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Abstract. Anthropogenic emissions of methane (CH4) have made a considerable contribution towards the Earth’s 18 

changing radiative budget since pre-industrial times. This is because large amounts of methane are emitted from 19 

human activities and the global warming potential of methane is high. The majority of anthropogenic fossil 20 

methane emissions to the atmosphere originate from a large number of small (point) sources. Thus, detection and 21 

accurate, rapid quantification of such emissions is vital to enable the reduction of emissions to help mitigate future 22 

climate change. There exist a number of instruments on satellites that measure radiation at methane-absorbing 23 

wavelengths, which have sufficiently high spatial resolution that can be used for detecting plumes of highly 24 

spatially localised methane 'point sources' (areas on the order of m2 to km2). Searching for methane plumes in 25 

methane-sensitive satellite images using classical methods, such as thresholding and clustering, can be useful but 26 
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are time-consuming and often involve empirical decisions. Here, we develop a deep neural network to identify 27 

and quantify methane point source emissions from hyperspectral imagery from the PRecursore IperSpettrale della 28 

Missione Applicativa (PRISMA) satellite with 30-m spatial resolution. The moderately high spectral and spatial 29 

resolution, as well as considerable global coverage and free access to data, make PRISMA a good candidate for 30 

methane plume detection. The neural network was trained with simulated synthetic methane plumes generated 31 

with the Large Eddy Simulation extension of the Weather Research and Forecasting model (WRF-LES), which 32 

we embedded into PRISMA images. The deep neural network was successful at locating plumes with F1-score, 33 

precision and recall of 0.95, 0.96 and 0.92, respectively, and was able to quantify emission rates with a mean error 34 

of 24%. The neural network was furthermore able to locate several plumes in real-world images. We have thus 35 

demonstrated that our method can be effective in locating and quantifying methane point source emissions in near 36 

real time from 30-m resolution satellite data which can aid us in mitigating future climate change. 37 

1 Introduction  38 

Methane (CH4) is a powerful greenhouse gas with a warming potential which per unit mass emitted is 84 times 39 

larger than for carbon dioxide over a 20-year period (Stocker et al., 2013). Emissions of methane as a result of 40 

human activities have contributed one quarter of climate warming since preindustrial times (Etminan et al., 2016). 41 

A large proportion of anthropogenic methane from industrial sources originates from point sources such as coal 42 

mines and oil and gas production facilities (Saunois et al., 2020). Furthermore, these emissions are generally 43 

underestimated by inventory-based approaches (Alvarez et al., 2018; Karion et al., 2013; Zavala-Araiza et al., 44 

2015). A large proportion of these anthropogenic emissions originates from a small number of strong point sources 45 

due to oil and gas production equipment malfunction (Brandt et al., 2016; Duren et al., 2019; Zavala-Araiza et al., 46 

2017). Consequently, much of the methane emitted from such sources could be reduced at no net cost (IEA, 2017; 47 

Ocko et al., 2021). Acting to reduce methane emissions in this sector can be one of the most cost-effective methods 48 

of mitigating against further climate change.  49 

 50 

Methane point sources from oil and gas production are typically small in extent and emissions difficult to quantify 51 

and variable in time (Allen et al., 2013; Frankenberg et al., 2016; Cusworth et al., 2021). The primary challenge 52 

faced when estimating methane emissions from point sources from satellite data comes from the relatively low 53 

spatial resolution (in the order of kilometres) of satellite imagery from dedicated sensors such as the Greenhouse 54 

Gases Observing SATellite (GOSAT) (Kuze et al., 2009) and the TROPOspheric Monitoring Instrument 55 

(TROPOMI) (Levelt et al., 2006). These sensors typically have high spectral resolution of methane absorption 56 

bands in the shortwave infrared (SWIR) range of the electromagnetic spectrum to provide accurate measurements 57 

with high precisions of around 10-20 parts per billion (ppb) (Lorente et al., 2021; Parker et al., 2020). SWIR bands 58 

can also be effectively utilised to detect and quantify point sources from lower spectral-resolution sensors (Jacob 59 

et al., 2016; Duren et al., 2019). Recent hyperspectral spaceborne imaging spectrometers contain hundreds of 60 

spectral channels in the visible-shortwave-infrared range with spectral resolution typically around 10 nm and 61 

spatial resolutions of tens of m. Due to their spatial and spectral resolution, they have been identified as useful 62 

new tools for identifying and quantifying methane point source emissions. PRecursore IperSpettrale della 63 

Missione Applicativa (PRISMA), developed and operated by the Italian Space Agency (ISA) since 2019, is the 64 
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first hyperspectral mission where the satellite imagery has been openly released to the scientific community. The 65 

satellite consists of a panchromatic camera and an advanced hyperspectral instrument that measures radiances in 66 

approximately 250 bands between 400 and 2500 nm. The instrument has a spatial resolution of 30 m, a swath of 67 

30 km, and a 12-nm spectral resolution (Galeazzi et al., 2008). PRISMA has been successful in quantifying CO2 68 

emissions from coal and gas-fired power plants (Cusworth et al., 2021a). However, how to best extract information 69 

on the location and extent of methane plumes is not yet fully established. Successful detection of methane point 70 

sources from PRISMA using a matched-filter retrieval technique has been reported by Guanter et al. (2021), albeit 71 

with a strong dependence of detection accuracy on surface type. In particular, brightness and homogeneity of the 72 

satellite images were identified to significantly influence the accuracy of methane detection techniques.  73 

 74 

Current approaches for detecting methane point sources and quantifying emission rates are time-intensive, 75 

laborious, and can be prone to errors without sufficient training. They typically involve a spectral analysis of 76 

satellite data to infer methane column mean mixing ratios (Thorpe et al., 2014) followed by a methane plume 77 

detection method (often based on thresholding and clustering) and finally the integrated mass enhancement (IME) 78 

method to estimate the emission (Varon et al., 2018). Previous efforts utilising spaceborne imaging spectrometers 79 

to quantify methane point source emission rates have proved successful, but often with large errors of source 80 

detection and emissions estimates. The IME method yielded errors between 5-12% using 50-m resolution 81 

Greenhouse Gas Satellite - Demonstrator (GHGSat-D) imagery (Varon et al., 2018). However, this uncertainty 82 

estimate does not include errors from unknown wind speed and direction, which are both highly uncertain, where 83 

uncertainties are estimated to be 15-65% larger. The multi-band multi-pass (MBMP) method was successful in 84 

quantifying methane point source emissions from Sentinel-2 multispectral instrument (MSI) imagery with 85 

precision between 30% and 90% (Varon et al., 2021). The primary limitation of this approach is surface 86 

interference (Cusworth et al., 2019) which leads to artefacts and false anomalies, which can be mistakenly 87 

attributed to emission plumes. This is a major disadvantage for multi and hyperspectral missions because the 88 

better the resolution (and the greater the number of channels), the better the discrimination between the surface 89 

and methane absorption. Sherwin et al., (2023) found comparatively lower errors, but required considerable 90 

human intervention. Thus, producing a model that minimises errors and can automatically locate methane sources 91 

would make emission monitoring from space faster, more reliable, and more scalable, thus providing an invaluable 92 

tool to aid mitigation. A first effort has also been made to estimate emission rates from AVIRIS-NG data using a 93 

neural network and without utilising wind speed and direction data. These estimates were subject to an error of 94 

roughly 30% of the emission rates (Jongaramrungruang et al., 2019). It is apparent that the noise in the satellite 95 

data, the lack of accurate wind data, and the complex structures of methane plumes make it difficult to model 96 

emission rates accurately via traditional approaches. 97 

 98 

In recent years, deep neural network methods have improved rapidly. LeNet (Lecun et al., 1989) was one of the 99 

earliest convolutional neural networks (CNNs) and was used successfully to identify handwritten digits. This work 100 

laid the foundations for using artificial intelligence to obtain meaningful information from image data (known as 101 

computer vision). Deep learning models entered the mainstream following considerable reductions in model 102 

training time through the utilisation of graphics processing units (GPUs) (Oh and Jung, 2004). Deep learning was 103 

then revolutionised for image classification with the introduction of AlexNet (Krizhevsky et al., 2012). CNNs 104 
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have since been applied to self-driving cars (e.g., Nugraha and Su, 2017), discovering new drug treatments (e.g. 105 

Wallach et al., 2015), facial recognition (e.g. Matsugu et al., 2003), and many other applications. The ease with 106 

which deep neural networks can be trained and deployed has also improved considerably in recent years, partially 107 

due to the development of application programming interfaces (APIs) such as Keras (Chollet, 2015). This has 108 

been supplemented by the increasing ubiquity and decreasing costs of GPUs and cloud computing servers, which 109 

together have enabled deep learning models to be trained rapidly and at a relatively low cost. Currently, work 110 

utilising deep neural networks has already proven to be considerably more effective than classical methods to 111 

detect point source emissions of nitrogen dioxide (NO2) (Finch et al., 2021).  112 

 113 

More recently, a deep neural network has been used to quantify methane point source emissions using the airborne 114 

AVIRIS-NG instrument (Jongaramrungruang et al., 2022). In this study, a CNN was trained on synthetic plumes 115 

inserted into real images to extract features present in plumes of varying intensities and with differing wind speeds 116 

to locate and quantify the emission rates of the point sources. Jongaramrungruang et al. (2022) estimated emission 117 

rates of plumes with a mean absolute error of 17% for emissions larger than 40 kg hr-1. The classification accuracy 118 

(determining whether a plume is present in an image) was 90% when testing plumes with emission rates above 119 

100 kg hr-1, however, the accuracy dropped to 50% for emission rates around 50-60 kg hr-1. The spatial and spectral 120 

resolution of the aircraft data used in this study (AVIRIS-NG) has far higher spatial and spectral resolution than 121 

PRISMA, thus making methane detection prone to lower errors. However, PRISMA data is publicly available and 122 

covers a far larger spatial range with regular repeat measurements, thus making it a superior resource for rapid 123 

detection of methane point source emissions across many regions on earth. Thus, a deep neural network that is 124 

capable of utilising PRISMA data to detect methane emissions could be very effective in our efforts to mitigate 125 

future climate change. 126 

 127 

In this study, we produced pseudo-observations of simulated synthetic methane plumes generated with the Large 128 

Eddy Simulation extension of the Weather Research and Forecasting model (WRF-LES). These simulated plumes 129 

were then embedded into an array of PRISMA images and used as training data for a novel neural network 130 

architecture that aimed to produce masks of the locations of methane plumes and estimate their emission rates 131 

from PRISMA satellite imagery. The effectiveness of this model was then tested on images of real-world plumes. 132 

The results from the neural network were then compared with a classical technique that combined PCA-based 133 

retrievals with clustering using DBSCAN. The techniques utilised here can be adapted to locate and quantify 134 

emission rates using any satellite imagery with suitable shortwave-infrared bands, or applied to detecting other 135 

greenhouse gases, such as carbon dioxide (CO2). 136 

2 Methods 137 

2.1 Simulating methane plumes with WRF-LES 138 

The Weather Research and Forecasting (WRF) model system has comprehensive and multiple capabilities for 139 

studying atmospheric phenomena from global down to large eddy scales. The default large eddy simulation case 140 

(LES) of the WRF V4.2.2 was used and modified to simulate methane plumes for a single point source with a 141 

releasing rate of 1000 kg hr-1. The default LES case does not consider clouds, radiation, or topography, but 142 
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includes surface physics and 1.5-order TKE (Turbulent Kinetic Energy) prediction scheme (WRF model User’s 143 

Guide: https://www2.mmm.ucar.edu/wrf/users/). A constant thermal flux of 100 W m-2 was applied at the surface 144 

to drive the turbulence. Two nested domains with one-way nesting were deployed in the simulations. The outer 145 

domain had a size of 5.4 km × 6.3 km with 90 m horizontal resolution and periodic boundary conditions. The 146 

inner domain had a size of 3.6 km × 4.5 km with 30 m horizontal grid spacing and 30 m vertical resolution, and 147 

flow-dependent boundary conditions for scalars. The plume was only released in the inner domain after a 3-hour 148 

spin-up run. The total running time is 5 hours, and the final 2-hour run was considered for the training, test, and 149 

validation data.  150 

 151 

We designed 15 scenarios consisting of 5 different southerly wind speeds ranging from 1 m s-1 to 9 m s-1, each of 152 

which was uniformly applied from the surface to the model top, and 3 different patterns of potential temperature 153 

vertical profiles (Figure S1). The potential temperature in the scenarios is specified as 290 K from the surface to 154 

one of the 3 different mixing depths of 500 m, 800 m, and 1100 m (Figure S2). Above the mixing depth, there is 155 

an inversion layer of 700 m with a vertical gradient of potential temperature of 0.009 K m-1 applied from the top 156 

of the mixing layer to the model top. For each simulation, the CH4 distribution is saved once every minute and 157 

thus there are 120 different scenes for a two hour simulation. Altogether there are 1800 scenes for the 15 158 

simulations in the data, where the plume was integrated over vertical columns. Figure 1 shows one snapshot of a 159 

plume with initial conditions of 3 m s-1 southerly wind and 800 m mixing depth 30 minutes after release. 160 

 161 
Figure 1: Snapshot of a simulated plume 30 minutes after release for initial conditions of 3 m s-1 southerly wind and 162 
800 m mixing depths. Red arrows indicate wind direction at the moment of the snapshot. 163 
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2.2 Satellite data retrieval 164 

Methane absorbs solar radiation at a set of shortwave-infrared wavelengths that are well known and documented 165 

in spectroscopic databases.  The absorption of light by methane in the atmosphere therefore alters the reflected 166 

sunlight measured by the satellite in a very predictable way that allows us to quantify the amount of methane 167 

along the light path. Here we use a data-driven retrieval algorithm to estimate the methane enhancements from 168 

reflected sunlight using statistical methods based on the work by Thorpe et al. (2014). This type of simple and 169 

fast retrieval method is commonly used for instruments with comparably low spectral resolutions, for which a 170 

more sophisticated, so-called full-physics approach provides no extra benefit. 171 

  172 

The relationship between the spectral intensity at each point in the satellite spectra and the column enhancement 173 

of methane in the scene is represented by a methane Jacobian vector, which describes the change in the logarithm 174 

of the intensity Ik in band k with respect to the   column enhancement of methane CCH4. The spectral variation of 175 

the background of the scene (i.e. outside of the plume) is approximated by a number of Principal Components of 176 

all measured spectra combined derived using the Principal Component Analysis (PCA) method. We perform the 177 

PCA on the logarithm of measured spectra of the scene and select the singular vectors (principal components) that 178 

best describe the spectral variability of the scene. The optimal number of singular vectors was determined by trial 179 

and error, and was found to be the first three. We then concatenate these vectors with the methane Jacobian to 180 

construct the matrix J with dimension 4 × number of PRISMA bands, which we use along with the logarithm of 181 

the measured radiances, y, to find a vector W that minimises the cost function in a linear least squares fit for each 182 

pixel: 183 

‖𝑦 − 𝐽𝑊‖! ,           (1) 184 

 185 

The modelled radiance F is calculated from J and W as follows: 186 

𝐹 = 𝐽𝑊 ,           (2) 187 

 188 

We can then rewrite Eq. (2) as the sum of the background (k) and CH4 (c+1) components of the radiance: 189 

𝐹(𝑊, 𝐽) = 	∑ 	𝐽"#
"$% ⋅ 𝑊" + 𝐽#&% ⋅ 𝑊#&% ,        (3) 190 

 191 

where c is the number of singular vectors used. Thus, the modelled logarithmic radiance F(W, J) is a linear 192 

combination of the singular vectors, Jk, the CH4 Jacobian, Jc+1, and their weights, Wk and  Wc+1, respectively. This 193 

method is described in more detail in Thorpe et al. (2014). In order to avoid column-wise changes in the 194 

instrument’s radiometric response, and since the wavelengths scale for each across-track pixel of a PRISMA 195 

image is different, it is necessary to infer the Principal Components for each column in the across-track direction 196 

separately. 197 

2.3 Training data generation 198 

We generated synthetic datasets to train the machine-learning model by combining PRISMA images with the 199 

synthetic plumes simulated with WRF-LES (described in section 2.1). We use the SWIR spectral radiance from 200 

PRISMA Level-1b data as well as the RGB bands. These datasets come with pixel quality and cloud mask 201 
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information, which we apply in our data preparation process. We selected 36 different PRISMA background 202 

images to cover a wide range of scenes representative of places where methane plumes might be expected (Table 203 

S1). These images also cover a range of different dates throughout the ~3 years of PRISMA data available in the 204 

archive, to account for different illumination conditions. All the selected scenes have less than 1% cloud cover, 205 

and any pixels flagged as cloudy in the PRISMA product were excluded from the analysis. 206 

 207 

A total of 9700 image tiles were generated for training, each tile with a size of 256 × 256 pixels. The tile size was 208 

deliberately selected as a power of two to optimise the model performance. Each tile was selected at random from 209 

one of the 36 1000 × 1000-pixel PRISMA background scenes, and a synthetic methane plume subsequently 210 

embedded in it. The synthetic plume was also selected randomly from the WRF-LES simulations, with the 211 

following parameters also randomised following a uniform distribution: 212 

- Time step: between 1 and 120 seconds (Figure S3). 213 

- Plume origin: any point within the background scene tile, excluding the areas near the edges to avoid 214 

missing parts of the plume. 215 

- Emission rate: all simulated plumes have a 1000 kg hr-1 emission rate, so we applied a scaling factor 216 

between 0.1 and 10 to have a range of emissions between 100 and 10,000 kg hr-1 (Figure S4). 217 

 218 

The synthetic plumes from WRF-LES are first converted into maps of methane vertical column densities in 219 

molecules cm-2. The original plume simulations are all carried out for an emission of 1000 kg hr-1 and the scenarios 220 

for different emission rates are obtained by scaling the simulated concentrations. Each plume is inserted into the 221 

background PRISMA image tile by modifying the PRISMA SWIR radiances according to the Beer-Lambert law 222 

for absorption. Methane columns are converted into optical depth for each band using a representative methane 223 

absorption cross-section for each band computed from the HITRAN database (Gordon et al., 2022) for a 224 

temperature of 293 K and pressure of 1 atmosphere. The use of a single temperature and pressure value is a 225 

simplification that could introduce small uncertainties for vertically extended plumes. Each of the 9700 training 226 

datasets contain: 38 PRISMA radiance bands (3 RGB, and 35 SWIR (2100 - 2365 nm) channels) and the synthetic 227 

plume (i.e., the “true” methane enhancements to be used as labels in the model). 228 

2.4 Training data processing 229 

Each PRISMA sub-image (256 × 256-pixel tile) was normalised by subtracting the mean and dividing by the 230 

standard deviation (std) of the whole collection of training images such that the mean of all the images was 0 and 231 

the std was 1 for each band. This data normalisation step is standard when using deep neural networks as it is 232 

understood to optimise the training time. Following on from this, the undefined (NaN) values present in the images 233 

were changed to equal the mean value of each band in the respective image. These NaN values correspond to 234 

either invalid (e.g., saturated) or cloudy pixels. 235 

 236 

Every time an image was retrieved during the training process, data augmentations were randomly applied. The 237 

augmentations were as follows: rotation by a multiple of 90˚, and horizontal and vertical flipping. No brightness 238 

and contrast augmentations were made because the quantification of methane plumes relies on the specific band 239 

information inside the plume region. The purpose of data augmentation was to increase the data volume, to reduce 240 
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overfitting, and improve the ability of the model to produce accurate results with data that is different to the 241 

training data. 242 

 243 

To predict the methane concentration, it was first necessary to model the methane plume mask (binary 244 

classification of plume/non-plume per pixel) because the vast majority of pixels in the training images did not 245 

contain a plume (zero-inflated data). To create the ground truth masks for binary segmentation, an initial methane 246 

concentration threshold of 8×1018 molecules cm-2 was chosen as it was the cut-off point where the plumes were 247 

no longer visible. Furthermore, training the model with a lower threshold resulted in non-convergence. After the 248 

model was trained at the 8×1018 molecules cm-2 threshold, it was possible to continue training the model at a lower 249 

threshold. Thus, we tested training the model at 5×1017 molecules cm-2 increments until the validation loss dropped 250 

substantially. The lowest threshold where this was the case was 4×1018 molecules cm-2. This final step is important 251 

because it increases the range for which the model can locate and quantify methane emissions. 252 

2.5 Deep neural network architecture and training process 253 

The training of the neural network was split into 4 steps. First, the model was trained to locate the regions of the 254 

image containing a plume via per pixel binary semantic segmentation. Next, the column enhancements of methane 255 

were predicted inside the region of the estimated plume mask from the first stage. Following on from this, the 256 

emission rate of the plume in the image was estimated. To ensure that the emission rate estimates would equal 257 

zero when no plume was present, an intermediate prediction layer was included where a whole image binary 258 

classification was made regarding whether a plume was present in the image or not. At each stage of the model, 259 

the input was a concatenation of the input satellite image and all the previous outputs (Figure 2). To optimise the 260 

training of the model weights, each portion of the model was trained alone such that the weights in all the other 261 

parts were not being updated. The parts of the model were trained in order moving downwards across the models 262 

depicted in Figure 2. The loss function to predict the plume mask was as follows: 263 

Lossmask = 1	 + 	𝐵𝐶 − 	𝑆𝐷𝐶 ,         (4) 264 

 265 

Where BC is binary cross entropy, SDC is the Sørensen-dice coefficient defined as follows: 266 

𝑆𝐷𝐶 = !'(
!'(	&	*(	&	*+

,          (5) 267 

 268 

where TP is true positive, FN is false negative, and FP is false positive. This loss function was chosen because of 269 

the large number of non-plume pixels present in the image. The loss function for the mask concentration was 270 

mean squared error (MSE), a standard choice for regression modelling. For the whole image binary classification 271 

part of the model, binary cross-entropy was chosen, which is common for solving 1-dimensional binary problems. 272 

Finally, for the emission rate part of the model, MSE was chosen as the loss function until the validation error 273 

started to plateau, after which, the model was only trained on images containing plumes and mean absolute 274 

percentage error was given as the loss function. This was done to ensure that the proportion error was minimised 275 

rather than the absolute error. Mean absolute percentage error was not used throughout the whole training process 276 

because it was important that the model was trained on some images with no plumes (so an emission rate of zero 277 

could be possible) and mean absolute percentage error produced very high loss values when false positives were 278 

made by the model. 279 
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  280 

For plume mask detection, a UNet model was used and for methane concentration, a ResNet model was used. For 281 

the whole image binary plume detection and emission rate estimation, however, CNNs with only an encoder 282 

branch were used. The two encoder CNNs have identical architectures except the activation function at the end of 283 

the whole image binary classification model has sigmoid activation because the predictions are constrained 284 

between 0 and 1, and the emission rate estimator has a ReLU activation function. 285 

 286 
Figure 2: Structure of the neural networks used in this study. Green boxes indicate portions of the neural network, 287 
orange boxes indicate predictions made by each stage of the neural network. Black lines indicate flow of data into 288 
models, and red lines indicate predictions resulting from a model. 289 

2.5.1 Estimating plume masks 290 

Estimating the mask of a methane plume involved using a similar architecture to a UNet model (Ronneberger et 291 

al., 2015) (Figure 3). UNet models consist of two paths; the first is the encoder, which captures the context in the 292 

image and is composed of convolutional and max pooling layers. The second path is the decoder, which enables 293 

localisation of the features captured by the encoder and consists of convolutional and upsampling layers 294 

(Ronneberger et al., 2015). In our model architecture, there is an additional 1×1 convolutional layer with 64 filters 295 

at the beginning because methane plumes are associated with anomalies in certain SWIR bands of the PRISMA 296 

imagery. This additional convolution makes the network pay closer attention to individual pixel values in the 297 

satellite data rather than focussing more on the shapes present in the image. Methane does not absorb in the visible 298 

bands; thus, the inclusion of the visible bands helps the neural network to distinguish between plume and non-299 

plume by providing information on the background of the image. Methane plumes can be identified based on the 300 

typical spatial structures that form as a result of turbulence and advection in the atmosphere, as well as the 301 

variations in methane-absorbing bands compared with the background landscape. It is the latter reason why an 302 

additional 1×1 convolutional layer was deemed to be helpful in improving the accuracy of the model. 303 

 304 
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 305 
Figure 3: Architecture of the deep neural network for the UNet portion of the model. 1 × 1 conv, 64 refers to a 306 
convolutional filter with kernel size 1 × 1 and 64 filters. Batch Norm refers to a batch normalisation layer, Concat 307 
refers to a concatenation between the inputs to that layer, 2 × 2 Max pool refers to a max pooling layer with pool size 308 
2, and 2 × 2 up sample refers to upsampling layer with size 2. ReLU and sigmoid refer to the Rectified Linear Unit and 309 
sigmoid activation functions respectively. 310 

2.5.2 Estimating methane column enhancements inside plumes 311 

Estimating the methane column enhancement within the plumes predicted in section 2.4.1 uses a concatenation 312 

of the input image and the mask predictions. This step to aid the estimation of methane concentrations is necessary 313 

because the vast majority of pixels do not contain a plume (a zero-inflated regression problem). Such problems 314 

often have the issue that the model will converge at predicting zeros everywhere. Thus, the inclusion of the mask 315 

prediction helps to prevent this. The ensuing model is composed initially of a 1×1 convolutional layer for a similar 316 

reason as its inclusion in the UNet model (see section 2.5.1). Following on from this are 2 ResNet layers (He et 317 

al., 2016), which are characterised by double-layer skip connections, ReLU activation functions, and batch 318 

normalisation (Figure 4). A ResNet architecture was selected for this portion of the model as it is known to be 319 

lightweight and powerful at regression predictions in computer vision. 320 

 321 
Figure 4: Architecture of the deep neural network for the ResNet portion of the model. 1 × 1 conv, 64 refers to a 322 
convolutional filter with kernel size 1 × 1 and 64 filters. Batch Norm refers to a batch normalisation layer and Concat 323 
refers to a concatenation between the inputs to that layer. ReLU refers to the Rectified Linear Unit activation function. 324 

2.5.3 Estimating emission rate of plumes 325 

The prediction of the whole image binary classification of plume/not plume involved an architecture identical to 326 

the one presented in this section (except the final activation layer was sigmoid, not ReLU). The inputs to the 327 
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emission rate portion of the model are the outputs from all the previous stages of the model concatenated with the 328 

input image. The outputs of the mask prediction and whole image binary segmentation are continuous between 0 329 

and 1. The majority of the methane concentration output is also in this range because the methane concentration 330 

ground truth was pre-processed via min-max normalisation (to optimise training time). This is to ensure that more 331 

information is available to the model to accurately estimate emission rates. Following on from this is the 1×1 332 

convolutional layer, which was included for the same reason as in the previous stages of the model (see section 333 

2.5.1). This is followed by the encoder part of the model, in which a convolutional layer is followed by batch 334 

normalisation, ReLU activation, and max pooling, which is done 7 times with increasing filters every 2nd loop. 335 

These layers encode features about the methane plumes and reduce the dimensionality of the tensors. Finally, 336 

there is a dense layer and ReLU activation to collect all information obtained and output a single floating-point 337 

number as the predicted emission rate (Figure 5). 338 

 339 
Figure 5: Architecture of the deep neural network for the emission rate prediction of the model. 1 × 1 conv, 64 refers 340 
to a convolutional filter with kernel size 1 × 1 and 64 filters. Batch Norm refers to a batch normalisation layer, Concat 341 
refers to a concatenation between the inputs to that layer, and 2 × 2 Max pool refers to a max pooling layer with pool 342 
size 2. ReLU refers to the Rectified Linear Unit activation function. 343 

3 Results 344 

3.1 Application of neural network to simulated plumes 345 

The total training/validation dataset consisted of 9700 images, 80% of which were reserved for training and the 346 

remaining 20% for validation. After each iteration of the model through the training dataset (known as an epoch), 347 

the model was tested on the validation dataset. If the loss of the model when tested on the validation dataset was 348 

lower than the lowest loss previously recorded, the weights of the model were updated. Thus, at the end of the 349 

training procedure, the best model was saved. Each of the stages of the model depicted in Figure 2 were trained 350 

separately in descending order, where the weights of the other stages did not vary. This was done so that the most 351 

accurate predictions were being produced from the earlier layers so that no errors from insufficient training would 352 

propagate through the model because the outputs are concatenated with the satellite data in later parts of the model. 353 
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Once training was complete, the model was tested on an additional 2000 images not seen during training sampled 355 

randomly from a uniform distribution of emission rates from 500 to 10 000 kg hr-1. 36 out of the 2000 images had 356 

a maximum methane concentration under the 4×1018 molecules cm-2 threshold imposed during training, however 357 

they were still included in the testing to determine if they could still be detected by the model. The model is able 358 

to accurately locate and identify the shape of methane plumes in the test dataset (Figure 6). 359 

  360 
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 361 

 362 
Figure 6: Example images and predictions taken from the test dataset. Images are 3840 × 3840m composed of 128 × 363 
128-pixel tiles. True emission rates and initial wind speeds are (a) 8068 kg hr-1 , 1 ms-1, (b) 1484 kg hr-1 , 1 ms-1, (c) 7673 364 
kg hr-1 , 5 ms-1, (d) 6270 kg hr-1 , 4 ms-1. Retrieved methane comes from the retrieval described in section 2.2. RGB 365 
image courtesy of PRISMA © (Italian Space Agency). 366 

The average methane column enhancement in the images was well estimated, where average estimated methane 367 

was closely correlated with the ground truth (Figure 7) with a tendency to slightly overestimate column values. 368 

This is possibly because predicted methane masks were generally smaller than the true masks, so during training, 369 

the methane concentration model overpredicted the centre of the plumes to compensate. 370 

 371 
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Figure 7: Scatter Plot of mean methane concentration predicted vs true. The true (predicted) average methane 372 
concentration was calculated from the average inside the true (predicted) plume. 373 
 374 
In the whole image binary classification part of the model, we assess its success using the F1-score, precision and 375 

recall, which are defined as follows: 376 

F1 = TP/(TP+0.5*(FP+FN)),         (6) 377 

Precision = TP/(TP+FN),          (7) 378 

Recall = TP/(TP+FP),          (8) 379 

 380 

In the whole image binary classification part of the model, the F1-score, precision, and recall were 0.95, 0.96 and 381 

0.92, respectively (Table 1). These statistics come from predictions made on the 2000 images with plumes in, as 382 

well as an additional 1533 images with no plumes. 383 

 384 
Table 1: Confusion matrix of whole image binary classification portion of the model broken down per image. 385 

 Plume present No plume present 

Predicted plume 1846 51 

Predicted no plume 154 1482 

The distributions of the scene noise and methane concentrations in the cases where no plume was predicted but a 386 

plume was present (false negative) reveal slightly lower than average scene noise and much lower than average 387 

maximum methane concentration (Table S2). However, in the cases where a plume was predicted but no plume 388 

was present (false positive), scene noise is not noticeably different (Table S2). 389 

 390 

 

Slope = 1.2 
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The actual vs predicted emission rate has a slope of 0.83 with a relatively small spread about the line of best fit 391 

(std = 1447 kg hr-1). This means that there is a tendency for underestimating emissions with a mean absolute 392 

percentage error in emission rate of 23.7% (Figure 8). Underpredictions are common in regression models 393 

especially when data points with zeros are included such as in this case because the model was trained on images 394 

without plumes as well as those containing plumes. This was a necessary step, however, because the model did 395 

not converge so well without these images and predictions were far worse at lower emission rate ranges. 396 

 397 
Figure 8: Actual vs predicted emission rate using the deep learning model. Line of best fit calculated using Huber loss 398 
so outliers do not have an inordinate influence on the slope. 399 

The absolute emission rate error increased in magnitude as the emission rate increased (Figure 8), as one might 400 

expect. The percentage error was largest in magnitude for the smallest emission rates (500-999 kg hr-1), but the 401 

distribution remained relatively consistent above 2000 kg hr-1, with a median error of 25% and interquartile range 402 

of 40% error (Figure 9). The error in percentage emission rate had a positive bias for emission rates under 1000 403 

kg hr-1 and a negative bias for emission rates over 2000 kg hr-1 (Figure 9). 404 

 405 

  

Slope=0.83 
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 406 
Figure 9: Error in emission rate predictions from the deep learning model as a function of true emission rate. Positive 407 
values indicate predicted emission rates being larger than true emission rates. Top panel shows absolute emission rate 408 
error and bottom panel shows percentage emission rate error. 409 

3.2 Application to real-world images 410 

The model was then tested on 40 PRISMA scenes obtained during 2020-2022 in the Korpeje oil field, 411 

Turkmenistan (37.9˚N, 53.2˚E - 39.4˚N, 55.2˚E), a well-studied area with frequent methane point source emissions 412 

plumes (Irakulis-Loitxate et al., 2022). The images were normalised in the same way that the training, test, and 413 

validation images were. 21 plumes were identified using the neural network from 15 different scenes with 414 

predicted emission rates ranging from 1112-7615 kg hr-1 (Figure 10; Table S3).  415 

  416 
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  417 
Figure 10: Images of plumes detected by the neural network in the Korpeje oil field, Turkmenistan. Left panels depict 418 
physics-based methane retrievals, middle panels depict the RGB of the image, and the right panel depicts the mask 419 
prediction by the neural network. The predicted emission rates are (top) 7615 and (bottom) 2370 kg hr-1. RGB image 420 
courtesy of PRISMA © (Italian Space Agency). 421 

  422 

Methane plume detection capability using the neural network was compared with using clustering and 423 

thresholding techniques. The DBSCAN clustering technique was used to estimate clusters based on the output 424 

from the PCA retrieval method (see section 2.2). Out of the 21 plumes, 14 were found using the clustering and 425 

thresholding approach. The neural network model took roughly 1 minute to make predictions of plume masks, 426 

methane concentrations, and emission rates of located plumes in an image of 1000 × 1000 pixels (900 km2 area) 427 

without the need for time-consuming human inspection typically needed for classical clustering approaches. 428 

4 Discussion 429 

Reduction of methane emissions and hence identification of high emitters can have a considerable influence over 430 

the Earth’s surface radiation budget and hence our efforts to mitigate climate change. Methods utilising classical 431 

approaches have had some success in detecting fossil fuel methane point sources and estimating their emissions, 432 

but the errors are high (roughly 50% mean absolute error for emission rate predictions) if no accurate local wind 433 

speed information is available and often time-consuming human judgement is necessary to separate plumes from 434 

surface effects. Within the pseudo-observation dataset produced in this study, only one quarter of the images were 435 

deemed suitable to be analysed via visual inspection after using clustering algorithms. This was due to interference 436 

effects from surface features and demonstrates the limitation of this approach for detecting methane point source 437 

emissions. In comparison, only 7.7% of the pseudo-observations were undetected by the neural network (Table 438 

1). The binary prediction neural network presented in this study was able to accurately locate simulated methane 439 

point source plumes. From testing the neural network on a variety of images with and without simulated plumes, 440 

it achieved a precision and recall of 0.96 and 0.92, respectively. The estimates of emission rate did not require 441 

wind speed information, which is a major source for uncertainty in emission estimates in conventional approaches 442 
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such as the IME method, and had an average error of 23.7%, which is considerably lower than that obtained from 443 

our classical method. The emission rate prediction error could possibly be further reduced with training on a larger 444 

dataset. 445 

 446 

The approach used in this study differs from the approach by Jongaramrungruang et al. (2022), who directly 447 

predicted the emission rate from the satellite data without first estimating the plume mask. However, we found 448 

that excluding these stages dramatically worsened the model prediction, where the error in emission rate was 449 

greater than 50%. The model architecture presented here utilises the maximum amount of information available 450 

from the training data. Possible explanations for why the model from Jongaramrungruang et al. (2022) was 451 

nevertheless successful could include the large training data volume available in their study (in the order of 452 

hundreds of thousands of images), which is an order of magnitude larger than that available in this study. This 453 

larger training volume may have enabled the neural network to make the link between plume shapes and emission 454 

rates. In addition, the spectral and spatial resolution of the aircraft imagery used in their study (AVIRIS-NG) is 455 

substantially higher than that of PRISMA. Finally, the input bands for this study totalled 38, whereas in the study 456 

of Jongaramrungruang et al., (2022), only 1 band was sufficient due to the low noise in the signal in the AVIRIS-457 

NG data and high methane absorption in that band. Thus, it may have been easier for their neural network to learn 458 

features in the image due to lower noise present. 459 

 460 

When producing the training data labels for plume masks, a constant threshold was chosen for what methane 461 

concentration constitutes a plume. However, the minimum methane concentration that is detectable likely varies 462 

depending on scene noise and brightness. Thus, more work is necessary to quantify the most appropriate threshold. 463 

However, precise estimates of the edges of a plume are of lesser importance than the initial identification of a 464 

plume and its corresponding emission rate. Additional improvements could be made with a larger volume, and 465 

greater variety of scenes used in training. This would greatly improve the performance of the model in different 466 

surface types and atmospheric conditions. 467 

 468 

There is a noticeable bias present in the emission rate prediction errors (Figure 8; Figure 9) which was also evident 469 

in the study by Jongaramrungruang et al. (2022). This bias should be rectified, and future work is needed in fine 470 

tuning the neural network training procedure to do so. Such adjustments could include modifying the emission 471 

rate loss function or the model architecture. The model was trained only on images with a single methane point 472 

source; thus, the model is not able to discriminate between emissions from different sources within a single 128 473 

× 128-pixel image. The solution to this would be to add in training data with multiple sources and solve the 474 

instance segmentation problem using an appropriate architecture, such as Mask-RCNN (He et al., 2020). It is 475 

likely that the errors would be larger in general when using this approach owing to the increased noise present. 476 

Nevertheless, the key advantage of this approach is the speed with which methane plumes can be identified with 477 

little specialist training necessary. 478 
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5 Conclusions 479 

In this study, we present a novel deep neural network model for identifying and quantifying methane point source 480 

emissions from PRISMA satellite data. PRISMA data has sufficient spectral and spatial resolution to identify 481 

methane plumes, while still having considerable spatial coverage and is still in operation today. These factors 482 

make PRISMA an ideal tool for methane detection and the deep neural network developed here has great potential 483 

to impact climate mitigation efforts. The model proved successful with both identification and quantification but 484 

biases were present in the predictions. Rapid identification and quantification of methane point sources is a vital 485 

contribution to climate change mitigation, and the approach outlined here opens the door to the capability to 486 

automate methane plume detection. Our model was able to produce predictions on an area of 900 km2 over real 487 

PRISMA images in less than a minute. Such a capability would vastly reduce the time and costs associated with 488 

reducing anthropogenic methane emissions. 489 
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