0.6τadv (panel b)
✿✿✿

Fig.
✿✿✿✿

6(b)
✿

), then a positive

one at t= 1.8τadv (panel d)
✿✿✿

Fig.
✿✿✿✿

6(d)
✿

). At t= 2.4τadv (panel e)
✿✿✿

Fig.
✿✿✿✿

6(e)
✿

), the cross-correlation appears clearly asymmetric,

while reaching its maximum value at a y strictly lower than xl.440

Now, a proxy for the cross-correlation is introduced from the data set of multivariate forecasts.

3.1.3 Formulation of a proxy for the cross-correlation

After a trial-and-error process, and inspired from the VLATcov model Eq. (7), the following expression

rAB(x,y) =
1

2


 V AB

x

σA
x σ

B
x

VAB(x)

σA(x)σB(x)
✿✿✿✿✿✿✿✿✿✿

+
V AB
y

σA
y σ

B
y

VAB(y)

σA(y)σB(y)
✿✿✿✿✿✿✿✿✿✿✿


exp

(
−||x−y||2[ 1

4
(sA

x
+sB

x
+sA

y
+sB

y
)]−1 [ 1

4
(sA(x)+sB(x)+sA(y)+sB(y))]−1

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

)
,

(20)

445

✿✿

as function of the known parameters P = (VA,VB ,VAB , sA, sB), has been proposed as a proxy for the cross-correlation ρAB

i.e. rAB(x,y)≈ ρAB(x,y). It consists in a
✿✿

an interpolation by the mean of the cross-correlation values at location x and y,

multiplied by a gaussian kernel, where the univariate aspect-tensor has been substituted by the mean of the aspect-tensors of

all chemical species. The resulting proxy for the cross-correlation matrix is denoted by C
proxy
AB (P).

One of the main advantages of considering a simple analytic formula is its can be extended to a problem with more chemical450

species and for a domain of higher dimension.

Note that formulation Eq. (20) is symmetric (rAB(x,y) = rAB(y,x)), while cross-correlation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-correlations
✿

are not

symmetric in general (ρAB(x,y) 6= ρAB(y,x)), but this expression leverages on all the parameters known at locations x and

y. However, the function rAB,x(δx) = rAB(x,x+ δx) is not necessarly symmetric in δx, where in general rAB,x(δx) 6=
rAB,x(−δx).455

To assess the skill of the proxy, Fig. 6 shows the functions rAB(xl, ·) deduced from
✿✿✿✿✿✿✿✿

(computed
✿✿✿✿✿

from Eq. (20)
✿✿✿✿

with the

ensemble-estimated parameters P̂(t) = (V̂A, V̂B , V̂AB , ŝA, ŝB)(t)(bold orange line), that can be
✿

),
✿

compared with the ensemble

estimated cross-correlation ρAB(xl, ·)(blue dashed line). At a qualitative level, the functions rAB are in accordance with the

cross-correlation ρAB of reference for all the panels. Note that, while rAB is symmetric, the functions rAB(xl, ·) can be

asymmetric as it appears in panel
✿✿✿

Fig.
✿✿

6(c) and
✿✿✿

Fig.
✿✿

6(f).460

At a quantitative level, Fig. 7 shows the time evolution of the relative error ||ĈAB(t)−Cproxy

AB
(P̂(t))||

||ĈAB(t)||
, where ||U||=

√
Tr(UUT)

is the Frobenius matrix norm where Tr is the trace operator; ĈAB(t) is the ensemble estimation of the cross-correlation matrix

; and C
proxy
AB (P̂(t)) is the proxy for the cross-correlation matrix fitted with ensemble-estimated parameters P̂(t). Two differ-

ent experiments are shown depending on whether the initial length-scale for a A and B are equal, lA0 = lB0 = 45∆x≈ 66km

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

l0A = l0B = 45∆x≈ 66km (turquoise lines) ; or different, l0A ≈ 66km but l0B = 66∆x≈ 91km
✿✿✿✿✿✿✿✿✿

l0A ≈ 66km
✿✿✿

but
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

l0B = 66∆x≈ 91km465

(purple lines).

As the two multivariate error fields are uncorrelated at the initial time, the true cross-correlation matrix CAB(t= 0) is zero.

However, the ensemble used in the estimation of ĈAB(t= 0) being finite, this produces spurious non-zero cross-correlation

leading to a non-zero matrix and to a relative error larger than 80%. Then, the first instants of the simulation are dominated by
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Figure 7. Time evolutions of the relative errors between the empirical cross-correlation matrix (EnKF) and the proxy-generated cross-

correlation matrix fitted with EnKF-diagnosed parameters, for two different settings of the initial length scales: equal length-scales

with lA0 = lB0 = 45∆x≈ 66km
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

l0A = l0B = 45∆x≈ 66km
✿

(turquoise line) and different length-scales with lA0 = 45∆x
✿✿✿✿✿✿✿✿

l0A = 45∆x
✿

and

lB0 = 66∆x≈ 91km
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

l0B = 66∆x≈ 91km (mauve line). The results being dominated by sampling noise for t < 0.45, they are not retained

(grey hatching) for the computing of the temporal averages (dashed segments).

the sampling noise, and they are exclude
✿✿✿✿✿✿✿

excluded
✿

for the analysis of the results (grey hatching). After t≃ 0.45, the experiments470

offer valid results and lead to temporal averages of 22.8% when lA0 = lB0 ✿✿✿✿✿

23.1%
✿✿✿✿✿

when
✿✿✿✿✿✿✿

l0A = l0B (turquoise dashed line) and

31.3when % lA0 6= lB0 ✿✿

%
✿✿✿✿✿

when
✿✿✿✿✿✿✿

l0A 6= l0B (purple dashed line). Note that the effect of the sampling noise leads to overestimate the

true value of the averages by an amount of 8 points of percent
✿✿

can
✿✿✿✿✿

leads
✿✿

to
✿✿

an
✿✿✿✿✿✿✿✿✿✿✿✿✿

overestimation
✿✿

of
✿✿✿

8% for this kind of experiment

(Pannekoucke, 2021).

We don’t know if any formula
✿✿✿✿✿✿✿✿

According
✿✿

to
✿✿✿✿

our
✿✿✿✿✿✿✿✿✿✿

knowledge,
✿✿

no
✿✿✿✿✿✿

proxy
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-correlations
✿

similar to Eq. (20) has been475

already introduced
✿✿✿✿✿✿✿✿

introduced
✿✿✿

up
✿✿

to
✿✿✿✿

now
✿

as a possible proxy of cross-correlations. As mentioned above, rAB does not share

the same property of the cross-correlation (e.g. rAB is symmetric while ρAB is not), and thus, there is no guaranty
✿✿✿✿✿✿✿✿

guarantee

that a multivariate covariance model based on the proxy rAB leads to a true covariance matrix: such a multivariate covariance

model is symmetric because rAB is symmetric, but not necessarily positive definite,
✿✿✿✿✿✿✿✿

although
✿✿

it
✿✿✿✿

may
✿✿✿

not
✿✿

be
✿✿✿✿✿✿✿✿

essential
✿✿✿

for
✿✿✿

the

✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿✿

applications.480
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Despite of the limitations of the proxy, a multivariate extension of the univariate VLATcov model is explored below, where

the cross correlation is approximated by the proxy Eq. (20). This leads to a multivariate VLATcov model of parameters the

fields (VAB ,VA,VB , sA, sB) for which we can formulate a PKF.

3.2 Formulation and simplification of the parameters dynamics
✿✿✿

and
✿✿✿✿✿✿✿

analysis

3.2.1
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿

dynamics
✿✿✿

for
✿✿✿✿✿✿✿✿

LV-CTM485

The computation of the PKF dynamics leverages on the SymPKF package which applied to the dynamics Eq. (14), provides

the following system of coupled equations

∂tA+u∂xA=−A∂xu+ k1A− k2AB− k2VAB (21a)

∂tB+u∂xB =−B∂xu− k3B+ k2AB+ k2VAB (21b)

∂tVAB +u∂xVAB =−2VAB∂xu+VAB(k1 − k2B− k3 + k2A)+ k2VAB− k2VBA (21c)490

∂tVA +u∂xVA =−2VA∂xu+2[VA(k1 − k2B)− k2AVAB ] (21d)

∂tVB +u∂xVB =−2VB∂xu+2[VB(−k3 + k2A)+ k2BVAB ] (21e)

∂tsA + u∂xsA︸ ︷︷ ︸
TA,adv−1

= 2sA∂xu︸ ︷︷ ︸
TA,adv−2

− 2k2AVABsA
VA︸ ︷︷ ︸

TA,chem−1

+
2k2AσBs

2
A∂xε̃A∂xε̃B
σA︸ ︷︷ ︸

TA,chem−2

+
k2As2Aε̃B∂xε̃a∂xVB

σAσB︸ ︷︷ ︸
TA,chem−3

− k2AσBs
2
Aε̃B∂xε̃A∂xVB

V
3
2

A︸ ︷︷ ︸
TA,chem−4

+
2k2σBs

2
Aε̃B∂xε̃A∂xA

σA︸ ︷︷ ︸
TA,chem−5

(21f)

∂tsB + u∂xsB︸ ︷︷ ︸
TB,adv−1

= 2sB∂xu︸ ︷︷ ︸
TB,adv−2

+
2k2BVABsB

VB︸ ︷︷ ︸
TB,chem−1

− 2k2BσAs
2
B∂xε̃A∂xε̃B
σB︸ ︷︷ ︸

TB,chem−2

495

− k2Bs2B ε̃A∂xε̃B∂xVA

σAσB︸ ︷︷ ︸
TB,chem−3

+
k2BσAs

2
B ε̃A∂xε̃B∂xVB

V
3
2

B︸ ︷︷ ︸
TB,chem−4

− 2k2s
2
B ε̃A∂xε̃B∂xB

σB︸ ︷︷ ︸
TB,chem−5

(21g)

where the overline of the mean states A and B have been discarded for the sake of simplicity. The PKF is a second order filter

in which the variance of the fluctuations modify the time evolution of the mean states e.g. by the term −k2VAB of Eq. (21a).

For the dynamics of the anisotropy, Eq. (21f) and Eq. (21g), the contributions due to the transport (to the chemistry) are

labeled as T
(·)
adv−(·) (T (·)

chem−(·)) so
✿✿✿✿✿✿✿✿✿

T(·),adv−(·)
✿✿✿✿✿✿✿✿✿✿✿✿

(T(·),chem−(·))
✿

to be identified. Hence, each term is labeled as TZ
j , where Z500

stands for the chemical species and j for the index of the term including the processes from which the term comes from

e.g. TA
chem−5 denotes in the fifth term due to the chemistry in the dynamics of the anisotropy of A.

Note that the dynamics induced by the transport process is exact as mentioned in paragraph ??
✿✿✿

Sec.
✿✿✿✿

2.4. In the PKF sys-

tem Eq. (21) the dynamics of the mean concentrations A and B, variances VA and VB and covariance
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariance

20



VAB , Eq. (21a) to Eq. (21e), are independant from those of anistotropy fields
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿

of
✿✿✿✿✿✿✿✿✿

anistotropy
✿✿✿✿

field
✿

Eq. (21f) and505

Eq. (21g). The reciprocal is not true: the anisotopy fields dynamics (Eq. (21f)-Eq. (21g)) are forced by the means, the variances,

covariances
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariances and their spatial heterogeneity. Eq. (21a) and Eq. (21b) also indicate an interaction between

the covariance
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariance
✿

and the mean concentrations.

The dynamics of the aspect tensors, Eq. (21f) and Eq. (21g), are not closed: some terms are expressed as expectations of

the normalized errors ε̃A = εA/
√
VA and ε̃B = εB/

√
VB . These open terms can not be directly expressed using the available510

parameters, preventing the forecast of the error statistics. The role and magnitude of these terms is studied in the following

paragraphs (3.2.2-3.2.4).

Several experiments are conducted in the following paragraphs
✿✿✿✿✿✿

sections
✿

to better understand the impact of this closure

problem. In paragraph 3.2.2, following the splitting approach (Pannekoucke et al., 2021), the transport terms are removed so

to focus on the contribution of the chemistry process for observing its influence on the uncertainty dynamics, in the case of515

homogeneous statistical initial conditions. A comparison between the uncertainty dynamics in LV equations with the one for

the harmonic oscillator (HO) problem is also carried out. Then, in paragraph 3.2.3, the transport is rehabilitated so to quantify

which of the two processes at play is dominant in the anisotropy dynamics. Eventually a simplification is made in the dynamics

of the anistropy to close the PKF dynamics.

3.2.2 Impact of the chemistry alone on the dynamics of the anisotropies for homogeneous statistical initial conditions520

Regarding the dynamics of the anisotropy fields presented in the prognostic equations (Eq. (21f)-Eq. (21g)), the part due to

transport in T
(·)
adv−(·) , is already well understood, as it comes down to the univariate case presented in paragraph

✿✿✿✿

Sec. 2.4.1.

However, the role of the chemistry in T
(·)
chem−(·) , is unclear at this time. The transport process is removed so to focus on the

dynamics of the anisotropy due to the chemistry.

In the PKF dynamics
✿

in
✿

Eq. (21), when there is no transport , and when the variance fields are homogeneous at the initial525

condition, the homogeneity is preserved during the time evolution. Hence, the spatial derivatives of the variance and of the

cross-variance fields are null, which leads to simplify the dynamics of the anisotropy (Eq. (21f)-Eq. (21g)) as

∂tsA =
2k2AsA

σA

(
σBsA∂xε̃A∂xε̃B − VAB

σA

)
, (22a)

∂tsB =
2k2BsB

σB

(
VAB

σB
−σAsB∂xε̃A∂xε̃B

)
. (22b)

To focus on the contribution of the chemistry on the dynamics of the anisotropies, an ensemble of
✿✿✿✿✿✿✿✿✿

Ne= 1600
✿

high resolution530

forecasts is performed (Nx = 723), with only the chemistry part. Hence, the transport terms are set to zero in Eq. (14). Two nu-

merical experiments are conducted: first, the initial length-scales are equal for both species with lA0 = lB0 = 45∆x≃ 62
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

l0A = l0B = 45∆x≃ 62

(results are shown in Fig. 8), then different with lA0 = 45∆x and lB0 = 66∆x≃ 91
✿✿✿✿✿✿✿✿✿

l0A = 45∆x
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

l0B = 66∆x≃ 91km (results

in Fig. 9). The initial conditions for the concentrations, and the multivariate statistics are chosen homogeneous over the do-

main in both cases. Therefore, only the time series of the spatial average are shown for the variance, the cross-correlation, the535
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length-scale and the open term ∂xε̃A∂xε̃B
✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

from
✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

by
✿

̂∂xε̃A∂xε̃B =
1

Ne

N∑

k=1

e∂xε̃A,k∂xε̃B,k,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(23)

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿

ε̃A,k = εA,k/V̂A
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ε̃B,k = εB,k/V̂B .

Figure 8. Time series of the spatial average of the error statistics: from the ensemble forecast with Ne = 1600 for Lotka-Volterra (LV, left

panels) and Harmonic Oscillator analytical solutions (HO, right panels). Equal initial length-scales: lA0 = lB0 = 45∆x
✿✿✿✿✿✿✿✿✿✿✿✿

l0A = l0B = 45∆x.

In the first experiment, Fig. 8, the magnitude of the error, given by the standard deviations (panel
✿✿✿

Fig.
✿✿

8(a), oscillates with a

phase shift where the magnitude of the error in A advances the one of B. The cross-correlation (panel
✿✿✿

Fig.
✿✿

8(c) and the unclosed540

term ∂xε̃A∂xε̃B (panel
✿✿✿

Fig.
✿✿

8(g) oscillate in a similar way. In this experiment, where the initial length-scales are identical for

A and B, there is no time evolution of the length-scales, except the fluctuations that are due to the sampling noise (see panel e)

✿✿✿

Fig.
✿✿✿✿

8(e)
✿

). The second experiment, Fig. 9, shows roughly the same picture, except that this time, with initial length-scales of

different values, oscillations are appearing (panel
✿✿✿

Fig.
✿✿

9(e). Since, a priori, it is not easy to track the reason for the change of

behaviour observed on the length-scale dynamics, an analytical investigation of the harmonic oscillator (HO)545

∂tA(t,x) =−kB(t,x), (24a)

∂tB(t,x) = kA(t,x), (24b)

is introduced, with k = k2. The comparison with HO is relevant since it is an example of analytical multivariate dynamics and

also because it mimics the periodic oscillations of LV, explaining the numerical results. For HO, it is possible to calculate the
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Figure 9. Time series of the spatial average of the error statistics: from the ensemble forecast with Ne = 1600 for Lotka-Volterra (LV,

left panels) and Harmonic Oscillator analytical solutions (HO, right panels). Different initial length-scales: lA0 = 45∆x
✿✿✿✿✿✿✿✿

l0A = 45∆x
✿

and

lB0 = 66∆x
✿✿✿✿✿✿✿✿

l0B = 66∆x.

time evolution of the statistics
✿✿✿✿✿✿✿✿✿

analytically (see Appendix B for details), which writes as550

VA(t) = cos(kt)2V 0
A +sin(kt)2V 0

B , (25a)

VB(t) = sin(kt)2V 0
A +cos(kt)2V 0

B , (25b)

VAB(t) = cos(kt)sin(kt)
(
V 0
A −V 0

B

)
, (25c)

gsA(t) =
1

VA(t)
VA(t)
✿✿✿✿


cos(kt)2V 0

Ag
0
A

V 0
A

s0A
✿✿

+sin(kt)2V 0
Bg

0
B

V 0
B

s0B
✿✿✿


−1

✿✿

, (25d)

gsB(t) =
1

VB(t)
VB(t)
✿✿✿✿


sin(kt)2V 0

Ag
0
A

V 0
A

s0A
✿✿

+cos(kt)2V 0
Bg

0
B

V 0
B

s0B
✿✿✿


−1

✿✿

, (25e)555

E[∂xε̃A∂xε̃B ]∂xε̃A∂xε̃B(t) =
cos(kt)sin(kt)

σA(t)σB(t)


V 0

Ag
0
A

V 0
A

s0A
✿✿

−V 0
Bg

0
B

V 0
B

s0B
✿✿✿


 . (25f)

Numerical results computed for the HO are represented in Fig. 8 and Fig. 9, and show some of the behaviour encountered

for the nonlinear LV equations. For instance, the oscillations of the variance are visible. Moreover, the length-scales oscillate

depending on the initial condition: when the initial length-scales are equal, there is no oscillations
✿✿✿✿✿✿✿✿

oscillation
✿

(see Fig. 8-(df))

that appear from the analytical computation of gA and gB ; at the opposite
✿✿✿

sA
✿✿✿

and
✿✿✿

sB
✿

;
✿✿✿

in
✿✿✿✿✿✿✿

contrast,
✿

for different values of560

the initial length-scales, oscillations appear (see Fig. 9-(d
✿

f)). These different behaviours of the anisotropy based on the initial
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settings of the length-scales are explained by the analytical solutions of the error statistics for the harmonic oscillator. For

instance, when plugging the identical initial condition for the length-scales g0A = g0B ✿✿✿✿✿✿✿

s0A = s0B✿

and the analytical solution of

VA(t) (Eq. 25a) into the r.h.s. of Eq. (25d), it simplifies to gA(t) = g0A✿✿✿✿✿✿✿✿✿

sA(t) = s0A. The same result applies for gB(t)
✿✿✿✿

sB(t). This

simplification no longer holds when gA0 6= g0B✿✿✿✿✿✿✿

C 6= s0B , leading to non constants
✿✿✿✿✿✿✿✿✿✿✿

non-constant length-scales which is effectively565

observed.

Note that for equal initial length-scales, the anisotropy appears stationnary
✿✿✿✿✿✿✿✿

stationary (see Fig. 8e
✿✿

(e)
✿

), which suggests a

closure for the open term ∂xε̃A∂xε̃B : since the anisotropy are
✿

is
✿

equal and constant, sA(t) = sB(t) =
sA(t)+sB(t)

2 = s0A =

s0B =
s0A+s0B

2 , then from the stationnarity
✿✿✿✿✿✿✿✿✿

stationarity of the anisotropy, ∂tsA = ∂tsB = 0, the right-hand side of Eqs. (22) leads

to the expression570

∂xε̃A∂xε̃B =
V AB
x

σA
x σ

B
x

2

sAx + sBx

VAB(x)

σA(x)σB(x)

2

sA(x)+ sB(x)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

. (26)

This closure indicates that the term ∂xε̃A∂xε̃B is proportional to the cross-correlation in this particular case. This is confirmed

in Fig. 8, where ∂xε̃A∂xε̃B (panel
✿✿✿

Fig.
✿✿✿

8(g) appears to evolve as the cross-correlation (panel
✿✿✿

Fig.
✿✿✿

8(c). For this specific case,

Eq. (26) also applies for the error statistics of the harmonic oscillator: using g0A = g0B ✿✿✿✿✿✿✿

s0A = s0B and the time evolution of the

covariance
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariance
✿

VAB (Eq. 25c) allows to solve for the open term in Eq. (25f), obtaining the same expression as in575

Eq. (26).

The time evolution of the HO error statistics makes appear a swing
✿✿

an
✿✿✿✿✿✿✿

alternate
✿✿✿✿✿✿✿

transfer of the error statistics between the two

components A and B, which qualitatively reproduces the evolution observed in the LV dynamics. The transfer of uncertainty

from one component to the other is provided by the cross-covariance VAB when the magnitude of the uncertainty is different

along each specie.
✿✿✿✿

error
✿✿✿✿✿✿✿

variance
✿✿

is
✿✿✿✿✿✿✿

different
✿✿✿

for
✿✿✿✿

each
✿✿✿

of
✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿

species.580

After this focus on the dynamics of the anisotropy due to the chemistry alone, the study of the contribution of the chemistry

and the transport is conducted, assessing the magnitude of each terms and processes on the dynamics of the anisotropy.

3.2.3 Detailed contribution of each processes in the dynamics of the anisotropy

What follows aim to identify
✿✿✿

The
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿

section
✿✿✿✿

aims
✿✿

at
✿✿✿✿✿✿✿✿✿

identifying
✿

the dominant terms, or processes in the dynamics of the

anisotropy, Eq. (21f) and Eq. (21g).585

Two different evaluations are performed. The first one evaluates the relative contribution WZ
j ✿✿✿✿

WZ,j
✿

of the term TZ
j among

✿✿✿✿

TZ,j
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to all other terms in the dynamics of the anisotropy of Z, which reads as

WZ
j Z,j

✿✿

(t) =
||TZ

j (t)||1∑
k ||TZ

k (t)||1
||TZ,j(t)||1∑
k ||TZ,k(t)||1

✿✿✿✿✿✿✿✿✿✿✿✿

, (27)

where ||v||1 = 1
Nx

∑
j=1,...,Nx |vj | is the L1 norm on the discretized domain [0,D). The second one evaluates the relative

contribution of each physical processes in the dynamics of the anisotropy e.g. the relative contribution of the advection in the590
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dynamics of the anisotropy of Z, WZ
adv✿✿✿✿✿✿✿

WZ,adv , reads as

WZ
advZ,adv

✿✿✿✿

(t) =
||∑2

k=1T
Z
adv−k(t)||1

||∑2
k=1T

Z
adv−k(t)||1 + ||∑5

k=1T
Z
chem−k(t)||1

||∑2
k=1TZ,adv−k(t)||1

||∑2
k=1TZ,adv−k(t)||1 + ||∑5

k=1TZ,chem−k(t)||1
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

, (28)

from which the relative contribution of the chemistry writes WZ
chem(t) = 1−WZ

adv(t) ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

WZ,chem(t) = 1−WZ,adv(t).
✿✿✿✿

Note
✿✿✿✿

that

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

normalization
✿✿

is
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

between
✿

Eq. (27)
✿✿✿

and Eq. (28).

The computation of these relative contributions will rely on ensemble of forecasts. They will be used to diagnose a poste-595

riori the PKF parameters (A,B,VA,VB ,VAB , sA, sB) as well as the three open terms (∂xε̃A∂xε̃B , ε̃A∂xε̃B , ε̃B∂xε̃A) to then

reconstruct all the terms in
✿✿

the
✿

anisotropy dynamics (Eq. (21f)-Eq. (21g)).

The quantifications of the relative contribution by term and by process will be performed for equal and different initial

length-scales for A and B, as it leads
✿✿✿

they
✿✿✿✿

lead
✿

to different dynamics for the anisotropy. Thus, two ensembles are forecasted,

with initial length-scales set to lA0 = lB0 = 45∆x
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

l0A = l0B = 45∆x in the first, and lA0 = 45∆x and lB0 = 66∆x
✿✿✿✿✿✿✿✿✿

l0A = 45∆x
✿✿✿✿

and600

✿✿✿✿✿✿✿✿✿

l0B = 66∆x
✿

in the second. A high resolution grid is considered (Nx = 723) to reduce numerical model error; the time step has

been adapted in consequence to match the CFL. The other settings as well as the numerical configuration for this experiment

are unchanged from previous ensemble forecast performed in paragraph
✿✿✿

Sec.
✿

3.1.2.

Figure 10. Numerical results for the case lA0 = lB0 = 45∆x
✿✿✿✿✿✿✿✿✿✿✿✿✿

l0A = l0B = 45∆x. Time evolution for the relative contribution by term (resp. by

process)
✿✿✿✿✿✿✿✿

computed
✿✿✿

from
✿

Eq. (27)
✿✿✿✿

(from
✿

Eq. (28)
✿

) involved in the anisotropy dynamics for species A and B on panels (a) and (b) (resp. panels

(c) and (d)).
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Figure 11. Numerical results for the case lA0 = 45∆x
✿✿✿✿✿✿✿✿✿

l0A = 45∆x and lB0 = 66∆x
✿✿✿✿✿✿✿✿✿

l0B = 66∆x. Time evolution for the relative contribution

by term (resp. by process)
✿✿✿✿✿✿✿✿

computed
✿✿✿✿

from Eq. (27)
✿✿✿✿

(from Eq. (28)
✿

) involved in the anisotropy dynamics for species A and B on panels (a)

and (b) (resp. panels (c) and (d)).

The results of the relative contributions presented in Fig. 10 (Fig. 11) for the equal (different) length-scale configuration are

now discussed. Regarding the relative contribution by process experiment, the comparison between panels Fig. 10c (Fig. 10d)605

and Fig. 11c (Fig. 11d
✿✿

(c)
✿✿✿✿✿

(Fig.
✿✿✿✿✿

10(d)
✿

)
✿✿✿✿

and
✿✿✿

Fig.
✿✿✿✿✿

11(c)
✿✿✿✿✿

(Fig.
✿✿✿✿✿

11(d) ) indicates that when the initial length-scales are different,

lA0 6= lB0✿✿✿✿✿✿✿

l0A 6= l0B , the chemistry has a more significant role (Wchem is about 21%) compared when the length-scales are equal

(Wchem is about 10%) in the dynamics of the anisotropies. That difference was expected following the results obtained in

the previous paragraph
✿✿✿✿

Sec. 3.2.2. Now focusing on the relative contribution by term on panels (a) and (b)
✿✿

of
✿✿✿

Fig.
✿✿✿

10
✿✿✿✿

and

✿✿✿

Fig.
✿✿✿

11, it is noticeable that only the two terms, WZ
chem−1 and WZ

chem−2, have a significant role in the dynamics. The rest610

of the chemistry-related terms magnitudes are negligible. For equal initial length-scales, as the chemistry-related part of the

anisotropy dynamics can be neglected
✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

advection
✿✿✿✿

part
✿✿✿✿

(Fig.
✿✿✿✿✿

10c,d), and as this part is mainly driven by WZ
chem−1

and WZ
chem−2 ✿✿✿

(Fig.
✿✿✿✿✿✿

10a,b), this means an approximate compensation of the two terms. Eventually, this approximation simplifies

to

∂xε̃A∂xε̃B ≃ V AB
x

σA
x σ

B
x

.
2

sAx + sBx
,615

Eq. (26),
✿

which is in accordance with the previous results of paragraph
✿✿✿

Sec. 3.2.2. However, this approximation becomes

invalid in the heterogeneous case: the terms WZ
chem−1 and WZ

chem−2 no longer compensate each other as the gap between

their corresponding curves increases in panels Fig. 11(c) and Fig. 11(d). In some other numerical trials (not shown here), this
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approximation was used regardless of the length-scales initial configuration, and the remaining open terms were set to zero.

These trials produced incoherent forecasts for the anisotropy, pointing out the incapacity of the approximation to capture the620

true complexity of the unknown terms. Subsequently, this approximation is no longer retained.

3.2.4
✿✿✿✿✿✿✿

Closure
✿✿

of
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿

dynamics

✿

A
✿✿✿✿✿✿✿

closure
✿✿

is
✿✿✿✿✿✿✿✿

proposed
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

LV-CTM
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿

dynamics. Note that the open terms of the PKF dynamics Eq. (21)

can be related to spatial derivatives of the cross-correlation Eq. (17) e.g. ε̃A∂xε̃B(x) = (∂xρAB)(x,x) or ∂xε̃A∂xε̃B(x) =

(∂xyρAB)(x,x), leading to a closure of the PKF dynamics when the proxy rAB Eq. (20) is used in place of the true cross-625

correlation ρAB . However, numerical investigation of this closure did not lead to good results (not shown here).

From the detailed quantification of the relative contributions conducted here, it results that the advection contributes to 80%

of the anisotropy dynamics while 20% are due to the chemistry.

Next, a closure is proposed for the LV-CTM multivariate PKF dynamics.

3.2.5 Simplification of the PKF dynamics630

Since the advection mainly leads the dynamics of the anisotropy, this suggests to remove the contribution of the chemistry in

Eq. (21f) and Eq. (21g), and
✿✿✿✿✿

which leads to a close
✿✿✿✿✿✿

closure
✿✿

of
✿

the PKF dynamics Eq. (21) as

∂tA+u∂xA=−A∂xu+ k1A− k2AB− k2VAB (29a)

∂tB+u∂xB =−B∂xu− k3B+ k2AB+ k2VAB (29b)

∂tVAB +u∂xVAB =−2VAB∂xu+VAB(k1 − k2B− k3 + k2A)+ k2VAB− k2VBA (29c)635

∂tVA +u∂xVA =−2VA∂xu+2[VA(k1 − k2B)− k2AVAB ] (29d)

∂tVB +u∂xVB =−2VB∂xu+2[VB(−k3 + k2A)+ k2BVAB ] (29e)

∂tsA =−u∂xsA +2sA∂xu (29f)

∂tsB =−u∂xsB +2sB∂xu (29g)

The PKF dynamics for the multivariate LV-CTM being closed, it remains to detail the multivariate analysis step to be used640

in the PKF assimilation cycle.

3.3 Extension of the PKF analysis step for multivariate assimilations

3.2.1
✿✿✿✿✿✿✿✿

Extension
✿✿✿

of
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿

analysis
✿✿✿

step
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿✿✿✿

assimilations

For multivariate statistics, the update equations (8) presented in section Eq. (8)
✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿✿✿✿

Section 2 have to be modified: they

can be applied to update the univariate error statistics (mean concentrations, variances, aspect-tensors) but do not indicate how645

to update the cross-covariance fields. To apply the formulas Eqs. (8) in multivariate contexts, the subscript l must be interpreted
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as a location and the observed species , and
✿✿

xl
✿✿✿✿

must
✿✿✿✿✿

refer
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

observation
✿✿✿

of
✿

a
✿✿✿✿✿✿

species
✿✿✿

Zl
✿✿

at
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿

location,
✿✿✿✿✿

while x as

any location on any species .
✿✿✿✿✿

refers
✿✿

to
✿✿✿

any
✿✿✿✿✿✿✿

species
✿✿

at
✿✿✿

any
✿✿✿✿✿✿✿

location.
✿

For an observation at location xl on
✿

of
✿

the chemical species Zl, the cross-covariance field between two species Z1 and Z2

updates (see Appendix C):650

V a
Z1Z2

(x) = V f
Z1Z2

(x)−
(
σf
Z2
(x)ρZ2,f

Zl,l
f
Z2Zl,l
✿✿✿✿

(x)σf
Z1
(x)ρZ1,f

Zl,l
f
Z1Zl,l
✿✿✿✿

(x)

)
V f
Zl
(xl)

V f
Zl
(xl)+V o

Zl
(xl)

, (30)

where ρZ1,f
Zl,l

(x) is the
✿✿✿✿✿✿✿✿

ρfZiZl,l
(x)

✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿

forecast cross-correlation function between Zl and Z1
✿✿

Zi
✿

at location xl, defined by

ρZ1,f
Zl,l

f
ZiZl,l
✿✿✿✿

(x) = E

[
εfZl

(xl)ε
f
Z1
(x)
]
/
(
σf
Zl
(xl)σ

f
Z1
(x)
)
. (31)

Note that Eq. (30) also applies when one of the two chemical species Z1 or Z2 coincides with Zl. This conduct
✿✿✿✿

leads
✿

to a new655

formulation of the algorithm PKFO1 (alg. 1).

Next, the resulting multivariate PKF formulation is validated from a numerical experiment.

3.3 Numerical experiments: simple forecast and data assimilation over several cycles

In this section, two numerical experiments, labeled FCST and DA, are proposed to evaluate the multivariate formulation of

the PKF for the LV-CTM. Again, a large EnKF will be used as a reference to be compared with regarding the error statistics660

produced. The first experiment, FCST, focuses on the on the forecast step alone. Therefore, the PKF dynamics (Eq. (29)) and

the EnKF for equations (Eq. (14)) are forecasted. Then, in DA, 5 complete data assimilation cycles are performed to test the

PKF capacity to produce multivariate analysis. DA only differs from FCST by the assimilations of observations, otherwise the

configurations are identical. The next paragraphs details the settings
✿✿✿✿✿✿

section
✿✿✿✿✿

details
✿✿✿

the
✿✿✿✿✿

setup of the experiments.

3.3.1 Settings of the numerical experiments665

3.3.2
✿✿✿✿✿✿✿

Settings
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿✿✿

experiments

In both experiments, the EnKF relies on 6400 members. The total time of the simulation is tmax = 5τadv/3≃ 47.5 hours

(τadv is the characteristic time defined in section 2.4.1). A high resolution with Nx = 723 grid points is used. The set-

tings of the wind field, chemical rates, initial concentrations, initial variances and covariance
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariance, time scheme,

space grid etc. are identical to those used in section ??
✿✿✿✿

3.1.2. The initial length-scale fields are homogeneously initialized at670

lA0 = lB0 = 45∆x
✿✿✿✿✿✿✿✿✿✿✿✿✿

l0A = l0B = 45∆x.

For the data assimilation experiment, a network of 4 sensors regularly spaced on the right hand side of the domain is consid-

ered to generate observations of the chemical species A. Each τadv/3 hours, observations are generated from an independant

✿✿✿✿✿✿✿✿✿✿

independent nature run and assimilated for both filters. The nature run is initialized with fields concentrations A and B set

respectively to 1.2+0.12ζA and 0.8+0.08ζB , where ζA and ζB are structured Gaussian random field of zero mean, standard-675
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Algorithm 1 Sequential process building the analysis state and its error covariance matrix for the first-order PKF (PKFO1)

with pseudo multivariate covariance model.

Require: Univariate fields of X f
Z ,s

f
Z and V f

Z for all species Z. Covariance
✿✿✿✿✿✿✿✿✿✿✿✿

Cross-covariance
✿

field V f
Z1Z2

of all pairs of species Z1 and Z2.

Variance V o
Zl,l

of the species Zl and locations xl of the p observations to assimilate.

1: for each observation l do

2: 0 - Initialization of the intermediate quantities

3: Yo
Zl,l

= Yo
Zl
(xl), X f

Zl,l
= X f

Zl
(xl)

4: V f
Zl,l

= V f
Zl,xl

, V o
Zl,l

= V o
Zl,xl

5:

6: 1 - Computation of the analysis univariate statistics

7: for each species Z do

8: a) Set the correlation function (auto or cross)

9: ρZZl,l
(x) = ρ(V f

ZlZ
,V f

Zl
,V f

Z ,sfZl
,sfZ)(xl,x)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ρZZl,l(x) = ρ(V f
ZlZ

,V f
Zl
,V f

Z ,sfZl
,sfZ)(xl,x)

✿

10:

11: b) Computation of the analysis state and its univariate error statistics

12: X a
Z,x = X f

Z,x +σf
Z,xρ

Z
Zl,l

(x)
σ
f
Zl,l

V
f
Zl,l

+V o
Zl,l

(

Yo
Zl,l
−X f

Zl,l

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

X a
Z,x = X f

Z,x +σf
Z,xρZZl,l(x)

σ
f
Zl,l

V
f
Zl,l

+V o
Zl,l

(

Yo
Zl,l
−X f

Zl,l

)

,

13: V a
Z,x = V f

Z,x

(

1−
[

ρZZl,l
(x)

]2 V
f
Zl,l

V
f
Zl,l

+V o
Zl,l

)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

V a
Z,x = V f

Z,x

(

1− [ρZZl,l(x)]
2 V

f
Zl,l

V
f
Zl,l

+V o
Zl,l

)

14: s
a
Z,x =

V a
Z,x

V
f
Z,x

s
f
Z,x

15: end for

16:

17: 2 - Computation of the analysis multivariate statistics

18: for each pair of species (Zi,Zj , with i < j) do

19: a) Set the cross-correlation functions

20: ρZi
Zl,l

(x) = ρ(V f
ZlZi

,V f
Zl
,V f

Zi
,sfZl

,sfZi
)(xl,x)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ρZiZl,l(x) = ρ(V f
ZlZi

,V f
Zl
,V f

Zi
,sfZl

,sfZi
)(xl,x)

21: ρ
Zj

Zl,l
(x) = ρ(V f

ZlZj
,V f

Zl
,V f

Zj
,sfZl

,sfZj
)(xl,x)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ρZjZl,l(x) = ρ(V f
ZlZj

,V f
Zl
,V f

Zj
,sfZl

,sfZj
)(xl,x)

✿

22:

23: b) Compute the Zi Zj analysis covariance
✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariance
✿

field

24: V a
ZiZj

(x) = V f
ZiZj

(x)−
(

σf
Zj

(x)ρ
Zj ,f

Zl,l
(x)σf

Zi
(x)ρZi,f

Zl,l
(x)

)

V
f
Zl

(xl)

V
f
Zl

(xl)+V o
Zl

(xl) ✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

V a
ZiZj

(x) = V f
ZiZj

(x)−
(

σf
Zj

(x)ρZjZl,l(x)σ
f
Zi
(x)ρZiZl,l(x)

25: end for

26:

27: 3 - Update of the forecast state and its error statistics

28: for each species Z do

29: X f
Z,x←X a

Z,x

30: V f
Z,x← V a

Z,x

31: s
f
Z,x← s

a
Z,x

32: end for

33:

34: for each pair of species (Zi,Zj) do

35: V f
ZiZj

(x)← V a
ZiZj

(x)

36: end for
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deviation 1 and length-scale 45∆x (i.e. sampled from P
(
1,(45∆x)2

)
in Eq. (7)). The synthetic observations are consid-

ered uncorrelated (i.e.
✿

in
✿✿✿✿✿

space
✿✿✿✿

and
✿✿✿✿

time
✿✿✿✿✿✿

(i.e. at
✿✿

a
✿✿✿✿✿

given
✿✿✿✿

time
✿

R is diagonal), and generated
✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿

analysis
✿✿✿✿

time
✿✿

ta
✿

accord-

ing to: Aobs(xl) =Af
NR(xl)+σobsζ

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Aobs(xl, ta) =Af
NR(xl, ta)+σobsζta , where σobs = 10% is the observations standard-

deviation, ζ
✿✿

ζta✿is a sample from the standard Gaussian distribution, and Af
NR is the forecast of the nature run for location xl.

The model error is neglected in this experiment (i.e. Q= 0 in Eq. 3b). For the PKF, the observations are assimilated using the680

PKF O1 algorithm.

3.3.3 Results

3.3.4
✿✿✿✿✿✿

Results

Figure 12. Results of the forecast numerical experiment. PKF errors statistics (solid red lines) and EnKF diagnosed error statistics (dashed

blue lines) at times t= [0.50,1.00]tmax. These times correspond approximately to t=23h45min and t=47h40min.

The results for the FCST experiment Fig. 12 are now discussed
✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

Fig.
✿✿✿

12. The figure presents the state vector

(panels aand b
✿✿✿

Fig.
✿✿✿✿

12(a)
✿✿✿✿

and
✿✿✿✿

Fig.
✿✿✿✿

12(b)
✿

) and five error statistics (panels c-g
✿✿✿

Fig.
✿✿

12
✿✿✿✿✿✿

panels
✿✿✿✿✿✿

(c)-(g) ) for the EnKF (dashed blue685

lines) and the PKF (solid red lines) at t= 0.5tmax and t= tmax. The error statistics presented are, from panel
✿✿✿

Fig.
✿✿

12(c) to

✿✿✿

Fig.
✿✿✿

12(g), the two standard-deviations, the cross-correlation field and the two length-scales, rather than the raw PKF parame-

ters. An
✿

A
✿

horizontal grey line on each panel is here to represent the initial setting of the corresponding quantity.

The forecasts of the means match perfectly for both methods (panels aand b
✿✿

see
✿✿✿✿

Fig.
✿✿✿✿✿

12(a)
✿✿✿✿

and
✿✿✿✿

Fig.
✿✿✿✿✿

12(b) ). Similarly to

the univariate advection experiment (section 2.4.1), an accumulation of the tracers is observed in the low wind speeds region690

(center of the domain). The standard-deviations (panels c-d
✿✿✿

Fig.
✿✿✿✿✿✿✿

12(c)-(d)
✿

) observe a similar behaviour although the effects of
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the chemistry appear more clearly: the curves show some quite localized deformations, especially for the standard deviation of

A. The cross-correlation field (panel
✿✿✿

Fig.
✿✿✿

12(e), specific to the multivariate case, is predicted with great accuracy by the PKF

dynamics. It indicates that, starting from decorrelated error fields for A and B, the chemistry dynamic has allowed non-zero

cross-correlations to emerge by coupling the chemical species, in a non-linear fashion. With less exactitude
✿✿✿✿✿

While
✿✿✿✿✿

being
✿✿✿✿

less695

✿✿✿✿✿✿✿

accurate than for the means, the filters coincide at estimating the standard-deviation as well as for the cross-correlation fields.

The last two panels
✿✿✿✿✿✿✿

forecasts
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

length-scales
✿✿✿✿

(Fig.
✿✿

12(f) and (g) which corresponds to the forecasts of the length-scales
✿

)

show a general accordance between the two methods, even though a difference can be observed in A’s case
✿✿✿

Fig.
✿✿✿

12(f). This gap

is due to the simplification of the anisotropy dynamics in the PKF formulation Eqs. (29), which does not permit to represent

such behaviours. The equation of the anisotropy dynamics of A in the original formulation of the PKF Eq. (21f) suggests an700

explanation to the spikes presented on the EnKF curves on panel
✿✿✿

Fig.
✿✿✿

12(f) which are absent for the PKF. The terms labeled

TA
chem−3 and TA

chem−4 ✿✿✿✿✿✿✿✿✿

TA,chem−3
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

TA,chem−4 indicate a forcing of the spatial derivatives of the variance VA. Looking at

panel
✿✿✿

Fig.
✿✿✿

12(c), it appears that the variance of A presents some strong spatial heterogeneity (x= 0.45 for t= 0.5tmax, and

x= 0.60 for t= tmax), causing important magnitudes for ∂xVA and thus for TA
chem−3 and TA

chem−4✿✿✿✿✿✿✿✿✿

TA,chem−3
✿✿✿

and
✿✿✿✿✿✿✿✿✿

TA,chem−4.

This produces a local deformation on A’s length-scales which is effectively observed for the same times and locations on panel705

✿✿✿

Fig.
✿✿✿

12(f). However, these gaps between the EnKF and PKF curves are local and of a reasonable magnitude: overall, the PKF

forecast for the anisotropy reproduces the EnKF results.

Figure 13. Results of the data assimiliation
✿✿✿✿✿✿✿✿

assimilation
✿

numerical experiment. Nature run (solid
✿✿✿✿

dash
✿✿✿✿✿

dotted green lines,
✿✿✿✿

only
✿✿

on
✿✿✿✿✿

panels
✿✿✿

(a)

✿✿✿

and
✿✿

(b)
✿

), PKF errors statistics (solid red lines) and EnKF diagnosed error statistics (dashed blue lines) at times t= [0.50,1.00]tmax. These

times correspond approximately to t=23h45min and t=47h40min. At time t= 0.5tmax, two analysis steps have already been performed.

At time t= 1.00tmax, the fifth analysis step is being realized, the generated observations are represented by black dots on panel (a). The

vertical grey lines correspond to the sensors locations.
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The outcome of the DA experiment Fig. 13 is now exposed,
✿✿✿✿✿✿

where
✿✿✿

five
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿

cycles
✿✿✿

are
✿✿✿✿

done
✿✿✿✿

over
✿✿✿

the
✿✿✿✿✿

period
✿✿✿✿✿✿✿✿

[0, tmax]

✿✿✿✿

(one
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿

after
✿✿✿✿

each
✿✿✿✿✿✿✿

τadv/3
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿

integration,
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

tmax = 5τadv/3). The results are presented similarly to the FCST

experiment, except four vertical grey lines have been added to indicate the sensors locations. Also, time t= tmax corresponds710

to a time for which synthetic observations for A are generated , thus represented by black dots on panel
✿✿✿

(see
✿✿✿✿

Fig.
✿✿

13(a)
✿

).

For the DA experiment (Fig. 13), the resulting means on panel
✿✿✿

Fig.
✿✿✿

13(a) and
✿✿✿

Fig.
✿✿

13(b) are identical for the PKF and EnKF.

This indicates similar forecasts and analysis for both methods during the five assimilation cycles. However, the corrections

brought by the observations are not very significant given the neglected model error, the small amplitude of the forecast

variance and the observation error. This configuration implied the generated observations to be very close to the forecasted715

concentrations, therefore the means are not significantly different than in the FCST experiment. The impact of the different

analysis is more visible on the rest of the error statitics
✿✿✿✿✿✿

statistics. For instance, the curves on panel
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

of

✿✿✿✿✿✿

species
✿✿

A
✿✿✿✿

Fig.
✿✿

13(c) present
✿✿✿✿✿✿✿

presents
✿

important downspikes which result from the uncertainty reduction during the analysis.

This reduction of the uncertainty is also visible, with a reduced amplitude, on specie B
✿✿✿

Fig.
✿✿✿✿✿

13(d)
✿

for which we do not have

observations, as panel (d) shows. The ability to reduce the uncertainty of B and to correct its concentration when A is observed720

is the signature of the multivariate character of the analysis. The amplitude of the reduction of σB and correction of B is related

to the strength of the cross-correlation at the moment of assimilation. The cross-correlation field
✿✿✿

Fig.
✿✿✿

13(e) is also impacted

by the observation but it is less obvious to say in which manner. Looking at panel
✿✿✿

Fig.
✿✿

13(f), an important gap between the

PKF and EnKF for the length-scales of A can be observed. It is caused by two reasons, the major one being the approximation

in the anisotropy update formula Eq. (8c). This simplified formula is less accurate than its second order version (panel (e)of725

Fig. 13 from Pannekoucke (2021)demonstrates explicitly in which sense)
✿✿✿

Eq.
✿✿✿✿

(10)
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pannekoucke (2021), but offers more

robustness during numerical simulations (as the same paper has shown
✿✿✿

see
✿✿✿✿✿

panel
✿✿

(e)
✿✿✿

of
✿✿✿

Fig.
✿✿✿

13
✿✿✿✿

from
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pannekoucke (2021)
✿✿✿

and

✿✿

the
✿✿✿✿✿✿✿✿✿

discussion
✿✿✿

in
✿✿✿✿

their
✿✿✿✿✿✿

section
✿✿✿✿

4.4). The second reason is the reduction of the anisotropy dynamics to the transport process

in the PKF formulation , which has been detailed in paragraphs 3.2.2-3.2.4
✿✿✿✿✿✿✿✿

(compare
✿✿✿✿✿✿

Section
✿✿✿✿

3.2). Compared to the FCST

experiment, the assimilation of observations has had the effect of reducing the length-scales.730

In both of these experiments, the PKF has shown itself able to reproduce the results of a large ensemble Kalman Filter.

Again, these qualitative results of the PKF were obtained at a low numerical cost: the equivalent of 3 time integrations of

Eq. (14) compared to 6400 for the EnKF.

4
✿

A
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

realistic
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿

model:
✿✿✿

the
✿✿✿✿✿✿✿

generic
✿✿✿✿✿✿✿

reaction
✿✿✿

set
✿✿✿✿✿✿

(GRS)
✿✿✿✿✿✿

model

The simplified LV-CTM has allowed for a multivariate formulation of the PKF
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿✿

assimilation, validated in numerical735

experiments. In the next section, a more complex chemical model is considered to further test the PKF possibilities.

5 A more realistic chemical model: GRS

4.1 Description of the GRS model
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To further explore
✿✿

To
✿✿✿✿✿✿✿

explore
✿✿✿

the
✿✿✿✿✿✿

ability of the PKF possibilities,
✿✿

to
✿✿✿✿✿

apply
✿✿

to
✿

a more complex chemical model is considered:

✿✿✿✿✿✿

scheme,
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿

model
✿✿

is
✿✿✿✿

now
✿✿✿✿✿✿✿✿✿✿

introduced, the generic reaction set (Azzi et al., 1992; Haussaire and Bocquet,740

2016) .
✿✿✿✿✿✿

(GRS),
✿✿✿✿

then
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿

validate
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿

forecast.
✿

4.1
✿✿✿✿✿✿✿✿✿

Description
✿✿✿

of
✿✿✿

the
✿✿✿✿

GRS
✿✿✿✿✿✿

model

GRS describes the dynamics of a reduced number of chemical species or pseudo-species. Hence, six species are considered

and interact as

ROC +hν
k1(t)→ RP +ROC (32a)745

RP +NO
k2→NO2 (32b)

NO2 +hν
k3(t)→ NO+O3 (32c)

NO+O3
k4→NO2 (32d)

RP +RP
k5→RP (32e)

RP +NO2
2·k6→ S(N)GN (32f)750

where ROC, RP and S(N)GN respectivily mean Reactive Organic Compound, Radical Pool et Stable (Non-) Gaseous Nitro-

gen product. In this chemical model, additional processes such as photolysis rate variation, ground deposits or atmospheric

emissions of certain pollutants are represented.

The system of equations of the GRS-CTM writes:

∂t[ROC] =−∂x (u · [ROC])−λ[ROC] +EROC (33a)755

∂t[RP ] =−∂x (u · [RP ])−λ[RP ] + k1(t)[ROC]− [RP ] (k2[NO] + 2k6[NO2] + k5[RP ]) (33b)

∂t[NO] =−∂x (u · [NO])−λ[NO] +ENO + k3(t)[NO2]− [NO] (k2[RP ] + k4[O3]) (33c)

∂t[NO2] =−∂x (u · [NO2])−λ[NO2] +ENO2
+ k4[NO][O3] + k2[NO][RP ]− [NO2] (k3(t)+ 2k6[RP ]) (33d)

∂t[O3] =−∂x (u · [O3])−λ[O3] + k3(t)[NO2]− k4[NO][O3] (33e)

∂t[S(N)GN ] =−∂x (u · [S(N)GN ])−λ[S(N)GN ] + 2k6[NO2][RP ] (33f)760

where for a specie Z: [Z](t,x) denotes the concentration field ; and for Z ∈ {ROC,NO,NO2}, EZ(x) = E0
Zµ(x) denotes

the stationary emission field modulated by the smooth ocean/land mask µ(x) ∈ [0,1] shown in Fig. 14(b), and of maximum

emission E0
Z whose value is given in Table 1 (right column). The ground deposition is represented by terms in λ, with a

magnitude of 2% per day. Kinetic parameters and chemical reaction rates are set as follows: since Eq. (33a) and Eq. (33c)

depends on the solar radiation, k1 and k3 evolve in time to represent the diurnal cycle while they are related by k1 = 0.152k3765

(Fig. 14(c)); the other rates are constant and given in Table 1.

In a new numerical experiment, the PKF forecasts will be compared with those of an EnKF (of size 1600). There is no

observations assimilations
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿✿✿✿✿✿

assimilation in this simulation. A brief overview of the PKF formulation for is now

exposed.
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k3(t) 0.624 exp
(

− |(t≡24)−12|3

100

)

k1(t) 0.00152k3(t)

k2 12.3 E0
ROC 0.0235

k4 0.275 E0
NO 0.243

k5 10.2 E0
NO2

0.027

k6 0.12 λ 0.02day−1

In k3 definition, the symbol≡ corresponds to the modulo operator. Emission rates in

ppbCday−1 for ROC or ppbday−1 for NOx, and the kinetic rates in ppb−1min−1,

except for k3 and k1 in min−1.
Table 1. GRS settings

Figure 14. Settings of the GRS-CTM. (a): ,
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

predefined
✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿

and
✿✿✿✿✿✿✿✿

stationary wind field , (b
✿✿✿✿

panel
✿✿

a) :
✿✿✿

and emission field,

✿✿✿✿✿✿✿✿

inventories
✿✿✿✿

mask
✿

(c
✿✿✿✿

panel
✿

b): k3 values along
✿

;
✿✿✿

and
✿✿✿✿

with the day
✿✿✿✿✿

diurnal
✿✿✿✿

cycle
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

photolysis
✿✿✿✿

rate
✿✿

k3 (min−1)
✿✿✿✿

(panel
✿✿

c),
✿✿

as
✿✿✿✿

they
✿✿

are
✿✿✿✿

used
✿✿✿

for

✿✿

the
✿✿✿✿✿✿✿✿

simulation.

4.2 The PKF for the GRS chemical transport model770

Given the complexity of the set of equations Eq. (33), and the increased number of species in comparison to the LV-CTM

Eq. (14), the equations of the PKF dynamics for the GRS-CTM are not presented in this article, but can be found in additional

material2. In this context, the PKF system describes the dynamics of 33 pronostics parameters: 6 mean fields, 6 univariate

variances fields, 6 anisotropy fields and 15 covariances
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariances fields (corresponding to the number of pairs of

chemical species). In term
✿✿✿✿✿

terms of complexity, the PKF dynamics for the GRS-CTM is similar to the simplified LV-CTM:775

the transport part is the same, while the chemical part present
✿✿✿✿✿✿✿

presents
✿

the same kind of interactions between the chemical

species. However, the stationary heterogeneous emissions, not present in LV-CTM, imply a forcing in the dynamics of the

mean concentrations in GRS-CTM, but without effect on the uncertainty because the emissions are not stochastic here. Note

that uncertainties on emission inventories can be introduced in a PKF formulation e.g. as a source term in the variance

dynamics,
✿

and is related to the specification of boundary conditions in a PKF (Sabathier et al., 2022). Similarly to the LV-780

2https://github.com/opannekoucke/pkf-multivariate
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CTM, the dynamics of the anisotropy is closed by removing the terms due to the chemistry. Hence, latter, the dynamics of

anisotropy in GRS-CTM is only due to the transport.

The settings and the results of the numerical experiment are now detailed.

4.3 Numerical experiment: forecast

For the settings of this numerical experiments, the resolution of the grid has been reduced to Nx = 241 grid points, and the time785

step to ∆t= 10−4h to support the stiffness of the GRS equations. Some parameters remain unchanged: RK4 temporal scheme,

finite differences to approximate spatial derivatives, choice of the wind field (Fig. 14a
✿✿

(a)
✿

). The forecast starts at t0 = 00h

(midnight) and ends at t= t0 +72h.

Realistic heterogeneous initial concentration fields are constructed as follows. First, starting from zero concentrations, a

chemical equilibrium state is computed from a 4 weeks time integration of a 0D version of Eq. (33) where the transport has790

been switched off while the concentrations are forced by their respective emissions EO
(·). The resulting concentrations are

denoted by [Z]4weeks
0D . Then, 1D concentration fields are constructed, set as

✿✿✿✿✿✿

defined
✿✿

to
✿✿✿

be constant and equal for each species

to the final value of the 0D integration. The resulting homogeneous concentration fields are then independently perturbed so to

produced
✿✿

to
✿✿✿✿✿✿

produce
✿

heterogeneous concentration fields, more realistic than the homogeneous concentrations: for any species

Z of the 6 chemical species, the resulting 1D perturbed field [Z]0(x) = [Z]4weeks
0D (1+ 0.15e(x)) where e=P1/2ζ with P is795

an homogeneous Gaussian correlation version of Eq. (7) with variance 1 and constant length-scale lh = 12∆x ; and ζ is a

sample of Gaussian random vector N (0,INx
). These perturbed 1D fields of concentrations correspond to the initial condition

at t0 = 00h of the GRS-CTM simulations.

The initial condition for the PKF is set as follows. The mean state is given by the six 1D fields [Z]0(x). The multivariate

initial uncertainty is set as univariate (no cross-correlation) with a magnitude of σ0(Z) = 0.15[Z]4weeks
0D for each one of the six800

species, with univariate homogeneous Gaussian correlation of length-scale 15∆x (60km), the length-scale are identical for all

species.

For the validation, an ensemble of 1600 initial conditions has been populated, consistently from the PKF intial conditions,

by adding univariate perturbations to the GRS-CTM initial condition. For each member k of the ensemble and each field Z

that is to perturb, [Z]0k(x) = [Z]0(x)+ 0.15[Z]4weeks
0D ek(x)) where ek =P1/2ζk with P is an homogeneous version of Eq. (7)805

with variance 1 and constant length-scale lh = 15∆x ; and ζ is a sample of Gaussian random vector N (0,INx
).

Fig. 15 shows the results of the
✿✿✿✿✿✿✿

statistics
✿✿✿✿✿✿✿✿

produced
✿✿✿

by
✿✿✿

the
✿✿✿✿

PKF
✿✿✿

and
✿✿✿

the
✿✿✿✿✿

EnKF
✿

experiments at two instants: at t= 00h+60h,

(slight transparency on the curves), and at t= 00h+66h, (no transparency). These times corresponds to 12h00 and 18h00 of

day 2. Each row of the six ones features the uncertainty for a specie Z with respectively: the mean, the standard-deviation, the

length-scale and a selection of four cross-correlation functions with NO2, ρNO2
Z ; that is the auto-correlation when Z is NO2810

itself. The choice of NO2 for the cross-correlation is arbitrary and other cross-correlations present the same behaviour (not

shown). The statistics produced by the EnKF (resp. PKF) are represented using black dashed lines (resp. colored solid lines).

Regarding the behaviour of the error statistics, the impact of the chemistry appear
✿✿✿✿✿✿

appears: the chemical reactions led to

non-zero cross-correlations visible on the right column (except panel
✿✿✿

Fig.
✿✿

15(p) which corresponds to auto-correlations).
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✿✿✿

The
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿✿✿✿✿✿✿

chemistry
✿✿✿✿

leads
✿✿

to
✿✿✿✿✿✿✿✿

non-zero
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-correlations
✿✿✿✿✿✿✿

between
✿✿

all
✿✿✿✿✿

pairs
✿✿

of
✿✿✿✿✿✿

species
✿✿✿✿✿

(Fig.
✿✿✿

15,
✿✿✿✿

right
✿✿✿✿✿✿✿

column,
✿✿✿✿✿✿

except
✿✿✿

the815

✿✿✿✿✿✿✿✿✿✿✿✿✿

auto-correlation
✿✿

in
✿✿✿

Fig.
✿✿✿✿✿

15(p)
✿

)
✿

Also, the roughness
✿✿✿✿✿✿✿✿✿

small-scale
✿✿✿✿✿

spatial
✿✿✿✿✿✿✿✿

variation, that was originally only present on the means,

has been transferred (except for ROC) to the standard-deviations fields. The PKF equations for the dynamics of VROC (not

shown here) offer an explanation: ∂tVROC is only governed by decay and transport, and is not coupled with any means. Again,

this illustrates the ability of the PKF to explain the physics of uncertainties,
✿✿✿✿✿✿

except
✿✿✿

for
✿✿✿✿

ROC. The effect of the transport is also

present: it produces spatial heterogeneities on the means (left column), standard-deviations (second column) and length-scales820

(third column).

Compared to the EnKF, the PKF offers a high quality forecast at a very low computational cost. The means (left column)

are in perfect accordance in both methods. Slight differences can be observed regarding the standard-deviations fields (second

column), but as established in
✿✿✿✿

Sec. 2.4.2, the EnKF diagnoses are biased by the numerical model error that is significant when

using the low-resolution grid (Nx = 241 grid points in this simulation). The same argument applies to the length-scales (third825

column), although they may also be govern by some underlying chemical dynamics similar to those described for Fig. 12(f)

in section3.3.4), not captured in
✿✿✿✿✿✿

3.3.4).
✿✿✿✿✿

Since the PKF formulation
✿✿✿✿✿✿✿✿✿

considered
✿✿✿✿

here
✿✿

is
✿✿✿✿✿✿

closed
✿✿

by
✿✿✿✿✿✿✿✿

removing
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

contribution
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿

chemistry
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿✿✿✿

dynamics
✿✿✿✿✿✿✿✿✿

(following
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

simplification
✿✿✿✿✿✿✿✿✿

discussed
✿✿

in
✿✿✿✿✿✿✿✿✿

Sec.3.2.4),
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿✿✿✿✿

dynamics

✿

is
✿✿✿✿

the
✿✿✿✿

same
✿✿✿✿

for
✿✿

all
✿✿✿✿✿✿✿

species.
✿✿✿✿✿✿✿✿✿✿

Moreover,
✿✿✿✿✿✿

starting
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿

initial
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿

field
✿✿✿

lh,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

length-scale
✿✿✿✿✿

fields

✿✿✿✿✿✿✿

predicted
✿✿✿

by
✿✿✿

the
✿✿✿✿

PKF
✿✿✿

are
✿✿✿

the
✿✿✿✿

same
✿✿✿

for
✿✿✿

all
✿✿✿✿✿✿

species. Nevertheless, it does not prevent the PKF from estimating the auto and cross830

correlation functions (right column). The last column presents an important result: the cross-correlation functions estimations

by the proxy are in great accordance with the EnKF. The proxy reproduces the variety of cross-correlation functions such

as negative correlations, small amplitudes, asymmetric structures. Despite differences in length-scales estimations, the proxy

shows itself robust and delivers satisfying modeled cross-correlation functions (at a qualitative level). Indirectly, it
✿✿✿

This
✿✿✿✿

has

✿✿✿✿

been
✿✿✿✿✿✿✿✿

observed
✿✿✿

for
✿✿✿✿

other
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-correlation
✿✿✿✿✿✿✿✿

functions
✿✿✿✿

(not
✿✿✿✿✿✿

shown
✿✿✿✿✿

here).
✿✿

It
✿

demonstrates the capacity of the PKF to forecast all835

the cross-covariance fields.

The present experiment validates the results obtained for the LV-CTM in the case of
✿✿✿✿

Note
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

specific
✿✿✿✿✿✿✿

behavior
✿✿✿

of
✿✿✿

the

✿✿✿✿

ROC
✿✿✿✿✿✿✿✿✿✿✿✿

error-variance
✿✿✿

can
✿✿

be
✿✿✿✿✿✿✿✿✿✿

understood
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿

equations
✿✿

for
✿

GRS-CTM : the PKF multivariate formulation results hold

in this more complex chemical model. But it also makes appear some limitations of the multivariate formulation, for instance

the rapidly growing number of parameters in the PKF dynamics.840

The results of this paper and the questions it raises for future developments
✿✿✿

(not
✿✿✿✿✿✿✿

detailed
✿✿✿✿

here
✿✿✿✿

but
✿✿✿✿✿✿✿

available
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

github

✿✿✿✿✿✿✿✿

repository3
✿

),
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿✿✿✿

VROC ,
✿✿✿✿✿

which
✿✿✿✿✿

reads
✿✿

as

∂tVROC +u∂xVROC =−2VROC∂xu− 2λVROC ,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(34)

✿

is
✿✿✿✿

only
✿✿✿✿✿✿✿✿

governed
✿✿✿

by
✿✿✿✿✿

decay
✿✿✿✿✿

(term
✿✿

in
✿✿✿

λ)
✿✿✿

and
✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿

(terms
✿✿✿

in
✿✿

u),
✿✿✿✿

and
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿

coupled
✿✿✿✿

with
✿✿✿

any
✿✿✿✿✿✿

means
✿✿

–
✿✿✿✿✿

while
✿

a
✿✿✿✿✿✿✿✿

coupling
✿✿✿✿

with

✿✿

the
✿✿✿✿✿✿

means
✿✿

is
✿✿✿✿✿✿

present
✿✿✿

for
✿✿✿✿

other
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿✿

species.
✿✿✿✿✿✿

Again,
✿✿✿

this
✿✿✿✿✿✿✿✿

illustrates
✿✿✿

the
✿✿✿✿✿✿

ability of the PKF are discussed in the next section
✿✿

to845

✿✿✿✿✿✿

explain
✿✿✿

the
✿✿✿✿✿✿

physics
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

uncertainties.

3
✿✿

see https://github.com/opannekoucke/pkf-multivariate/blob/master/notebooks/annexe_notebooks/computing_grs_dynamics_with_sympkf.ipynb
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5 Discussion

In this work , we introduced a proxy for estimating the cross-covariances. However, some interrogations remains about its

limitations: we did not questioned the positive definite character of the complete (auto and cross) covariance model, although

it may not be an absolut necessity for the PKF applications. In the numerical experiments conducted here, it appeared that this850

proxy performed well at reconstructing the cross-correlation functions, but it has not been tested in other field of applications

such as geophysics and may be very specific to atmospheric chemistry. One could try to use this model for the shallow-water

problem. Another questionable aspect is the extension of this model to the 2D or 3D case, which has to be verified.

In the multivariate formulations (Lotka-Volterra and GRS) of the PKF dynamics, we limited the dynamics of the anisotropy

to the advection process and unplugged the chemistry terms. This simplification lead to inaccurate forecasts855

5 Conclusions

✿✿✿✿

This
✿✿✿✿

work
✿✿✿✿✿✿✿✿

explored
✿

a
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

of
✿✿✿

the
✿✿✿✿

PKF
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

atmospheric
✿✿✿✿✿✿✿✿✿

chemistry
✿✿✿✿✿

needs,
✿✿✿✿✿

when
✿✿✿

the
✿✿✿✿

PKF
✿✿

is
✿✿✿✿✿✿✿✿✿

formulated
✿✿✿✿✿

from

✿✿

the
✿✿✿✿✿✿✿✿

variance
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

anisotropy
✿✿✿✿✿✿

tensor.

✿

A
✿✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿✿

univariate
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿

model
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿✿

introduced
✿✿

in
✿

a
✿✿✿

1D
✿✿✿✿✿✿✿✿

periodical
✿✿✿✿✿✿✿

domain
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneous
✿✿✿✿✿

wind

✿✿✿✿

field
✿✿✿

and
✿

a
✿✿✿✿✿✿✿✿✿✿✿

conservative
✿✿✿✿✿✿✿✿✿

dynamics,
✿✿✿✿✿✿✿✿✿

illustrating
✿✿✿

the
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

transport
✿✿✿

on
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿

statistics,
✿✿✿✿

and
✿✿

in
✿✿✿✿✿✿✿✿

particular
✿✿✿

the
✿✿✿✿✿✿✿✿

evolution860

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

variance
✿✿✿

and
✿

of the anisotropy in the case where the chemical species have different length-scales.

Nonetheless, we were able to obtain high quality results (comparable to an EnKF of
✿✿✿✿✿✿✿✿✿✿✿

(length-scale)
✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿

wind
✿✿✿✿✿✿✿✿✿✿✿✿

heterogeneity.

✿✿✿✿✿✿✿✿

Compared
✿✿✿✿✿

with
✿✿

an
✿✿✿✿✿✿✿✿✿

estimation
✿✿✿✿✿

from
✿

a
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿

6400 members) at a very low computational cost: putting aside the

parallelisable property of an EnKF, the numerical cost of forecasting a PKF is equivalent to the one of the forecast of a

dozen members in an EnKF, with high quality results. Plus
✿✿✿✿✿✿✿

forecasts, the PKF permits the understanding of the uncertainties865

dynamics: it offers equations that describes the time evolutions of variances, covariances and anisotropies. The impact of

each process (advection, diffusion, chemistry) can be clearly identified in the dynamics of the error statistics, allowing for

a better comprehension of the overall problem. Difficult processes such as the injection of uncertainty in the system by the

emission inventory can be implemented easily in the PKF formulation just by acting on the variances dynamics. This readability

is specific to
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿

shown
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿✿✿

reproduce
✿✿✿

the
✿✿✿✿✿✿✿✿

variance
✿✿✿

and
✿

the PKF and is not possible in other data assimilation870

methods
✿✿✿✿✿✿✿✿✿

anisotropy,
✿✿✿

and
✿✿✿✿

also
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿

provide
✿

a
✿✿✿✿✿✿

proxy
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿✿✿

functions. The PKF also reduce numerical costs by

resuming the information contained in the forecast error covariance matrix of size O(N2
x) to a few parameters of size O(Nx),

reducing the need for high capacity storage. Finally
✿✿✿✿✿✿✿✿✿

prediction
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿

obtained
✿

at
✿✿

a
✿✿✿✿✿

lower
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿

cost
✿✿✿✿✿✿✿✿✿

compared
✿✿✿✿

with
✿✿✿

the

✿✿✿

cost
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble.
✿✿✿

In
✿✿✿✿✿✿✿

addition, the PKF is less subject to numerical model error, when a slightly diffusive or dispersive

model might produces wrong estimations of the forecast error in an EnKF, as it is the error statistics that are directly being875

forecasted.

The goal of this work is to explore a multivariate formulation of the PKF for atmospheric chemistry needs.

To do so, a simplified chemical transport model is introduced in a 1D periodical domain.
✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿

shown
✿✿✿✿

less
✿✿✿✿✿✿✿

sensitive
✿✿

to
✿✿

a

✿✿✿✿✿✿✿✿

dispersive
✿✿✿✿✿✿

model
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

encountered
✿✿✿

for
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

simulation
✿✿✿✿

that
✿✿✿✿✿✿✿

required
✿✿✿✿✿✿✿✿✿

computing
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

at
✿✿

a
✿✿✿✿

high
✿✿✿✿✿✿✿✿

resolution
✿✿✿

to
✿✿✿✿✿✿✿

mitigate
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✿✿

the
✿✿✿✿✿

effect
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dispersive
✿✿✿✿

term
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿

estimation. This simplified model allowed to propose
✿✿✿✿✿✿✿✿

proposed a proxy for the880

multivariate covariance to approximate the cross-covariances
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariances, which extends the univarite
✿✿✿✿✿✿✿✿

univariate covari-

ance model parameterized from the variance and the anisotropytensor
✿✿✿✿✿✿✿

variance
✿✿✿

and
✿✿✿✿✿✿✿✿✿

anisotropy,
✿✿✿✿

but
✿✿✿✿

there
✿✿✿✿✿✿✿✿

resulting
✿✿✿✿✿✿✿✿✿✿

multivariate

✿✿✿✿✿✿✿✿✿

covariance
✿

is
✿✿✿✿✿✿✿✿✿

symmetric
✿✿✿✿

with
✿✿✿

no
✿✿✿✿✿✿✿✿

guarantee
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

positiveness.

Then a
✿✿✿✿✿✿✿✿

simplified
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿

model
✿✿✿

has
✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

introduced
✿✿

to
✿✿✿✿✿✿

tackle
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿

error
✿✿✿✿✿✿✿✿

statistics.
✿✿✿✿✿

Based
✿✿✿

on

✿✿✿✿✿✿✿✿✿✿✿✿

Lottka-Volterra
✿✿✿✿✿

(LV)
✿✿✿✿✿✿✿✿

dynamics,
✿✿✿✿

this
✿✿✿✿✿✿

testbed
✿✿✿✿✿✿✿✿✿

reproduces
✿✿✿✿✿✿✿✿✿

non-linear
✿✿✿✿✿✿✿✿

coupling
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿✿

species
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿

transport885

✿✿✿

due
✿✿

to
✿✿✿

the
✿✿✿✿✿

wind,
✿✿

as
✿

it
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿✿

real
✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿✿✿

transport
✿✿✿✿✿✿

model.
✿✿✿✿

Then
✿

a
✿

multivariate PKF formulation has been proposed,

which made appear a closure issue related to the chemical part, but not to the transport, and concerns the dynamics of the

anisotropy. A detailed analysis of the effect of the chemistry on the dynamics of the anisotropy led to an analytical solution of

the multivariate evolution of the uncertainty in a 1D harmonic oscillator, which helps to understand the transfer of uncertainty

from one species to another. Then the study of the relative contribution of the chemistry890

✿✿✿

The
✿✿✿✿

PKF
✿✿✿

has
✿✿✿✿✿✿✿✿

permitted
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

understanding
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿✿✿✿✿✿

dynamics:
✿

it
✿✿✿✿✿✿

offered
✿✿✿✿✿✿✿✿

equations
✿✿✿✿

that
✿✿✿✿✿✿✿✿

described
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿✿

evolutions

✿✿

of
✿✿✿✿✿✿✿✿

variances,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariances
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿

anisotropies.
✿✿✿

The
✿✿✿✿✿✿

impact
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

advection
✿

and of the transport to the trend of the anisotropy

has been conducted, which appears to be mainly explained by the transport. Hence
✿✿✿✿✿✿✿✿

chemistry
✿✿✿✿

have
✿✿✿✿

been
✿✿✿✿✿✿

clearly
✿✿✿✿✿✿✿✿✿

identified
✿✿

in

✿✿

the
✿✿✿✿✿✿✿✿✿

dynamics
✿✿

of
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿

statistics,
✿✿✿✿✿✿✿

allowing
✿✿✿

for
✿✿

a
✿✿✿✿✿

better
✿✿✿✿✿✿✿✿✿✿✿✿

comprehension
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

overall
✿✿✿✿✿✿✿

problem.
✿✿✿✿✿

Since
✿✿✿

the
✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿✿✿✿✿

contribution

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

transport
✿✿✿✿

was
✿✿✿✿✿

larger
✿✿✿✿

than
✿✿✿

the
✿✿✿✿

one
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

chemistry
✿✿

in
✿✿✿

the
✿✿✿✿✿

trend
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

anisotropy, a closed form has been considered by895

removing the terms related to the chemistry in the dynamics of the anisotropy.

Despite of this approximation, a validation test-bed using an ensemble method shown the that PKF dynamics is able to

predict the uncertainty dynamics for two chemical schemes based on Lotka-Volterra and GRS.

✿✿✿

LV. Moreover, several assimilation cycles have been conducted for the LV chemical scheme, showing the a multivariate PKF

assimilation is possible, which is promising.900

✿

A
✿✿✿✿✿

final
✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿

example,
✿✿✿✿✿✿✿

focused
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿

step,
✿✿✿

has
✿✿✿✿✿

been
✿✿✿✿✿✿✿✿✿

introduced
✿✿

to
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿

potential
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

multivariate

✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

to
✿

a
✿✿✿✿✿✿

larger
✿✿✿✿✿✿

system.
✿✿✿

In
✿✿✿

this
✿✿✿✿✿

case,
✿✿✿

the
✿✿✿✿✿✿✿✿

chemical
✿✿✿✿✿✿

scheme
✿✿✿✿✿✿

(GRS)
✿✿✿✿✿✿✿

describe
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

interaction
✿✿

of
✿✿✿

six
✿✿✿✿✿✿✿

species.
✿✿✿✿✿✿

Again,

✿✿✿

this
✿✿✿✿✿✿✿

example
✿✿✿

has
✿✿✿✿✿✿

shown
✿✿✿

the
✿✿✿✿✿✿

ability
✿✿

of
✿✿✿

the
✿✿✿✿

PKF
✿✿

to
✿✿✿✿✿✿✿✿

reproduce
✿✿✿

the
✿✿✿✿✿✿

EnKF
✿✿✿✿

error
✿✿✿✿✿✿✿✿

statistics.

✿✿

To
✿✿

go
✿✿✿✿✿✿✿

further,
✿

it
✿✿✿✿

will
✿✿

be
✿✿✿✿✿✿✿✿✿

interesting
✿✿

to
✿✿✿

see
✿✿

if
✿✿✿

the
✿✿✿✿✿✿✿✿

advection
✿✿✿✿✿

terms
✿✿✿✿✿✿

remain
✿✿✿✿✿✿✿✿

dominant
✿✿✿✿✿

under
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿

like
✿✿✿✿✿✿

weaker
✿✿✿✿✿

wind

✿✿

or
✿✿✿✿✿✿✿✿✿

accelerated
✿✿✿✿✿✿✿✿✿

chemistry
✿✿✿✿

from
✿✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿✿

forecasts
✿✿

of
✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿

CTMs,
✿✿✿✿✿

where
✿✿✿✿✿✿✿✿

isotropic
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

homogeneous
✿✿✿✿✿✿✿✿✿✿

correlations905

✿✿

are
✿✿✿✿✿

often
✿✿✿✿✿✿✿✿✿

considered
✿✿

in
✿✿✿✿✿✿✿✿✿

variational
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation.

This work is a milestone in the development of a multivariate assimilation based on the PKF and applied to air quality, and

feeds the reflection on the ongoing univariate implementation of the PKF approach in
✿

is
✿✿✿

an
✿✿✿✿✿✿✿✿

important
✿✿✿✿

step
✿✿

in
✿✿✿✿✿✿✿✿✿

extending
✿✿✿

the

✿✿✿✿✿✿✿✿

univariate
✿✿✿✿

PKF
✿✿✿✿✿✿✿✿✿✿✿✿✿

implementation
✿✿

to
✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿

CTMs
✿✿✿✿

like the operational transport model MOCAGE at Meteo-France.

In particular,
✿✿✿

The
✿✿✿✿✿

work
✿✿✿✿

also
✿✿✿✿✿✿✿

highlight
✿✿

a
✿✿✿✿✿✿✿✿

drawback
✿✿

of
✿✿✿

the
✿✿✿✿✿

PKF:
✿

the cost of the current multivariate PKF formulation scales as910

the square of number of chemical species which appears as a limitation, at least if all the chemical species are considered in

the multivariate uncertainty prediction. Hence, it would be interesting to test a PKF formulation on a reduced chemical scheme

of interest for the data assimilation.
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Moreover, while this contributions focused on air quality, it contributes to improve our understanding of multivariate statistics

e.g. with the analytical solution of the 1D harmonic oscillator. It would be interesting to extend this multivariate PKF formu-915

lation to other geophysical applications e.g. the numerical weather prediction
✿

;
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿

particular
✿✿✿✿✿✿✿✿

attention
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

extension
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

multivariate
✿✿✿✿✿✿✿✿✿✿✿✿✿

cross-covariance
✿✿✿✿✿✿

proxy
✿✿

to
✿✿✿

the
✿✿✿

2D
✿✿

or
✿✿✿

3D
✿✿✿✿✿✿✿

domains. Compared with air quality where the chemical reactions are

point-wise, geophysical equations make appear local interactions that have to be study
✿✿✿✿✿✿

studied in view of the PKF approach

e.g. the geostrophic balance in the barotropic model.

Code and data availability. The code developed and used to generate the experiments is available under https://github.com/opannekoucke/920

pkf-multivariate

Appendix A: Lotka-Volterra chemical model

We consider for
✿✿✿✿

four chemical species A,B,X and Y governed by the chemical reactions:

X +A
k1→ 2A, (A1)

A+B
k2→ 2B, (A2)925

B
k3→ Y. (A3)

The kinetic of the reaction, deduced from the mass action law for reaction rate writes:

d[A]

dt
= k1[X][A]− k2[A][B] (A4a)

d[B]

dt
= k2[A][B]− k3[B] (A4b)

where [·] denotes the concentration. When the concentrations of X and Y are constant(that is in excess), the system simplifies930

as:

d[A]

dt
= k1[A]− k2[A][B] (A5a)

d[B]

dt
= k2[A][B]− k3[B] (A5b)

which is a Lotka-Volterra system.
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Appendix B: Dynamics of the error statistics for the Harmonic Oscillator935

The harmonic oscillator equations writes:

∂tA=−kB, (B1a)

∂tB = kA, (B1b)

with A=A(t,x) and B =B(t,x) being functions of time and 1D space. As this problem is linear, the dynamic is identical

for the errors,940

∂tεA =−kεB , (B2a)

∂tεB = kεA. (B2b)

Their analytical solution is given by:

εA(t,x) = cos(kt)εA(t,0,x
✿

)− sin(kt)εB(t,0,x
✿

), (B3a)

εB(t,x) = sin(kt)εA(t,0,x
✿

)+ cos(kt)εB(t,0,x
✿

). (B3b)945

We
✿✿

At
✿✿✿

the
✿✿✿✿✿✿

initial
✿✿✿✿

time,
✿✿✿✿

we consider the case where the initial error are uncorrelated V 0
AB = E

[
ε0Aε

0
B

]
= 0 and the initial

✿✿✿✿✿

where
✿✿✿

the variance and length-scale fields are homogeneousat initial time, i.e. ∂xV
0
A = ∂xV

0
B = ∂xg

0
A = ∂xg

0
B = 0 ;

✿✿✿✿✿✿

where
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿

upper-script
✿✿

·0
✿

is
✿✿

a
✿✿✿✿✿✿✿✿

shorthand
✿✿✿

for
✿✿✿✿✿✿✿✿

denoting
✿✿

the
✿✿✿✿✿

fields
✿✿

a
✿✿✿✿✿

initial
✿✿✿✿

time.

From the analytical solution for the errors Eq. (B3), we deduce solutions for the error statistics.

VA(t,x) = E

[
(εA(t,x))

2
]

(B4a)950

= cos2(kt)E
[
ε2A
]
(0,x)− 2cos(kt)sin(kt)E [εAεB ] (0,x)+ sin2(kt)E

[
ε2B
]
(0,x) (B4b)

= cos2(kt)V 0
A − 2cos(kt)sin(kt)V 0

AB︸︷︷︸
=0

+sin2(kt)V 0
B (B4c)

= cos2(kt)V 0
A +sin2(kt)V 0

B (B4d)

Following the same process, we deduce that VB(t,x) = sin2(kt)V 0
A+cos2(kt)V 0

B and VAB(t,x) = cos(kt)sin(kt)(V 0
A −V B

0 )
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

VAB(t,x) =

We can now determine the dynamics of the metric tensors:
✿✿✿✿✿✿

tensor:955

gA(t,x) = E

[(
∂x

(
εA√
VA

))2
]
(t,x) (B5a)

= E



(
∂xεA√
VA

− εA∂xVA

2V
3/2
A

)2

(t,x) (B5b)

40



As we consider homogeneous fields, we have that ∂xVA = 0, simplifying the expression to

gA(t,x) =
1

VA
E
[
(∂xεA)

2
]
(t,x) (B6a)

=
1

VA(t,x)
E

[
cos2(kt)

(
∂xε

0
A

)2 − 2cos(kt)sin(kt)∂xε
0
A∂xε

0
B +sin2(kt)

(
∂xε

0
B

)2]
(x) (B6b)960

Again, under the condition of homogeneous initial fields
✿✿✿✿

Then,
✿✿

at
✿✿✿✿✿

t= 0, E
[(
∂xε

0
A

)2]
simplifies to V 0

Ag
0
A and E

[(
∂xε

0
B

)2]
=

V 0
Bg

0
B . The independance

✿✿✿✿✿✿✿✿✿✿✿

independence of ε0A and ε0B also implies E
[
∂xε

0
A∂xε

0
B

]
= 0. Finally, we obtain that:

gA(t,x) =
1

VA(t,x)

[
cos2(kt)V 0

Ag
0
A +sin2(kt)V 0

Bg
0
B

]
. (B7)

We can also deduce an analytical solution for the term E [∂xε̃A∂xε̃B ] .
✿✿✿✿✿

which
✿✿✿✿✿

reads,
✿✿✿✿✿

under
✿✿✿✿✿✿✿✿✿

assumption
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

homogeneity,
✿✿✿

as:

E [∂xε̃A∂xε̃B ] (t,x) = E

[(
∂x

εA√
VA

)
∂x

(
εB√
VB

)]
(t,x) (B8a)965

=
1

(
√
VA

√
VB)(t,x)

E [∂xεA∂xεB ] (t,x) (B8b)

=
1

σA(t)σB(t)
E

[
cos(kt)sin(kt)

((
∂xε

0
A

)2 −
(
∂xε

0
B

)2)
+ ∂xε

0
A∂xε

0
B

(
cos2(kt)− sin2(kt)

)]
(t,x)

(B8c)

=
1

σA(t)σB(t)


cos(kt)sin(kt)


E

[(
∂xε

0
A

)2]

︸ ︷︷ ︸
V 0
A
g0
B

−E

[(
∂xε

0
B

)2]

︸ ︷︷ ︸
V 0
B
g0
B


+E

[
∂xε

0
A∂xε

0
B

]
︸ ︷︷ ︸

=0

(
cos2(kt)− sin2(kt)

)


(t,x)

(B8d)

=
cos(kt)sin(kt)

(σAσB)(t,x)

(
V 0
Ag

0
B −V 0

Bg
0
B

)
. (B8e)

Note that we could have derived analytical solutions in the case of heterogeneous initial fields, but for the sake of simplicity970

we choose
✿✿✿✿✿

chose to consider only the homogeneous case. However, obtaining analytical solution when the initial error fields

are correlated seems more difficult.

Appendix C: Cross-covariance analysis formula demonstration

By introducing the true state and the error fields X a = X t + εa,X f = X t + εf and Yo(xl) = X t(xl)+ εo(xl), the analysis

equation (8a) becomes:975

εa(x) = εf (x)+σf (x)ρfxl
(x)

σf (xl)

V f (xl)+V o(xl)

(
εo(xl)− εf (xl)

)
(C1)

which can be adapted to the multivariate case:

εaZ1
(x) = εfZ1

(x)+σf
Z1
(x)ρfZ1Zl,l

(x)
σf
Zl
(xl)

V f
Zl
(xl)+V o

Zl
(xl)

(
εoZl

(xl)− εfZl
(xl)

)
(C2)
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where Zl is the chemical species that is observed, Z1 can be any chemical species, and ρfZ1Zl,l
(x) = E

[
εfZl

(xl)ε
f
Z1
(x)
]
/
(
σf
Zl
(xl)σ

f
Z1
(x)
)

is the forecast cross-correlation function between Zl and Z1 at location xl. Writing the same equation for another chemical Z2980

εaZ2
(x) = εfZ2

(x)+σf
Z2
(x)ρfZ2Zl,l

(x)
σf
Zl
(xl)

V f
Zl
(xl)+V o

Zl
(xl)

(
εoZl

(xl)− εfZl
(xl)

)
(C3)

and using the definition of the analysis error covariance field V a
Z1Z2

(x) = E
[
εaZ1

(x)εaZ2
(x)
]

leads to

V a
Z1Z2

(x) = E

[
εfZ1

(x)εfZ2
(x)
]

︸ ︷︷ ︸
=V f

Z1Z2
(x)

+
σf
Zl
(xl)

V f
Zl
(xl)+V o

Zl
(xl)

E

[(
σf
Z2
(x)ρfZ2Zl,l

(x)εfZ1
(x)+σf

Z1
(x)ρfZ1Zl,l

(x)εfZ2
(x)
)(

εoZl
(xl)− εfZl

(xl)
)]

+

(
σf
Zl
(xl)

)2

(
V f
Zl
(xl)+V o

Zl
(xl)

)2σ
f
Z1
(x)ρfZ1Zl,l

(x)σf
Z2
(x)ρfZ2Zl,l

(x)E

[(
εoZl

(xl)− εfZl
(xl)

)2]
(C4a)985

Then, using the definition of the cross-correlation function E

[
εfZl

(xl)ε
f
Z1
(x)
]
= σf

Zl
(xl)σ

f
Z1
(x)ρfZ1Zl,l

(x), the independence

between the forecast and observation errors E

[
εfZl

(xl)ε
o
Z1
(xl)

]
= 0, and the definitions of the observation error variance

V o
Zl
(xl) = E

[(
εoZl

(xl)
)2]

and forecast error V f
Zl
(xl) = E

[(
εfZl

(xl)
)2]

, we obtain that:

V a
Z1Z2

(x) = V f
Z1Z2

(x)−
σf
Zl
(xl)

V f
Zl
(xl)+V o

Zl
(xl)

(
σf
Z2
(x)ρfZ2Zl,l

(x)σf
Zl
(xl)σ

f
Z1
(x)ρfZ1Zl,l

(x)+σf
Z1
(x)ρfZ1Zl,l

(x)σf
Zl
(xl)σ

f
Z2
(x)ρfZ2Zl,l

(x)
)

+
V f
Zl
(xl)

(
V f
Zl
(xl)+V o

Zl
(xl)

)2σ
f
Z1
(x)ρfZ1Zl,l

(x)σf
Z2
(x)ρfZ2Zl,l

(x)
(
V o
Zl
(xl)+V f

Zl
(xl)

)
(C5a)990

= V f
Z1Z2

(x)−
V f
Zl
(xl)

V f
Zl
(xl)+V o

Zl
(xl)

2
(
σf
Z2
(x)ρfZ2Zl,l

(x)σf
Z1
(x)ρfZ1Zl,l

(x)
)

+
V f
Zl
(xl)

V f
Zl
(xl)+V o

Zl
(xl)

σf
Z1
(x)ρfZ1Zl,l

(x)σf
Z2
(x)ρfZ2Zl,l

(x) (C5b)

= V f
Z1Z2

(x)−
(
σf
Z2
(x)ρfZ2Zl,l

(x)σf
Z1
(x)ρfZ1Zl,l

(x)
) V f

Zl
(xl)

V f
Zl
(xl)+V o

Zl
(xl)

. (C5c)

Appendix D: Second order update formula for the anisotropy

In the alternative version PKFO2 of the PKF analysis algorithm PKFO1, the update equation for the metric tensor is (see995

Pannekoucke (2021) for details)

ga(x) =
V a(x)

V f (x)
sf (x)− 1

V f (x)V a(x)

[
∇V f (∇V f )

]
(x)−

1

V a(x)

V f (xl)

V f (xl)+V o(xl)

[
∇(σfρfxl

)
(
∇(σfρfxl

)
)T]

(x)− 1

4(V a(x))2
[
∇V a(∇V a)T

]
(x)
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Then, the analysis anisotropy sa is obtained using sa(x) = (ga(x))
−1.
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Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A.: SymPy: symbolic computing in Python, PeerJ Computer Science, 3,1070

e103, https://doi.org/10.7717/peerj-cs.103, 2017.

Mirouze, I. and Weaver, A. T.: Representation of correlation functions in variational assimilation using an implicit diffusion operator, Quar-

terly Journal of the Royal Meteorological Society, 136, 1421–1443, https://doi.org/10.1002/qj.643, 2010.

Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. F.: Simultaneous assimilation of satellite NO2, O3, CO,

and HNO3 data for the analysis of tropospheric chemical composition and emissions, Atmospheric Chemistry and Physics, 12, 9545–9579,1075

https://doi.org/10.5194/acp-12-9545-2012, 2012.

Paciorek, C. and Schervish, M.: Spatial Modelling Using a New Class of Nonstationary Covariance Functions, Environmetrics, 17, 483–506,

https://doi.org/10.1002/env.785, 2006.

Pannekoucke, O.: An anisotropic formulation of the parametric Kalman filter assimilation, Tellus A: Dynamic Meteorology and Oceanogra-

phy, 73, 1–27, https://doi.org/10.1080/16000870.2021.1926660, 2021.1080

Pannekoucke, O. and Arbogast, P.: SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dy-

namics, Geoscientific Model Development, 14, 5957–5976, https://doi.org/10.5194/gmd-14-5957-2021, 2021.

45

https://doi.org/10.1175/1520-0493(1998)126%3C0796:dauaek%3E2.0.co;2
https://doi.org/10.1115/1.3662552
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.1175/1520-0469(1963)020%3C0130:DNF%3E2.0.CO;2
https://doi.org/10.5194/gmd-8-2777-2015
https://doi.org/10.1080/10962247.2016.1177620
https://doi.org/10.1002/qj.4139
https://doi.org/10.7717/peerj-cs.103
https://doi.org/10.1002/qj.643
https://doi.org/10.5194/acp-12-9545-2012
https://doi.org/10.1002/env.785
https://doi.org/10.1080/16000870.2021.1926660
https://doi.org/10.5194/gmd-14-5957-2021


Pannekoucke, O. and Fablet, R.: PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to

trainable neural network representations, Geoscientific Model Development, 13, 3373–3382, https://doi.org/10.5194/gmd-13-3373-2020,

2020.1085

Pannekoucke, O. and Massart, S.: Estimation of the local diffusion tensor and normalization for heterogeneous correlation modelling using

a diffusion equation., Quarterly Journal of the Royal Meteorological Society., 134, 1425–1438, https://doi.org/10.1002/qj.288, 2008.

Pannekoucke, O., Ricci, S., Barthelemy, S., Ménard, R., and Thual, O.: Parametric Kalman filter for chemical transport models, Tellus A:

Dynamic Meteorology and Oceanography, 68, 31 547, https://doi.org/10.3402/tellusa.v68.31547, 2016.

Pannekoucke, O., Bocquet, M., and Ménard, R.: Parametric covariance dynamics for the nonlinear diffusive Burgers’ equation, Nonlinear1090

Processes in Geophysics, 2018, 1–21, https://doi.org/https://doi.org/10.5194/npg-2018-10, 2018.

Pannekoucke, O., Ménard, R., El Aabaribaoune, M., and Plu, M.: A methodology to obtain model-error covariances due to the discretization

scheme from the parametric Kalman filter perspective, Nonlinear Processes in Geophysics, 28, 1–22, https://doi.org/10.5194/npg-28-1-

2021, 2021.

Purser, R., Wu, W.-S., D.Parrish, and Roberts, N.: Numerical aspects of the application of recursive filters to variational statisti-1095

cal analysis. Part II: Spatially inhomogeneous and anisotropic general covariances, Monthly Weather Review, 131, 1536–1548,

https://doi.org/10.1175//2543.1, 2003.

Sabathier, M., Pannekoucke, O., and Maget, V.: Boundary Conditions for the Parametric Kalman Filter forecast, to submit, 2022.

Tang, X., Zhu, J., Wang, Z. F., and Gbaguidi, A.: Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simulta-

neous adjustment of initial conditions and emissions, Atmospheric Chemistry and Physics, 11, 12 901–12 916, https://doi.org/10.5194/acp-1100

11-12901-2011, 2011.

Voshtani, S., Ménard, R., Walker, T. W., and Hakami, A.: Assimilation of GOSAT Methane in the Hemispheric CMAQ Part I: Design of the

Assimilation System, Remote Sensing, 14, 371, https://doi.org/10.3390/rs14020371, 2022a.

Voshtani, S., Ménard, R., Walker, T. W., and Hakami, A.: Assimilation of GOSAT Methane in the Hemispheric CMAQ Part II: Results Using

Optimal Error Statistics, Remote Sensing, 14, 375, https://doi.org/10.3390/rs14020375, 2022b.1105

Weaver, A. and Courtier, P.: Correlation modelling on the sphere using a generalized diffusion equation (Tech. Memo. ECMWF, num. 306),

Quarterly Journal of the Royal Meteorological Society, 127, 1815–1846, https://doi.org/10.1002/qj.49712757518, 2001.

Weaver, A., Deltel, C., Machu, E., Ricci, S., and Daget, N.: A multivariate balance operator for variational ocean data assimilation, Quarterly

Journal of the Royal Meteorological Society, 131, 3605 – 3625, https://doi.org/10.1256/qj.05.119, 2006.

Weisstein, E. W.: Courant-Friedrichs-Lewy Condition, 2002.1110

Whitaker, J. and Hamill, M.: Ensemble Data Assimilation without Perturbed Observations, Monthly Weather Review, 130,

https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2, 2003.

46

https://doi.org/10.5194/gmd-13-3373-2020
https://doi.org/10.1002/qj.288
https://doi.org/10.3402/tellusa.v68.31547
https://doi.org/https://doi.org/10.5194/npg-2018-10
https://doi.org/10.5194/npg-28-1-2021
https://doi.org/10.5194/npg-28-1-2021
https://doi.org/10.5194/npg-28-1-2021
https://doi.org/10.1175//2543.1
https://doi.org/10.5194/acp-11-12901-2011
https://doi.org/10.5194/acp-11-12901-2011
https://doi.org/10.5194/acp-11-12901-2011
https://doi.org/10.3390/rs14020371
https://doi.org/10.3390/rs14020375
https://doi.org/10.1002/qj.49712757518
https://doi.org/10.1256/qj.05.119
https://doi.org/10.1175/1520-0493(2002)130%3C1913:EDAWPO%3E2.0.CO;2


Figure 15. Multivariate forecasts
✿✿✿✿✿✿✿

statistics for the GRS-CTM, PKF outputs (colored lines) and EnKF diagnoses
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

estimations
✿✿✿✿

from

✿✿✿✿✿✿✿✿

Ne = 1600
✿✿✿✿✿✿✿

forecasts (black dashed lines) for times t= 00h +{60,66}h. As we consider a simulation that starts at midnight of day 0, t= 00h

+60h
✿✿✿✿

(slight
✿✿✿✿✿✿✿✿✿✿

transparency
✿✿

on
✿✿✿

the
✿✿✿✿✿

curves)
✿

corresponds to midday of day 2, and t= 00h +66h
✿✿✿

(no
✿✿✿✿✿✿✿✿✿✿

transparency) to 18h00 of day 2. From left

to right, the columns correspond to the forecasts of: the mean concentration, the standard-deviation, the length-scales (normalized by ∆x),

and the correlation functions (auto and cross) with NO2 at locations x= [0.1,0.36,0.63,0.9]D, for each of the six species (rows).
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