First of all, we would like to thank Annika Vogel for her review and for giving us the opportunity to improve our paper. We added our acknowledgements to Annika Vogel for her evaluation of our contribution in the new manuscript.

Now, we organized the answer to the comments as follows. First, we list some changes afford to the manuscript then detail our answers to the questions raised by the referee.

List of changes for the revision

Minor changes

Errors in the label of some figures in the text have been corrected:
L491 Fig.8-(d) -> Fig. 8-(f)
L493 Fig.9-(d) -> Fig. 9-(f)
The figures have been re-rendered to improve their quality (size of legend, title,..). Because of the sampling noise inherent to the ensemble estimation, the values they show can have changed, without modifying the meaning or the robustness of the results. For instance, in Fig. 7, the averages where $22,8 \%$ for $1 _A=1 _B$ while it is $23,1 \%$ now. As another example, the curves in Fig. 10 or 11 are not strictly the same as for the first version of the manuscript while we recognize the same patterns and conclusions.

Differences between the two versions of the manuscript

To facilitate the comparison between the two version of the manuscript, a companion version of the manuscript lists all the modifications where old (new) statements are in red (blue). But the line numbers will refer to the revised version of the manuscript (not to the companion version).

Answer to the question of the referees

We copied your commentary in italics below, we reply in normal blue font.

General comments:

1) The submitted manuscript "Toward a multivariate formulation of the PKF assimilation: application to a simplified chemical transport model" by Perrot et aline contributes to the developments of a parametric Kalman Filter (PKF) in which the error statistics of a geophysical system are represented in form of a few parameters of the statistics. Specifically, the main contribution of this paper is the extension of previously published PKF formulations to multivariate problems in which cross-covariances between the individual prognostic fields occur. This is a very important step towards the application to real problems like complex chemical transport models (CTMs) and makes the manuscript highly valuable to the scientific community.

Thank you for your motivating remarks.
2) The quality of the research and the way of its presentation is good, but the manuscript is too long and overloaded. It appears that the authors aimed at putting too much content into one manuscript.

I would suggest division it into two (or even three) manuscripts, each specifically focusing on one aspect, eg:

- General aspects of multivariate PKF, including theoretical validation and limits (until end of Sect.2)
- Application to simplified chemistry, including proxy for cross-correlation function, contribution of individual terms and closure (mainly Sect. 3 and maybe Sect.4)
- Maybe: application to more complex chemistry (Sect.4)

Thanks to the referee comments, we improved the quality of the manuscript while preferring to keep it as a whole. From our estimation, the resulting manuscript in two-column is less than 30 pages (28 pages when latex is compiled using the npg template without the "manuscript" option).
3) Besides that, some parts presented in the manuscript could be shortened significantly by referring to previous literature and focusing on the new aspects of this work (especially in Sec.2, see specific comments). The manuscript also contains a number of inconsistencies in the notation and some grammar/wording mistakes (see technical corrections) which makes it sometimes difficult for the reader to follow the details.

This has been corrected point by point following your recommendations. Thank you.
Specific comments:

1) Different quantities are used for error statistics in different equations and plots. Eg. in Sec. 2.3, variance V and metric tensor g are used in Equation (8) whereas standard deviation and length scale are used in Fig.2. Additionally, the aspect tensor s is used in Equation (21) whereas the metric tensor is used in Equation (24). It would increase the readability significantly if the authors would stick to one quantity thought the manuscript were possible, or at least within the same evaluation (eg. to increase the consistency between Equation (21),(24) and (25) in Sec.3.3). In addition, the correlation length scale (eg. in Fig. 2 and LINE 247) was not defined and its connection to the other correlation quantities (metric and aspect tensor) remains unclear.

This has been modified along the manuscript which is now focused on the aspect tensor (see e.g. equations 8,25), that is directly connected to the length-scale in 1D domain. Moreover, the lengthscale is now defined after Eq.(6).
2) Section 2: The main new scientific contribution of this section appears to be the comparison to the enKF with two different spatial resolutions showing that the PKF is able to produce reasonable statistics already at coarse resolutions. Thus, the section can be significantly shortened by focusing on the new aspects and the most essential information required for those:
2.1) The main content of Sec.2.2 and 2.3 was previously formulated in Pannekoucke2021. I suggest shortening the introduction of the PKF univariate equations by referring to this paper and just providing equations which are essential for the new aspect (i.e. numerical limits in Sec.2.4.3)

Since section 2 is devoted to recalling the context of the PKF and the definition we need for the understanding of the manuscript, we find it difficult to delete sections 2.2 and 2.3, and prefer to keep them, for self-consistency of the manuscript.

However, in the new version of the manuscript, we simplified the introduction of the PKF dynamics for the advection and suppressed the previously dedicated section 2.4.1. Now Sec. 2.4.1 refers to the numerical validation with the EnKF.
2.2) Section 2.4.2 seems to contain mainly results were already demonstrated in previous publications. Eg. LINE 257: The ability of the PKF to produce high quality univariate forecasts of error statistics was already shown in Pannekoucke2016,2018,2021. Although the description presents the main aspects and advantages of the PKF in a well-formulated way, it appears to be more suitable for a review or textbook-like article than as part of a scientific manuscript. Here, the description can be shortened significantly, focusing on new aspects.

Compared with previous works, one of the contribution of Sec. 2.4.2 (now the section 2.4.1) is to validate the correlation functions provided by the PKF, compared by the one estimated from the EnKF.

This now clearly appears in the manuscript : «Compared to previous studies that focused only on the comparison of variance and anisotropy error statistics, here we have shown the ability to reproduce complex heterogeneous correlation functions using the PKF formulation in 1D domain. » Line 316-318

This section introduces the numerical framework that is used throughout the manuscript as well as the estimation of the variance and anisotropy of an ensemble. Therefore, removing this description here would have required introducing it later in the manuscript without saving space.

Moreover, the section presents the behavior of the error statistics is case where the dynamics is a conservative equation (that was not the case of previous published works). This behavior is complex since it makes appear variations of the magnitude of the mean and of the error variance because of the heterogeneity of the wind and of the conservation. We chose this configuration, with an heterogeneous wind, because it offers a simple but rich framework for the exploration of CTM uncertainty dynamics. The description helps to interpret the results that will come in the multivariate setting, and for which the complexity increases because of the coupling between chemical species. For these reasons we consider that the section is important for the reader that is not used to the PKF, and for the self-consistency of the manuscript, while we agree that scientists with a strong background in PKF will find this part less interesting for themselves - however this is still the introduction of the PKF.
2.3) The main conclusion of Sec.2.4.3 is that the PKF is able to produce reasonable error statistics also for coarse spatial resolutions (LINE 302f, LINE 307f). No validation with true statistics is available for this setup and the conclusion is based on comparison of comparison of the low resolution PKF with high- and low resolution enKF. In this setup, the agreement between low resolution PKF and high resolution enKF does not necessarily proof good performance because both resolutions could be insufficient. The easiest way to indicate convergence of the methods, and thus the accuracy of the solution, would be to make sure that the solution of the PKF remains the same for high resolution simulations. This would indicate the convergence of the PKF to a solution which is well approximated by the low resolution simulation. Ideally, the convergence of the enKF to the same solution could also be indicated by performing even more high resolution simulations. But given the computational efforts, it might be sufficient to verify that the high resolution PKF solution agrees with the low resolution PKF and the high resolution enKF solutions.

We computed the high resolution of the PKF, and compared it to the low resolution results. We observed that there is no difference at eye from the low and the high resolution simulation, at a
quantitative level, the relative error of the low vs. high solution (the high resolution being considered as the reference here) is less than 1% in relative error (computed from the L 2 norm).

This is now mentioned in the manuscript: "A PKF at high resolution has been computed (not shown here) and has been found equivalent to the PKF computed at low resolution, with a relative error at the end of the forecast window lower than 0.2% for the mean, 0.3% for the standard-deviation, and 0.05% for the length-scale ; where the relative error of fields has been computed as $\$ \|$ PKF_ $\{$ LR $\}$ PKF_\{HR \}||/||PKF_\{HR \}||\$, with \$||cdot||\$ the L2 norm." in L309-312
2.4) Given the length of Section 2.4, I would suggest making it a new main Section (->Sec.3, if not significantly shortened according to other comments above. This comment is also related to the main general comment of dividing the manuscript.) In addition, the title might be misleading, as it appears to include only the advection process as part of the forecast step and not the full PKF with forecast and analysis step. Maybe something like: "PKF for advection equation of passive tracer" would be a more appropriate section title.
We have retained but reduced Sec. 2.4 and modified the title as suggested.
3) Section 3: This section is much too long. Following the general comments (above), I would suggest taking this section as a paper on its own, which would be of appropriate length (17 pages +introduction, conclusions etc). In any way, Sec.3.3+3.4 as well as Sec.3.5 could be separate sections each, i.e. dividing Sec. 3 into three sections, eg: 1) Sec.3.1+3.2, 2) Sec.3.3+3.4, 3) Sec.3.5.

We chose to refactor section 3 into 3 subsections, by merging 1) Sec.3.1+3.2, 2) Sec.3.3+3.4, 3) Sec.3.5, as proposed.
4) In Sec.3.3.2 and Sec.3.5.2 it remains unclear how much the results can be generalized are subject to the specific setup of the experiments. For example, it would be interesting to see if the advection terms remain dom inant under different conditions like weaker wind or accelerated chemistry. This becomes also important for verifying the neglection of chemistry part in the anisotropy for the GRC CTM in Sec.4.2.

We agree on the importance of these points, and we have added them in the conclusion of the report to guide the remaining investigations on the subject, which we have not conducted here.
5) Section 5: The discussion section only partly includes an actual discussion.
5.1) The first paragraph of the discussion refers only to a specific part of the study, not to the complete work. I suggest moving it to the referring Sec.3.2.2 (maybe as new subsection if necessary).

The beginning of the paragraph was mentioned in sec. 3.2.2; while the end has been moved in the conclusion.
5.2) The rest of the section is a conclusion rather than a discussion and should be moved to the conclusion section.

It has been moved in the conclusion that has been rephrased so to include specific the points that was not already present e.g. the extension to 2D/3D domains.
6) Appendix D: This appendix provides no added value for this paper because the equation is not used and can be found in Pannekoucke2021 for reference. Remove appendix and refer only to the equation in Pannekoucke2021 paper in Sect. 3.5.2 (LINE 638)

We removed the appendix and referred to Pannekoucke2021 paper for the equation.
Technical corrections:
General technical corrections (at multiple locations in the manuscript):

1. Suggest replacing "modelized" by "modelled" and "modelizes" by eg "models" or similar (LINE 2, LINE 239)
We preferred to let the version in ' z '.
2. Inconsistent typing w.r.t. hyphen. The manuscript composition guidelines suggest the form without hyphen (eg. "auto correlations" and "cross correlations" in LINE 21, "forecast error" in LINE 117, "length scale" in LINE 247,...)

Thank you very much. However, we did not find this recommandation in https://www.nonlinear-processes-in-geophysics.net/submission.html\#english, where it is seems to only concern : adverb ending in -ly, Latin phrases or abbreviated units. Will check this with the proof-editing services after acceptance of the manuscript.
3. Replace "validated from" eg with "validated by" or "validated w.r.t." (LINE 66, LINE 188) This has been corrected, thank you.
4. The formulation "so to" should be replaced eg by "to" or "in order to" (LINE 74, LINE 148, LINE 356, LINE 436, LINE 449, LINE 452, LINE 458, LINE 698) This has been corrected, thank you.
5. There are inconsistent indications of locations in different variables. Eg. subscript like $V_{-} x$ vs. in brackets like $g(x)$ in Equation (7) whereas $V(x)$ was used in LINE 118 (same in LINE 191 vs LINE 195, and Equation (20)). Suggest sticking to common indication (either as subscript or in brackets) for all variables, or to point out specifically the difference between the two types of variables (eg. discrete vs continuous?)
This has been corrected, thank you.
6. Suggest avoiding double use of brackets, if possible (eg. $P(V, s)(x, y)$ in Equation (7) and $r h o(g \wedge f)\left(x _L, x\right)$ in LINE 169)
We preferred to keep the notation, thank you.
7. Figure captions need to be extended in order to describe the figure sufficiently, that it can be understood independent of the text.

- 1: missing information that this is a predefined and stationary wind field and description of axes incline normalization.
- 6: missing description of individual lines, unclear: cross-correlations to which species at which location $x=0.5$?
- 14: analog to Fig. 1 for wind field and emissions inventory mask

This has been corrected. Thank you.
8. (Related to point 7): Label sizes need to be increased, especially for axes and legends (all figures).
This has been modified. Thank you.
9. (Related to point 7): Purely technical figure descriptions should be removed from the text, and put in the figure caption instead (eg. LINE 306 "cyan dash-dotted lines", LINE 379, LINE 398, ..., including LINE 623-624, LINE 713-715, LINE 716f).
This has been corrected. Thank you.
10.Often, subsections are finished by a sentence introducing the following subsection. This hinders the flow of reading. I would suggest removing these sentences and, were necessary, motivating/introducing the new subsection in its beginning (LINE 242-243, LINE 275f, LINE 309f, LINE 446f, LINE 509f, LINE 552, LINE 563, LINE 577, LINE 645f, LINE 675, LINE 688, LINE 739)
This has been modified. Thank you.
11.When referring to figures in the text, the authors often only indicate the subplot panel and not the actual Figure number, eg "(panel a)". Although the Figure number was mentioned before in the text, it is standard to refer to subfigures by eg "(Fig.1a)" (compare also manuscript preparation guidelines) which also makes it easier for the reader to follow the argumentation. (LINE 245, LINE 247, and many more...)
This has been modified along the manuscript
12.The word "paragraph" should be replaced by "Sect." according to the manuscript preparation guidelines (LINE 257, LINE 439, LINE 449, LINE 452, LINE 457, LINE 529, LINE 534)
This has been corrected, thank you.
13.The naming convention of (cross)(co)variances is sometimes confusion. I would suggest using different names or at least clearly highlighting the differences, eg $V_{-} A(x)$ variances (between same species, same location =diagonal elements of $P _A$), $P _A(x, y)$ (auto-)covariances (same species, different locations), $V _A B(x)$ cross-variances (different species, same location = diagonal elements of $P_{-} A B$), $P _A B(x, y)$ cross-covariance (different species, different locations), or similar. Eg. in LINE 351, $V_{-} A B(x)$ is named crosscovariance without mentioning that is refers to the same location, and in LINE 440, $V_{-} A B$ is named covariance although is refers to different species.
We checked along the manuscript and do the appropriate modifications using the following terminology: V_A == Variance, V_AB == single-point cross-variance, P_AB == two-point cross-covariance. Hence, now, V_AB is a function of $\$ x \$$ alone and $V _A B(x, y)$ is replaced by P_AB(x,y) everywhere.
14.The two species indicators are sometimes written as lower and sometimes as upper index, eg. $V _A B$ vs $V \wedge A B$ in LINE 351 vs LINE 353. Again if these are different quantitates, it should be clarified in the text, if not, please check the whole document for a consistent notation.
This has been corrected. Thank you.
15.Replace "independant" by "independent" and "independance" by "independence" (LINE 441, LINE 591, LINE 831, LINE 855)

This is now corrected, thank you.

Content-related technical corrections:

1) LINE 137: Add reference to Weaver\&Courtier2001: https://doi.org/10.1002/qj. 49712757518

Weaver and Courtier 2001 introduced the use of the diffusion equation, but the setting of the diffusion coefficient that is the purpose of this line is not addressed in WC01. So we added the reference to WC01 before we discussed the setting of the diffusion tensors from the anisotropy.
2) Equation (8)+LINE 170-171: add reference to derivation of equations, Pannekoucke2021: https://doi.org/10.1080/16000870.2021.1926660
The reference has been added.
3) LINE 3: suggest adding "has previously been" to make clear that this is not part of the present work
This has been modified.
4) LINE 18-19: state-of-the-art CTMs are much more complex than transport and chemical reactions (eg. diffusion, emissions, deposition, interaction with clouds, ...). I suggest reformulating the sentence to make clear that transport and chemistry are some of multiple processes, which are however considered dominant for most applications.
The sentence has been completed to mention the complexity of a CTM with an explicit mention to the diffusion, emissions, desposition and interaction with clouds.
5) LINE 39ff: The sentence beginning with "In air quality,..." makes a jump in the chronology of the text. Based on the previous sentence, it is not clear to what the word "them" is referring. Please reformulate.
This has been modified, as follows: "In air quality, it may be preferable to set to zero the ensemble estimation of the multivariate correlation, so to avoid polluting the resulting analysis state". (L4748)
6) LINE 44: The context of the word "but" is not clear in this sentence. Suggest replacing by something like "...a numerical model, which are often computed in parallel at lower resolution.", if this fits the statement.
This has been modified as proposed. Thank you.
7) LINE 85: Sparse observations and modelling errors are not the only reasons for the unknown true state. I would suggest reformulating, for example adding that all available information (observations and model forecasts) contain errors.
This as been rephrased as "Because of the spatio-temporal sparsity of observations, as well as modeling, prediction and measurement errors, the exact actual state at a time $\$ \mathrm{t}=\mathrm{t} _\mathrm{q} \$, \$ \backslash \mathrm{X} \wedge \mathrm{t} _\mathrm{q} \$$, is unknown." (L97-98)
8) LINE 87: The formulation "estimation of $X \wedge t_{-} q$ coming from the past" is unclear and unspecific. Does it refer to the forecast state?
Yes, it refers to the forecast state, this has been modified. Thank you
9) LINE 94: The Kalman Filer also assumes independent errors between observations and forecast. This has been modified. Thank you.
10) LINE 118: The definition of eps $\wedge f(x)$ is inconsistent with Sec. 2.1 were it was a discrete vector. If a continuous formulation is used here, this should be introduced accordingly. If not, the transposed notation should also be used here.
The use of the continuous / discrete versions of the quantities is now better introduced in the beginning of Section 2.1 with : «Thereafter, $\$ \backslash X \$$ can be seen either as a collection of continuous fields with dynamics given by Eq.(1) or a discrete vector of dynamics the discretized version of Eq. (1). ». Hence, the definition of the variance field as it is specified by using $\operatorname{eps} \wedge f(x)$ is now well defined.
11) Equation (4)+Equation (7): The norm is not defined. Suggest a short note on the norm and the meaning of its lower index, maybe with reference to literature if needed.
The norm is now defined as follows: "where \|.\|s stands for the Euclidean norm associated with a metric g and defined from $\|x\|_{2 g}=x t g x$." L 137
12) LINE 122+130: Suggest adding "at each grid location x " to make clear that g is a tensor at each location.
We added that "There is one local metric tensor at each grid location \$x\$" L138-139
13) Equation (5): A note on the meaning of $x_{-} i$ and $x_{-} j$ (indication of derivatives into two directions?) is missing.
We explained that this notation refers to the coordinate functions as follows: "where \$1x_i\$'s are the coordinate functions associated with the coordinate system \$1x\$." L142-143
14) LINE 137-139: This sentence is too long and repetitive. Suggest reformulating, eg. something like: "This covariance model is used in variation DA to generate heterogeneous covariances were correlation functions vary between grid points."
We replaced the sentence by your proposition. Thank you. (see L154-155)
15) LINE 147: formulation remains unclear: "leads to sum up the statistical content into a set of parameters". Reformulate for clarification.
We rephrased as follows: "Hence, approximating a covariance matrix, as the forecast-error covariance at a given time, by a covariance model is reduced to the knowledge of a set of parameters". L162-163
16) LINE $165+$ Equation (8): Although it is referred to a single observation here, I would suggest adding the indication of the observation location for the observation variance " $V \wedge_{o}\left(x_{-} L\right)$ " to be consistent to the other quantities at observation location (eg. " $V \wedge f\left(x _L\right)$ ").
This has been added. Thank you.
17) LINE 169: Suggest adding "is the correlation function between the observation location and each model gridpoint x ".
This has been modified. Thank you
18) LINE 186: The formulation "to predict the uncertainty dynamics, the latter being estimated from an ensemble method introduced to provide a reference." is quite complicated and long. Suggest reformulation, eg something like "to predict the uncertainty dynamics compared to a reference ensemble estimation (enKF)."
This has been modified. Thank you.
19) LINE 291-292: The reasoning of the statement "the dispersive term influences both, the variance and the length scale" remains unclear because Equation (13) only refers to the mean state. Maybe is could be described a bit more how the authors come to this statement.

We detailed as follows: "The reason is that Eq.(13) being linear, it also governs the error field, as the one predicted by the EnKF, and for which the magnitude of the dispersion is more intense as the error correlation length-scale is short. In this simulation, the scale of the mean state is large (of the order of $\$ D \$$), so the effect of the dispersion is much less intense than for the errors whose typical scale of oscillations is $\$ 1 _\mathrm{h} \$$ (of order $\$ \mathrm{D} / 10 \$$). This justifies why the dispersion does not affect the prediction of the mean state -- the estimation for the means coinciding for the two methods on Fig2(a) --, while it acts on the EnKF predictions of the variance and of the length-scale, related to the error dynamics." 295 -301
20) LINE 296ff: The statement of the sentence starting with "Therefore, as with the PKF..." remains unclear. How does the fact that error statistics are forecasts equivalently to state forecasts in the PKF relate to the sensitivity of the enKF to model errors? This seems to be two different aspects. Please reformulate or clarify.
We rephrased this sentence and moved it at the end of the discussion mentioned added it the last point 19): "In this simulation, the PKF is not influenced by the dispersion because the spatial scale of the variance and of the length-scale is large (order of \$D\$). This points out the sensitivity of the EnKF to numerical model error." L301-302
21) Equation (16),(17): The notation is confusion w.r.t. $P_{-} A B(x, y)$ and $V_{-} A B(x, y)$. Both are defined in the text as "two-point cross covariance." If the same quantity is meant, the same variable should be used, if not, the different should be made clearer.
P_AB is the cross-covariance matrix. This is now mentioned in the manuscript following the modification made from answer to your General technical corrections 13).
22) LINE 398: Generation of "ensemble estimated cross-correlation" unclear. Is the crosscorrelation model applied to each ensemble realization?
Here we mean that the computation of the proxy r_AB of the cross-correlation rho_AB is computed from Eq.(20) by using the estimation of the statistics needed for the relation Eq.(20). This is made more clear now:
"To assess the skill of the proxy, Fig. 6 shows the functions \$r_\{AB\}(x_l,\cdot)\$ (computed from Eq.(20) with the ensemble-estimated parameters \$1widehat $\{\backslash$ mathcal $\{\mathrm{P}\}\}(\mathrm{t})=\left(\backslash\right.$ widehat $\left\{\mathrm{V} _\mathrm{A}\right\}$, \backslash widehat $\left\{\mathrm{V} _\mathrm{B}\right\}$, Iwidehat\{V_\{AB\}\}, Iwidehat\{s_A\}, Iwidehat\{s_B\})(t)\$), compared with the ensemble estimated cross-correlation \$\rho_\{AB\}(x_l,1cdot)\$." L405-406
The proxy for the cross-correlation is not used to sample the ensemble since the initial errors are decorrelated following Eq.(18).
23) LINE 470,Fig.8: How is the open term calculated? Eg. from the truth or the ensemble mean?

It is calculated from the ensemble mean, as it is done for the other statistics (e.g. the variance Eq. (11)). The detail of the computation of the open term has been introduced in Eq.(23)
24) LINE 482: For clarification, I would suggest noting that these are analytical expressions, eg "evolution of the statistics analytically" or "an analytical evolution of the statistics"
This has been modified. Thank you.
25) Equation (24f): Inconsistent notation. Up to now the overbar was used to indicate the expectation, whereas the E[.] notation was used here. Please stick to one notation for the entire manuscript.
This has been modified. Thank you.
26) Equation (26),(27),Fig.10: The different normalization of the weights by term in Equation (26) and by process in Equation (27) might lead to confusion when looking at Fig.10. For example, the relative contribution of the two advection terms seams to be only slightly higher than the chemistry terms in Fig.10a ($\sim 55 \%$ vs 45%), but advection is highly dominant in Fig.10c ($\sim 80 \%$ vs 20\%). I would suggest noticing the different normalization in the text or maybe even consider using a common normalization for both, if that makes sense.
The use of a different normalization is now indicated: "Note that the normalization is different between Eq.(27) and Eq.(28)." L523-524
27) LINE 546ff: The discussion of different approaches for closure is spited into Sec.3.3.2 (LINE 546-551) and Sec.3.3.3. I would suggest moving LINE 546-551 into Sec.3.3.3 and renaming this
section eg "closure of the PKF dynamics".
We moved as proposed and renamed the section 3.3.3. Thank you.
28) LINE 568: The formulation beginning with "the subscript l must be ..." is slightly confusing. Suggest reformulation for clarification. x: element w.r.t. any species at any location, $x_{-} L$: observation of a species Z_L at observation location?
This is now modified. Thank you.
"To apply the formulas Eq.(8) in multivariate contexts, the \$x_l\$ must refer to the observation of a species \$Z_1\$ at observation location, while \$\x\$ refers to any species at any location." L569-570
29) LINE 573: Is there a reason for having the second species index $Z _1$ as superscript in rho whereas is it written as subscript for all other variables? I would suggest putting it as subscript for consistency reasons.
This has been modified and corrected where ever the cross-correlation appeared (e.g. in appendix C).
30) Algorithm 1: Inconsistent syntax for loops. Eg. line 1 should be "for each observation I do" to be consistent with the other (or the other way around)
This has been modified. Thank you.
31) LINE 595: Is each observation sampled independently for each time or are they temporally correlated? In addition to describing in the text, it might be useful to add the time index to make this clear in the equation.
The time index has been added. Thank you.
32) LINE 623: It remains unclear if only one assimilation of the four observations is performed at time $t=t$ _max or if several assimilation cycles are performed during the simulation. Please add this information.
There are five assimilation cycles during the simulation. The total simulation window Is [0,t_max] where t_max $=5$ tau_adv/3, and an assimilation is performed after each time integration of tau_adv/3 .Hence, at $\mathrm{t}=\mathrm{t}$ _max, five assimilations have been performed.
While it has been indicated in the beginning of section 3.5.1, we recalled the detail of the DA experiment here, so the sentence has been rephrased as:
"The outcome of the DA experiment Fig. 13 is now exposed, where five assimilation cycles are done over the period $\$[0, \mathrm{t}\{\max \}] \$$ (one assimilation after each $\$$ tau_\{adv $/ 3 \$$ time integration, with \$t_\{max\}=5\tau_\{adv\}/3\$)" (see L564-565)
33) LINE 686f: Was any investigation done if the dominating impact of dynamics vs chemistry also holds for the GRS-CTM? (compare specific comment $5 a$)
Since the PKF was able to reproduce the ensemble estimation, we did not investigate the dominating impact of the dynamics vs chemistry that has been detailed for the LV-CTM case. However, following the answer to point 4) of your specific comment, it has been added in the conclusion as an interesting experiment to consider in real CTM.
34) LINE 722: Context, the description in the previous sentences appears to describe the general behavior. A conclusion of the performance of the PKF requires mentioning the fact that the PKF is able to reproduce all features described above. It also remains unclear if this statement only refer to chemistry or also to transport. I would suggest adding a related sentence and moving into the next paragraph (eg LINE 725ff), if that fits the content, and reformulating accordingly.
The discussion about the particular form of the dynamics of ROC appeared as a digrassion at this step while it is important to highlight the benefice of the PKF. To simplified, we chose to move the explanation of the V_ROC in a note ("Note that the specific behavior of the ROC .." LINE 739-
743). Now the paragraph better addresses the respective contribution of the chemistry and of the transport. The conclusion of the performance have been removed toward the conclusion section .
35) LINE 728,Fig.15: It looks like the PKF produces the same length-scales for all species. It this is the case, it would be interesting to mention and explain.
Yes, the length-scale fields are the same for all chemical species because they follow the same dynamics (only the transport is considered for the length-scale evolution, not the chemistry) and start from the same initial homogeneous length-scale value (here l_h=12 Delta x).
This is made clearer with the sentence "Since the PKF formulation considered here is closed by removing the contribution of the chemistry on the length-scale dynamics (following the simplification discussed in Sec.3.2.4), the length-scale dynamics is the same for all species. " LINE 730-732
36) LINE 734: Suggest replacing the word "Indirectly" by a more specific formulation. Does this refer to the other cross-correlations, which are also well captured by the PKF but not shown here? The sentence has been rephrased in two ones: "This has been observed for other cross-correlation functions (not shown here). It demonstrates the capacity of the PKF to forecast the cross-covariance fields." L 737-738
37) LINE 759ff: I don't see a connection of this statement to the content of the paper. While not being wrong, it seems to appear without any explanation. Therefore, I would suggest removing it here.
It has been removed.
38) LINE 762: Sec. 6 also includes a short summary (first part of this section). Therefore, I would rename the section "Summary and conclusions"
The title of the section is a default standard in the NPG template used.
39) LINE 767-773: The paragraph deals with the first experiment with simplified chemistry (eg the evaluation of transport vs chemistry). This needs to be mentioned in order to put the conclusions into context. I would suggest reformulating the sentence in LINE 774-777 accordingly and moving it to the beginning of this paragraph.
The paragraph is not clear and we rephrased the conclusion for the introduction of the three experiments and their results.
40) LINE 779: Formulation "feeds the reflection on" is unclear. Does it mean that this work is an important step in extending the univariate implementation to complex operational CTMs like MOCAGE? Reformulate.
This has been rephrased as: "and is an important step in extending the univariate PKF implementation to complex operational CTMs like the operational transport model MOCAGE at Meteo-France" L 778-780
41) LINE 780: Sentence starting with "In particular" seems to refer to a different aspect, which is actually a drawback of the method. This should be made more clear in this sentence.
This has been rephrased as: "The work also highlight a drawback of the PKF: the cost of the current multivariate PKF formulation scales as the square of number of chemical species which appears as a limitation, at least if all the chemical species are considered in the multivariate uncertainty prediction. Hence, it would be interesting to test a PKF formulation on a reduced chemical scheme of interest for the data assimilation." L 780-783
42) Equation (B3),(B4): The expectations of eps_A^2, eps_B^2 and eps_A*eps_B denote the boundary condition at time t for $x=0$. Instead, it should be the initial condition $V _A \vee 0=$ E[eps_A^2] ($0, x$) were eps_A(0,x) = eps_A^0, right?
Yes, sorry for the typos. It has been corrected. Moreover we added the definition of the upper-script $\wedge 0$. Thank you.
43) Equation (B5b): If I'm not mistaken, there is a square root missing for $V_{-} A$ in the second term of the numerator: "- eps_A d_x sqrt(V_A)"
The typos has been corrected. Thank you.
44) LINE 830: The assumption of homogeneous initial fields remains unclear here. Doesn't E[(d_x eps_A^0)^2] = V_A^0 g_A^0 follow directly from Equation (B6a) evaluated at $t=0$??
This has been rephrased as: "Then, at $\mathrm{t}=0$, E ..." since the assumption of homogeneity has been introduced at this step. (see L 830)
45) Equation (B8b): The homogenous assumption is used in this step.

The assumption has been added. Thank you.
Individual purely technical corrections:

1. LINE 14: put reference in brackets "(Kalman, 1960)" -- Done
2. LINE 18: put reference in brackets: "(Josse et aline , 2004)" -- Done
3. LINE 20: suggest replacing "features" eg. by "contains" or "includes" (if this fits the statement) - Done, replaced by contains.
4. LINE 24: remove final " s " from "others" -- Done
5. LINE 35: "On the other hand" should only be used when following "On the one hand". Suggest replacing eg. by "At the same time" or "But", "However", ... -- Done
6. LINE 38: suggest replacing "needs to introduce" eg. by "requires the introduction of" -Done
7. LINE 54: replace the word "leveraged". Meaning unclear. -- Done: replaced by "is based on"
8. LINE 55: "an other" -> "another" -- Done
9. LINE 71: grammar, replace "before to conclude" with eg. "before concluding remarks" or similar -- Done
10. LINE $90+104$: wrong symbol for $\mathrm{X}^{\wedge} \mathrm{a} _\mathrm{q}$-- Done
11. LINE 116: wording, replace "recalled here for the forecast-errors covariance matrix" eg by "applied to forecast-error covariance matrices" or "used for the description of the forecasterror covariance matrix", or similar. -- Done
12. LINE 112: remove "," before "that" - Done at line 122
13. LINE 158: wording "sketch", replace eg with "In practice, this step consists..." if fitting the statement. - Done
14. LINE 175: Suggest less metaphoric formulation replacing "To put some flesh on the bone" Done
15. LINE 185: grammar, replace "In what follows" eg with "In the following" - Done
16. LINE 240: inconsistent units for tau_adv [s] vs $1 / \mathrm{u}[\mathrm{s} / \mathrm{m}]$. - Done, it is a typos: tau is D / u.
17. Fig. 2 caption: "low resolution forecast" might be confusing here because the different resolutions were not mentioned yet. Suggest putting it into brackets here. - Done
18. LINE 264-265: The explanation of correlation anisotropy beginning with "e.g. in panel (e) were the ..." is unnecessary. Suggest removing it. - We preferred to keep the formulation as it is because it explains what is meant by anisotropy here.
19. LINE 266: wording, suggest replacing "covariance error" by eg "(main parameters of the) error covariance" to avoid confusion with the uncertainty of the covariance estimate. - Done
20. LINE 269: bracket "(with O being ... "proportional to")" unnecessary, suggest removing. -

We preferred to keep the definition of the notation, from our experiment of previous article feedbacks.
21. LINE 278: referring to the general technical correction 10, Sect.2.4.3 could be introduced eg by something like "As described in Sect.2.4.2, the experiments show a gab between ..." (just a suggestion) We preferred to keep as initially proposed. Thank you.
22. LINE 299: Connection to previous sentence unclear (may be due to unclear statement, see content comment-related technical comment about previous sentence). Suggest reformulating, maybe eg "This is demonstrated by comparing the PKF statistics to a high resolution forecast of the EnKF, ..."
The sentence has been modified as proposed.
23. LINE 323: Formulation "non-linearly" unclear. Is something like "non-linear reactive chemical species" or "non-linearly reacting chemical species" meant? Suggest rewording. This has been modified as proposed.
24. Fig. 5 caption: complicated formulation "with one orbit by level of purple transparency magnitude". Maybe it can be replaced by something like "purple curves with different transparencies". - This has been modified as proposed.
25. LINE 351: typo, replace "Morover" by "Moreover" - Done
26. LINE 354: it might be useful to note that all parameters are a function of model space (not only $V_{_} A B$) - This has been modified as proposed
27. LINE 372: I guess, "computation of the cross-covariance" refers to the enKF. If so, I would suggest replacing eg. by "ensemble cross-covariance" or "sample cross-covariance" to emphasis the calculation from enKF. - This has been modified as proposed
28. LINE 388: "as function of" - Done
29. LINE 389: "an interpolation" - Done
30. Fig. 7: Suggest y-axis ranging from 0% to 100% to avoid the visual impression that the relative error almost vanished to zero at certain times. We preferred to keep as initially proposed. Thank you.
31. LINE 410: "are excluded" - Done
32. LINE 412: Complicated and unclear formulation. What is meant with "the true value of the averages"? Is "by an amount of 8 points of percent" equivalent to just writing "by 8\%"? This has been modified as proposed, by writing 8%.
33. LINE 414: Unscientific formulation, suggest reformulation (assuming that sufficient literature search has been performed): eg "According to our/the authors knowledge, no proxy of cross-correlations similar to Equation (20) has been introduced up to now." - Done
34. LINE 736-738: This paragraph is a conclusion which should be moved to the conclusion section. - The idea detailed in the paragraph being in the conclusion, the paragraph has been removed.
35. Equation (21): The order of terms is inconsistent between the individual subequations. In Equation (21a)-(21e), the transport term is on the left hand side, while the T_adv are on the right hand side in Equation (21f)-(21g). Suggest putting on the same side for all subequations. - This has been modified as proposed
36. LINE 436-438: Sentence about the notation of terms starting with "Hence, each term..." is unnecessary. Suggest removing. - It has been removed.
37. LINE 441: remove " s " from "fields" - Done
38. LINE 450: remove "," after "dynamics" - Done
39. LINE 453: suggest adding "in Sec.3.3.3", eg something like "simplified dynamics of the anisotropy are used in Sec.3.3.3 to close the PKF dynamics" - Done
40. LINE 457-458: remove the two "," after T_adv and T_chem, respectively. - Done
41. LINE 460: "dynamics in Equation (21)" - Done
42. LINE 460: remove "," after "transport" - Done
43. LINE 492: Suggest replacing "at the opposite" with eg "in contrast" - Done
44. LINE 506: Unspecific formulation "makes appear a swing". Reformulate. - Done
45. LINE 508: Unclear formulation "along each specie". Meaning a different magnitude of uncertainty (=stdev?) for each of the two species? - Done - it has been rephrased.
46. LINE 512: Formulation, replace "What follows aim" eg by something like "The following section aims at..." or "In the following, we aim at..." - Done
47. LINE 513: Wording, suggest replacing "among" with eg "with respect to" - Done
48. LINE 537f: Suggest adding "can be neglected compared to the advection part (Fig.10c,d)" and "by W_chem-1 and W_chem-2 (Fig.10b,d)" to support the relation between statement and plot. - Done
49. Equation (28), LINE 540: Suggest removing Equation (28) and referring to Equation (25) instead of writing the same equation again. - Done
50. LINE 555: "Equation (21g), which leads to a closure of the PKF dynamics" - Done
51. LINE 566: "Equation (8) presented in 2" - Done
52. LINE 569: typo: "location x_L of the chemical species" - Done
53. LINE 573: suggest "is the forecast cross-correlation function" - Done
54. LINE 585: suggest replacing "settings" by "setup" - Done
55. LINE 600: I would suggest replacing "Fig. 12 are now discussed" by eg "are shown in Fig.12". - Done
56. LINE 611: Wording, suggest replacing "With less exactitude " eg with "While being less accurate" or "With less accuracy" - Done
57. LINE 612f: Removing "The last two panels (f) and (g) which correspond to" and adding reference to figure in brackets "of the length scales (Fig.12f,g) show a general..." would increase the readability of the sentence. - Done
58. LINE 630: For readability, it is most important to name the field rather than the subplot in the text. Add name of field and refer to subplot in brackets, eg "For instance, the standard deviation of species A (Fig.13c) shows important ..." - Done
59. LINE 632: similarly to above, I would suggest adding "specie B (Fig.13d) for which ..." and remove last part of sentence "as panel (d) shows". - Done
60. LINE 640: "which has been detailed in paragraphs 3.3.1-3.3.3" could be shortened to "(compare Sec.3.3)" - just a suggestion. - Done
61. LINE 680: "terms" - Done
62. LINE 697: replace ", set as" by ", by setting as" or "defined to be" - Done
63. LINE 698: replace "produced" by "produce" - Done
64. LINE 705: remove "one" -> "for each of the six" - Done
65. LINE 713: suggest removing "of the six ones" because it provides no additional information. - Done
66. LINE 718f: Missing "s " in "appears". The rather long sentence could also be shortened significantly eg to something like "The impact of chemistry leads to non-zero crosscorrelations between all pairs of species (Fig.15, right column, except the auto-correlation in Fig.15p)." - Done
67. LINE 719: The word "roughness" is quite unspecific. Suggest replacing by eg "small-scale spatial variation" if that fits the content. - Done
68. LINE 727: missing " 2.4.3" - Done
69. LINE 730: remove additional bracket ")" after "Sec.3.5.2" - Done
70. LINE 753: remove final " s " from "describes" - Done
71. LINE 757: missing "s" in "reduces" - Done
72. LINE 787: replace "study" by eg "studied" or "investigated" - Done
73. LINE 792: typo, "We consider four chemical species, ..." - Done
74. LINE 799: meaning of "(that is in excess)" unclear. Reformulate or remove. - Done
75. LINE 815: double use of word "initial". Remove. - It has been rephrased.
76. LINE 818: remove additional ")" - Done
77. LINE 822: empty subequation. Remove. - Done
78. LINE 824: remove final "s" in "tensors" - Done
79. LINE 843: replace " $\mathrm{X} \wedge \mathrm{f}+\mathrm{eps} \mathrm{f}$ " with " $\mathrm{X} \wedge \mathrm{f}=\mathrm{X} \wedge \mathrm{t}+$ eps_f"? - Done
80. LINE 844: remove double "a" -> "Equation (8a)" - Done
81. LINE 856f: $\mathrm{V}^{\wedge} \mathrm{o}$ is the observation error variance. Reformulate, eg. "observation and forecast error variances $\mathrm{V} _\mathrm{ZL} \wedge \mathrm{o}\left(\mathrm{x} _\mathrm{L}\right)=\ldots ., \mathrm{V}$ _ZL^f $\left(\mathrm{x} _\mathrm{L}\right)+\ldots$..." or similar. - Done

Toward a multivariate formulation of the PKF assimilation: application to a simplified chemical transport model
 \author{ version of: January 12, 2023, 7:32pm

}

Antoine Perrot ${ }^{1}$, Olivier Pannekoucke ${ }^{1,2,3}$, and Vincent Guidard ${ }^{1}$
${ }^{1}$ CNRM, Université de Toulouse, Météo-France, CNRS, Toulouse, France
${ }^{2}$ CERFACS, Toulouse, France
${ }^{3}$ INPT-ENM, Toulouse, France
Correspondence: Olivier Pannekoucke (olivier.pannekoucke@meteo.fr)

Abstract

This contribution explores a new approach to forecast multivariate covariances for atmospheric chemistry through the use of the parametric Kalman filter (PKF). In the PKF formalism, the error covariance matrix is modelized by a covariance model relying on parameters, for which the dynamics is then computed. The PKF has been previously formulated in univariate cases, and a multivariate extension for chemical transport models is explored here. To do so, a simplified two-species chemical transport model over a 1D domain is introduced, based on the nonlinear Lotka-Volterra equations, which allows to propose a multivariate pseudo covariance model. Then, the multivariate PKF dynamics is formulated and its results are compared with a large ensemble Kalman filter (EnKF) in several numerical experiments. In these experiments, the PKF accurately reproduces the EnKF. Eventually, the PKF is formulated for a more complex chemical model composed of six chemical species (Generic Reaction Set). Again, the PKF succeeds at reproducing the multivariate covariances diagnosed on the large ensemble.

Copyright statement. TEXT

1 Introduction

Data assimilation aims to provide an estimation of the true state of a system. This estimation, called the analysis, is a compromise between the forecast of the state and the available observations. The optimal combination of the forecast and the observations relies on their respective error covariance matrices as given by the Kalman filter equations Kalman (1960)(Kalman, 1960) . The accuracy of the analysis is directly related to the quality of these two matrices.

In atmospheric chemistry applications, the system to study is the concentration of multiple chemical species in the atmosphere. In most cases, chemical transport models (CTMs) are used to forecast the concentrations, as the operational model MOCAGE used in Meteo-France Josse et al. (2004)(Josse et al., 2004). CTMs make predictions based on the transport by the wind (the fields are provided by NWP models) and the chemical interactions of the species (Hauglustaine et al., 1998) ; and takes into account multiple other important processes e.g. the diffusion, the emissions, the deposition or the interaction with clouds. However, in CTMs chemistry do not influence the meteorology, which is of course a crude approximation of the true
atmosphere. The advantage of a CTMs is that it allows air quality prediction at a low numerical cost, and is used in several operational centers. For instance, the CAMS regional air quality production ${ }^{1}$, which daily forecast an ensemble of 11 members that covers the following 4 days, is performed from the integration of 11 models from which 10 are CTMs.

In this context, the forecast-error covariance matrix features contains the correlations of the forecast errors within and between the chemical species. These correlations are respectively denoted by auto-correlations and cross-correlations. Accurately describing the auto and cross correlation is a key component for improving the overall quality of the analysis. Indeed, strong correlations exist between different chemical species, and the analysis could benefit from them: an observation for a given species might also correct others concentrations and reducing other concentrations and reduce their error amplitude at the same time. Note that in operational applications, chemical species are often assimilated separately e.g. in CAMS 2.40, the univariate 3DVar system of MOCAGE is used for the assimilation of ozone, nitrogen dioxide, sulphur dioxide, and fine particulate matter PM2.5 and PM10 (following a configuration similar to the one used for MACII detailed by Marécal et al. (2015)).

However, the estimation and the modelling of multivariate covariances in air quality is a complex topic (Emili et al., 2016). But this is not specific to air quality, and two main approaches are found in data assimilation. The first one relies on balance operators and has been introduced in variationnal data assimilation. These balance operators establish a relation between the state variables and allow for the modelling of cross-covariances from the design of univariate covariances. Such operators exist in numerical weather prediction (Derber and Bouttier, 1999; Fisher, 2003) as well as for the ocean (Weaver et al., 2006), but as far as we know, no balance operators are used in atmospheric chemistry applications. The second approach relies on the ensemble method (Evensen, 2009) where an ensemble of forecasts is used to estimate the multivariate covariance matrix (Coman et al., 2012). The ensemble method offers a flow dependent estimation of the error statistics and leads to a practical implementation of the Kalman filter, that is the ensemble Kalman filter (EnKF) (Evensen, 1994). The EnKF applies to a wide range of problems, from a simple Lorenz 63 model (Lorenz, 1963) to the numerical prediction of the atmosphere or the ocean. On the other handAt the same time, this advantage may be seen as a limitation: the EnKF not necessarily takes advantage of the particular set of equations of a problem e.g. the continuity of physical fields which leads to simplification not available in the usual matrix formulation of the EnKF equations. Moreover the ensemble method presents some drawbacks. For instance, since the estimation often relies on a small ensemble, the statistical estimations are polluted by a spurious sampling noise which needs to introduce requires the introduction of filtering (Berre et al., 2007) and localization (Houtekamer and Mitchell, 1998, 2001). In air quality, it may be preferable to set them to zero-to zero the ensemble estimation of the multivariate correlation, to avoid polluting the resulting analysis state (Tang et al., 2011; Gaubert et al., 2014), except at the globe surface (Eben et al., 2005) or when the chemical species are strongly correlated (Miyazaki et al., 2012). Note that additionnal-additional treatments can be required as inflation of the variance so-in order to represent effects of model errors (Anderson and Anderson, 1999; Whitaker and Hamill, 2003). As another drawback, the numerical computation of the EnKF is costly since it relies on the several time integrations of a numerical model, but most of time the integrations are made at a lower spatial resolutionand in parallelwhich are often computed in parallel at lower resolution.

[^0]Recently, a new approximation of the KF has been introduced, the parametric Kalman filter (PKF), where the error covariance matrices are approximated by a covariance model fitted with a set of parameters e.g. the grid-point variance and the local anisotropy (Pannekoucke et al., 2016). In the PKF, the dynamics of the parameters are described all along the forecast and analysis steps of the assimilation cycle (Pannekoucke, 2021). This approach does not rely on ensembles, and the dynamics of the parameters is deduced from the partial differential equations that govern the physical system. Hence, the PKF opens the way to understanding the physics of uncertainties. However, the construction of the parameter dynamics is the most difficult part for the design of the PKF. When the parameters are the variance and the local error-correlation anisotropy, a systematic formalism for deducing PKF's equations based on a Reynold decomposition-Reynolds decomposition (or Reynolds averaging technique see e.g. Lesieur, chap. 4) has been introduced associated with a Python package, SymPKF (Pannekoucke and Arbogast, 2021), and leveraged is based on the Python computer algebra system Sympy (Meurer et al., 2017). But, modeling the physics of uncertainties often comes with closure problems. To alleviate this issue, an other another numerical framework, PDE-Netgen has been introduced to be able to close problems using a deep learning approach (Pannekoucke and Fablet, 2020).

Applying the PKF approach for CTMs is attractive because the parametric dynamics is known for the transport equations (Cohn, 1993; Pannekoucke et al., 2018), and this leads to a better understanding of the forecast-error covariance dynamics e.g. a better understanding of the model-error covariance due to the numerical integration (Pannekoucke et al., 2021), and the loss of variance which appears in the EnKF (Ménard et al., 2021). Moreover, an application of the PKF has been recently proposed for the assimilation of GOSAT methane in the hemispheric CMAQ model (Voshtani et al., 2022a, b), showing the potential of the PKF in nearly operational applications where only the error variance evolved.

While the PKF has been formulated for univariate statistics, a first attempt in multivariate statistics has been proposed, based on the balance operator approach (Pannekoucke, 2021). However, applying such a balance operator is a challenge for chemical reactions where no simple relation exists as the geostrophic balance in weather forecasting. Hence, the aim of this contribution is to explore how to extend the univariate PKF into a multivariate formulation adapted to CTMs. To do so, a multivariate covariance model adapted to air quality prediction is first proposed and then it is validated from by a twin experiment based on an EnKF using a large ensemble.

The paper is organized as follows. Section 2 reminds basic concepts in data assimilation with the formalism of the Kalman Filter and its parametric approximation in univariate statistics. Then, in Section 3, a simplified two species multivariate CTM is introduced for which a multivariate parametric assimilation is first proposed then validated based on a comparison with an ensemble approach. A six-species chemical scheme is considered in Section 4 to evaluate the PKF multivariate forecast in a more complex context. A diseussion of the results is proposed in Section ?? before to conelude The conclusions of the contribution are given in Section 5 -

2 Background on the Parametric Kalman Filter

The parametric Kalman filter (PKF) is a recent implementation of the Kalman filter where the covariance matrices are approximated by some covariance model. For the sake of consistency, this section first recaps the basics of the Kalman filter, then
it reminds the diagnosis of covariance matrix in large dimension and covariance models so to introduce the formalism of the PKF in univariate statistics. The section ends with a numerical example of interest for air quality that illustrates the PKF.

2.1 Analysis and forecast step in the Kalman filter

Here we consider a system whose state is denoted by \mathcal{X} and governed by the evolution equation
$\partial_{t} \mathcal{X}=\mathcal{M}(\mathcal{X})$.

Time integration from a time t_{q} to a time t_{q+1} of the dynamics Eq. (1) defines the propagator $\mathcal{M}_{t_{q+1} \leftarrow t_{q}}$, that maps a state $\mathcal{X}\left(t_{q}\right)$
$\mathcal{X}_{q}^{a}=\mathcal{X}_{q}^{f}+\mathbf{K}_{q}\left(\mathcal{Y}_{q}^{o b s}-\mathbf{H}_{q} \mathcal{X}_{q}^{f}\right)$,
$\mathbf{P}_{q}^{a}=\left(\mathbf{I}_{n}-\mathbf{K}_{q} \mathbf{H}_{q}\right) \mathbf{P}_{q}^{f}$,
where $\mathbf{K}_{q}=\mathbf{P}_{q}^{f} \mathbf{H}_{q}^{\mathrm{T}}\left(\mathbf{H}_{q} \mathbf{P}_{q}^{f} \mathbf{H}_{q}^{\mathrm{T}}+\mathbf{R}_{q}\right)^{-1}$ is the Kalman gain matrix with \mathbf{H}_{q} the linear observation operator that maps the state vector into the observation space; \mathbf{P}_{q}^{a} is the analysis error covariance matrix ; and \mathbf{I}_{n} the identity matrix in dimension n.

Next, the forecast step pushes the uncertainty forward in time. The analysis state $X_{q}^{a} \mathcal{X}_{q}^{a}$ is propagated using the linear dynamics \mathbf{M},s $\boldsymbol{s}-$ to obtain the forecast \mathcal{X}_{q+1}^{f} at time t_{q+1} leading to an estimation of the true state system $\mathcal{X}^{t}\left(t_{q+1}\right)$. The Gaussian error statistics for this forecast are given by the Kalman filter forecast step
$\mathcal{X}_{q+1}^{f}=\mathbf{M}_{q+1 \leftarrow q} \mathcal{X}_{q}^{a},$,
$\mathbf{P}_{q+1}^{f}=\mathbf{M}_{q+1 \leftarrow q} \mathbf{P}_{q}^{a}\left(\mathbf{M}_{q+1 \leftarrow q}\right)^{\mathrm{T}}+\mathbf{Q}_{q}$,
where \mathbf{Q}_{q} is the model error covariance matrix. Thereafter, no model error is considered i.e. \mathbf{Q} is zero.
While the Kalman filter formalism is based on simple vector algebra equations, it is not easy to understand the statistical content of the error covariances, which would require representing each covariance function and exploring their temporal evolution. Fortunately, simple diagnosis can be introduced to summarize the statistical relationship between points in the geographic domain. In turn, these diagnostics can be used as parameters of covariance models, as detailed now.

2.2 Diagnosis and modelling of covariance matrix in large dimension

In data assimilation, two diagnosis diagnoses for the error covariance matrices are often introduced: the variance field, and the anisotropy of the correlation functions which corresponds to the principal axes of the spatial correlation. These diagnosis are recalled here for the diagnoses are used for the description of the forecast-error covariance matrix.

The forecast error variance field, V^{f}, is defined by $V^{f}(\mathbf{x})=\mathbb{E}\left(\left(\varepsilon^{f}(\mathbf{x})\right)^{2}\right)$ where \mathbf{x} denotes the coordinate of a grid point. The variance field also corresponds to the diagonal of \mathbf{P}^{f}. The field of variance characterizes the magnitude of the error at a given position.

When the forecast-error is a differential random field, the anisotropy of the correlation is characterized by the so-called local forecast-error metric tensor $\mathbf{g}^{f}(\mathbf{x})$, that appears in the Taylor expansion of the correlation function (Daley, 1991)
$\rho^{f}(\mathbf{x}, \mathbf{x}+\delta \mathbf{x}) \approx 1-\frac{1}{2}\|\delta \mathbf{x}\|_{\mathbf{g}^{f}(\mathbf{x}) \dot{=}}^{2}$,
where $\left\|_{\cdot}\right\|_{\mathbf{g}}$ stands for the Euclidean norm associated with a metric \mathbf{g} and defined from $\|\mathbf{x}\|_{\mathbf{g}}^{2}=\mathbf{x}^{T} \mathbf{g x}$ The local metric tensor $\mathbf{g}^{f}(\mathbf{x})$ is a symmetric positive-definite matrix that prevents the correlation value from being larger than one. There is one local metric tensor at each grid location \mathbf{x}. The metric tensor is related to the statistics of the random field ε^{f} according to the formula (Berre et al., 2007):
$\mathbf{g}_{i j}^{f}(\mathbf{x})=\mathbb{E}\left[\partial_{\mathbf{x}^{i}}\left(\frac{\varepsilon^{f}}{\sigma^{f}}\right) \partial_{\mathbf{x}^{j}}\left(\frac{\varepsilon^{f}}{\sigma^{f}}\right)\right](\mathbf{x})$,
where $\sigma^{f}=\sqrt{V^{f}}$ is the forecast-error standard deviation, and where $\mathbf{x}_{\text {, }}$ s are the coordinate functions associated with the coordinate system x.

In practice, the direction of the largest correlation anisotropy corresponds to the principal axe of the smallest eigenvalue for the metric tensor: the metric tensor is contravariant. It it thus useful to introduce the local aspect tensor (Purser et al., 2003) whose geometry goes as the correlation, and is defined as the inverse of the metric tensor:
$\mathbf{s}^{f}(\mathbf{x})=\left(\mathbf{g}^{f}(\mathbf{x})\right)^{-1}$,
where the superscript ${ }^{-1}$ denotes the matrix inverse. Note that in a 1D domain, the square root of s is homogeneous to a length, leading to the so called length-scale $l=\sqrt{s}$ which is often introduced in diagnoses.

One of the motivations behind the diagnosis of the variance and the local anisotropy tensor is that they can be used as parameters of covariance models, the VLATcov models (Pannekoucke, 2021). For instance, for the covariance model based on a diffusion equation (Weaver and Courtier, 2001), the anisotropy tensor has been used as a proxy for setting the heterogeneous diffusion tensor field of the covariance model based on a heterogeneous diffusion equation (Pannekoucke and Massart, 2008; Mirouze and Weaver, 2010). The covariance model based on a heterogeneous diffusion equation is an example of covariance model used in variational data assimilation and introduced to build heterogeneous covariance model, that is a covariance model for which the This covariance model is used in variation data assimilation to generate heterogeneous covariances where correlation functions vary from one geographical point to anotherbetween grid points. While there is no analytical expression for the covariance functions based on the diffusion operator, analytical heterogeneous VLATcov models exist, for instance the heterogeneous Gaussian-like covariance model
$\mathbf{P}^{\text {he.gauss }}(V, \mathbf{s})(\mathbf{x}, \mathbf{y})=\xlongequal{\sqrt{V_{\mathbf{x}} V_{\mathbf{y}}} \frac{\left|\mathbf{s}_{\mathbf{x}}\right|^{1 / 4}\left|\mathbf{s}_{\mathbf{y}}\right|^{1 / 4}}{\left|\frac{1}{2}\left(\mathbf{s}_{\mathbf{x}}+\mathbf{s}_{\mathbf{y}}\right)\right|^{1 / 2}} \sqrt{V(\mathbf{x}) V(\mathbf{y})} \frac{|\mathbf{s}(\mathbf{x})|^{1 / 4}|\mathbf{s}(\mathbf{y})|^{1 / 4}}{\left|\frac{1}{2}(\mathbf{s}(\mathbf{x})+\mathbf{s}(\mathbf{y}))\right|^{1 / 2}} \exp (-\frac{1}{2}| | \mathbf{x}-\left.\mathbf{y}\right|^{2} \underbrace{\left[\frac{1}{2}\left(\mathbf{s}_{\mathbf{x}}+\mathbf{s}_{\mathbf{y}}\right)\right]^{-1}}[\underbrace{\left.\frac{1}{2}(\mathbf{s}(\mathbf{x})+\mathbf{s}(\mathbf{y}))\right]^{-1}})}$,
with $|\cdot|$ denoting the matrix determinant (Paciorek and Schervish, 2006).
Heterogeneous covariance models are important because they provide a way to produce non obvious non-obvious correlation functions from a set a of parameters. Hence, approximating a covariance matrix, as the forecast-error covariance at a given time, by a covariance model leads to sum up the statistical content into-is reduced to the knowledge of a set of parameters. The parameteric Kalman filter takes advantage of this kind of approximation so-to reproduce the Kalman filter dynamics as now explained.

2.3 Formalism of the parametric Kalman filter

A covariance model is first considered, $\mathbf{P}(\mathcal{P})$, where \mathcal{P} denotes a set of parameters. For instance, when the PKF is designed from a VLATcov models, the set of parameters \mathcal{P} is given by the field of variance and of the local anisotropic tensors i.e. $\mathcal{P}=(V, \mathbf{s})$ or $\mathcal{P}=(V, \mathbf{g})$.

To describe the sequential evolution of error covariance matrices along the assimilation cycles we assume that the forecast error-covariance matrix at a time $t_{q}, \mathbf{P}_{q}^{f}$, is approximated by the covariance model, $\mathbf{P}\left(\mathcal{P}_{q}^{f}\right)$, where \mathcal{P}_{q}^{f} denotes a set of parameters so that $\mathbf{P}\left(\mathcal{P}_{q}^{f}\right) \approx \mathbf{P}_{q}^{f}$.

At an abstract level, the parametric Kalman filter consists of the following sequential steps (Pannekoucke, 2021). The PKF analysis step, equivalent to Eq. (2), consists to determine the analysis state \mathcal{X}_{q}^{a} and the parameters \mathcal{P}_{q}^{a} from $\mathcal{X}_{q}^{f}, \mathcal{P}_{q}^{f}$ and the observations. The sketeh of In practice, this step consists in a sequential processing of observations, similar to the one often encountered in EnKF (Houtekamer and Mitchell, 2001), that is a sequential assimilation of single observations based on Eq. (2a) for the mean accompanied with an update of the covariance parameters so that, at the end of the analysis step, $\mathbf{P}\left(\mathcal{P}_{q}^{a}\right)$
approximates the analysis error covariance of the Kalman filter Eq. (2b) i.e. $\mathbf{P}\left(\mathcal{P}_{q}^{a}\right) \approx \mathbf{P}_{q}^{a}$. Note that this sequential assimilation of observations can be performed in parallel as for the EnKF, with the difference that the EnKF often assimilates a batch of observations in place of a single observation. Of course, for the PKF this step only relies on the update of the parameters, with no ensemble. For instance, when considering a VLATcov model $\mathbf{P}(V, g) \mathbf{P}(V, \mathbf{s})$, the PKF analysis of a single observation at position \mathbf{x}_{l}, of value y^{o} and observation-error variance $V^{o} V^{o}\left(\mathbf{x}_{l}\right)$, writes (at time $\left.t_{q}\right)$ (Pannekoucke, 2021)
$\mathcal{X}^{a}(\mathbf{x})=\mathcal{X}^{f}(\mathbf{x})+\sigma^{f}(\mathbf{x}) \rho_{\mathbf{x}_{l}}^{f}(\mathbf{x}) \frac{\sigma^{f}\left(\mathbf{x}_{l}\right)}{V^{f}\left(\mathbf{x}_{l}\right)+V^{o}} \frac{\sigma^{f}\left(\mathbf{x}_{l}\right)}{V^{f}\left(\mathbf{x}_{l}\right)+V^{o}\left(\mathbf{x}_{l}\right)}\left(y^{o}-\mathcal{X}^{f}\left(\mathbf{x}_{l}\right)\right)$,
$V^{a}(\mathbf{x})=V^{f}(\mathbf{x})\left(1-\left[\rho_{\mathbf{x}_{l}}^{f}(\mathbf{x})\right]^{2} \frac{V^{f}\left(\mathbf{x}_{l}\right)}{\underline{V^{f}\left(\mathbf{x}_{l}\right)+V^{o}}} \frac{V^{f}\left(\mathbf{x}_{l}\right)}{V^{f}\left(\mathbf{x}_{l}\right)+V^{o}\left(\mathbf{x}_{l}\right)}\right)$,
$\underline{\operatorname{gs}^{a}(\mathbf{x})} \approx \frac{V^{f}(\mathbf{x})}{V^{a}(\mathbf{x})} \mathbf{g} \frac{V^{a}(\mathbf{x})}{V^{f}(\mathbf{x})} \mathbf{s}^{f}(\mathbf{x})$,
where the function $\rho_{\mathbf{x}_{l}}^{f}(\mathbf{x})=\rho\left(\mathbf{g}^{f}\right)\left(\mathbf{x}_{l}, \mathbf{x}\right) \rho_{\mathbf{x}_{l}}^{f}(\mathbf{x})=\rho\left(\mathbf{s}^{f}\right)\left(\mathbf{x}_{l}, \mathbf{x}\right)$ is the correlation function between the observation location and each model gridpoint \mathbf{x}, associated with the covariance matrix $\mathbf{P}\left(V^{f}, \mathbf{g}^{f}\right) \underset{P}{\mathbf{P}}\left(V^{f}, \mathbf{s}^{f}\right) ; \sigma^{f}=\sqrt{V^{f}}$ is the field of forecasterror standard deviation ; and where Eq. (8c) is the leading order approximation of the anisotropy update (Pannekoucke, 2021)

Then, the forecast step of the PKF, equivalent to Eq. (3), consists of finding the dynamics of the parameters so-in order to predict \mathcal{P}_{q+1}^{f} from \mathcal{P}_{q}^{a}, so that $\mathbf{P}\left(\mathcal{P}_{q+1}^{f}\right)$ approximates the forecast-error covariance matrix of the Kalman filter i.e. $\mathbf{P}\left(\mathcal{P}_{q+1}^{f}\right) \approx$ \mathbf{P}_{q+1}^{f}. The equation for the mean is the Eq. (3a) of the KF.

To put some flesh on the bone, an An illustration of the PKF is now proposed for an univariate advection problem, with a focus on the forecast step. This introduction of an intermediate problem aims to give the reader a good understanding of the PKF, its advantages and difficulties, which will be necessary to address the more complex problem encountered in multivariate CTM.

2.4 Advection of a passive tracer with the PKF

For a one-dimensional (1D) and periodic domain, of coordinate x, the conservative advection of a tracer, $\mathcal{X}(t, x)$, by a stationary heterogeneous wind field $u(x)$, can be described by the partial differential dynamics
$\partial_{t} \mathcal{X}+\partial_{x}(u \mathcal{X})=0$,
or equivalently by
$\partial_{t} \mathcal{X}+u \partial_{x} \mathcal{X}=-\mathcal{X} \partial_{x} u$.

The forecast step of the PKF is illustrated for the conservative dynamics where the covariance matrices are approximated by a VLATcov model. In what follows, the PKF dynamies for the variance and the anisotropy is first presented. Then, a numerical test-bed shows the ability of the PKF to predict the uncertainty dynamics, the latter being estimated from an ensemble method
introduced to provide a reference. This example ends by highlighting some of the limitations of the numerical validation of the PKF from an ensemble method in presence of model error.

2.4.1 Formulation of the forecast step of PKF

In this 1D univariate context based on VLATcov model, the PKF dynamics for the forecast step is composed of three equations: one for the mean state $\overline{\mathcal{X}}$, and two for the parameters of the VLATcov model, that is the variance field $V(t, x)$ and the anisotropy field $s(t, x)$. Note that in 1D domain, the anisotropy is a sealar.

To obtain the dynamics of PKF's parameters, we proceed using a Reynold's decomposition. A Reynold's decomposition consists in rewriting a random field \mathcal{X} as a mean field plus a perturbation, that is $\mathcal{X}=\overline{\mathcal{X}}+\varepsilon$ with $\bar{\varepsilon}=0$. Then, by using the definition of the variance field $V_{x}=\overline{\varepsilon_{x}^{2}}$, and plugging it into the problem equation, one can obtain its dynamies. An equivalent process leads to the dynamies of the metric tensor g_{x} and of the aspect tensor s_{x}, but its hand computation requires long expressions that can be difficult to handle. To facilitate the-The computation of the VLATeor PKF dynamies, a computer algebra tool, the Python package SymPKF (Pannekoucke and Arbogast, 2021), has been specifically design to derive the PKF system dynamics. Note that a splitting strategy can be introduced so to simplify the computation of the full PKF dynamics (Pannekoucke and Arbogast, 2021). For nonlinear dynamics, SymPKF compute the PKF dynamies from the tangent-linear evolution.

Leveraging on SymPKF, the PKF system for the advection PKF dynamics can be performed from using SymPKF (Pannekoucke and Arb , and reads as
$\partial_{t} \mathcal{X}+u \partial_{x} \mathcal{X}=-\mathcal{X} \partial_{x} u$,
$\partial_{t} V+u \partial_{x} V=-2 V \partial_{x} u$,
$\partial_{t} s+u \partial_{x} s=2 s \partial_{x} u$.
where the overline of here \mathcal{X} stands for the mean state $\overline{\mathcal{X}}$ has been dropped and where the forecast-error upper-script $(\cdot)^{f}$ has been removed for V and s for the sake of simplicity. Note that the PKF system Eq. (10), which is decoupled, corresponds to the true uncertainty dynamics for the advection problem (Cohn, 1993; Pannekoucke et al., 2016, 2018). This is not true in general where closure issue can appear e.g. for a diffusion equation, because of the second-order derivative, an unknown term appears in the dynamics of the metric and has to be closed (Pannekoucke et al., 2018).

A numerical experiment is now conducted to evaluate the PKF ability to forecast the error statistiesIn the following, a numerical test-bed shows the ability of the PKF to predict the uncertainty dynamics compared to a reference ensemble estimation (EnKF). This example ends by highlighting some of the limitations of the numerical validation of the PKF by an ensemble method in presence of model error.

2.4.1 Numerical validation of the PKF

The numerical experiment studies of the time propagation of an uncertainty at time $t=0$, featured by a mean state \mathcal{X}^{0} and an error covariance \mathbf{P}^{0}, to an arbitrary time T. Here, the initial error covariance is defined as the covariance $\mathbf{P}^{0}=\mathbf{P}\left(V^{0}, s^{0}\right)$, where $\mathbf{P}(V, s)$ is the VLATcov model based on the heterogeneous Gaussian like model Eq. (7), for $\left(V^{0}, s^{0}\right)$ given.

To assess the PKF ability to forecast the error statistics, we compare its results with diagnoses obtained from the forecast of a large ensemble, $\left\{\mathcal{X}_{k}^{f}\right\}_{1 \leq k \leq N_{e}}$, of size $N_{e}=6400$, which implies a relative error of 1.25%, according to the central limit theorem. At $t=0$, the ensemble is populated for each k as $\mathcal{X}_{k}^{f}(0)=\mathcal{X}^{0}+\mathbf{P}_{0}^{1 / 2} \zeta_{k}$, where $\mathbf{P}_{0}^{1 / 2}$ is the square-root of the initial covariance matrix \mathbf{P}_{0}, and ζ_{k} a Gaussian sample with zero mean and covariance matrix \mathbf{I}_{n} where n is the dimension of the vector \mathcal{X} i.e. $\zeta_{k} \sim \mathcal{N}\left(0, \mathbf{I}_{n}\right)$. Then, each member \mathcal{X}_{k}^{f} is computed from the time integration of Eq. (9b) starting from $\mathcal{X}_{k}^{f}(0)$. Note that, for the linear dynamics Eq. (9a), the full computation of the KF covariance prediction could have been considered, but the ensemble approximation has been preferred since it introduces the methodology adapted to the nonlinear setting explored for the multivariate situation in Section 3.

Hence, from the ensemble, the variance at a given time is then estimated from its unbiased estimator
$\widehat{V^{f}}(x)=\frac{1}{N_{e}-1} \sum_{k=1}^{N_{e}}\left(\varepsilon_{k}{ }_{\sim}^{f}\right)^{2}$,
with $\varepsilon_{k}=\mathcal{X}_{k}^{f}(x) \widehat{\mathcal{X}^{f}}(x) \varepsilon_{k_{a}}^{f}=\mathcal{X}_{k}^{f}(x)-\widehat{\mathcal{X}^{f}}(x)$ and where $\widehat{\mathcal{X}^{f}}=\frac{1}{N_{e}} \sum_{k=1}^{N_{e}} \mathcal{X}_{k}^{f}$ is the empirical mean. The metric tensor, defined from Eq. (5), is estimated by
$\widehat{g^{f}}(x)=\frac{1}{N_{e}} \sum_{k=1}^{N_{e}}\left(\partial_{x} \widetilde{\varepsilon}_{k}^{f}(x)\right)^{2}$,
where $\widetilde{\varepsilon}_{k}^{f}=\frac{1}{\sqrt{V^{f}}}\left(\mathcal{X}_{k}^{f}-\widehat{\mathcal{X}^{f}}\right)$ is the normalized error, and is used to computed the estimation of the aspect tensor $\widehat{s^{f}}(x)=1 \widehat{g^{f}}(x)$ and of the length-scale $\widehat{l^{f}}(x)=1 / \sqrt{\widehat{g^{f}}(x)}=\sqrt{\widehat{s^{f}}(x)}$.

The numerical framework used to forecast both the ensemble and the PKF system is now described. The periodic domain is $[0, D)$ with $D=1000 \mathrm{~km}$. It is regularly discretized with $N_{x}=241$ grid points, which corresponds to a meshsize Δx of size 4.15 km . The dynamics Eq. (9b) and Eq. (10) are discretized with a finite difference method, where spatial derivatives are approximated using a centred scheme of order 2. The time integration is done using a fourth-order Runge-Kutta (RK4) scheme of time step Δt verifying the Courant-Friedrichs-Lewy condition (CFL) (Weisstein, 2002) $\Delta t=\Delta x / U_{\max }$, where $U_{\max }$ is the maximum wind speed magnitude of u.

For this experiment, the mean state \mathcal{X}, the variance field V and the aspect-tensor field s are initialized homogeneously with values $\mathcal{X}^{0}=1, V^{0}=\left(\sigma^{0}\right)^{2}$ where $\sigma^{0}=0.1$, and $s^{0}=\left(l_{h}^{0}\right)^{2}$ where $l_{h}^{0}=15 \Delta x \simeq 62.2 \mathrm{~km}$. This initial setting also corresponds to the initial state of the PKF dynamics Eq. (10). In regards of the domain chosen, this setting for the length-scale is in agreement with practical estimations often encountered (Ménard et al., 2016). The wind field considered, shown in Fig. 1, is defined by $u(x)=(35+15 \cos (2 \pi x)) / D$, and modelizes a wind of average intensity $35 \mathrm{kmh}^{-1}$ and of max speed $U_{\max }=50 \mathrm{kmh}^{-1}$. The

Figure 1. Wind Predefined heterogeneous and stationary wind field $u u(x)$ used for the transport simulations.
characteristic time $\tau_{a d v}$ is defined by $\tau_{a d v}=1 / \bar{u} \simeq 28.5 \mathrm{~h} \tau_{a d v}=D / \bar{u} \simeq 28.5 \mathrm{~h}$, and approximately corresponds to the time of a revolution of the tracer around the periodic domain. The simulation time horizon $T=t_{\text {end }}$ is set to $t_{\text {end }}=3 \tau_{a d v}$.

Figure 2. Comparison of the (low resolution) forecasts $\left(N_{x}=241\right)$ of the mean state (panel a), the forecast-error standard-deviation $\sigma=\sqrt{V}$ (panel b) and the forecast-error length-scale $l=1 / \sqrt{g}=\sqrt{s}$ (panel c), shown at times $t=[0.6,1.2,1.8,2.4,3.0] \tau_{a d v}$, computed from the PKF (red lines) and compared with the diagnoses on the-an ensemble forecast of $N_{e}=6400$ forecasts (cyan dash-dotted lines). The more transparent the curve, the closer it is to $t=0$. The horizontal grey lines represent the initial conditions.

The general behaviour of the error statisties regardless of the method employed is first addressed, then the performances of the PKF and EnKF are compared.

The experiment shows
The dynamics of the uncertainty shows, Fig 2, that the tracer tends to concentrate in the deceleration zones (see Fig. 1 from $x=0$ to $x=0.5$), and to dilute in the acceleration zones (from $x=0.5$ to $x=1.0$) (Fig 2(a)). This observation also applies to the standard-deviation field (panel-Fig 2(b), as it is governed by the same dynamic as the tracer's concentration (it is straightforward to calculate the dynamics of σ using the dynamics of the variance Eq. (10b)). On panel-Fig 2(c), the length-scales (1D equivalent of the anisotropy) are subject to two processes: a pure transport term, (l.h.s. of Eq. (10c)), and a
production term related to the wind sheer (r.h.s. of Eq. (10c)). This production term is positive (negative) when the wind field is accelerating (decelerating), indicating an increase (decrease) of the length-scales in the accelerating (decelerating) wind regions. In contrary to the concentrations and standard-deviation fields (governed by a conservative transport), the average value of the length-scales varies in time, however numerical experiments (not shown here) have shown that it oscillates around the initial value.

Regarding the performances of the two methods, the PKF forecast results for the error statistics are quite similar to the one diagnosed from the ensemble i.e. the EnKF for this test-bed. The forecasts of the concentrations (panel $\underset{\sim}{\text { Fig 2(a) are identical }}$ for both methods. Although the dynamics for the variance Eq. (10b) and the anisotropy Eq. (10c) are exact in the PKF system, a significant difference is observed between the forecasts of the two methods (panels bandeFig 2(b) and Fig 2(c)). We justify this gap in the next paragraph Sec. 2.4.2. This numerical experiment shows that the PKF is able to produce high quality forecasts of the diagnoses of the forecast-error statistics, a result that is confirmed by looking at the forecast-error correlation functions.

Figure 3. Correlation functions at location $x_{l}=0.5$ and times $t=[0.0,0.6,1.2,1.8,2.4,3.0] \tau_{a d v}$, computed with PKF correlation model fitted with low resolution ($N_{x}=241$) PKF forecast for error statistics (red lines) and diagnosed on the low-resolution ($N_{x}=241$) ensemble (cyan dash-dotted lines) and high resolution $\left(N_{x}=723\right)$ ensemble (blue dashed lines), of ensemble size $N_{e}=6400$.

Figure 3 compares the correlation functions at position $x_{l}=0.5$, estimated from the ensemble for the EnKF (dash-dotted eyan lines) and modeled from the predicted parameters for the PKF (solid red lines) when using Eq. (7), at different times. At a qualitative level, the PKF is able to approximate the correlation functions, the latter being only known to within a sampling
noise because of the ensemble estimation which is assumed low due to the ensemble size. In particular, the PKF is able to reproduce the large (the small) spread of the symmetric correlations present in panel-Fig. 3(a) (panel b)-Fig. 3(b)). But the PKF is also able to represent the anisotropy of the correlations as the one shown e.g. in panel_Fig. 3(e) where the correlation function at that time appears broader on its right part (corresponding to x larger than x_{l}) than on its left part (corresponding to x smaller than x_{l}).

This example shows the motivation behind the PKF: it is able to predict the covariance error (main parameters of the) error covariance with a good skill and at a low numerical cost. This low numerical cost first concerns the computer memory: the information contained in a covariance matrix of size $\mathcal{O}\left(N_{x}^{2}\right)$ in the ensemble case, is resumed reduced by the covariance model Eq. (7) which only needs a few parameters of size of order $\mathcal{O}\left(N_{x}\right)$ (with \mathcal{O} being the Big O notation, meaning "proportional to"). But the low numerical cost concerns also the time consumed to predict the uncertainty: the PKF only relies on the single time integration of Eq. (10), that represents the cost of 3 time integrations of the initial dynamics Eq. (9b), compared to the 6400 time integrations required for the ensemble used here.

As another advantage, the PKF provides informations about the physics of the uncertainty: when ensemble diagnosis only observes the time evolution of the statistics without any explications, the PKF provides a simplified proxy that details the origin of these statistical evolutions with only three equations and by thus the PKF improves our knowledge of uncertainty dynamics.

Next, we would like to warn the reader about the-

2.4.2 Limits of the numerical validation of the PKF in presence of model error

The exploration of the uncertainty dynamics from numerical experiments, as made here to validate the PKF from an ensemble method, that faces some limits.

2.4.3 Limits of the ntmerical validation of the PKF in presence of model error

FigtreFigure 2 has shown a gap between the PKF and EnKF regarding the forecast of the error statistics (standard deviation and-Fig 2(b) and length-scales, panels bandeFig 2(c)). We now justify this observation, relating it to a model error.

As the problem is discretized for numerical simulations, the actual equation that is simulated is not exactly Eq. (9a), but rather an implicit modified equation induced by the use of finite differences for the spatial and the temporal discretisation. Focusing on the spatial discretization, the modified equation writes
$\partial_{t} \mathcal{X}=-u \partial_{x} \mathcal{X}-\mathcal{X} \partial_{x} u-\frac{\Delta x^{2}}{6} u \partial_{x}^{3} \mathcal{X}-\frac{\Delta x^{2}}{6} \mathcal{X} \partial_{x}^{3} u+\mathcal{O}\left(\Delta x^{3}\right)$,
which shows additional dispersive terms not present in the initial dynamics (Eq. 9a). Note that Eq. (13) is not the full modified equation of the discretized model, in particular it does not represent the effect of the RK4 time scheme, but the error associated to fourth-order time scheme should be negligible compared with the spatial numerical error (second-order). Hence, Eq. (13) should be close to the true modified equation, and the presence of additional processes may explain the significant differences observed in Fig. 2-(b) and (c): the dispersive term $-\frac{\Delta x^{2}}{6} u \partial_{x}^{3} \mathcal{X}$ contributes to reduce the speed of the transport to a value lower than u, while the term $-\frac{\Delta x^{2}}{6} \mathcal{X} \partial_{x}^{3} u$ implies a local exponential growing (damping) of $\mathcal{X}(t, x)$ where $\partial_{x}^{3} u$ is negative (positive).

This exponential evolution only contributes to the magnitude of the forecast-error i.e. it modifies the variance field but it has no influence on the length-scale (Pannekoucke et al., 2018). At the opposite, the dispersive term influences both the variance and the length-scale as it can be observed in Fig. 2-(c): the EnKF curves appear slightly late behind the PKF ones (the wind transports the curves toward the right), presenting a negative shift in the amplitude.

Since the magnitude of the dispersive term seale as $\mathcal{O}\left(\Delta x^{2}\right)$, a simulation at high resolution could damp this term and would lead to attribute the gap observed in Fig. 2 to the model error. Note that only the error statisties are significantly affected by the numerical model error, The reason is that Eq. (13) being linear, it also governs the error field, as the one predicted by the EnKF, and for which the magnitude of the dispersion is more intense as the error correlation length-scale is short. In this simulation, the spatial scale of the mean state is large (of the order of D), so the effect of the dispersion is much less intense than for the errors whose typical spatial scale of oscillations is l_{h} (of order $D / 10$). This justifies why the dispersion does not affect the prediction of the mean state - the estimation for the means coinciding for the two methods on Fig. 2-(a) Therefore, as with the PKF the numerieal forecast of any error statistic is treated equivalently as a state vector forecast, that is a direct time-integration, this - while it acts on the EnKF predictions of the variance and of the length-scale, related to the error dynamics. In this simulation, the PKF is not influenced by the dispersion because the spatial scale of the variance and of the length-scale is large (order of D). This points out the sensitivity of the EnKF to numerical model error.

Since the magnitude of the dispersive term scales as $\mathcal{O}\left(\Delta x^{2}\right)$, a simulation at high resolution could damp this term and would lead to attributing the gap observed in Fig. 2 to the model error.

Figure 4. Same experiment as Fig. 2, except the EnKF forecast has been simulated using a higher grid definition $\left(N_{x}=723\right)$ to reduce numerical model error.

Thus, This is demonstrated by comparing the PKF statistics to a high resolution forecast of the EnKF is now performed, with a grid of three times the original resolution i.e. $N_{x}=3 \times 241=723$ grid points. To be consistent with the initial low resolution experiment, the initial length-scale of the high resolution is set to $l_{h}^{0}=3 \times 15 \Delta x=45 \Delta x \simeq 62.2 \mathrm{~km}$. The time step has been adapted in consequence to match the CFL condition. The results of this new simulation, in Fig. 4, show that predicting the ensemble at high resolution leads to the same variance (Fig. 4(b)) and length-scale (Fig. 4(c)) fields as the ones predicted by the PKF, while the latter is computed at low resolution. A PKF at high resolution has been computed (not shown here) and has been found equivalent to the PKF computed at low resolution, with a relative error at the end of the forecast window

3 Toward a multivariate formulation of the PKF

The exploration of the multivariate extension is now addressed.

4 Toward a multivariate formulation of the PKF

For multivariate problems, a modelization of the cross-correlation functions (or inter-species correlation functions) is needed. Moreover, it would be convenient to introduce a multivariate covariance model that extends the univariate VLATcov model, as the heterogeneous Gaussian model (Eq. 7), so to leverage on-to take advantage of the PKF dynamics of univariate statistics.

Because multivariate modelling is a difficult topic, a multivariate covariance model is proposed in a simplified test-bed dynamics is first introduced in Section 3.1.1. Then, 3.1 , where a data-driven modeling is considered to determine a multivariate covariance model and its parameters, a data-driven modeling is considered in Section ??. Next the mutivariate PKF is formulated, detailing the prediction step in Section ?? and the analysis step steps in Section 3.2.13.2. Finally, two numerical assimilation experiments are conducted in Section 3.3 -

3.1 Introduction-Development of the simplified chemical transport a proxy multivariate covariance model

3.1.1 Introduction of the simplified chemical transport model

To explore a multivariate formulation of the PKF, a simplified chemical transport model is introduced. This simplified CTM
lower than 0.2% for the mean, 0.3% for the standard-deviation, and 0.05% for the length-scale; where the relative error of fields has been computed as $\left\lfloor P K F_{L R}-P K F_{H B} \| L L P K F_{H R} L_{2}\right.$ with $\|\cdot\|$ the L 2 norm. This demonstrates the quality of the forecasted error statistics for the PKF, even at a low resolution. Figure 3 also shows the correlation functions (blue dashed lines) computed from the high resolution EnKF forecast. The correlation functions represented are in better accordance with the PKF modelled correlation functions than for the low resolution ensemble forecast(cyan dash-dottes lines), see e.g. panels Fig. 3(d) to Fig. 3(f). This shows that the PKF is little subject to numerical model error as the error statistics forecasts directly results from their time-integration.

Hence, this numerical exploration of the PKF, applied to the conservative dynamics, has Compared to previous studies that focused only on the comparison of variance and anisotropy error statistics, here we have shown the ability of the PKF to provide an accurate prediction of univariate error statistics. to reproduce complex heterogeneous correlation functions using the PKF formulation in 1D domain. contains the essential features of what can be found in a more realistic CTM, that is advection, multiple chemical species and non-linearities.

To do so, a 1D periodic domain of coordinate x is considered, where two non-linearly reactive chemical species, $A(t, x)$ and $B(t, x)$, are advected in a conservative way by a heterogeneous and stationary wind field $u(x)$. The non-linear reaction is given

Figure 5. Numerical simulations of the Lotka-Volterra dynamical system whose solutions are periodical orbits (purple curves,-with one erbit by level of purple transpareney magnittdedifferent transparencies), flowing counter elock-wisely clockwise around the critical point $\left(A_{c}, B_{c}\right)=\left(\frac{k_{3}}{k_{1}}, \frac{k_{1}}{k_{2}}\right)$ (black dot).
by the Lotka-Volterra (LV) equations (see Appendix A), which leads to the coupled dynamics
$\partial_{t} A+u \partial_{x} A=-A \partial_{x} u+k_{1} A-k_{2} A B$,
$\partial_{t} B+u \partial_{x} B=-B \partial_{x} u+k_{2} A B-k_{3} B$.
where the transport is written following the univariate 1D example Eq. (9b), and where the LV reaction appears as the last two terms in the right hand side of each prognostic equations. The constants k_{1}, k_{2} and k_{3} characterize the reaction rates: k_{1} corresponds to the rate at which A is produced; constant k_{2} represents the rate at which the chemical reactions between A and B produces $2 B$; and k_{3} describes the decay rate for specie B. Note that at a formal level, the state vector associated with Eq. (14) is then $\mathcal{X}(t, x)=(A, B)(t, x)$.

Considered as a dynamical system of ordinary equations and represented in the phase space (A, B), the solutions of the Lotka-Volterra's dynamics are periodical orbits flowing around the critical point of coordinates $\left(A_{c}, B_{c}\right)=\left(\frac{k_{3}}{k_{1}}, \frac{k_{1}}{k_{2}}\right)$, as shown in Fig. 5. This is the kind of time evolution observed at each grid point when there is no wind $(u=0)$.

Thanks to this simplified multivariate framework, a proxy for the cross-covariance is now proposed.

3.2 Development of a proxy multivariate covariance model

In this multivariate framework, the error-covariance matrix $\mathbf{P}=\mathbb{E}\left(\varepsilon_{\mathcal{X}}\left(\varepsilon_{\mathcal{X}}\right)^{\mathrm{T}}\right)$ associated with the state $\mathcal{X}=(A, B)$, of error $\varepsilon_{\mathcal{X}}=\left(\varepsilon_{A}, \varepsilon_{B}\right)$, reads as a block matrix
$\mathbf{P}=\left(\begin{array}{cc}\mathbf{P}_{A} & \left(\mathbf{P}_{A B}\right)^{\mathrm{T}} \\ \mathbf{P}_{A B} & \mathbf{P}_{B}\end{array}\right)$,
where \mathbf{P}_{A} and \mathbf{P}_{B} are the auto-covariance matrices of the errors, and $\mathbf{P}_{A B}$ the cross-covariance matrix, or the inter-species covariance matrix, of the errors. Note that, in general, $\mathbf{P}_{A B}$ is not symmetric i.e. $\left(\mathbf{P}_{A B}\right)^{\mathrm{T}} \neq \mathbf{P}_{A B}$. The eovariance-two-points cross covariance function $\mathbf{P}_{A B}(x, y)=\overline{\varepsilon_{A}(x) \varepsilon_{B}(y)}$ between grid points of eoordiantecoordinate x and y writes
$\mathbf{P}_{A B}(x, y)=\sqrt{V_{A}(x)} \sqrt{V_{B}(y)} \rho_{A B}(x, y)$,
where
$\rho_{A B}(x, y)=\frac{V_{A B}(x, y)}{\sqrt{V_{A}(x)} \sqrt{V_{B}(y)}} \frac{\mathbf{P}_{A B}(x, y)}{\sqrt{V_{A}(x)} \sqrt{V_{B}(y)}}$,
is the cross-correlation function, with $V_{A B}(x, y)=\overline{\varepsilon_{A}(x) \varepsilon_{B}(y)}$ the two-point cross covariance. The cross-correlation function is not symmetric in general i.e. $\rho_{A B}(x, y) \neq \rho_{A B}(y, x)$. In particular, if $\mathbf{C}_{A B}$ denotes the associated cross-correlation matrix, then $\mathbf{C}_{A B} \neq\left(\mathbf{C}_{A B}\right)^{\mathrm{T}}$.

At a covariance modelling point of view, and in the perspective of the PKF, the univariate covariances \mathbf{P}_{A} and \mathbf{P}_{B} could be approximated by a VLATcov model e.g. $\mathbf{P}\left(V_{A}, s_{A}\right)$. Morover, the-Moreover, the single-point cross-covariance field $V^{A B}(x)=\overline{\varepsilon_{x}^{A} \varepsilon_{x}^{B}}$ defined as $V_{A B}(x)=\overline{\varepsilon_{A}(x) \varepsilon_{B}(x)}$ will appear in the dynamics of V_{A} and V_{B} because of the coupling due to LV equations, and should be considered as a natural parameter for a multivariate PKF. At this stage, the question is whether it is possible to approximate the two-points cross-covariance functions $V^{A B}(x, y) \mathbf{P}_{A B}(x, y)$ knowing the parameters $\left(\bar{A}, \bar{B}, V_{A}, V_{B}, V_{A B}, s_{A}, s_{B}\right)$ (where in this notation $V_{A B}$ denotes the field $V_{A B}(x)$)which are functions of x.

Since no multivariate modelling extending the VLATcov model is available. A numerical exploration of the dynamics of multivariate statistics is performed for the LV-CTM, so then to guess a proxy for the cross-covariance functions.

3.1.1 Ensemble of multivariate foreeasts

3.1.2 Ensemble of multivariate forecasts

Compared to the univariate experiment described in Section 2.4.1, without a multivariate covariance model, it is not possible to sample a multivariate ensemble. For this reason, the error for the two chemical species are assumed decorrelated at the initial time $t=0$, so that the error-covariance matrix, \mathbf{P}^{0}, is the block diagonal
$\mathbf{P}^{0}=\left(\begin{array}{cc}\mathbf{P}_{A}^{0} & 0 \\ 0 & \mathbf{P}_{B}^{0}\end{array}\right)$,
where $\mathbf{P}_{A}^{0}\left(\mathbf{P}_{B}^{0}\right)$ is the univariate covariance associated with error on $A(B)$. Following the ensemble generation of Section 2.4.1, the univariate covariance matrices are chosen as the two VLATcov $\mathbf{P}_{A}^{0}=\mathbf{P}\left(V_{A}^{0}, s_{A}^{0}\right)$ and $\mathbf{P}_{B}^{0}=\mathbf{P}\left(V_{B}^{0}, s_{B}^{0}\right)$. Then, an ensemble of $N_{e}=6400$ initial conditions $\left(\mathcal{X}_{k}^{0}\right)_{k \in\left[1, N_{e}\right]}$ is sampled, with for each $k, \mathcal{X}_{k}^{0}=\mathcal{X}^{0}+\left(\mathbf{P}^{0}\right)^{1 / 2} \zeta_{k}$, where $\mathcal{X}^{0}=$ $\left(A^{0}, B^{0}\right)$ and $\left(\mathbf{P}^{0}\right)^{1 / 2}$ is the block diagonal matrix $\left(\mathbf{P}^{0}\right)^{1 / 2}=\operatorname{diag}\left(\mathbf{P}\left(V_{A}^{0}, s_{A}^{0}\right)^{1 / 2}, \mathbf{P}\left(V_{B}^{0}, s_{B}^{0}\right)^{1 / 2}\right)$. This time, ζ_{k} is a sample of $\mathcal{N}\left(0, \mathbf{I}_{n}\right)$ with $n=2 N_{x}$. The domain is discretized in $N_{x}=723$ grid points.

For the simulation, the fields A^{0} and B^{0} are set to the constants $A^{0}=1.2$ and $B^{0}=0.8$. The univariate parameters are set to $\sigma_{A}^{0}=0.1 \cdot A^{0}, \sigma_{B}^{0}=0.1 \cdot B^{0}, s_{A}^{0}=s_{A}^{0}=l_{h}^{2}$ with $l_{h}=45 \Delta x \simeq 62 \mathrm{~km}$. The reaction rates of LV are set to $\left(k_{1}, k_{2}, k_{3}\right)=$ $(0.075,0.065,0.085)$. The time integration follows the numerical setting used for the univariate simulation presented in Section 2.4.1, and leads to an ensemble of $N_{e}=6400$ multivariate forecasts.

While there is no cross-correlation at the initial condition, the coupling provided by the LV equations should introduce a non-zero cross-correlation between errors on A and B, and this can be diagnosed from the computation of the eross-covariance of the forecast-errors $V^{A B}(x, y)$ ensemble estimation of the two-points forecast-error cross-covariance function $\mathbf{P}_{A B}(x, y)$ at time t, estimated by given by
${ }^{A B} \widehat{\mathbf{P}}_{\underset{\sim}{A B}}(t, x, y)=\frac{1}{N_{e}-1} \sum_{k=1}^{N_{e}} \varepsilon_{A, k}(t, x) \varepsilon_{B, k}(t, y)$,
with $\varepsilon_{A, k}(t, x)=A_{k}(t, x)-\widehat{A}(t, x)$ and $\varepsilon_{B, k}(t, y)=B_{k}(t, y)-\widehat{B}(t, y)$, where \widehat{A} and \widehat{B} are the empirical means of the ensemble of forecasts $\left(A_{k}\right)$ and $\left(B_{k}\right)$, from which an estimation of the cross-correlation functions $\widehat{\rho}_{A B}(t, x, y)$ and matrix $\widehat{\mathbf{C}}_{A B}(t)$ can be deduced.

Cross-correlation functions modelization

Figure 6. Evaluation of the cross-correlation model at $r_{A B}\left(x_{L}, \cdot\right)$ (bold orange line) versus the ensemble estimation of the cross-correlation $\rho_{A B}\left(x_{L},\right)$ (blue dashed line) with respect to the location $x_{l}=0.5$ and times $t=[0.0,0.6,1.2,1.8,2.4,3.0] \tau_{a d v}$.

Figure 6 shows the time evolution of the cross-correlation with respect to the grid point $x_{l}=0.5$ i.e. the function $\rho_{A B}\left(x_{l}, \cdot\right)$ (blue dashed line). As it has been specified, the cross-correlation is zero at $t=0$ (panel a) Fig. 6(a)). Then, as it is expected, the
cross-correlation evolves along the time, presenting an anti cross-correlation at $t=0.6 \tau_{\text {adv }}$ (panel b) Fig. 6(b), then a positive one at $t=1.8 \tau_{a d v}$ (panel d). Fig. 6(d)). At $t=2.4 \tau_{a d v}$ (panele).Fig. $6(\mathrm{e}$) , the cross-correlation appears clearly asymmetric, while reaching its maximum value at a y strictly lower than x_{l}.

Now, a proxy for the cross-correlation is introduced from the data set of multivariate forecasts.

3.1.3 Formulation of a proxy for the cross-correlation

After a trial-and-error process, and inspired from the VLATcov model Eq. (7), the following expression
as function of the known parameters $\mathcal{P}=\left(V_{A}, V_{B}, V_{A B}, s_{A}, s_{B}\right)$, has been proposed as a proxy for the cross-correlation $\rho_{A B}$ i.e. $r_{A B}(x, y) \approx \rho_{A B}(x, y)$. It consists in a an interpolation by the mean of the cross-correlation values at location \mathbf{x} and \mathbf{y}, multiplied by a gaussian kernel, where the univariate aspect-tensor has been substituted by the mean of the aspect-tensors of all chemical species. The resulting proxy for the cross-correlation matrix is denoted by $\mathbf{C}_{A B}^{\text {proxy }}(\mathcal{P})$.

One of the main advantages of considering a simple analytic formula is its can be extended to a problem with more chemical species and for a domain of higher dimension.

Note that formulation Eq. (20) is symmetric $\left(r_{A B}(x, y)=r_{A B}(y, x)\right.$), while cross-correlation cross-correlations are not symmetric in general $\left(\rho_{A B}(x, y) \neq \rho_{A B}(y, x)\right.$, but this expression leverages on all the parameters known at locations \mathbf{x} and y. However, the function $r_{A B, x}(\delta x)=r_{A B}(x, x+\delta x)$ is not necessarly symmetric in δx, where in general $r_{A B, x}(\delta x) \neq$ $r_{A B, x}(-\delta x)$.

To assess the skill of the proxy, Fig. 6 shows the functions $r_{A B}\left(x_{l}, \cdot\right)$ dedteed from-(computed from Eq. (20) with the ensemble-estimated parameters $\widehat{\mathcal{P}}(t)=\left(\widehat{V_{A}}, \widehat{V_{B}}, \widehat{V_{A B}}, \widehat{s_{A}}, \widehat{s_{B}}\right)(t)$ (bold orange line), that can be $)_{2}$ compared with the ensemble estimated cross-correlation $\rho_{A B}\left(x_{l}, \cdot\right)$ (blte dashed line). At a qualitative level, the functions $r_{A B}$ are in accordance with the cross-correlation $\rho_{A B}$ of reference for all the panels. Note that, while $r_{A B}$ is symmetric, the functions $r_{A B}\left(x_{l}, \cdot\right)$ can be asymmetric as it appears in panel Fig. 6(c) and Fig. 6(f).

At a quantitative level, Fig. 7 shows the time evolution of the relative error $\frac{\left\|\widehat{\mathbf{C}}_{A B}(t)-\mathbf{C}_{A B}^{\text {proxy }}(\widehat{\mathcal{P}}(t))\right\|}{\left\|\widehat{\mathbf{C}}_{A B}(t)\right\|}$, where $\|\mathbf{U}\|=\sqrt{\operatorname{Tr}\left(\mathbf{U U}^{\mathrm{T}}\right)}$ is the Frobenius matrix norm where Tr is the trace operator; $\widehat{\mathbf{C}}_{A B}(t)$ is the ensemble estimation of the cross-correlation matrix ; and $\mathbf{C}_{A B}^{\text {proxy }}(\widehat{\mathcal{P}}(t))$ is the proxy for the cross-correlation matrix fitted with ensemble-estimated parameters $\widehat{\mathcal{P}}(t)$. Two different experiments are shown depending on whether the initial length-scale for a A and B are equal, $l_{0}^{A}=l_{0}^{B}=45 \Delta x \approx 66 \mathrm{~km}$ $l_{A}^{0}=l_{B A}^{0}=45 \Delta x \approx 66 \mathrm{~km}$ (turquoise lines) ; or different, $l_{A}^{0} \approx 66 \mathrm{~km}$ but $l_{B}^{0}=66 \Delta x \approx 91 \mathrm{~km} l_{A}^{0} \approx 66 \mathrm{~km}$ but $l_{B}^{0}=66 \Delta x \approx 91 \mathrm{~km}$ (purple lines).

As the two multivariate error fields are uncorrelated at the initial time, the true cross-correlation matrix $\mathbf{C}_{A B}(t=0)$ is zero. However, the ensemble used in the estimation of $\widehat{\mathbf{C}}_{A B}(t=0)$ being finite, this produces spurious non-zero cross-correlation leading to a non-zero matrix and to a relative error larger than 80%. Then, the first instants of the simulation are dominated by

Time evolution of the relative error for the modelled cross-correlation matrix, for identical and different initial length-scales

Figure 7. Time evolutions of the relative errors between the empirical cross-correlation matrix (EnKF) and the proxy-generated crosscorrelation matrix fitted with EnKF-diagnosed parameters, for two different settings of the initial length scales: equal length-scales with $l_{0}^{A}=l_{0}^{B}=45 \Delta x \approx 66 \mathrm{~km} l_{A}^{0}=l_{B}^{0}=45 \Delta x \approx 66 \mathrm{~km}$ (turquoise line) and different length-scales with $l_{0}^{A}=45 \Delta x l_{A}^{0}=45 \Delta x$ and $t_{0}^{B}=66 \Delta x \approx 91 \mathrm{~km} l_{B}^{0}=66 \Delta x \approx 91 \mathrm{~km}$ (mauve line). The results being dominated by sampling noise for $t<0.45$, they are not retained (grey hatching) for the computing of the temporal averages (dashed segments).
the sampling noise, and they are exclude excluded for the analysis of the results (grey hatching). After $t \simeq 0.45$, the experiments offer valid results and lead to temporal averages of 22.8% when $l_{0}^{A}=l_{0}^{B} 23.1 \%$ when $l_{A}^{0}=l_{B}^{0}$ (turquoise dashed line) and 31.3 when $\% l_{0}^{A} \neq l_{0}^{B} \%$ when $l_{A}^{0} \neq l_{B,}^{0}$ (purple dashed line). Note that the effect of the sampling noise leads to overestimate the true value of the averages by an amount of 8 points of pereent can leads to an overestimation of 8% for this kind of experiment (Pannekoucke, 2021).

We don't know if any formula-According to our knowledge, no proxy of cross-correlations similar to Eq. (20) has been already introduced introduced up to now as a possible proxy of cross-correlations. As mentioned above, $r_{A B}$ does not share the same property of the cross-correlation (e.g. $r_{A B}$ is symmetric while $\rho_{A B}$ is not), and thus, there is no guaranty guarantee that a multivariate covariance model based on the proxy $r_{A B}$ leads to a true covariance matrix: such a multivariate covariance model is symmetric because $r_{A B}$ is symmetric, but not necessarily positive definite, although it may not be essential for the PKF applications.

Despite of the limitations of the proxy, a multivariate extension of the univariate VLATcov model is explored below, where the cross correlation is approximated by the proxy Eq. (20). This leads to a multivariate VLATcov model of parameters the fields $\left(V_{A B}, V_{A}, V_{B}, s_{A}, s_{B}\right)$ for which we can formulate a PKF.

3.2 Formulation and simplification of the parameters dynamics and analysis

3.2.1 PKF dynamics for LV-CTM

The computation of the PKF dynamics leverages on the SymPKF package which applied to the dynamics Eq. (14), provides the following system of coupled equations

$$
\begin{align*}
& \partial_{t} A+u \partial_{x} A=-A \partial_{x} u+k_{1} A-k_{2} A B-k_{2} V_{A B} \tag{21a}\\
& \partial_{t} B+u \partial_{x} B=-B \partial_{x} u-k_{3} B+k_{2} A B+k_{2} V_{A B} \tag{21b}\\
& \partial_{t} V_{A B}+u \partial_{x} V_{A B}=-2 V_{A B} \partial_{x} u+V_{A B}\left(k_{1}-k_{2} B-k_{3}+k_{2} A\right)+k_{2} V_{A} B-k_{2} V_{B} A \tag{21c}\\
& \partial_{t} V_{A}+u \partial_{x} V_{A}=-2 V_{A} \partial_{x} u+2\left[V_{A}\left(k_{1}-k_{2} B\right)-k_{2} A V_{A B}\right] \tag{21d}\\
& \partial_{t} V_{B}+u \partial_{x} V_{B}=-2 V_{B} \partial_{x} u+2\left[V_{B}\left(-k_{3}+k_{2} A\right)+k_{2} B V_{A B}\right] \tag{21e}\\
& \partial_{t} s_{A}+\underbrace{u \partial_{x} s_{A}}_{T_{A, a d v-1}}=\underbrace{2 s_{A} \partial_{x} u}_{T_{A, a d v-2}}-\underbrace{\frac{2 k_{2} A V_{A B} s_{A}}{V_{A}}}_{T_{A, \text { chem }-1}}+\underbrace{\frac{2 k_{2} A \sigma_{B} s_{A}^{2} \overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}}{\sigma_{A}}}_{T_{A, \text { chem-2 }}} \\
& +\underbrace{\frac{k_{2} A s_{A}^{2} \tilde{\varepsilon}_{B} \partial_{x} \tilde{\varepsilon}_{a} \partial_{x} V_{B}}{\sigma_{A} \sigma_{B}}}_{T_{A, \text { chem }-3}}-\underbrace{\frac{k_{2} A \sigma_{B} s_{A}^{2} \overline{\varepsilon_{B} \partial_{x} \tilde{\varepsilon}_{A}} \partial_{x} V_{B}}{V_{A}^{\frac{3}{2}}}}_{T_{A, \text { chem-4 }}}+\underbrace{\frac{2 k_{2} \sigma_{B} s_{A}^{2} \tilde{\varepsilon}_{B} \partial_{x} \tilde{\varepsilon}_{A} \partial_{x} A}{\sigma_{A}}}_{T_{A, \text { chem }-5}} \tag{21f}\\
& \partial_{t} s_{B}+\underbrace{u \partial_{x} s_{B}}_{T_{B, a d v-1}}=\underbrace{2 s_{B} \partial_{x} u}_{T_{B, a d v-2}}+\underbrace{\frac{2 k_{2} B V_{A B} s_{B}}{V_{B}}}_{T_{B, c h e m-1}}-\underbrace{\frac{2 k_{2} B \sigma_{A} s_{B}^{2} \overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}}{\sigma_{B}}}_{T_{B, \text { chem }-2}} \\
& -\underbrace{\frac{k_{2} B s_{B}^{2} \overline{\tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}} \partial_{x} V_{A}}{\sigma_{A} \sigma_{B}}}_{T_{B, \text { chem-3 }}}+\underbrace{\frac{k_{2} B \sigma_{A} s_{B}^{2} \overline{\tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}} \partial_{x} V_{B}}{V_{B}^{\frac{3}{2}}}}_{T_{B, \text { chem-4 }}}-\underbrace{\frac{2 k_{2} s_{B}^{2} \overline{\tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}} \partial_{x} B}{\sigma_{B}}}_{T_{B, \text { chem-5 }}} \tag{21~g}
\end{align*}
$$

where the overline of the mean states \bar{A} and \bar{B} have been discarded for the sake of simplicity. The PKF is a second order filter in which the variance of the fluctuations modify the time evolution of the mean states e.g. by the term $-k_{2} V_{A B}$ of Eq. (21a).

For the dynamics of the anisotropy, Eq. (21f) and Eq. (21g), the contributions due to the transport (to the chemistry) are labeled as $T_{a d v-(\cdot)}^{(\cdot)}\left(T_{\text {chem-(} \cdot(\cdot)}^{(\cdot)}\right.$ so- $T_{(\cdot) \cdot a d v}=(\cdot) \quad\left(T_{(\cdot)}\right.$, chem $\left.-(i)\right)$ to be identified. Hence, each term is labeled as T_{j}^{Z}, where Z stands for the chemical species and j for the index of the term including the processes from which the term comes from e.g. $T_{\text {chem-5 }}^{A}$ denetes in the fifth term due to the chemistry in the dynamies of the anisotropy of A.

Note that the dynamics induced by the transport process is exact as mentioned in paragraph ??Sec. 2.4. In the PKF system Eq. (21) the dynamics of the mean concentrations A and B, variances V_{A} and V_{B} and eovariance cross-covariance
$V_{A B}$, Eq. (21a) to Eq. (21e), are independant from those of anistotropy fields independent of anistotropy field Eq. (21f) and Eq. (21g). The reciprocal is not true: the anisotopy fields dynamics (Eq. (21f)-Eq. (21g)) are forced by the means, the variances, eovariances the cross-covariances and their spatial heterogeneity. Eq. (21a) and Eq. (21b) also indicate an interaction between the eovariance-cross-covariance and the mean concentrations.

The dynamics of the aspect tensors, Eq. (21f) and Eq. (21g), are not closed: some terms are expressed as expectations of the normalized errors $\tilde{\varepsilon}_{A}=\varepsilon_{A} / \sqrt{V_{A}}$ and $\tilde{\varepsilon}_{B}=\varepsilon_{B} / \sqrt{V_{B}}$. These open terms can not be directly expressed using the available parameters, preventing the forecast of the error statistics. The role and magnitude of these terms is studied in the following paragraphs (3.2.2-3.2.4).

Several experiments are conducted in the following paragraphs sections to better understand the impact of this closure problem. In paragraph 3.2.2, following the splitting approach (Pannekoucke et al., 2021), the transport terms are removed so to focus on the contribution of the chemistry process for observing its influence on the uncertainty dynamies, in the case of homogeneous statistical initial conditions. A comparison between the uncertainty dynamies in LV equations with the one for the harmonic oseillater (HO) problem is also carried out. Then, in paragraph 3.2.3, the transpert is rehabilitated so to quantify which of the two processes at play is dominant in the anisotropy dynamics. Eventtally a simplification is made in the dynamies of the anistropy to close the PKF dynamies.

3.2.2 Impact of the chemistry alone on the dynamics of the anisotropies for homogeneous statistical initial conditions

Regarding the dynamics of the anisotropy fields presented in the prognostic equations (Eq. (21f)-Eq. (21g)), the part due to transport in $T_{a d v-(\cdot)}^{(\cdot)}$,is already well understood, as it comes down to the univariate case presented in paragraph-Sec. 2.4.1. However, the role of the chemistry in $T_{c h e m-(\cdot)}^{(\cdot)}$,is unclear at this time. The transport process is removed se-to focus on the dynamics of the anisotropy due to the chemistry.

In the PKF dynamics in Eq. (21), when there is no transport, , and when the variance fields are homogeneous at the initial condition, the homogeneity is preserved during the time evolution. Hence, the spatial derivatives of the variance and of the cross-variance fields are null, which leads to simplify the dynamics of the anisotropy (Eq. (21f)-Eq. (21g)) as
$\partial_{t} s_{A}=\frac{2 k_{2} A s_{A}}{\sigma_{A}}\left(\sigma_{B} s_{A} \overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}-\frac{V_{A B}}{\sigma_{A}}\right)$,
$\partial_{t} s_{B}=\frac{2 k_{2} B s_{B}}{\sigma_{B}}\left(\frac{V_{A B}}{\sigma_{B}}-\sigma_{A} s_{B} \overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}\right)$.
To focus on the contribution of the chemistry on the dynamics of the anisotropies, an ensemble of $N e=1600$ high resolution forecasts is performed ($N_{x}=723$), with only the chemistry part. Hence, the transport terms are set to zero in Eq. (14). Two numerical experiments are conducted: first, the initial length-scales are equal for both species with $l_{0}^{A}=l_{0}^{B}=45 \triangle x \simeq 62 l_{a}^{0}=l_{B}^{0}=45 \Delta x \simeq 6$ (results are shown in Fig. 8), then different with $l_{0}^{A}=45 \Delta x$ and $l_{0}^{B}=66 \Delta x \simeq 91 l_{A}^{0}=45 \Delta x$ and $l_{B}^{0}=66 \Delta x \simeq 91 \mathrm{~km}$ (results in Fig. 9). The initial conditions for the concentrations, and the multivariate statistics are chosen homogeneous over the domain in both cases. Therefore, only the time series of the spatial average are shown for the variance, the cross-correlation, the
length-scale and the open term $\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}$ which is estimated from the ensemble by
$\partial_{x} \widehat{\tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}=\frac{1}{N_{e}} \sum_{k=1}^{N}{ }_{e} \partial_{x} \tilde{\varepsilon}_{A, k} \partial_{x} \tilde{\varepsilon}_{B, k}$,
where $\tilde{\varepsilon}_{A, k}=\varepsilon_{A, k} / \widehat{V}_{A}$ and $\tilde{\varepsilon}_{B, k}=\varepsilon_{B, k} / \widehat{V}_{B}$.

Comparison of the errors statistics time evolution for the Lotka-Volterra (left) and Harmonic Oscillator (right) systems, $I_{A}^{0}=I_{B}^{0}$.
(a) normalized std in the LV dyn.

(c) cross-correlation in the LV dyn.

(e) normalized length-scales in the LV dyn.

(g) $\overline{\partial_{X} \tilde{\varepsilon}_{A} \partial_{X} \tilde{\varepsilon}_{B}}$ in the LV dyn.

(b) normalized std in the HO dyn.

(d) cross-correlation in the HO dyn.

(f) normalized length-scales in the HO dyn.

(h) $\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}$ in the HO dyn.

Figure 8. Time series of the spatial average of the error statistics: from the ensemble forecast with $N_{e}=1600$ for Lotka-Volterra (LV, left panels) and Harmonic Oscillator analytical solutions (HO, right panels). Equal initial length-scales: $l_{0}^{A}=l_{0}^{B}=45 \Delta x l_{\mathcal{A}}^{0}=l_{B \mathcal{B}}^{0}=45 \Delta x$.

In the first experiment, Fig. 8, the magnitude of the error, given by the standard deviations (panel-Fig. 8(a), oscillates with a phase shift where the magnitude of the error in A advances the one of B. The cross-correlation (panel Fig. 8(c) and the unclosed term $\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}$ (panel-Fig. $8(\mathrm{~g})$ oscillate in a similar way. In this experiment, where the initial length-scales are identical for A and B, there is no time evolution of the length-scales, except the fluctuations that are due to the sampling noise (see panel e) Fig. 8(e)). The second experiment, Fig. 9, shows roughly the same picture, except that this time, with initial length-scales of different values, oscillations are appearing (panel Fig. 9(e). Since, a priori, it is not easy to track the reason for the change of behaviour observed on the length-scale dynamics, an analytical investigation of the harmonic oscillator (HO)
$\partial_{t} A(t, \mathbf{x})=-k B(t, \mathbf{x})$,
$\partial_{t} B(t, \mathbf{x})=k A(t, \mathbf{x})$,
is introduced, with $k=k_{2}$. The comparison with HO is relevant since it is an example of analytical multivariate dynamics and also because it mimics the periodic oscillations of LV , explaining the numerical results. For HO, it is possible to calculate the
(a) normalized std in the LV dyn. (b) normalized std in the HO dyn.

(c) cross-correlation in the LV dyn.

(e) normalized length-scales in the LV dyn.

(g) $\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}$ in the LV dyn.

(d) cross-correlation in the HO dyn.

(f) normalized length-scales in the HO dyn.

(h) $\overline{\partial_{X} \tilde{\varepsilon}_{A} \partial_{X} \tilde{\varepsilon}_{B}}$ in the HO dyn.

Figure 9. Time series of the spatial average of the error statistics: from the ensemble forecast with $N_{e}=1600$ for Lotka-Volterra (LV, left panels) and Harmonic Oscillator analytical solutions (HO, right panels). Different initial length-scales: $l_{0}^{A}=45 \Delta x l_{A}^{0}=45 \Delta x$ and $t_{0}^{B}=66 \Delta x l_{B}^{0}=66 \Delta x$.
time evolution of the statistics analytically (see Appendix B for details), which writes as
$V_{A}(t)=\cos (k t)^{2} V_{A}^{0}+\sin (k t)^{2} V_{B}^{0}$,
$V_{B}(t)=\sin (k t)^{2} V_{A}^{0}+\cos (k t)^{2} V_{B}^{0}$,
$V_{A B}(t)=\cos (k t) \sin (k t)\left(V_{A}^{0}-V_{B}^{0}\right)$,
$\underline{g} s_{A}(t)=\frac{1}{V_{A}(t)} \sim V_{A}(t)\left[\cos (k t)^{2} \underline{V_{A}^{0} g_{A}^{0}} \frac{V_{A}^{0}}{s_{A}^{0}}+\sin (k t)^{2} \underline{V_{B}^{0} g_{B}^{0}}{\underset{\sim}{s}}_{s_{B}^{0}}^{V_{B}^{0}}\right] \sim$,
$\underline{g} s_{B}(t)=\frac{1}{V_{B}(t)} V_{B}(t)[\sin (k t)^{2} \underline{V}_{A}^{0} g_{A}^{0} \frac{V_{A}^{0}}{s_{A}^{0}}+\cos (k t)^{2} \underbrace{V_{B}^{0} g_{B}^{0}}_{B} \underbrace{\frac{V_{B}^{0}}{s_{B}^{0}}}_{B}] \sim \sim$,
$\underline{\mathbb{E}\left[\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}\right]} \overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}(t)=\frac{\cos (k t) \sin (k t)}{\sigma_{A}(t) \sigma_{B}(t)}\left[\frac{\left.V_{A}^{0} g_{A}^{0} \frac{V_{A}^{0}}{s_{A}^{0}}-V_{B}^{0} g_{B}^{0} \frac{V_{B}^{0}}{s_{B}^{0}}\right] ~}{\sim}\right.$
Numerical results computed for the HO are represented in Fig. 8 and Fig. 9, and show some of the behaviour encountered for the nonlinear LV equations. For instance, the oscillations of the variance are visible. Moreover, the length-scales oscillate depending on the initial condition: when the initial length-scales are equal, there is no oseillations-oscillation (see Fig. 8-(df)) that appear from the analytical computation of g_{A} and g_{B}; at the opposite s_{A} and s_{B}; in contrast, for different values of the initial length-scales, oscillations appear (see Fig. 9-(df)). These different behaviours of the anisotropy based on the initial
settings of the length-scales are explained by the analytical solutions of the error statistics for the harmonic oscillator. For instance, when plugging the identical initial condition for the length-scales $y_{A}^{0}=g_{B}^{0} s_{A}^{0}=s_{B}^{0}$ and the analytical solution of $V_{A}(t)$ (Eq. 25a) into the r.h.s. of Eq. (25d), it simplifies to $y_{A}(t)=g_{A}^{0} s_{A}(t)=s_{A}^{0}$. The same result applies for $y_{B}(t) s_{B}(t)$. This simplification no longer holds when $y_{0}^{A} \neq g_{B}^{0} C \neq s_{B}^{0}$, leading to nonconstants-non-constant length-scales which is effectively observed.

Note that for equal initial length-scales, the anisotropy appears stationnary stationary (see Fig. 8e(e)), which suggests a closure for the open term $\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}$: since the anisotropy are is equal and constant, $s_{A}(t)=s_{B}(t)=\frac{s_{A}(t)+s_{B}(t)}{2}=s_{A}^{0}=$ $s_{B}^{0}=\frac{s_{A}^{0}+s_{B}^{0}}{2}$, then from the stationnarity stationarity of the anisotropy, $\partial_{t} s_{A}=\partial_{t} s_{B}=0$, the right-hand side of Eqs. (22) leads to the expression
$\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}=\frac{V_{x}^{A B}}{\sigma_{x}^{A} \sigma_{x}^{B}} \frac{2}{s_{x}^{A}+s_{x}^{B}} \frac{V_{A B}(x)}{\sigma_{A}(x) \sigma_{B}(x)} \frac{2}{s_{A}(x)+s_{B}(x)}$.

This closure indicates that the term $\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}$ is proportional to the cross-correlation in this particular case. This is confirmed in Fig. 8, where $\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}$ (panel Fig. 8(g) appears to evolve as the cross-correlation (panel-Fig. 8(c). For this specific case, Eq. (26) also applies for the error statistics of the harmonic oscillator: using $y_{A}^{0}=g_{B}^{0} s_{A}^{0}=s_{B}^{0}$ and the time evolution of the covariance cross-covariance $V_{A B}$ (Eq. 25 c) allows to solve for the open term in Eq. (25f), obtaining the same expression as in Eq. (26).

The time evolution of the HO error statistics makes appear a swing an alternate transfer of the error statistics between the two components A and B, which qualitatively reproduces the evolution observed in the LV dynamics. The transfer of uncertainty from one component to the other is provided by the cross-covariance $V_{A B}$ when the magnitude of the uncertainty is different along each specie. error variance is different for each of the two species.

After this focus on the dynamies of the anisotropy due to the chemistry alone, the study of the contribution of the chemistry and the transport is conducted, assessing the magnitude of each terms and processes on the dynamics of the anisotropy.

3.2.3 Detailed contribution of each processes in the dynamics of the anisotropy

What follows aim to identify The following section aims at identifying the dominant terms, or processes in the dynamics of the anisotropy, Eq. (21f) and Eq. (21g).

Two different evaluations are performed. The first one evaluates the relative contribution $W_{j}^{Z} W_{Z j}$ of the term T_{j}^{Z} among $T_{Z, i}$ with respect to all other terms in the dynamics of the anisotropy of Z, which reads as

where $\|v\|_{1}=\frac{1}{N_{x}} \sum_{j=1, \ldots, N x}\left|v_{j}\right|$ is the L^{1} norm on the discretized domain $[0, D)$. The second one evaluates the relative contribution of each physical processes in the dynamics of the anisotropy e.g. the relative contribution of the advection in the
dynamics of the anisotropy of $Z, W_{\text {adv }}^{Z} W_{Z, a d v, ~ r e a d s ~ a s ~}$

$$
\begin{equation*}
W_{\underline{\text { adv }} \underset{\sim, a d v}{Z}}(t)=\frac{\left\|\sum_{k=1}^{2} T_{a d v-k}^{Z}(t)\right\|_{1}}{\left\|\sum_{k=1}^{2} T_{a d v-k}^{Z}(t)\right\|_{1}+\left\|\sum_{k=1}^{5} T_{c h e m-k}^{Z}(t)\right\|_{1}} \frac{\left\|\sum_{k=1}^{2} T_{Z, a d v-k}(t)\right\|_{1}}{\left\|\sum_{k=1}^{2} T_{Z, a d v-k}(t)\right\|_{1}+\left\|\sum_{k=1}^{5} T_{Z, c h e m-k}(t)\right\|_{1}}, \tag{28}
\end{equation*}
$$

from which the relative contribution of the chemistry writes $W_{c h e m}^{Z}(t)=1 \quad W_{\text {adv }}^{Z}(t) W_{Z . c h e m}(t)=1-W_{Z \text { adv }}(t)$. Note that the normalization is different between Eq. (27) and Eq. (28).

The computation of these relative contributions will rely on ensemble of forecasts. They will be used to diagnose a posteriori the PKF parameters $\left(A, B, V_{A}, V_{B}, V_{A B}, s_{A}, s_{B}\right)$ as well as the three open terms $\left(\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}, \overline{\tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}, \overline{\varepsilon_{B}} \partial_{x} \tilde{\varepsilon}_{A}\right)$ to then reconstruct all the terms in the anisotropy dynamics (Eq. (21f)-Eq. (21g)).

The quantifications of the relative contribution by term and by process will be performed for equal and different initial length-scales for A and B, as it leads-they lead to different dynamics for the anisotropy. Thus, two ensembles are forecasted, with initial length-scales set to $l_{0}^{A}=l_{0}^{B}=45 \Delta x l_{A}^{0}=l_{B}^{0}=45 \Delta x$ in the first, and $l_{0}^{A}=45 \Delta x$ and $l_{0}^{B}=66 \Delta x l_{A}^{0}=45 \Delta x$ and $l_{B}^{0}=66 \Delta x$ in the second. A high resolution grid is considered $\left(N_{x}=723\right)$ to reduce numerical model error; the time step has been adapted in consequence to match the CFL. The other settings as well as the numerical configuration for this experiment are unchanged from previous ensemble forecast performed in paragraph Sec. 3.1.2.

Relative contributions by term and process in the anisotropy dynamics, $I_{A}^{0}=I_{B}^{0}$

Figure 10. Numerical results for the case $l_{0}^{A}=l_{0}^{B}=45 \Delta x l_{A}^{0}=l_{B}^{0}=45 \Delta x$. Time evolution for the relative contribution by term (resp. by process) computed from Eq. (27) (from Eq. (28)) involved in the anisotropy dynamics for species A and B on panels (a) and (b) (resp. panels (c) and (d)).

Relative contributions by term and process in the anisotropy dynamics, $I_{A}^{\circ} \neq I_{B}^{0}$

Figure 11. Numerical results for the case $l_{0}^{A}=45 \Delta x l_{A}^{0}=45 \Delta x$ and $l_{0}^{B}=66 \Delta x l_{B}^{0}=66 \Delta x$. Time evolution for the relative contribution by term (resp. by process) computed from Eq. (27) (from Eq. (28)) involved in the anisotropy dynamics for species A and B on panels (a) and (b) (resp. panels (c) and (d)).

The results of the relative contributions presented in Fig. 10 (Fig. 11) for the equal (different) length-scale configuration are now discussed. Regarding the relative contribution by process experiment, the comparison between panels Fig. 10e (Fig. 10d) and Fig. 11e (Fig. 11d(c) (Fig. 10(d)) and Fig. 11(c) (Fig. 11(d)) indicates that when the initial length-scales are different, $t_{0}^{A} \neq l_{0}^{B} l^{0} \neq l_{B}^{0}$, the chemistry has a more significant role ($W_{\text {chem }}$ is about 21%) compared when the length-scales are equal ($W_{\text {chem }}$ is about 10%) in the dynamics of the anisotropies. That difference was expected following the results obtained in the previous paragraph Sec. 3.2.2. Now focusing on the relative contribution by term on panels (a) and (b) of Fig. 10 and Fig. 11, it is noticeable that only the two terms, $W_{\text {chem-1 }}^{Z}$ and $W_{\text {chem-2 }}^{Z}$, have a significant role in the dynamics. The rest of the chemistry-related terms magnitudes are negligible. For equal initial length-scales, as the chemistry-related part of the anisotropy dynamics can be neglected compared to the advection part (Fig. 10c,d), and as this part is mainly driven by $W_{\text {chem-1 }}^{Z}$ and $W_{\text {chem-2 }}^{Z}$ (Fig. 10a,b), this means an approximate compensation of the two terms. Eventually, this approximation simplifies to

Eq. (26), which is in accordance with the previous results of paragraphSec. 3.2.2. However, this approximation becomes invalid in the heterogeneous case: the terms $W_{\text {chem-1 }}^{Z}$ and $W_{\text {chem-2 }}^{Z}$ no longer compensate each other as the gap between their corresponding curves increases in panels Fig. 11(c) and Fig. 11(d). In some other numerical trials (not shown here), this These trials produced incoherent forecasts for the anisotropy, pointing out the incapacity of the approximation to capture the true complexity of the unknown terms. Subsequently, this approximation is no longer retained.

3.2.4 Closure of the PKF dynamics

A closure is proposed for the LV-CTM multivariate PKF dynamics. Note that the open terms of the PKF dynamics Eq. (21) can be related to spatial derivatives of the cross-correlation Eq. (17) e.g. $\overline{\tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}(x)=\left(\partial_{x} \rho_{A B}\right)(x, x)$ or $\overline{\partial_{x} \tilde{\varepsilon}_{A} \partial_{x} \tilde{\varepsilon}_{B}}(x)=$ 625 $\left(\partial_{x y} \rho_{A B}\right)(x, x)$, leading to a closure of the PKF dynamics when the proxy $r_{A B}$ Eq. (20) is used in place of the true crosscorrelation $\rho_{A B}$. However, numerical investigation of this closure did not lead to good results (not shown here).

From the detailed quantification of the relative contributions conducted here, it results that the advection contributes to 80% of the anisotropy dynamics while 20% are due to the chemistry.

Next, a closure is proposed for the LV-CTM multivariate PKF dynamics.

3.2.5 Simplification of the PKF dynamies

Since the advection mainly leads the dynamics of the anisotropy, this suggests to remove the contribution of the chemistry in Eq. (21f) and Eq. (21g), and which leads to a elose closure of the PKF dynamics Eq. (21) as

$$
\begin{align*}
\partial_{t} A+u \partial_{x} A & =-A \partial_{x} u+k_{1} A-k_{2} A B-k_{2} V_{A B} \tag{29a}\\
\partial_{t} B+u \partial_{x} B & =-B \partial_{x} u-k_{3} B+k_{2} A B+k_{2} V_{A B} \tag{29b}\\
\partial_{t} V_{A B}+u \partial_{x} V_{A B} & =-2 V_{A B} \partial_{x} u+V_{A B}\left(k_{1}-k_{2} B-k_{3}+k_{2} A\right)+k_{2} V_{A} B-k_{2} V_{B} A \tag{29c}\\
\partial_{t} V_{A}+u \partial_{x} V_{A} & =-2 V_{A} \partial_{x} u+2\left[V_{A}\left(k_{1}-k_{2} B\right)-k_{2} A V_{A B}\right] \tag{29d}\\
\partial_{t} V_{B}+u \partial_{x} V_{B} & =-2 V_{B} \partial_{x} u+2\left[V_{B}\left(-k_{3}+k_{2} A\right)+k_{2} B V_{A B}\right] \tag{29e}\\
\partial_{t} s_{A} & =-u \partial_{x} s_{A}+2 s_{A} \partial_{x} u \tag{29f}\\
\partial_{t} s_{B} & =-u \partial_{x} s_{B}+2 s_{B} \partial_{x} u \tag{29~g}
\end{align*}
$$

The PKF dynamies for the multivariate LV-CTM being closed, it remains to detail the multivariate analysis step to be used in the PKF assimilation cyele-

3.3 Extension of the PKF analysis step for multivariate assimilations

3.2.1 Extension of the PKF analysis step for multivariate assimilations

For multivariate statistics, the update equations (8) presented in section Eq. (8) presented in Section 2 have to be modified: they can be applied to update the univariate error statistics (mean concentrations, variances, aspect-tensors) but do not indicate how to update the cross-covariance fields. To apply the formulas Eqs. (8) in multivariate contexts, the subscript l must be interpreted
as a loeation and the observed species, and x_{2} must refer to the observation of a species Z_{2} at observation location, while \mathbf{x} as any loeation on any species . refers to any species at any location.

For an observation at location \mathbf{x}_{l} on-of the chemical species Z_{l}, the cross-covariance field between two species Z_{1} and Z_{2} updates (see Appendix C):

$$
\begin{equation*}
V_{Z_{1} Z_{2}}^{a}(\mathbf{x})=V_{Z_{1} Z_{2}}^{f}(\mathbf{x})-\left(\sigma_{Z_{2}}^{f}(\mathbf{x}) \rho_{Z_{l}, l}^{Z_{2}, f f}{ }_{Z_{2} Z_{l, l}}(\mathbf{x}) \sigma_{Z_{1}}^{f}(\mathbf{x}) \rho_{Z_{1, l}, l}^{Z_{1}, f}{ }_{Z_{1} Z_{l}, l}(\mathbf{x})\right) \frac{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)}{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)} \tag{30}
\end{equation*}
$$

where $\rho_{Z_{l}, l}^{Z_{1}, f}(\mathbf{x})$ is the $-\rho_{Z_{i} Z_{n, l}}^{f}(\mathbf{x})$ is the forecast cross-correlation function between Z_{l} and $Z_{1} Z_{i}$ at location \mathbf{x}_{l}, defined by
$\rho_{\underline{Z_{l}, l} Z_{i} Z_{i} Z_{l}, l}^{Z_{1}, f f}(\mathbf{x})=\mathbb{E}\left[\varepsilon_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right) \varepsilon_{Z_{1}}^{f}(\mathbf{x})\right] /\left(\sigma_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right) \sigma_{Z_{1}}^{f}(\mathbf{x})\right)$.
Note that Eq. (30) also applies when one of the two chemical species Z_{1} or Z_{2} coincides with Z_{l}. This conduct leads to a new formulation of the algorithm PKFO1 (alg. 1).

Next, the resulting multivariate PKF formulation is validated from a numerical experiment.

3.3 Numerical experiments: simple forecast and data assimilation over several cycles

In this section, two numerical experiments, labeled FCST and DA, are proposed to evaluate the multivariate formulation of the PKF for the LV-CTM. Again, a large EnKF will be used as a reference to be compared with regarding the error statistics produced. The first experiment, FCST, focuses on the on the forecast step alone. Therefore, the PKF dynamics (Eq. (29)) and the EnKF for equations (Eq. (14)) are forecasted. Then, in DA, 5 complete data assimilation cycles are performed to test the PKF capacity to produce multivariate analysis. DA only differs from FCST by the assimilations of observations, otherwise the configurations are identical. The next paragraphs details the settings section details the setup of the experiments.

3.3.1 Settings of the numerieal experiments

3.3.2 Settings of the numerical experiments

In both experiments, the EnKF relies on 6400 members. The total time of the simulation is $t_{\max }=5 \tau_{a d v} / 3 \simeq 47.5$ hours ($\tau_{a d v}$ is the characteristic time defined in section 2.4.1). A high resolution with $N_{x}=723$ grid points is used. The settings of the wind field, chemical rates, initial concentrations, initial variances and eovariancecross-covariance, time scheme, space grid etc. are identical to those used in section $\xlongequal[?]{9}$.1.2. The initial length-scale fields are homogeneously initialized at $l_{0}^{A}=l_{0}^{B}=45 \Delta x l_{A}^{0}=l_{B}^{0}=45 \Delta x$.

For the data assimilation experiment, a network of 4 sensors regularly spaced on the right hand side of the domain is considered to generate observations of the chemical species A. Each $\tau_{a d v} / 3$ hours, observations are generated from an independant independent nature run and assimilated for both filters. The nature run is initialized with fields concentrations A and B set respectively to $1.2+0.12 \zeta_{A}$ and $0.8+0.08 \zeta_{B}$, where ζ_{A} and ζ_{B} are structured Gaussian random field of zero mean, standard-

```
Algorithm 1 Sequential process building the analysis state and its error covariance matrix for the first-order PKF (PKFO1)
``` with pseudo multivariate covariance model.

Require: Univariate fields of \(\mathcal{X}_{Z}^{f}, \mathbf{s}_{Z}^{f}\) and \(V_{Z}^{f}\) for all species \(Z\). Covariance Cross-covariance field \(V_{Z_{1} Z_{2}}^{f}\) of all pairs of species \(Z_{1}\) and \(Z_{2}\).
Variance \(V_{Z_{l}, l}^{o}\) of the species \(Z_{l}\) and locations \(\mathbf{x}_{l}\) of the \(p\) observations to assimilate.
```

for each observation l do
0-Initialization of the intermediate quantities
\mp@subsup{\mathcal{Y}}{\mp@subsup{Z}{l}{\prime},l}{o}=\mp@subsup{\mathcal{Y}}{\mp@subsup{Z}{l}{\prime}}{o}(\mp@subsup{\textrm{x}}{l}{}),\mp@subsup{\mathcal{X}}{\mp@subsup{Z}{l}{\prime},l}{f}=\mp@subsup{\mathcal{X}}{\mp@subsup{Z}{l}{}}{f}(\mp@subsup{\textrm{x}}{l}{})
V
1-Computation of the analysis univariate statistics
for each species Z do
a) Set the correlation function (auto or cross)
f

```
 b) Computation of the analysis state and its univariate error statistics

 \(V_{Z, \mathbf{x}}^{a}=V_{Z, \mathbf{x}}^{f}\left(1 \quad\left[\rho_{Z_{l}, l}^{Z}(\mathrm{x})\right]^{2} \frac{V_{Z_{l}, l}^{f}}{V_{Z_{l}, l}^{f}+V_{Z_{l, l}}^{o}}\right) \quad V_{Z x}^{a}=V_{Z, x}^{f}\left(1-\left[\rho_{Z Z_{k}, l}(\mathbf{x})\right]^{2} \frac{V_{Z_{l}, l}^{f}}{v_{Z_{l}, l}^{f}+V_{Z_{l}, l}^{a}}\right)\)
 \(\mathbf{s}_{Z, \mathbf{x}}^{a}=\frac{V_{Z, \mathbf{x}}^{a}}{V_{Z, \mathbf{x}}^{f}} \mathbf{s}_{Z, \mathbf{x}}^{f}\)
 end for
2-Computation of the analysis multivariate statistics
for each pair of species (\(Z_{i}, Z_{j}\), with \(i<j\)) do
a) Set the cross-correlation functions
\(A_{Z_{l}, l}^{Z_{i}}(\mathbf{x})=\rho\left(V_{Z_{l} Z_{i}}^{f}, V_{Z_{l}}^{f}, V_{Z_{i}}^{f}, s_{Z_{l}}^{f}, s_{Z_{i}}^{f}\right)\left(\mathbf{x}_{l}, \mathbf{x}\right) \rho_{Z_{i} Z_{l} l}(\mathbf{x})=\rho\left(V_{Z_{l}}^{f} Z_{i}, V_{Z_{i}}^{f}, V_{Z_{i},}^{f}, s_{Z_{i}}^{f}, s_{Z_{i}}^{f}\right)\left(\mathbf{x}_{l}, \mathbf{x}\right)\)
\(\rho_{Z_{j}, l}^{Z_{j}}(\mathbf{x})=\rho\left(V_{Z_{l} Z_{j}}^{f}, V_{Z_{l}}^{f}, V_{Z_{j}}^{f}, s_{Z_{l}}^{f}, s_{Z_{j}}^{f}\right)\left(\mathbf{x}_{l}, \mathbf{x}\right) \rho_{Z_{i}} Z_{l} l(\mathbf{x})=\rho\left(V_{Z_{l}}^{f} Z_{j}, V_{Z_{k}}^{f}, V_{Z_{j}}^{f}, s_{Z_{l}}^{f}, \mathbf{s}_{Z_{j}}^{f}\right)\left(\mathbf{x}_{l}, \mathbf{x}\right)\)
b) Compute the \(Z_{i} Z_{j}\) analysis eovariance cross-covariance field
\(V_{Z_{i} Z_{j}}^{a}(\mathrm{x})=V_{Z_{i} Z_{j}}^{f}(\mathrm{x})-\left(\sigma_{Z_{j}}^{f}(\mathrm{x}) \rho_{Z_{l}, l}^{Z_{j}, f}(\mathrm{x}) \sigma_{Z_{i}}^{f}(\mathrm{x}) \rho_{Z_{l}, l}^{Z_{i, f}}(\mathrm{x})\right) \frac{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)}{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)} V_{Z_{i}}^{a} Z_{j}(\mathbf{x})=V_{Z_{i}}^{f} Z_{j}(\mathbf{x})-\left(\sigma_{Z_{j}}^{f}(\mathbf{x}) \rho_{Z_{j}} Z_{l}, l(\mathbf{x}) \sigma_{Z_{i}}^{f}(\mathbf{x}) \rho_{Z_{i}} Z_{l l}, l(\mathbf{x})\right.\)
end for

3-Update of the forecast state and its error statistics
for each species \(Z\) do
\(\mathcal{X}_{Z, \mathrm{x}}^{f} \leftarrow \mathcal{X}_{Z, \mathrm{x}}^{a}\)
\(V_{Z, \mathbf{x}}^{f} \leftarrow V_{Z, \mathbf{x}}^{a}\)
\(\mathbf{s}_{Z, \mathbf{x}}^{f} \leftarrow \mathbf{s}_{Z, \mathbf{x}}^{a}\)
end for
for each pair of species \(\left(Z_{i}, Z_{j}\right)\) do
\[
V_{Z_{i} Z_{j}}^{f}(\mathrm{x}) \leftarrow V_{Z_{i} Z_{j}}^{a}(\mathbf{x})
\]
end for
deviation 1 and length-scale \(45 \Delta x\) (i.e. sampled from \(\mathbf{P}\left(1,(45 \Delta x)^{2}\right)\) in Eq. (7)). The synthetic observations are considered uncorrelated (i.e. in space and time (i.e. at a given time \(\mathbf{R}\) is diagonal), and generated at the analysis time \(t_{a}\) according to: \(\Lambda^{o b s}\left(x_{l}\right)=\Lambda_{N R}^{f}\left(x_{l}\right)+\sigma^{o b s} \zeta A^{o b s}\left(x_{l}, t_{a}\right)=A_{N R A}^{f}\left(x_{l}, t_{a}\right)+\sigma^{o b s} \zeta_{t_{a}}\), where \(\sigma^{o b s}=10 \%\) is the observations standarddeviation, \(\zeta \zeta_{t a n}\) is a sample from the standard Gaussian distribution, and \(A_{N R}^{f}\) is the forecast of the nature run for location \(x_{l}\). The model error is neglected in this experiment (i.e. \(\mathbf{Q}=\mathbf{0}\) in Eq. 3 b). For the PKF, the observations are assimilated using the PKF O1 algorithm.

\subsection*{3.3.3 Results}

\subsection*{3.3.4 Results}

Figure 12. Results of the forecast numerical experiment. PKF errors statistics (solid red lines) and EnKF diagnosed error statistics (dashed blue lines) at times \(t=[0.50,1.00] t_{\max }\). These times correspond approximately to \(t=23 \mathrm{~h} 45 \mathrm{~min}\) and \(t=47 \mathrm{~h} 40 \mathrm{~min}\).

The results for the FCST experiment Fig. 12 are now diseussedare shown in Fig. 12. The figure presents the state vector (panels aand bFig. 12(a) and Fig. 12(b)) and five error statistics (panels c-gFig. 12 panels (c)-(g)) for the EnKF (dashed blue lines) and the PKF (solid red lines) at \(t=0.5 t_{\max }\) and \(t=t_{\max }\). The error statistics presented are, from panel Fig. 12(c) to Fig. 12(g), the two standard-deviations, the cross-correlation field and the two length-scales, rather than the raw PKF parameters. An-A horizontal grey line on each panel is here to represent the initial setting of the corresponding quantity.

The forecasts of the means match perfectly for both methods (panels aand bsee Fig. 12(a) and Fig. 12(b)). Similarly to the univariate advection experiment (section 2.4.1), an accumulation of the tracers is observed in the low wind speeds region (center of the domain). The standard-deviations (panels e-dFig. 12(c)-(d)) observe a similar behaviour although the effects of
the chemistry appear more clearly: the curves show some quite localized deformations, especially for the standard deviation of \(A\). The cross-correlation field (panel-Fig. 12(e), specific to the multivariate case, is predicted with great accuracy by the PKF dynamics. It indicates that, starting from decorrelated error fields for \(A\) and \(B\), the chemistry dynamic has allowed non-zero cross-correlations to emerge by coupling the chemical species, in a non-linear fashion. With less exactitude-While being less accurate than for the means, the filters coincide at estimating the standard-deviation as well as for the cross-correlation fields. The last two panels forecasts of the length-scales (Fig. 12(f) and (g) which corresponds to the forecasts of the length-scales-) show a general accordance between the two methods, even though a difference can be observed in \(A\) 's case Fig. 12(f). This gap is due to the simplification of the anisotropy dynamics in the PKF formulation Eqs. (29), which does not permit to represent such behaviours. The equation of the anisotropy dynamics of \(A\) in the original formulation of the PKF Eq. (21f) suggests an explanation to the spikes presented on the EnKF curves on panel-Fig. 12(f) which are absent for the PKF. The terms labeled \(T_{\text {chem-3 }}^{A}\) and \(T_{\text {chem-4 }}^{A} T_{A, h e m-3}\) and \(T_{A, h e m=4}\) indicate a forcing of the spatial derivatives of the variance \(V_{A}\). Looking at panel-Fig. 12(c), it appears that the variance of \(A\) presents some strong spatial heterogeneity (\(x=0.45\) for \(t=0.5 t_{\max }\), and \(x=0.60\) for \(\left.t=t_{\max }\right)\), causing important magnitudes for \(\partial_{x} V_{A}\) and thus for \(T_{c h e m-3}^{A}\) and \(T_{c h e m-4}^{A} T_{A, c h e m-3}\) and \(T_{A, c h e m-4}\). This produces a local deformation on \(A\) 's length-scales which is effectively observed for the same times and locations on panel Fig. 12(f). However, these gaps between the EnKF and PKF curves are local and of a reasonable magnitude: overall, the PKF forecast for the anisotropy reproduces the EnKF results.

Figure 13. Results of the data assimiliation assimilation numerical experiment. Nature run (solid dash dotted green lines, only on panels (a) and (b)), PKF errors statistics (solid red lines) and EnKF diagnosed error statistics (dashed blue lines) at times \(t=[0.50,1.00] t_{\text {max }}\). These times correspond approximately to \(t=23 \mathrm{~h} 45 \mathrm{~min}\) and \(t=47 \mathrm{~h} 40 \mathrm{~min}\). At time \(t=0.5 t_{\text {max }}\), two analysis steps have already been performed. At time \(t=1.00 t_{\text {max }}\), the fifth analysis step is being realized, the generated observations are represented by black dots on panel (a). The vertical grey lines correspond to the sensors locations.

The outcome of the DA experiment Fig. 13 is now exposed, where five assimilation cycles are done over the period \(\left[0, t_{\text {max }}\right]\) (one assimilation after each \(\tau_{d J} / 3\) time integration, with \(t_{\max }=5 \tau_{a d v} / 3\)). The results are presented similarly to the FCST

In both of these experiments, the PKF has shown itself able to reproduce the results of a large ensemble Kalman Filter. Again, these qualitative results of the PKF were obtained at a low numerical cost: the equivalent of 3 time integrations of Eq. (14) compared to 6400 for the EnKF.

\section*{4 A more realistic chemical model: the generic reaction set (GRS) model}

The simplified LV-CTM has allowed for a multivariate formulation of the PKF PKF assimilation, validated in numerical experiments. In the next section, a more complex chemical model is considered to further test the PKF possibilities.

\section*{5 A more realistic chemieal model: GRS}

\subsection*{4.1 Deseription of the GRS model}

To further explore-To explore the ability of the PKF possibilities, to apply to a more complex chemical model is considered: scheme, an intermediate chemical model is now introduced, the generic reaction set (Azzi et al., 1992; Haussaire and Bocquet, 2016) -(GRS), then used to validate the PKF forecast.

\subsection*{4.1 Description of the GRS model}

GRS describes the dynamics of a reduced number of chemical species or pseudo-species. Hence, six species are considered and interact as
\[
\begin{align*}
& R O C+h \nu \xrightarrow{k_{1}(t)} R P+R O C \tag{32a}\\
& R P+N O \xrightarrow{k_{2}} N O_{2} \tag{32b}\\
& N O_{2}+h \nu \xrightarrow{k_{3}(t)} N O+O_{3} \tag{32c}\\
& N O+O_{3} \xrightarrow{k_{4}} N O_{2} \tag{32d}\\
& R P+R P \xrightarrow{k_{5}} R P \tag{32e}
\end{align*}
\]
\(R P+N O_{2} \xrightarrow{2 \cdot k_{6}} S(N) G N\)
where ROC, RP and \(\mathrm{S}(\mathrm{N}) \mathrm{GN}\) respectivily mean Reactive Organic Compound, Radical Pool et Stable (Non-) Gaseous Nitrogen product. In this chemical model, additional processes such as photolysis rate variation, ground deposits or atmospheric emissions of certain pollutants are represented.

The system of equations of the GRS-CTM writes:
\(\partial_{t}[R O C]=-\partial_{x}(u \cdot[R O C])-\lambda[R O C]+E_{R O C}\)
\(\partial_{t}[R P]=-\partial_{x}(u \cdot[R P])-\lambda[R P]+k_{1}(t)[R O C]-[R P]\left(k 2[N O]+2 k_{6}\left[N O_{2}\right]+k_{5}[R P]\right)\)
\(\partial_{t}[N O]=-\partial_{x}(u \cdot[N O])-\lambda[N O]+E_{N O}+k_{3}(t)\left[N O_{2}\right]-[N O]\left(k_{2}[R P]+k_{4}\left[O_{3}\right]\right)\)
\(\partial_{t}\left[N O_{2}\right]=-\partial_{x}\left(u \cdot\left[N O_{2}\right]\right)-\lambda\left[N O_{2}\right]+E_{N O_{2}}+k_{4}[N O]\left[O_{3}\right]+k_{2}[N O][R P]-\left[N O_{2}\right]\left(k_{3}(t)+2 k_{6}[R P]\right)\)
\(\partial_{t}\left[O_{3}\right]=-\partial_{x}\left(u \cdot\left[O_{3}\right]\right)-\lambda\left[O_{3}\right]+k_{3}(t)\left[N O_{2}\right]-k_{4}[N O]\left[O_{3}\right]\)
\(\partial_{t}[S(N) G N]=-\partial_{x}(u \cdot[S(N) G N])-\lambda[S(N) G N]+2 k_{6}\left[N O_{2}\right][R P]\)
where for a specie \(Z:[Z](t, x)\) denotes the concentration field ; and for \(Z \in\left\{R O C, N O, N O_{2}\right\}, E_{Z}(x)=E_{Z}^{0} \mu(x)\) denotes the stationary emission field modulated by the smooth ocean/land mask \(\mu(x) \in[0,1]\) shown in Fig. 14(b), and of maximum emission \(E_{Z}^{0}\) whose value is given in Table 1 (right column). The ground deposition is represented by terms in \(\lambda\), with a magnitude of \(2 \%\) per day. Kinetic parameters and chemical reaction rates are set as follows: since Eq. (33a) and Eq. (33c) depends on the solar radiation, \(k_{1}\) and \(k_{3}\) evolve in time to represent the diurnal cycle while they are related by \(k_{1}=0.152 k_{3}\) (Fig. 14(c)); the other rates are constant and given in Table 1.

In a new numerical experiment, the PKF forecasts will be compared with those of an EnKF (of size 1600). There is no observations assimilations observation assimilation in this simulation. A brief overview of the PKF formulation for is now exposed.
\begin{tabular}{lr|lr}
\hline\(k_{3}(t)\) & \(0.624 \exp \left(-\frac{|(t \equiv 24)-12|^{3}}{100}\right)\) & \(k_{1}(t)\) & \(0.00152 k_{3}(t)\) \\
\(k_{2}\) & 12.3 & \(E_{R O C}^{0}\) & 0.0235 \\
\(k_{4}\) & 0.275 & \(E_{N O}^{0}\) & 0.243 \\
\(k_{5}\) & 10.2 & \(E_{N O_{2}}^{0}\) & 0.027 \\
\(k_{6}\) & 0.12 & \(\lambda\) & 0.02 day \(^{-1}\) \\
\hline
\end{tabular}

In \(k_{3}\) definition, the symbol \(\equiv\) corresponds to the modulo operator. Emission rates in ppbCday \({ }^{-1}\) for ROC or ppbday \({ }^{-1}\) for \(\mathrm{NO}_{\mathrm{x}}\), and the kinetic rates in \(\mathrm{ppb}^{-1} \mathrm{~min}^{-1}\), except for \(k_{3}\) and \(k_{1}\) in \(\min ^{-1}\).
Table 1. GRS settings

Figure 14. Settings of the GRS-CTM. (a):- with the predefined heterogeneous and stationary wind field ,-(bpanel a) : and emission field, inventories mask (epanel b): \(k_{3}\) values along; and with the day diurnal cycle of the photolysis rate \(k_{3}\left(\mathrm{~min}^{-1}\right)\) (panel c), as they are used for the simulation.

\subsection*{4.2 The PKF for the GRS chemical transport model}

Given the complexity of the set of equations Eq. (33), and the increased number of species in comparison to the LV-CTM Eq. (14), the equations of the PKF dynamics for the GRS-CTM are not presented in this article, but can be found in additional material \({ }^{2}\). In this context, the PKF system describes the dynamics of 33 pronostics parameters: 6 mean fields, 6 univariate variances fields, 6 anisotropy fields and 15 covariances cross-covariances fields (corresponding to the number of pairs of chemical species). In term terms of complexity, the PKF dynamics for the GRS-CTM is similar to the simplified LV-CTM: the transport part is the same, while the chemical part present presents the same kind of interactions between the chemical species. However, the stationary heterogeneous emissions, not present in LV-CTM, imply a forcing in the dynamics of the mean concentrations in GRS-CTM, but without effect on the uncertainty because the emissions are not stochastic here. Note that uncertainties on emission inventories can be introduced in a PKF formulation e.g. as a source term in the variance dynamics, and is related to the specification of boundary conditions in a PKF (Sabathier et al., 2022). Similarly to the LV-

\footnotetext{
\({ }^{2}\) https://github.com/opannekoucke/pkf-multivariate
}

CTM, the dynamics of the anisotropy is closed by removing the terms due to the chemistry. Hence, latter, the dynamics of anisotropy in GRS-CTM is only due to the transport.

The settings and the results of the numerical experiment are now detailed.

\subsection*{4.3 Numerical experiment: forecast}

For the settings of this numerical experiments, the resolution of the grid has been reduced to \(N_{x}=241\) grid points, and the time step to \(\Delta t=10^{-4} \mathrm{~h}\) to support the stiffness of the GRS equations. Some parameters remain unchanged: RK4 temporal scheme, finite differences to approximate spatial derivatives, choice of the wind field (Fig. 14a(a)). The forecast starts at \(t_{0}=00 \mathrm{~h}\) (midnight) and ends at \(t=t_{0}+72 \mathrm{~h}\).

Realistic heterogeneous initial concentration fields are constructed as follows. First, starting from zero concentrations, a chemical equilibrium state is computed from a 4 weeks time integration of a 0 D version of Eq. (33) where the transport has been switched off while the concentrations are forced by their respective emissions \(E_{(\cdot)}^{O}\). The resulting concentrations are denoted by \([Z]_{0 D}^{4 \text { weeks }}\). Then, 1D concentration fields are constructed, set as defined to be constant and equal for each species to the final value of the 0D integration. The resulting homogeneous concentration fields are then independently perturbed so to produced to produce heterogeneous concentration fields, more realistic than the homogeneous concentrations: for any species \(Z\) of the 6 chemical species, the resulting 1D perturbed field \([Z]^{0}(x)=[Z]_{0 D}^{4 \text { weeks }}(1+0.15 e(x))\) where \(e=\mathbf{P}^{1 / 2} \zeta\) with \(\mathbf{P}\) is an homogeneous Gaussian correlation version of Eq. (7) with variance 1 and constant length-scale \(l_{h}=12 \Delta x\); and \(\zeta\) is a sample of Gaussian random vector \(\mathcal{N}\left(0, \mathbf{I}_{N_{x}}\right)\). These perturbed 1D fields of concentrations correspond to the initial condition at \(t_{0}=00 h\) of the GRS-CTM simulations.

The initial condition for the PKF is set as follows. The mean state is given by the six 1D fields \([Z]^{0}(x)\). The multivariate initial uncertainty is set as univariate (no cross-correlation) with a magnitude of \(\sigma^{0}(Z)=0.15[Z]_{0 D}^{4 \text { weeks }}\) for each ene of the six species, with univariate homogeneous Gaussian correlation of length-scale \(15 \Delta x(60 \mathrm{~km})\), the length-scale are identical for all species.

For the validation, an ensemble of 1600 initial conditions has been populated, consistently from the PKF intial conditions, by adding univariate perturbations to the GRS-CTM initial condition. For each member \(k\) of the ensemble and each field \(Z\) that is to perturb, \(\left.[Z]_{k}^{0}(x)=[Z]^{0}(x)+0.15[Z]_{0 D}^{4 \text { weeks }} e_{k}(x)\right)\) where \(e_{k}=\mathbf{P}^{1 / 2} \zeta_{k}\) with \(\mathbf{P}\) is an homogeneous version of Eq. (7) with variance 1 and constant length-scale \(l_{h}=15 \Delta x\); and \(\zeta\) is a sample of Gaussian random vector \(\mathcal{N}\left(0, \mathbf{I}_{N_{x}}\right)\).

Fig. 15 shows the results of the-statistics produced by the PKF and the EnKF experiments at two instants: at \(t=00 h+60 h\), (slight transpareney on the eurves), and at \(t=00 h+66 h\), (ne transpareney). These times corresponds to 12 h 00 and 18 h 00 of day 2. Each row of the six ones-features the uncertainty for a specie \(Z\) with respectively: the mean, the standard-deviation, the length-scale and a selection of four cross-correlation functions with \(\mathrm{NO} 2, \rho_{Z}^{N O 2}\); that is the auto-correlation when \(Z\) is \(N O 2\) itself. The choice of \(N O 2\) for the cross-correlation is arbitrary and other cross-correlations present the same behaviour (not shown). The statistics produced by the EnKF (resp. PKF) are represented using black dashed lines (resp. colored solid lines).

Regarding the behaviour of the error statistics, the impact of the chemistry appearappears: the chemical reactions led to non-zero cross-correlations visible on the right column (except panel Fig. 15(p) which corresponds to auto-correlations).

The impact of chemistry leads to non-zero cross-correlations between all pairs of species (Fig. 15, right column, except the auto-correlation in Fig. 15(p)) Also, the roughnesssmall-scale spatial variation, that was originally only present on the means, has been transferred (except for ROC) to the standard-deviations fields. The PKF equations for the dymamies of \(V_{R O C}\) (net shown here) offer an explanation: \(\partial_{t} V_{R O C}\) is only governed by decay and transport, and is not coupled with any means. Again, this illustrates the ability of the PKF to explain the physies of uncertainties, except for ROC. The effect of the transport is also present: it produces spatial heterogeneities on the means (left column), standard-deviations (second column) and length-scales (third column).

Compared to the EnKF, the PKF offers a high quality forecast at a very low computational cost. The means (left column) are in perfect accordance in both methods. Slight differences can be observed regarding the standard-deviations fields (second column), but as established in Sec. 2.4.2, the EnKF diagnoses are biased by the numerical model error that is significant when using the low-resolution grid (\(N_{x}=241\) grid points in this simulation). The same argument applies to the length-scales (third column), although they may also be govern by some underlying chemical dynamics similar to those described for Fig. 12(f) in section3.3.4), not captured in 3.3.4). Since the PKF formulation considered here is closed by removing the contribution of the chemistry on the length-scale dynamics (following the simplification discussed in Sec.3.2.4), the length-scale dynamics is the same for all species. Moreover, starting from the same initial constant length-scale field \(l_{h}\), the length-scale fields predicted by the PKF are the same for all species. Nevertheless, it does not prevent the PKF from estimating the auto and cross correlation functions (right column). The last column presents an important result: the cross-correlation functions estimations by the proxy are in great accordance with the EnKF. The proxy reproduces the variety of cross-correlation functions such as negative correlations, small amplitudes, asymmetric structures. Despite differences in length-scales estimations, the proxy shows itself robust and delivers satisfying modeled cross-correlation functions (at a qualitative level). Indirectly, it This has been observed for other cross-correlation functions (not shown here). It demonstrates the capacity of the PKF to forecast all the cross-covariance fields.

The present experiment validates the results obtained for the LV-CTM in the case of Note that the specific behavior of the ROC error-variance can be understood from the PKF equations for GRS-CTM : the PKF multivariate formulation results hold in this more complex chemical model. But it also makes appear some limitations of the multivariate formulation, for instance the rapidly growing number of parameters in the PKF dynamics.

The results of this paper and the questions it raises for future developments (not detailed here but available on the github repository \({ }^{3}\)), where the dynamics of \(V_{B Q C}\), which reads as
\(\partial_{t} V_{R O C}+u \partial_{x} V_{R O C}=-2 V_{R O C} \partial_{x} u-2 \lambda V_{R O C}\),
is only governed by decay (term in \(\lambda\)) and transport (terms in \(u\)), and is not coupled with any means - while a coupling with the means is present for other chemical species. Again, this illustrates the ability of the PKF are diseussed in the next sectionto explain the physics of uncertainties.

\footnotetext{
\({ }^{3}\) see https://github.com/opannekoucke/pkf-multivariate/blob/master/notebooks/annexe_notebooks/computing_grs_dynamics_with_sympkf.ipynb
}

\section*{5 Diseussion} to the adveetion process and unplugged the chemistry terms. This simplification lead to inaceurate forecasts

\section*{5 Conclusions}

This work explored a multivariate formulation of the PKF for atmospheric chemistry needs when the PKF is formulated from the variance and the anisotropy tensor.

A simplified univariate chemical transport model has been introduced in a 1D periodical domain with a heterogeneous wind it may not be an absolut necessity for the PKF applications. In the numerical experiments conducted here, it appeared that this proxy performed well at reeonstrueting the eross-correlation funetions, but it has not been tested in other field of applieations such as geophysies and may be very specific to atmospheric chemistry. One could try to use this model for the shallow-water problem. Another questionable aspect is the extension of this model to the 2 D or 3 D case, which has to be verified.

In the multivariate formulations (Lotka-Volterra and GRS) of the PKF dynamies, we limited the dynamies of the anisotropy
field and a conservative dynamics, illustrating the impact of the transport on the error statistics, and in particular the evolution of the variance and of the anisotropy in the case where the chemical species have different length-seales.

Nonetheless, we were able to obtain high quality results (comparable to an EnKF of (length-scale) due to the wind heterogeneity. Compared with an estimation from a large ensemble of 6400 members) at a very low computational cost: putting aside the parallelisable property of an EnKF, the numerical cost of forecasting a PKF is equivalent to the one of the forecast of a dozen members in an EnKF, with high quality results. Plusforecasts, the PKF permits the understanding of the uneertainties dynamies: it offers equations that deseribes the time evolutions of variances, covariances and anisotropies. The impact of each process (advection, diffusion, chemistry) can be clearly identified in the dynamies of the error statisties, allowing for a better comprehension of the overall problem. Diffieult processes suth as the injection of uneertainty in the system by the emission inventory can be implemented easily in the PKF formulation just by aeting on the variances dynamies. This readability is specific to has been shown able to reproduce the variance and the PKF and is not possible in other data assimilation methodsanisotropy, and also able to provide a proxy for the correlation functions. The PKF also reduce numerical costs by resuming the information contained in the forecast error covariance matrix of size \(\mathcal{O}\left(N_{x}^{2}\right)\) to a few parameters of size \(\mathcal{O}\left(N_{x}\right)\), reducing the need for high capacity storage. Finallyprediction has been obtained at a lower numerical cost compared with the cost of the ensemble. In addition, the PKF is less subject to numerical model error, when a slightly diffusive or dispersive medel might prodtres wreng estimations of the foreeast error in an EnKF, as it is the error statistics that are direetly being

In this work, we introduced a proxy for estimating the cross-covariances. However, some interrogations remains about its limitations: we did not questioned the positive definite character of the complete (auto and cross) covariance model, although foreeasted.

The goal of this work is to explore a multivariate formulation of the PKF for atmospheric chemistry needs.
To do so, a simplified chemical transport model is introduced in a 1D periodical domain. has been shown less sensitive to a dispersive model error encountered for this simulation that required computing the ensemble at a high resolution to mitigate
the effect of the dispersive term on the ensemble estimation. This simplified model allowed to propose proposed a proxy for the multivariate covariance to approximate the cross-covariancescross-covariances, which extends the thivarite-univariate covariance model parameterized from the variance and the anisetropytensorvariance and anisotropy, but there resulting multivariate covariance is symmetric with no guarantee of positiveness.

Then a simplified multivariate chemical transport model has been introduced to tackle multivariate error statistics. Based on Lottka-Volterra (LV) dynamics, this testbed reproduces non-linear coupling between chemical species as well as the transport due to the wind, as it can be observed in real chemical transport model. Then a multivariate PKF formulation has been proposed, which made appear a closure issue related to the chemical part, but not to the transport, and concerns the dynamics of the anisotropy. A detailed analysis of the effect of the chemistry on the dynamics of the anisotropy led to an analytical solution of the multivariate evolution of the uncertainty in a 1D harmonic oscillator, which helps to understand the transfer of uncertainty from one species to another. Then the study of the relative contribution of the chemistry

The PKF has permitted the understanding of the uncertainties dynamics: it offered equations that described the time evolutions of variances, cross-covariances and anisotropies. The impact of the advection and of the transpert to the trend of the anisotropy has been conducted, which appears to be mainly explained by the transport. Hencechemistry have been clearly identified in the dynamics of the error statistics, allowing for a better comprehension of the overall problem. Since the relative contribution of the transport was larger than the one of the chemistry in the trend of the anisotropy, a closed form has been considered by removing the terms related to the chemistry in the dynamics of the anisotropy.

Despite of this approximation, a validation test-bed using an ensemble method shown the that PKF dynamics is able to predict the uncertainty dynamics for two chemical schemes based on Lotka-Volterra and GRS.
LV. Moreover, several assimilation cycles have been conducted for the LV chemical scheme, showing the a multivariate PKF assimilation is possible, which is promising.

A final multivariate example, focused on the forecast step, has been introduced to evaluate the potential of the multivariate PKF formulation to a larger system. In this case, the chemical scheme (GRS) describe the interaction of six species. Again, this example has shown the ability of the PKF to reproduce the EnKF error statistics.

To go further, it will be interesting to see if the advection terms remain dominant under different conditions like weaker wind or accelerated chemistry from an ensemble of forecasts of operational CTMs, where isotropic and homogeneous correlations are often considered in variational data assimilation.

This work is a milestone in the development of a multivariate assimilation based on the PKF and applied to air quality, and feeds the reflection on the ongoing univariate implementation of the PKF approach in-is an important step in extending the univariate PKF implementation to complex operational CTMs like the operational transport model MOCAGE at Meteo-France. In particular, The work also highlight a drawback of the PKF: the cost of the current multivariate PKF formulation scales as the square of number of chemical species which appears as a limitation, at least if all the chemical species are considered in the multivariate uncertainty prediction. Hence, it would be interesting to test a PKF formulation on a reduced chemical scheme of interest for the data assimilation.

Moreover, while this contributions focused on air quality, it contributes to improve our understanding of multivariate statistics e.g. with the analytical solution of the 1 D harmonic oscillator. It would be interesting to extend this multivariate PKF formulation to other geophysical applications e.g. the numerical weather prediction ; with a particular attention on the extension of the multivariate cross-covariance proxy to the 2 D or 3 D domains. Compared with air quality where the chemical reactions are point-wise, geophysical equations make appear local interactions that have to be study studied in view of the PKF approach e.g. the geostrophic balance in the barotropic model.

Code and data availability. The code developed and used to generate the experiments is available under https://github.com/opannekoucke/ pkf-multivariate

\section*{Appendix A: Lotka-Volterra chemical model}

We consider for four chemical species \(A, B, X\) and \(Y\) governed by the chemical reactions:
\[
\begin{array}{rll}
X+A & \xrightarrow{k_{1}} & 2 A, \\
A+B & \xrightarrow{k_{2}} & 2 B, \\
B & \xrightarrow{k_{3}} & Y . \tag{A3}
\end{array}
\]

The kinetic of the reaction, deduced from the mass action law for reaction rate writes:
\[
\begin{align*}
\frac{d[A]}{d t} & =k_{1}[X][A]-k_{2}[A][B] \tag{A4a}\\
\frac{d[B]}{d t} & =k_{2}[A][B]-k_{3}[B] \tag{A4b}
\end{align*}
\]
where [•] denotes the concentration. When the concentrations of \(X\) and \(Y\) are constant(that is in excess), the system simplifies as:
\[
\begin{align*}
& \frac{d[A]}{d t}=k_{1}[A]-k_{2}[A][B] \tag{A5a}\\
& \frac{d[B]}{d t}=k_{2}[A][B]-k_{3}[B] \tag{A5b}
\end{align*}
\]
which is a Lotka-Volterra system.

\section*{935 Appendix B: Dynamics of the error statistics for the Harmonic Oscillator}

The harmonic oscillator equations writes:
\[
\begin{align*}
& \partial_{t} A=-k B, \tag{B1a}\\
& \partial_{t} B=k A \tag{B1b}
\end{align*}
\]
with \(A=A(t, x)\) and \(B=B(t, x)\) being functions of time and 1D space. As this problem is linear, the dynamic is identical for the errors,
\(\partial_{t} \varepsilon_{A}=-k \varepsilon_{B}\),
\(\partial_{t} \varepsilon_{B}=k \varepsilon_{A}\).

Their analytical solution is given by:
\(\varepsilon_{A}(t, x)=\cos (k t) \varepsilon_{A}(t, 0, x)-\sin (k t) \varepsilon_{B}(\underline{\sim}, 0, x)\),

945
\(\varepsilon_{B}(t, x)=\sin (k t) \varepsilon_{A}(\underline{t, 0}, x)+\cos (k t) \varepsilon_{B}(\underline{t, 0}, x)\).

We At the initial time, we consider the case where the initial error are uncorrelated \(V_{A B}^{0}=\mathbb{E}\left[\varepsilon_{A}^{0} \varepsilon_{B}^{0}\right]=0\) and the initial where the variance and length-scale fields are homogeneousat initial time, i.e. \(\partial_{x} V_{A}^{0}=\partial_{x} V_{B}^{0}=\partial_{x} g_{A}^{0}=\partial_{x} g_{B}^{0}=0\); where the upper-script.\(^{0}\) is a shorthand for denoting the fields a initial time.

From the analytical solution for the errors Eq. (B3), we deduce solutions for the error statistics.
\[
950 \quad \begin{align*}
V_{A}(t, x) & =\mathbb{E}\left[\left(\varepsilon_{A}(t, x)\right)^{2}\right] \\
& =\cos ^{2}(k t) \mathbb{E}\left[\varepsilon_{A}^{2}\right](0, x)-2 \cos (k t) \sin (k t) \mathbb{E}\left[\varepsilon_{A} \varepsilon_{B}\right](0, x)+\sin ^{2}(k t) \mathbb{E}\left[\varepsilon_{B}^{2}\right](0, x) \tag{B4a}\\
& =\cos ^{2}(k t) V_{A}^{0}-2 \cos (k t) \sin (k t) \underbrace{V_{A B}^{0}}_{=0}+\sin ^{2}(k t) V_{B}^{0} \tag{B4b}\\
& =\cos ^{2}(k t) V_{A}^{0}+\sin ^{2}(k t) V_{B}^{0} \tag{B4c}
\end{align*}
\]

Following the same process, we deduce that \(V_{B}(t, x)=\sin ^{2}(k t) V_{A}^{0}+\cos ^{2}(k t) V_{B}^{0}\) and \(V_{A B}(t, x)=\cos (k t) \sin (k t)\left(V_{A}^{0} \quad V_{0}^{B}\right) V_{A B}(t, x)\) We can now determine the dynamics of the metric tensors: tensor:
\[
\begin{align*}
g_{A}(t, x) & =\mathbb{E}\left[\left(\partial_{x}\left(\frac{\varepsilon_{A}}{\sqrt{V_{A}}}\right)\right)^{2}\right](t, x) \tag{B5a}\\
& =\mathbb{E}\left[\left(\frac{\partial_{x} \varepsilon_{A}}{\sqrt{V_{A}}}-\frac{\varepsilon_{A} \partial_{x} V_{A}}{2 V_{A}^{3 / 2}}\right)^{2}\right](t, x) \tag{B5b}
\end{align*}
\]

As we consider homogeneous fields, we have that \(\partial_{x} V_{A}=0\), simplifying the expression to equation (8a) becomes:
\(\varepsilon^{a}(\mathbf{x})=\varepsilon^{f}(\mathbf{x})+\sigma^{f}(\mathbf{x}) \rho_{\mathbf{x}_{l}}^{f}(\mathbf{x}) \frac{\sigma^{f}\left(\mathbf{x}_{l}\right)}{V^{f}\left(\mathbf{x}_{l}\right)+V^{o}\left(\mathbf{x}_{l}\right)}\left(\varepsilon^{o}\left(\mathbf{x}_{l}\right)-\varepsilon^{f}\left(\mathbf{x}_{l}\right)\right)\)
which can be adapted to the multivariate case:
\(\varepsilon_{Z_{1}}^{a}(\mathbf{x})=\varepsilon_{Z_{1}}^{f}(\mathbf{x})+\sigma_{Z_{1}}^{f}(\mathbf{x}) \rho_{Z_{1} Z_{l}, l}^{f}(\mathbf{x}) \frac{\sigma_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)}{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)}\left(\varepsilon_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)-\varepsilon_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)\right)\)
\[
\begin{align*}
V_{Z_{1} Z_{2}}^{a}(\mathbf{x}) & =V_{Z_{1} Z_{2}}^{f}(\mathbf{x})-\frac{\sigma_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)}{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)}\left(\sigma_{Z_{2}}^{f}(\mathbf{x}) \rho_{Z_{2} Z_{l}, l}^{f}(\mathbf{x}) \sigma_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right) \sigma_{Z_{1}}^{f}(\mathbf{x}) \rho_{Z_{1} Z_{l}, l}^{f}(\mathbf{x})+\sigma_{Z_{1}}^{f}(\mathbf{x}) \rho_{Z_{1} Z_{l}, l}^{f}(\mathbf{x}) \sigma_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right) \sigma_{Z_{2}}^{f}(\mathbf{x}) \rho_{Z_{2} Z_{l}, l}^{f}(\mathbf{x})\right) \\
& +\frac{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)}{\left(V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)\right)^{2}} \sigma_{Z_{1}}^{f}(\mathbf{x}) \rho_{Z_{1} Z_{l}, l}^{f}(\mathbf{x}) \sigma_{Z_{2}}^{f}(\mathbf{x}) \rho_{Z_{2} Z_{l}, l}^{f}(\mathbf{x})\left(V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)\right) \tag{C5a}\\
& =V_{Z_{1} Z_{2}}^{f}(\mathbf{x})-\frac{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)}{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)} 2\left(\sigma_{Z_{2}}^{f}(\mathbf{x}) \rho_{Z_{2} Z_{l}, l}^{f}(\mathbf{x}) \sigma_{Z_{1}}^{f}(\mathbf{x}) \rho_{Z_{1} Z_{l}, l}^{f}(\mathbf{x})\right) \\
& +\frac{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)}{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)} \sigma_{Z_{1}}^{f}(\mathbf{x}) \rho_{Z_{1} Z_{l}, l}^{f}(\mathbf{x}) \sigma_{Z_{2}}^{f}(\mathbf{x}) \rho_{Z_{2} Z_{l}, l}^{f}(\mathbf{x}) \tag{C5b}\\
& =V_{Z_{1} Z_{2}}^{f}(\mathbf{x})-\left(\sigma_{Z_{2}}^{f}(\mathbf{x}) \rho_{Z_{2} Z_{l}, l}^{f}(\mathbf{x}) \sigma_{Z_{1}}^{f}(\mathbf{x}) \rho_{Z_{1} Z_{l}, l}^{f}(\mathbf{x})\right) \frac{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)}{V_{Z_{l}}^{f}\left(\mathbf{x}_{l}\right)+V_{Z_{l}}^{o}\left(\mathbf{x}_{l}\right)} . \tag{C5c}
\end{align*}
\]

\section*{Appendix D: Second order update formula for the anisotropy}

In the alternative version PKFO2 of the PKF analysis algorithm PKFO1, the update equation for the metric tensor is (see Pannekoucke (2021) for details)
\[
\underline{\mathbf{g}}^{a}(\mathbf{x})=\frac{V^{a}(\mathbf{x})}{V^{f}(\mathbf{x})} \mathbf{s}^{f}(\mathbf{x})-\frac{1}{V^{f}(\mathbf{x}) V^{a}(\mathbf{x})}\left[\nabla V^{f}\left(\nabla V^{f}\right)\right](\mathbf{x})-
\]
\[
\frac{1}{V^{a}(\mathbf{x})} \frac{V^{f}\left(\mathbf{x}_{l}\right)}{V^{f}\left(\mathbf{x}_{l}\right)+V^{o}\left(\mathbf{x}_{l}\right)}\left[\nabla\left(\sigma^{f} \rho_{\mathbf{x}_{l}}^{f}\right)\left(\nabla\left(\sigma^{f} \rho_{\mathbf{x}_{l}}^{f}\right)\right)^{\mathrm{T}}\right](\mathbf{x})-\frac{1}{4\left(V^{a}(\mathbf{x})\right)^{2}}\left[\nabla V^{a}\left(\nabla V^{a}\right)^{\mathrm{T}}\right](\mathbf{x})
\]

Then, the analysis anisotropy \(\mathbf{s}^{a}\) is obtained using \(\mathbf{s}^{a}(\mathbf{x})=\left(\mathbf{g}^{a}(\mathbf{x})\right)^{-1}\).

1000 Author contributions. AP and OP explored the multivariate extension of the PKF and designed the experiments. A part of the work has been co-supervised with VG during the master internship of AP.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We thank the would like to thank Annika Vogel and the other two anonymous referees for their fruitful comments, which helped to improve the article. We thank Richard Ménard and Béatrice Josse for interesting discussions.

Financial supporting The Toulouse Paul Sabatier University, and the doctoral school SDU2E (Sciences de l'Univers, de l'Environnement et de l'Espace) which support supported Antoine Perrot's thesis. AP and OP would like to thank Richard Ménard for interesting diseussions.

Financial supporting This work was supported by the French national programe programme LEFE/INSU grant "Multivariate Parametric Kalman Filter" (MPKF).

\section*{References}

Anderson, J. L. and Anderson, S. L.: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts, Mon. Wea. Rev., 127, 2741-2758, 1999.

Azzi, M., Johnson, G., and Cope, M.: An introduction to the generic reaction set photochemical smog mechanism, Proceedings of the International Conference of the Clean Air Society of Australia and New Zealand, 3, 451-462, 1992.

Berre, L., Pannekoucke, O., Desroziers, G., Stefanescu, S., Chapnik, B., and Raynaud, L.: A variational assimilation ensemble and the spatial filtering of its error covariances: increase of sample size by local spatial averaging, in: ECMWF Workshop on Flow-dependent aspecyts of data assimilation, 11-13 June 2007., edited by ECMWF, pp. 151-168, Reading, UK, 2007.

Cohn, S.: Dynamics of Short-Term Univariate Forecast Error Covariances, Monthly Weather Review, 121, 3123-3149, https://doi.org/10.1175/1520-0493(1993)121<3123:DOSTUF>2.0.CO;2, 1993.

Coman, A., Foret, G., Beekmann, M., Eremenko, M., Dufour, G., Gaubert, B., Ung, A., Schmechtig, C., Flaud, J. M., and Bergametti, G.: Assimilation of IASI partial tropospheric columns with an Ensemble Kalman Filter over Europe, Atmospheric Chemistry Physics, 12, 2513-2532, https://doi.org/10.5194/acp-12-2513-2012, 2012.

Daley: Atmospheric Data Analysis, 1991.
Derber, J. and Bouttier, F.: A reformulation of the background error covariance in the ECMWF global data assimilation system, Tellus A, 51, 195-221, https://doi.org/10.3402/tellusa.v51i2.12316, 1999.

Eben, K., Jurus, P., Resler, J., Belda, M., Pelikán, E., Krüger, B. C., and Keder, J.: An ensemble Kalman filter for short-term forecasting of tropospheric ozone concentrations, Quarterly Journal of the Royal Meteorological Society, 131, 3313-3322, 2005.

Emili, E., Gürol, S., and Cariolle, D.: Accounting for model error in air quality forecasts: an application of 4DEnVar to the assimilation of atmospheric composition using QG-Chem 1.0, Geoscientific Model Development, 9, 3933-3959, https://doi.org/10.5194/gmd-9-39332016, 2016.

Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, Journal of Geophysical Research, 99, 10 143-10 162, 1994.

Evensen, G.: Data Assimilation: The Ensemble Kalman Filter, Springer-Verlag Berlin Heidelberg, https://doi.org/10.1007/978-3-642-037115, 2009.

Fisher, M.: Background error covariance modelling, in: Proc. ECMWF Seminar on "Recent developments in data assimilation for atmosphere and ocean", edited by ECMWF, pp. 45-63, Reading, UK, 2003.

Gaubert, B., Coman, A., Foret, G., Meleux, F., Ung, A., Rouil, L., Ionescu, A., Candau, Y., and Beekmann, M.: Regional scale ozone data assimilation using an ensemble Kalman filter and the CHIMERE chemical transport model, Geoscientific Model Development, 7, 283-302, https://doi.org/10.5194/gmd-7-283-2014, 2014.

Hauglustaine, D., Brasseur, G., Walters, S., Rasch, P., Müller, J.-F., Emmons, L., and Carroll, M.: MOZART: A global chemical transport model for ozone and related chemical tracers, Journal of Geophysical Research, 1032, 28 291-28336, https://doi.org/10.1029/98JD02398, 1998.

Haussaire, J.-M. and Bocquet, M.: A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes: L95-GRS (v1.0), Geoscientific Model Development, 9, 393-412, https://doi.org/10.5194/gmd-9-393-2016, 2016.

Houtekamer, P. and Mitchell, H.: A sequential ensemble Kalman filter for atmospheric data assimilation, Monthly Weather Review, 129, 123-137, https://doi.org/10.1175/1520-0493(2001)129<0123:ASEKFF>2.0.CO;2, 2001.

Houtekamer, P. L. and Mitchell, H. L.: Data Assimilation Using an Ensemble Kalman Filter Technique, Monthly Weather Review, 126, 796-811, https://doi.org/10.1175/1520-0493(1998)126<0796:dauaek>2.0.co;2, 1998.

Josse, B., Simon, P., and Peuch, V.-H.: Radon global simulations with the multiscale chemistry and transport model MOCAGE, Tellus, 56, 339-356, 2004.

Kalman, R. E.: A New Approach to Linear Filtering and Prediction Problems, Journal Basic Engineering, 82, 35-45, https://doi.org/10.1115/1.3662552, 1960.

Lesieur, M.: Turbulence in Fluids, Springer.
Lorenz, E. N.: Deterministic nonperiodic flow, Journal Atmospheric Sciences, 20, 130-141, https://doi.org/10.1175/15200469(1963)020<0130:DNF>2.0.CO;2, 1963.

Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier, R. L., van der Gon, H. A. C. D., Drouin, A., Elbern, H., Emili, E., Engelen, R. J., Eskes, H. J., Foret, G., Friese, E., Gauss, M., Giannaros, C., Guth, J., Joly, M., Jaumouillé, E., Josse, B., Kadygrov, N., Kaiser, J. W., Krajsek, K., Kuenen, J., Kumar, U., Liora, N., Lopez, E., Malherbe, L., Martinez, I., Melas, D., Meleux, F., Menut, L., Moinat, P., Morales, T., Parmentier, J., Piacentini, A., Plu, M., Poupkou, A., Queguiner, S., Robertson, L., Rouïl, L., Schaap, M., Segers, A., Sofiev, M., Tarasson, L., Thomas, M., Timmermans, R., Valdebenito, Á., van Velthoven, P., van Versendaal, R., Vira, J., and Ung, A.: A regional air quality forecasting system over Europe: the MACC-II daily ensemble production, Geoscientific Model Development, 8, 2777-2813, https://doi.org/10.5194/gmd-8-2777-2015, 2015.

Ménard, R., Deshaies-Jacques, M., and Gasset, N.: A comparison of correlation-length estimation methods for the objective analysis of surface pollutants at Environment and Climate Change Canada, Journal Air Waste Management Association, https://doi.org/10.1080/10962247.2016.1177620, 2016.

Ménard, R., Skachko, S., and Pannekoucke, O.: Numerical discretization causing error variance loss and the need for inflation, Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.4139, 2021.
Meurer, A., Smith, C. P., Paprocki, M., Čertík, O., Kirpichev, S. B., Rocklin, M., Kumar, A., Ivanov, S., Moore, J. K., Singh, S., Rathnayake, T., Vig, S., Granger, B. E., Muller, R. P., Bonazzi, F., Gupta, H., Vats, S., Johansson, F., Pedregosa, F., Curry, M. J., Terrel, A. R., Roučka, Š., Saboo, A., Fernando, I., Kulal, S., Cimrman, R., and Scopatz, A.: SymPy: symbolic computing in Python, PeerJ Computer Science, 3, e103, https://doi.org/10.7717/peerj-cs.103, 2017.

Mirouze, I. and Weaver, A. T.: Representation of correlation functions in variational assimilation using an implicit diffusion operator, Quarterly Journal of the Royal Meteorological Society, 136, 1421-1443, https://doi.org/10.1002/qj.643, 2010.

Miyazaki, K., Eskes, H. J., Sudo, K., Takigawa, M., van Weele, M., and Boersma, K. F.: Simultaneous assimilation of satellite \(\mathrm{NO}_{2}\), \(\mathrm{O}_{3}\), CO , and \(\mathrm{HNO}_{3}\) data for the analysis of tropospheric chemical composition and emissions, Atmospheric Chemistry and Physics, 12, 9545-9579, https://doi.org/10.5194/acp-12-9545-2012, 2012.
Paciorek, C. and Schervish, M.: Spatial Modelling Using a New Class of Nonstationary Covariance Functions, Environmetrics, 17, 483-506, https://doi.org/10.1002/env.785, 2006.
Pannekoucke, O.: An anisotropic formulation of the parametric Kalman filter assimilation, Tellus A: Dynamic Meteorology and Oceanography, 73, 1-27, https://doi.org/10.1080/16000870.2021.1926660, 2021.
Pannekoucke, O. and Arbogast, P.: SymPKF (v1.0): a symbolic and computational toolbox for the design of parametric Kalman filter dynamics, Geoscientific Model Development, 14, 5957-5976, https://doi.org/10.5194/gmd-14-5957-2021, 2021. trainable neural network representations, Geoscientific Model Development, 13, 3373-3382, https://doi.org/10.5194/gmd-13-3373-2020, 2020.

Pannekoucke, O. and Massart, S.: Estimation of the local diffusion tensor and normalization for heterogeneous correlation modelling using a diffusion equation., Quarterly Journal of the Royal Meteorological Society., 134, 1425-1438, https://doi.org/10.1002/qj.288, 2008.
Pannekoucke, O., Ricci, S., Barthelemy, S., Ménard, R., and Thual, O.: Parametric Kalman filter for chemical transport models, Tellus A: Dynamic Meteorology and Oceanography, 68, 31 547, https://doi.org/10.3402/tellusa.v68.31547, 2016.
Pannekoucke, O., Bocquet, M., and Ménard, R.: Parametric covariance dynamics for the nonlinear diffusive Burgers' equation, Nonlinear Processes in Geophysics, 2018, 1-21, https://doi.org/https://doi.org/10.5194/npg-2018-10, 2018.
Pannekoucke, O., Ménard, R., El Aabaribaoune, M., and Plu, M.: A methodology to obtain model-error covariances due to the discretization scheme from the parametric Kalman filter perspective, Nonlinear Processes in Geophysics, 28, 1-22, https://doi.org/10.5194/npg-28-12021, 2021.
Purser, R., Wu, W.-S., D.Parrish, and Roberts, N.: Numerical aspects of the application of recursive filters to variational statistical analysis. Part II: Spatially inhomogeneous and anisotropic general covariances, Monthly Weather Review, 131, 1536-1548, https://doi.org/10.1175//2543.1, 2003.
Sabathier, M., Pannekoucke, O., and Maget, V.: Boundary Conditions for the Parametric Kalman Filter forecast, to submit, 2022.
Tang, X., Zhu, J., Wang, Z. F., and Gbaguidi, A.: Improvement of ozone forecast over Beijing based on ensemble Kalman filter with simultaneous adjustment of initial conditions and emissions, Atmospheric Chemistry and Physics, 11, 12 901-12 916, https://doi.org/10.5194/acp-11-12901-2011, 2011.

Voshtani, S., Ménard, R., Walker, T. W., and Hakami, A.: Assimilation of GOSAT Methane in the Hemispheric CMAQ Part I: Design of the Assimilation System, Remote Sensing, 14, 371, https://doi.org/10.3390/rs14020371, 2022a.
Voshtani, S., Ménard, R., Walker, T. W., and Hakami, A.: Assimilation of GOSAT Methane in the Hemispheric CMAQ Part II: Results Using Optimal Error Statistics, Remote Sensing, 14, 375, https://doi.org/10.3390/rs14020375, 2022b.
Weaver, A. and Courtier, P.: Correlation modelling on the sphere using a generalized diffusion equation (Tech. Memo. ECMWF, num. 306), Quarterly Journal of the Royal Meteorological Society, 127, 1815-1846, https://doi.org/10.1002/qj.49712757518, 2001.
Weaver, A., Deltel, C., Machu, E., Ricci, S., and Daget, N.: A multivariate balance operator for variational ocean data assimilation, Quarterly Journal of the Royal Meteorological Society, 131, 3605 - 3625, https://doi.org/10.1256/qj.05.119, 2006.
Weisstein, E. W.: Courant-Friedrichs-Lewy Condition, 2002.

Pannekoucke, O. and Fablet, R.: PDE-NetGen 1.0: from symbolic partial differential equation (PDE) representations of physical processes to

Whitaker, J. and Hamill, M.: Ensemble Data Assimilation without Perturbed Observations, Monthly Weather Review, 130, https://doi.org/10.1175/1520-0493(2002)130<1913:EDAWPO>2.0.CO;2, 2003.

Multivariate forecast statistics for GRS: Ens. estimation (\(N_{e}=1600\), black dashed lines) and PKF (colored lines)

Figure 15. Multivariate forecasts statistics for the GRS-CTM, PKF outputs (colored lines) and EnKF diagnoses ensemble estimations from \(N_{e}=1600\) forecasts (black dashed lines) for times \(t=00 \mathrm{~h}+\{60,66\} \mathrm{h}\). As we consider a simulation that starts at midnight of day \(0, t=00 \mathrm{~h}\) +60 h (slight transparency on the curves) corresponds to midday of day 2 , and \(t=00 \mathrm{~h}+66 \mathrm{~h}\) (no transparency) to 18 h 00 of day 2 . From left to right, the columns correspond to the forecasts of: the mean concentration, the standard-deviation, the length-scales (normalized by \(\Delta x\)), and the correlation functions (auto and cross) with NO2 at locations \(x=[0.1,0.36,0.63,0.9] D\), for each of the six species (rows).```

[^0]: ${ }^{1}$ https://atmosphere.copernicus.eu/cams-european-air-quality-ensemble-forecasts-welcomes-two-new-state-art-models, associated with CAMS2.40

