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Abstract 1 

Plant functional types (PFTs) are used to represent vegetation distribution in land surface models 2 

(LSMs). Previous studies have shown large differences in the geographical distribution of PFTs 3 

currently used in various LSMs, which may arise from the differences in the underlying land 4 

cover products but also the methods used to map or reclassify land cover data to the PFTs that a 5 

given LSM represents. There are large uncertainties associated with existing PFT mapping 6 

methods since they are largely based on expert judgment and therefore are subjective. In this 7 

study, we propose a new approach to inform the mapping or the cross-walking process using 8 

analyses from sub-pixel fractional error matrices, which allows for a quantitative assessment of 9 

the fractional composition of the land cover categories in a dataset. We use the Climate Change 10 

Initiative (CCI) land cover product produced by the European Space Agency (ESA). Previous 11 

work has shown that compared to fine-resolution maps over Canada, the ESA-CCI product 12 

provides an improved land cover distribution compared to that from the GLC2000 dataset 13 

currently used in the CLASSIC (Canadian Land Surface Scheme Including Biogeochemical 14 

Cycles) model. A tree cover fraction dataset and a fine-resolution land cover map over Canada 15 

are used to compute the sub-pixel fractional composition of the land cover classes in ESA-CCI, 16 

which is then used to create a cross-walking table for mapping the ESA-CCI land cover 17 

categories to nine PFTs represented in the CLASSIC model. There are large differences between 18 

the new PFT distributions and those currently used in the model. Offline simulations performed 19 

with the CLASSIC model using the ESA-CCI based PFTs show improved winter albedo 20 

compared to that based on the GLC2000 dataset. This emphasizes the importance of accurate 21 

representation of vegetation distribution for realistic simulation of surface albedo in LSMs. 22 

Results in this study suggest that the sub-pixel fractional composition analyses are an effective 23 
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way to reduce uncertainties in the PFT mapping process and therefore, to some extent, objectify 24 

the otherwise subjective process.  25 

 26 

1. Introduction 27 

Land cover is a critical component of the earth system that affects the exchange of energy, water, 28 

and carbon between the land surface and the atmosphere (Pielke et al., 1998; Sterling et al., 29 

2013). Accurate representation of global land cover (LC) is important for land surface models 30 

(LSMs) which provide the lower boundary conditions to the atmosphere in numerical weather 31 

forecasting, climate, and earth system models (ESMs). Plant functional types (PFTs) are groups 32 

of plant species that share similar structural, phenological, and physiological traits, and have 33 

been commonly used in LSMs to represent vegetation distribution. This simplification has 34 

allowed the simulation of structural attributes of vegetation dynamically within ESMs (Arora & 35 

Boer, 2010; Bonan et al., 2003; Krinner et al., 2005). In order to improve the representation of 36 

ecosystem ecology and vegetation demographic processes within ESMs, both species-based and 37 

trait-based models have been attempted in LSMs (Fisher et al., 2018; Zakharova et al., 2019).  38 

However, these individual-based models are computionally too expensive to model 39 

biogeochemical processes, especially photosynthesis and the carbon cycle at the global scale 40 

(Bonan et al., 2002; Smith et al., 1997; 2001). As a compromise, “cohort-based” models have 41 

been developed where individual plants with similar properties (size, age, functional type) are 42 

grouped together and have been implemented in some ESMs (Fisher et al., 2018). Though there 43 

are limitations in PFTs-based models (Scheiter et al., 2013; Zakharova et al., 2019), PFTs are 44 

commonly used in LSMs that participate routinely in the Global Carbon Project (Friedlingstein 45 
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et al., 2020) and in ESMs that participate in the Coupled Models Intercomparison Project (CMIP, 46 

Wang et al., 2016).  47 

There are three approaches for modeling PFTs: (1) static, where the fractional coverage of PFTs 48 

is prescribed and does not vary through time; (2) forced, where the fractional coverage of PFTs 49 

is still prescribed but vary through time based on scenarios of land cover/land-use change; and 50 

(3) dynamic, where the fractional coverage of PFTs is simulated dynamically with competition 51 

for available space and resources between PFTs (Fisher et al., 2018; Melton and Arora, 2016). 52 

The number and type of PFTs used in each LSM differ. Global land cover datasets are typically 53 

used to derive the fractional coverage of PFTs for use in LSMs. However, large differences exist 54 

in both the fractional coverage and the geographical distribution of PFTs, which are caused by 55 

differences in the LC datasets themselves but also due to the methods used to map LC datasets to 56 

the PFTs represented in various models (Fritz et al, 2011; Hartley et al., 2017; Ottle et al., 2013; 57 

Wang et al., 2016). 58 

Since different PFTs are characterized by different physical and biogeochemical processes and 59 

parameter values, the spatial distribution and fractional cover of PFTs constitute one of the 60 

important geophysical fields that are required for realistic simulation of carbon, water, and 61 

energy budgets in LSMs (Arora and Boer, 2010; Betts, 2001). For example, the surface 62 

roughness for short or tall vegetation is very different, which affects simulated turbulent 63 

exchanges. The surface albedos for needleleaf evergreen trees, broadleaf deciduous trees, and 64 

grasslands are also very different, especially during winter when deciduous trees are leafless and 65 

short vegetation is largely buried by snow (Bartlett and Verseghy, 2015; Moody et al., 2007). 66 

Wang et al. (2016) found that the bias in winter albedo in selected boreal forest regions among 67 

the CMIP5 models was largely related to biases in leaf area index (LAI) and tree cover fraction. 68 
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Model experiments using the MPI-ESM by Georgievski and Hagemann (2019) suggested that 69 

uncertainties in vegetation distribution may lead to noticeable variations in near-surface climate 70 

variables and large-scale circulation patterns.  71 

The Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) is an open-72 

source community land model that is designed to address research questions that explore the role 73 

of the land surface in the global climate system (Melton et al., 2020). It is the successor to the 74 

coupled modelling framework based on the Canadian Land Surface Scheme (CLASS; Verseghy, 75 

1991; 1993) and the Canadian Terrestrial Ecosystem Model (CTEM; Arora and Boer, 2005; 76 

Melton and Arora, 2016). The physics and biogeochemistry modules of CLASSIC are based on 77 

CLASS and CTEM models, respectively. Since the development of CTEM in the early 2000s, 78 

the GLC2000 LC product has been used to specify the spatial distribution of PFTs for CLASSIC 79 

when employed as the land surface component of the Canadian Earth system model developed 80 

by Environment and Climate Change Canada (Arora et al., 2009; Wang et al., 2006). The 81 

Climate Change Initiative (CCI) LC product recently produced by the European Space Agency 82 

(ESA) is available at an annual temporal resolution for the period 1992 to 2018 at 300 m spatial 83 

resolution (ESA, 2017). It was produced based on broad user consultation, specifically to address 84 

the needs of the climate modelling community (Bontemps et al., 2012). Wang et al. (2019) 85 

showed that when compared to the finer resolution maps over Canada, the 300 m ESA-CCI 86 

product provides much improved LC distribution over Canada compared to that from the 1 km 87 

GLC2000 dataset.  88 

To map LC classes to PFTs, a cross-walking table (CW-table) is usually created to assign 89 

fractions of each LC class to the different PFTs, such that the sum of the fractions for each class 90 

is always one (including fractions of water and bare ground). Previous methods for creating such 91 
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CW-tables are mainly based on LC class descriptions, expert knowledge, and the spatial 92 

distribution of global biomes (Ottle et al., 2013; Poulter et al., 2011; 2015; Sun and Liang, 2007; 93 

Wang et al., 2006). Because LC maps only provide the types of vegetation, and each class can be 94 

associated with a broad range of fractional cover of either one or more vegetation types, there are 95 

large uncertainties associated with any cross-walking or reclassification process. Wang et al. 96 

(2019) reclassified the 10 PFTs in the default CW-table provided in the ESA-CCI LC product 97 

user manual (Table 7-2, ESA, 2017) into  PFTs represented in the CLASSIC model, and 98 

compared them with those based on the GLC2000 dataset. The results suggest that uncertainties 99 

in the CW-tables were a major source of large differences in the PFT distributions. In addition, 100 

the fractional coverage of tree PFTs based on the default CW-table for the ESA-CCI LC dataset 101 

was overestimated along the taiga-tundra transition zone in western Canada, which led to 102 

underestimation in winter albedo in CLASSIC offline simulations driven with observation-based 103 

reanalysis data (Wang et al., 2018).  104 

The objective of this study is to develop a new CW-table for reclassifying the ESA-CCI LC 105 

classes into PFTs represented in the CLASSIC model over the model’s Canadian domain, and to 106 

compare and assess the performance of CLASSIC offline simulations using the new and existing 107 

PFT distributions. Given the close link between the bias in winter albedo and the vegetation 108 

distribution in the models (Wang et al., 2016), our assessment of model performance focuses on 109 

the simulated surface albedo during the maximum snow accumulation period (February–March 110 

for the boreal forest). This simplifies our analyses by excluding the fall/spring transition periods 111 

when biases in snow accumulation and melt timing can have a large influence on surface albedo 112 

simulated by LSMs (Wang et al., 2014). In addition, we extend the CW-table for the ESA-CCI 113 

LC dataset to the global domain. A comprehensive assessment of the impact of the PFT 114 
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distribution based on the new CW-table and the ESA-CCI LC dataset on the performance of the 115 

CLASSIC model at the global scale is presented in Arora et al. (2022). 116 

2. Data and the CLASSIC model 117 

2.1 The Hybrid LC map over Canada 118 

The United States Geological Survey archive of Landsat imagery has provided open and free 119 

access to georeferenced and spectrally corrected analysis-ready imagery (Wulder et al., 2012), 120 

which makes it possible to generate time series of LC maps to study LC change. Recently two of 121 

these products based on Landsat imagery were generated over Canada, including the North 122 

America Land Change Monitoring System (NALCMS) LC dataset (Latifovic et al., 2017) and 123 

the Virtual Land Cover Engine (VLCE) framework-generated LC dataset (Hermosilla et al., 124 

2018). 125 

Based on the random forest algorithm and local optimization method, the Canada Centre for 126 

Remote Sensing has generated the NALCMS LC maps of Canada for the years 2010 and 2015 at 127 

30 m resolution using Landsat imagery (Latifovic et al., 2017). These LC products are the 128 

Canadian contribution to the 30 m resolution 2010/2015 LC map of North America to the joint 129 

collaborative effort by the Mexican, American, and Canadian government institutions under the 130 

NALCMS umbrella. The NALCMS LC map has 19 classes based on the United Nations Land 131 

Cover Classification System (LCCS; Di Gregorio, 2005). Assessment based on reference 132 

samples showed an overall accuracy of 76.6% for the year 2010 data (Latifovic et al., 2017), 133 

which is used in this study.  134 

VLCE is an automated framework to enable change-informed annual LC mapping using time 135 

series of Landsat surface reflectance. Temporally consistent annual LC maps representative of 136 
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Canada’s forested ecosystems from 1984 to 2012 were generated using the VLCE framework, 137 

characterizing LC dynamics following wildfire and harvesting events by Hermosilla et al. 138 

(2018). The VLCE maps have 12 LC classes in a hierarchical classification structure following 139 

that of the National Forest Inventory. Assessment based on reference samples showed an overall 140 

accuracy of 70.3% for the map of the year 2005 (the year with the greatest number of reference 141 

samples; Hermosilla et al., 2018). Land cover data from the year 2010 are used in this study.  142 

Overall, the 19-class NALCMS product presents a more detailed LC distribution than the 12-143 

class VLCE map over Canada. For example, areas classified as “Exposed/Barren lands” in the 144 

VLCE map correspond to either “Sub-polar or polar grassland-lichen-moss”, “Sub-polar or polar 145 

barren-lichen-moss”, or “Barren lands” in the NALCMS map. Areas of cropland are not 146 

separated from grassland in the VLCE map. A recent study showed that the wetland class in 147 

NALCMS suffers from large uncertainty in forest cover mapping because treed-wetland was not 148 

separated from herbaceous wetland in its legend (Wang et al., 2019). To take advantage of both 149 

datasets, we created a hybrid product by combining them through the following steps: (1) 150 

Reproject the VLCE data from its Lambert Conformal Conic projection to the same Lambert 151 

Azimuthal Equal Area projection that is used for the NALCMS data; (2) Replace pixels 152 

classified as “Exposed/Barren lands” and “Bryoids” in the VLCE data with the more specific LC 153 

classes from the NALCMS data; (3) Replace pixels classified as “Herbs” in the VLCE data with 154 

the “Cropland” class in the NALCMS data (remains “Herbs” if not classified as “Cropland” in 155 

NALCMS); (4) and merge the rest of LC classes from NALCMS to the corresponding classes in 156 

the VLCE data. There are a total of 17 classes in this new hybrid product, which we will 157 

henceforth refer to it as the Hybrid LC dataset and is shown in Figure 1.  158 

2.2 The global LC products 159 
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The GLC2000 dataset was generated from SPOT/VEG data collected from November 1999 to 160 

December 2000 at 1 km resolution (Bartholomé and Belward, 2005). It was produced by 21 161 

separate regional expert groups using an unsupervised image classification method. Based on the 162 

LCCS, the regional products were merged into one global product with a generalized LCCS 163 

legend of 22 classes. Assessment based on a random sampling of reference sites globally 164 

estimated an overall accuracy of 68.6% for the GLC2000 product (Mayaux et al., 2006). 165 

The annual ESA-CCI LC data at 300 m resolution are available for the period 1992-2018, which 166 

were generated from baseline data and annual LC changes (ESA, 2017). The baseline data were 167 

generated using a combination of machine learning and unsupervised image classification 168 

methods from the entire archive of ENVISAT/Medium Resolution Imaging Spectrometer for the 169 

period of 2003-2012. The annual LC changes were detected at 1 km resolution from the 170 

Advanced Very High Resolution Radiometer time series between 1992 and 1999, SPOT/VEG 171 

time series between 1999 and 2013, and the PROBA-V time series between 2013 and 2018. 172 

Based on the LCCS legend, the ESA-CCI LC data have 22 level 1 classes, and 15 level 2 sub-173 

classes. Assessment based on the GlobCover validation database estimated an overall accuracy 174 

of 71% for the ESA-CCI LC product (ESA, 2017). 175 

2.3 Other datasets 176 

Airborne Lidar has been used to monitor forests since the 1980s and is well suited to estimate 177 

vegetation height, volume, and biomass (Hopkinson et al., 2006; Wulder et al., 2008). Vegetation 178 

cover percentage for canopy height above 2 m from airborne Lidar data are used to estimate the 179 

fraction of tall versus low vegetation for LC classes with a mix of woody and herbaceous 180 

vegetation in this study. The Lidar data were collected along 34 survey flights across the boreal 181 
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forest of Canada in the summer of 2010 by the Canadian Forest Service (Wulder et al., 2012). A 182 

25 by 25 m tessellation was generated with the approximately 400 m wide Lidar swath, with 183 

each cell treated as an individual Lidar plot.  184 

A tree cover fraction (TCF) dataset for 2010 is also used in this study (Hansen et al., 2013; 185 

hereafter the Hansen TCF dataset). It was based on Landsat images at 30 m resolution. In 186 

contrast to the discrete LC classification datasets (providing a certain number of LC classes) as 187 

described above, the Hansen dataset is a vegetation continuous field product (providing tree 188 

cover fractions from 0 – 100%), in which the satellite spectral information was used to estimate 189 

the TCF in each pixel using a regression tree algorithm (Hansen et al., 2002; 2010). This may 190 

better represent heterogeneous areas than is possible by discrete LC classification. Tree cover is 191 

defined to exist over pixels where canopy closure is observed for vegetation taller than 5 m in 192 

height. Forests are generally defined as woody vegetation taller than 3 m in the regional and 193 

global LC datasets. The different definitions of tree heights should not result in much difference 194 

in areas with mature forests, such as most boreal forests in Canada.  195 

Simulated surface albedo by the CLASSIC model in offline experiments is evaluated against the 196 

Moderate Resolution Imaging Spectroradiometer (MODIS) (MCD43C3) broadband (0.3–5.0 197 

μm) white-sky albedo (Schaaf et al., 2002), with quality flags of 0–2 (75% or more full 198 

inversions and 25% or fewer fill values) and solar zenith angles less than 70°. The MODIS 199 

albedo product used in this study is at 0.05 degree resolution, and is regridded to the 0.22 degree  200 

resolution used for the CLASSIC simulations (see Section 2.4.2).  201 

2.4 The CLASSIC model and simulation setup  202 

2.4.1 The CLASSIC model 203 
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CLASSIC is the successor to the coupled modelling framework based on the Canadian Land 204 

Surface Scheme (CLASS; Verseghy, 1991; 1993) and the Canadian Terrestrial Ecosystem Model 205 

(CTEM; Arora and Boer, 2005; Melton and Arora, 2016). The physics and biogeochemistry 206 

components of CLASSIC are based on CLASS and CTEM, respectively.  207 

For the physics component, the default model’s vegetation is represented in terms of the 208 

fractional coverage of the four PFTs (needleleaf trees, broadleaf trees, crops, and grasses). The 209 

physics component represents a single snow layer with variable depth and a single vegetation 210 

canopy layer. As a first-order treatment of subgrid-scale heterogeneity, each grid cell is divided 211 

up into four sub-areas, consisting of vegetated and bare soil areas, each with and without snow 212 

cover. The visible and near-infrared albedos of each PFT/vegetation category are specified.  213 

These albedos are further modified by taking into account the fraction of the ground that is seen 214 

from the sky above referred to as the sky view factor (which is modelled as a function of the leaf 215 

area index). The albedo of the ground that is seen from the sky above depends on if the ground is 216 

snow covered or not but also on the soil moisture of the top soil layer, since wet soil is darker 217 

than the dry soil. Canopy snow processes such as interception/unloading, sublimation, and melt 218 

are all simulated. The aggregated visible and near-infrared albedos for the bulk canopy are 219 

incremented using the current values weighted by the fractional coverage of the vegetation 220 

categories (Verseghy 1993). More details can be found in Appendix A. The overall surface 221 

albedo of a grid cell is computed as a weighted mean using the fractional coverages for the four 222 

sub-areas. Twenty ground layers represent the soil profile, starting with 10 layers of 0.1 m 223 

thickness. The thicknesses of the layers gradually increase to 30 m for a total ground depth of 224 

over 61 m. Liquid and frozen soil moisture contents, and soil temperature, are determined 225 

prognostically for permeable soil layers. 226 
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The biogeochemistry component of CLASSIC used here represents vegetation in terms of nine 227 

PFTs: Needleleaf Evergreen trees (NLE), Needleleaf Deciduous trees (NLD), Broadleaf 228 

Evergreen trees (BLE), Broadleaf Cold Deciduous trees (BCD), Broadleaf Dry Deciduous trees 229 

(BDD), C3 and C4 Crops (C3C/C4C), and C3 and C4 Grasses (C3G/C4G). These nine PFTs map 230 

directly onto the four PFTs used by CLASSIC’s physics component. When the physics and 231 

biogeochemistry components are coupled together, as in the case of simulations carried out in 232 

this study, the structural attributes of vegetation including leaf area index, canopy mass, rooting 233 

depth, and vegetation height are simulated dynamically as a function of environmental 234 

conditions by the biogeochemistry component. When the biogeochemistry component is turned 235 

off, specified structural attributes of vegetation for use by the physics component are extracted 236 

from look-up tables.  237 

2.4.2 Simulation set up 238 

Gridded meteorological data based on the Climatic Research Unit (CRU, 239 

https://crudata.uea.ac.uk/cru/data/hrg/) and Japanese reanalysis (JRA) (CRUJRA) are used to 240 

drive CLASSIC simulations. The data are constructed by regridding data from the JRA and 241 

adjusting where possible to align with the CRU TS 4.05 data. The blended product from January, 242 

1901 to December, 2020 has the 6-hourly temporal resolution of the reanalysis product but 243 

monthly means adjusted to match the CRU data (Harris, 2020).  The 6-hourly data are 244 

disaggregated on-the-fly within CLASSIC into half-hourly data following the methodology by 245 

Melton and Arora (2016) for the following seven meteorological variables that are used to force 246 

the model: 2 m air temperature, total precipitation, specific humidity, downward solar radiation 247 

flux, downward longwave radiation flux, surface pressure, and wind speed. Surface temperature, 248 

surface pressure, specific humidity, and wind speed are linearly interpolated. Long-wave 249 
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radiation is uniformly distributed across a 6-hour period, and shortwave radiation is diurnally 250 

distributed over a day based on a grid cell’s latitude and day of year with the maximum value 251 

occurring at solar noon. Precipitation is treated following Arora (1997), where the total 6-hour 252 

precipitation amount is used to determine the number of wet half hours in a 6-hour period. The 6-253 

hour precipitation amount is then spread randomly, but conservatively, over the wet half-hourly 254 

periods. In CLASSIC, the phase of precipitation is determined by a threshold surface air 255 

temperature with three options available (Bartlett et al., 2006). The 0°C air temperature threshold 256 

is used to partition precipitation into rain or snow in this study. This choice does not have a 257 

significant impact on the simulated surface albedo in CLASSIC escpecially during the February-258 

March months when the snow cover is near its maximum (Wang et al. 2014).  259 

Two simulations over the 1850-2020 historical period are performed using PFTs derived from 260 

the ESA-CCI and the GLC2000 datasets respectively, which is the only difference between the 261 

two simulations. Static PFTs are used in the simulations where the fractional coverage of PFTs is 262 

prescribed and does not vary through time. Besides land cover and meteorological forcings, 263 

CLASSIC requires globally averaged atmospheric CO2 concentration, and geographically 264 

varying time-invariant soil texture and soil permeable depth. The atmospheric CO2 concentration 265 

values are provided by the Global Carbon Project protocol 266 

(https://www.globalcarbonproject.org/index.htm). The soil texture information consists of the 267 

percentage of sand, clay, and organic matter and is derived from the SoilGrids250m dataset 268 

(Hengl et al., 2017), and permeable soil depth is based on Shangguan et al. (2017). The 269 

simulations are performed at a 0.22 degree rotated latitude-longitude grid over a domain 270 

including Canada and part of Alaska (Fig. 3). Pre-industrial simulations that correspond to the 271 

year 1850 are required prior to doing the historical simulations so that model’s carbon pools, 272 
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including leaf biomass which determines leaf area index, are spun up to near equilibrium for 273 

each land cover. The pre-industrial simulations use 1901-1920 meteorological data repeatedly 274 

with atmospheric CO2 concentration specified at its 1850 level. Each historical simulation is then 275 

initialized from its corresponding pre-industrial simulation after it has reached equilibrium (with 276 

carbon fluxes to conditions corresponding to the year 1850). For the period 1851-1900, the 277 

CRUJRA meteorological data for the first 20 years (1901-1920) are used repeatedly. For the 278 

1901-2020 period the meteorological data corresponding to each actual year are used. The period 279 

from 2001 to 2015 was selected for analyzing the simulated results.  280 

3. PFT mapping methods  281 

The CW-table for the ESA-CCI LC dataset is generated through a multi-step process that 282 

combines multiple land cover maps at different spatial and categorical resolutions with ancillary 283 

data on tree cover and vegetation height (Fig. 2). This includes the following steps: (1) 284 

combining two existing land cover maps (NALCMS and VLCE) to produce a harmonized 30 m 285 

land cover (Hybrid) map with improved categorical precision (as described in Section 2.1); (2) 286 

creating a CW-table for the Hybrid land cover map through a direct mapping of classes from the 287 

Hybrid map onto the CLASSIC PFTs, such that each land cover class corresponds to a particular 288 

mix of PFTs as represented in CLASSIC. This step is supported by vegetation height data from 289 

an airborne Lidar campaign over parts of Canada; (3) computing the sub-pixel fractional 290 

composition for classes in the ESA-CCI land cover map (300 m resolution) based on the 30 m 291 

Hybrid land cover dataset and the Hansen tree cover fraction dataset; (4) using the sub-pixel 292 

fractional composition analysis to create a CW-table for mapping the ESA-CCI land cover 293 

classes onto PFTs as represented in CLASSIC; and (5) since the ESA-CCI dataset is global, the 294 

CW-table developed over Canada is extended to the whole globe. 295 
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3.1 CW-table for mapping Hybrid LC classes to CLASSIC PFTs 296 

Among the nine CLASSIC PFTs, BLE and BDD forests are not present in Canada. These are 297 

primarily tropical PFTs as represented in CLASSIC. NLD accounts for less than 1% of 298 

coniferous forests in Canada (Wang et al., 2019). Therefore we do not consider NLD, BLE, and 299 

BDD from here on in this study. Considering the fine resolution (30 m) of the Hybrid map, 300 

especially relative to the model resolution (~16 km) used in this study, we assign fractions of 1.0 301 

to the two pure forest classes (LC210 and LC220), the cropland (LC15), and the five non-302 

vegetative classes (LC16 to LC32) in its CW-table (Table 1). The mixed-wood category (LC230) 303 

is split evenly into NLE and BCD in the table based on the definition in the VLCE legend 304 

(Hermosilla et al., 2018; Wulder et al., 2003). Note that in Table 1, broadleaf deciduous trees 305 

(BDD and BCD) are considered together and separated later into their cold and drought 306 

deciduous versions. Similarly, crops and grasses (C3 and C4) are considered together and 307 

separated later into their C3 and C4 varieties. The reason for this is that the separation of 308 

broadleaf trees into their cold and deciduous phenotypes is based on latitude (Wang et al., 2006). 309 

The separation of crops and grasses based on their photosynthetic pathway (C3 or C4) is done 310 

based on the C4 fraction from Still and Berry (2003), which is available at 1° resolution. 311 

CLASSIC explicitly represents shrub PFTs (Meyer et al., 2021), but this work does not use that 312 

model version, and therefore the fraction of tall shrubs is assigned to one of the tree PFTs as was 313 

done in creating the CW-table for GLC2000 for use with CLASSIC (Wang et al., 2006). Four 314 

(LC2 - Sub-polar taiga needleleaf forest, LC50 - Shrubland, LC80 - Wetland, and LC81- 315 

Wetland-treed) out of the 17 classes in the Hybrid map are characterized by a mosaic of trees, 316 

shrubs, and herbaceous vegetation. The vegetation coverage for canopy height above 2 m from 317 

Lidar plots is used to inform the partitioning of forest (tall vegetation) to non-forest (low 318 
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vegetation) fractions for these mixed classes. We overlay the Lidar plots on the Hybrid land 319 

cover map in ArcGIS. Samples (20 to 40, note that these classes do not cover large areas in 320 

Canada) for the four mixed classes in the Hybrid map are selected where there are Lidar data. 321 

The vegetation coverage data (for canopy height above 2 m) from Lidar plots for samples of each 322 

class are used to compute an average coverage of tall vegetation (> 2 m) for that class, which is 323 

then used to assign forest fractions for these four classes in Table 1.  324 

The distribution of tree species from Beaudoin et al. (2014) is used to guide the separation of 325 

coniferous versus broadleaf forest fractions. For example, for the Wetland-treed category 326 

(LC81), maps of tree species show that coniferous forests dominate wetland-treed regions, while 327 

broadleaf forests are generally non-existent. We, therefore, assign most of the forest fraction to 328 

NLE (0.55), only 0.05 to BCD, 0.35 to grasses, and the remaining to the bare ground for LC81 329 

(Table 1). The presence of evergreen shrubs is rare in Canada according to National Forest 330 

Inventory ground plots data (Gillis et al., 2005), thus we only assign an estimated tall shrub 331 

fraction (0.20) in the shrub class (LC50) to BCD. The sub-polar or polar classes (LC11 to LC13) 332 

are located above the treeline and mainly consist of low shrubs and grass. The fractions of grass 333 

(including low shrubs) and bare ground are based on field surveys of fractional vegetation cover 334 

and tundra PFT data in Bjorkman et al. (2018) and Macander et al. (2020) (by compuating the 335 

average fractions at the field sites which overlap with the sub-polar or polar classes in the 336 

Hybrid/NALCMS land cover map). High-resolution images from Google Earth engine or Bing 337 

Maps are also used to examine the ratio of vegetated versus bare ground for all classes in which 338 

bare ground is present. 339 

3.2. CW-table for mapping ESA-CCI LC classes to CLASSIC PFTs over Canada 340 
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3.2.1 The error and sub-pixel fractional error matrices 341 

A standard approach for the accuracy assessment of LC products is to use an error matrix. It is a 342 

square array or table of numbers arranged in rows and columns, in which the classification from 343 

the LC product (usually represented by the rows) is compared to the reference data (usually 344 

represented by the columns) for each category (Congalton, 1991). The major diagonal of the 345 

matrix presents the number of correct classifications indicating the agreement between the LC 346 

and the reference data for each category. In practice, fine-resolution regional maps are often used 347 

to assess large-scale LC products derived from coarse-resolution data (Cihlar et al., 2003). In 348 

such cases, the fine-resolution reference data are aggregated/regridded to match the grid of the 349 

coarse-resolution data. Several classes in the reference data may be present in a single coarse-350 

resolution pixel depending on the homogeneity of the landscape. In order to compare the 351 

reference and the LC data on a one-to-one basis, the dominant LC class (the class with the most 352 

abundant fractions based on all fine-resolution pixels in the reference data) is often assigned to 353 

the regridded reference pixel.   354 

The sub-pixel fractional error matrices have been introduced as a more appropriate way of 355 

assessing the accuracy of mixed pixels by Latifovic and Olthof (2004). In contrast with an error 356 

matrix where only the dominant LC class is used as described above, the sub-pixel fractional 357 

error matrix is produced by assigning sub-dominant LC classes from all fine-resolution pixels in 358 

the reference data to the corresponding single coarse-resolution pixel. It thus allows a 359 

quantitative assessment of the fractional composition of the LC classes in the coarse resolution 360 

dataset. In this study, both the 30 m Hansen TCF data and the 30 m Hybrid LC map are used to 361 

compute the sub-pixel fractional error matrices of the 300 m ESA-CCI dataset (Table 2 and 362 

Table 3). However, the objective here is not an accuracy assessment as in Latifovic and Olthof 363 
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(2004) but rather to obtain the fractional composition of the LC classes in the ESA-CCI product 364 

and to inform the PFT mapping process. We refer to this process as the sub-pixel fractional 365 

composition analyses in the rest of this paper. Sub-pixel fractional composition analyses is first 366 

performed for each ecozone and then weighted mean fractions for each ESA-CCI class are 367 

computed based on pixel counts in each of the ecozones (see the location of ecozones in Fig. 1). 368 

For the Hansen TCF data, results are shown only for the ESA-CCI LC classes containing forests 369 

in Canada (Table 2). In the ESA-CCI legend (Table 4), two sub-classes for broadleaf (LC61 and 370 

LC62) and needleleaf (LC71 and LC72) forests are included as the closed (>40% forest cover) 371 

and open (10-40% forest cover) categories apart from the main classes (LC60 and LC70, closed 372 

to open (>15%)). As expected, the TCF is larger for the closed classes than for the main and the 373 

open classes (Table 2). In Table 2, we also include ratios of TCF between the main class and the 374 

closed class, and between the open class and the closed class. We note that the ratios are 375 

different for broadleaf (main class vs. closed class: 68.5/86.7=0.8; open class vs. closed class: 376 

0.43/86.7=0.43) and needleleaf (main class vs. closed class: 39.3/61.7=0.6; open class vs. closed 377 

class: 23.2/61.7=0.38) forests, which need to be taken into account when creating the CW-table 378 

for the ESA-CCI dataset. 379 

To obtain representative class compositions of the ESA-CCI dataset, only homogenous ESA-CCI 380 

pixels are included in the sub-pixel composition analyses based on the Hybrid LC data. The 381 

homogenous pixels are defined following the method in Herold et al. (2008). To quantify 382 

landscape heterogeneity, 3×3 pixel neighborhoods are assessed for the ESA-CCI data. A 383 

neighborhood is considered homogenous if only one LC class is present. The weighted mean 384 

fraction for each class is computed from ecozones with more than 10 homogenous ESA-CCI 385 
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pixels for that class (Table 3). Only 13 out of the 37 ESA-CCI classes are included in Table 3, 386 

the rest of the classes either have limited presence in Canada or are non-vegetative (Table 4).  387 

In the Hybrid CW-table (Table 1), four LC classes (2, 81, 210, and 230) contribute to the 388 

fractional cover of NLE, and five LC classes (50, 80, 81, 220, and 230) contribute to the 389 

fractional cover of BCD. In Table 3, we also include an integrated fractional cover (F) for NLE 390 

and BCD (last two rows) for each of the ESA-CCI classes based on the following formula: 391 

                                                     F = ∑ 𝐹1𝑖 ∗ 𝐹2𝑖
𝑁
𝑖=1                                                   (1) 392 

Where 𝐹1𝑖 are fractions in Table 3, 𝐹2𝑖 are fractions in Table 1, and N is the number of Hybrid 393 

LC classes contributing to NLE (N = 4) or BCD (N = 5) as shown in Table 1. As an example, the 394 

fraction of NLE for the LC70 (Tree cover needleleaf evergreen closed to open) in ESA-CCI data 395 

in Table 3 (see the NLE row and the column for class 70) is obtained as follows: F = 0.02×0.20 + 396 

0.17×0.55 + 0.29×1.0 + 0.09×0.5 = 0.44. This process reduces the subjectivity in assigning the 397 

ESA-CCI land cover classes to CLASSIC’s two tree PFTs (NLE and BCD) that are present in 398 

Canada since the process is based on the high-resolution Hybrid LC data. 399 

3.2.2 CW-table for the ESA-CCI LC dataset over Canada 400 

Table 2 and Table 3 thus form the basis for creating the CW-table for mapping the ESA-CCI LC 401 

classes to CLASSIC’s PFTs (Fig. 2 and Table 4). For the ESA-CCI class LC61 (Tree cover 402 

broadleaved deciduous closed)  (not included in Table 3 due to limited presence in Canada), 403 

ratios of TCF for LC60 vs LC61 in Table 2 and the fractions of LC60 (Tree cover broadleaved 404 

deciduous closed to open) in Table 3 are used to derive fractions for LC61 in Table 4. The 405 

remapping of  LC62 (Tree cover broadleaved deciduous open) and LC72 (Tree cover needleleaf 406 

evergreen open) into CLASSIC’s PFTs is done in a similar way. Since NLD is not included in 407 



 

20 
 

either Table 2 or Table 3, the needleleaf deciduous tree cover classes (LC80-82) are assigned to 408 

the same fractions as the needleleaf evergreen tree cover classes (LC70-72). For simplicity, the 409 

fractions in Table 3 are rounded to values with either “0” or “5” at the hundredth place when 410 

used in Table 4. For the rest of the classes not included in either Table 2 or Table 3, values are 411 

based on the default CW-table from the ESA-CCI user guide (Table 7-2, ESA, 2017). The spatial 412 

distribution of LC classes is also taken into consideration when determining the fractions in the 413 

CW-table. For example, the sparse vegetation class (LC150) is mainly distributed above the 414 

treeline in alpine and Arctic tundra environments, thus we only assign 0.05 to BCD, the rest to 415 

C3G/C4G and bare ground (Table 4).  416 

The six CLASSIC PFTs (those present in Canada) are produced from the Hybrid and the ESA-417 

CCI maps based on Table 1 and Table 4 respectively. The PFTs from the Hybrid map are used as 418 

a reference here to map ESA-CCI land cover classes to CLASSIC’s PFTs. To make the spatial 419 

distribution of PFTs from ESA-CCI agree better with those from the Hybrid dataset, fractions for 420 

the following classes in Table 4 are adjusted upward by 0.05: LC60 from 0.65 to 0.70 for BCD; 421 

LC71 and LC81 from 0.80 to 0.85 for NLE; and LC120 from 0.10 to 0.15 for BCD. Values for 422 

LC10-20 are also slightly adjusted to reduce crop fractions.  423 

Based on Table 4, the fractional coverage of nine CLASSIC PFTs are also produced on a global 424 

scale and used in offline CLASSIC simulations in Arora et al. (2022), who carry out a 425 

comprehensive assessment of the impact of using two different LC datasets (ESA-CCI versus 426 

GLC2000) for representing the nine PFTs in the CLASSIC model. However, some adjustments 427 

to Table 4 are found to be necessary. This is because fractions of NLE (Needleleaf evergreen 428 

forests) in Eurasia are found to be too low relative to the Hansen TCF data, with maximum 429 

values only around 0.45 in most NLE dominated areas, where the maximum TCF from the 430 
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Hansen dataset is around 0.80. This indicates that the needleleaf evergreen forests classes (LC 431 

70-72) in the ESA-CCI map may represent different forest/tree cover fractions in Canada and 432 

Eurasia, which is confirmed by sub-pixel fractional composition analyses based on the Hansen 433 

TCF dataset. Details are presented in Appendix B.  434 

4. Results 435 

4.1 Comparison of PFTs from Hybrid, ESA-CCI, and GLC2000 data 436 

Figure 3 shows the spatial distribution of PFTs derived from the Hybrid, ESA-CCI, and 437 

GLC2000 LC datasets respectively. C4 crops (C4C) and grasses (C4G) are sparse in Canada as 438 

would be expected since C4 PFTs grow only in warmer temperatures when the average monthly 439 

temperature exceeds 22 °C (Fox et al., 2018). Based on the fractional distribution of C4 440 

vegetation in Still and Berry (2003) and the Hybrid map, the average fraction is 0.5% for C4 441 

crops and 0.1% for C4 grasses in Canada. Therefore, only four out of the six PFTs (those present 442 

in Canada) are shown in Figure 3. In general, the spatial distributions of the PFTs from the ESA-443 

CCI and the Hybrid datasets agree well except for C3 grasses (C3G) (Fig. 3j and Fig. 3k). This is 444 

not surprising given that the CW-table for the ESA-CCI dataset is based on the Hybrid map. 445 

Areas mapped as C3G in Hybrid (Fig. 3j), were mainly classified as sparse vegetation (LC150) 446 

in the ESA-CCI legend (Table 4). However, LC150 from ESA-CCI was also found in some areas 447 

of the high Arctic islands, where barren land is the dominant class in the Hybrid map (grey 448 

coloured areas in Fig. 1). If too much grass were assigned to LC150, it would yield 449 

unrealistically large fractional coverage of grass in the high Arctic islands. In Table 4, for 450 

LC150, 0.05 is assigned to BCD, 0.35 to grasses, and the rest to the bare ground for LC150, 451 

which yields a total vegetation cover of 40% and is more than the definition (<15% vegetation) 452 



 

22 
 

used in the ESA-CCI legend. Yet, this still results in less C3G and less bare ground in the ESA-453 

CCI map (Fig. 3k and Fig. 3n) than those from the Hybrid map (Fig. 3j and Fig. 3m).  This 454 

suggests that it is not ideal to classify areas in the high Arctic islands and in the Arctic tundra 455 

region as being in the same land cover category.   456 

There are large differences in the spatial distribution of the PFTs based on the GLC2000 LC 457 

product and those based on the Hybrid and ESA-CCI datasets (Fig. 3 and Fig. 4). Relative to 458 

PFTs from ESA-CCI, GLC2000 has less NLE and more BCD in northwestern Canada, and more 459 

NLE in southern and eastern Canada (Fig. 4a and Fig. 4b). GLC2000 based CLASSIC PFT 460 

fractions also exhibit more crops, less grass, and more bare ground (Fig. 4c-4e). These 461 

differences partly stem from the differences in the ESA-CCI and GLC2000 LC datasets, but are 462 

also due to the fact how the fractions in the CW-tables of the two datasets are used to translate 463 

LC data to fractional coverage of PFTs as demonstrated in Wang et al. (2019).  464 

4.2 Bias in simulated surface albedo and LAI  465 

The top row of Figure 5 shows the bias in winter albedo (March) simulated by CLASSIC when 466 

using PFT distributions based on the ESA-CCI (Fig. 5a) and GLC2000 products (Fig. 5b). While 467 

model biases are the result of both the driving geophysical and meteorological data that are used 468 

to force the model, as well as the model itself, the comparison between the two simulations does 469 

show the effect of differences in the distribution of PFTs.  Relative to observed surface albedo 470 

from MODIS, there are relatively large negative biases in the southwest of Hudson Bay and 471 

central Quebec, while there are relatively large positive biases in western Canada and Alaska in 472 

the simulation when using the  GLC2000 product to obtain PFT distributions (Fig. 5b). Both the 473 

negative and the positive biases are largely reduced in the simulation using PFT distributions 474 
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based on the ESA-CCI product (Fig. 5a). The lower row of Figure 5 shows the spatial 475 

distribution of the difference in surface albedo (Fig. 5c) and leaf area index (Fig. 5d) between the 476 

two simulations, which are closely correlated (r = -0.85). Given the same meteorological forcing 477 

dataset is used to drive both simulations, the differences in the simulated LAI are due mainly to 478 

the different PFT distributions used in the two simulations. Since NLE is the only PFT with 479 

LAI > 0 during winter in Canada, the LAI difference in March as shown in Figure 5d is mainly 480 

due to the different fractional coverage of NLE based on the ESA-CCI and GLC2000 products 481 

(Fig. 4a).       482 

In contrast, the large positive albedo biases (up to ~ 0.4) in southern Canada are more or less the 483 

same in both simulations (Fig. 5a and Fig. 5b), where the dominant PFT is C3 crops (Fig. 3h and 484 

Fig. 3i). Those positive albedo biases are likely due to the standing crop stubble and the lack of 485 

the representation of blowing snow and its sublimation currently  in CLASSIC (Harder et al., 486 

2018; Pomeroy et al., 1993). Harder et al. (2018) showed that the height of the stubble over 487 

wheat and canola field in Saskatchewan, Canada may range from 10 to 40 cm, with a maximum 488 

PAI (plant area index) of 1.0.  Wang et al. (2016) showed that surface albedo in CLASSIC  489 

decreased exponentially with increasing PAI for the bare or snow-covered canopy over snow, 490 

while most reductions of the albedo were achieved through the increase of PAI from 0 to 1.0. 491 

They showed that surface albedo decreased from 0.75 to 0.31 in CLASSIC when PAI increased 492 

from 0 to 1.0 for the bare canopy over snow, which appears to account for most of the positive 493 

albedo biases in the agricultural areas of southern Canada (Fig. 5a and Fig. 5b). Improvements to 494 

the crop module of CLASSIC to improve cropland albedo are currently being considered.  495 

5. Summary and conclusions 496 
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A hybrid land cover map at 30 m resolution is created by merging the NALCMS and VLCE land 497 

cover products over Canada. Vegetation height data from Lidar plots, tree species, and high 498 

resolution images are used to inform the creation of a CW-table for mapping the 17 LC classes 499 

of the Hybrid map to six CLASSIC PFTs that are present in Canada. Both the Hybrid map and 500 

the Hansen tree cover fraction data are used to compute the sub-pixel fractional composition of 501 

the LC classes in the ESA-CCI LC dataset, which is then used to create a cross-walking table for 502 

mapping the 37 ESA-CCI categories to CLASSIC PFTs over the model’s Canadian domain. 503 

Based on the new CW-tables, PFT distributions are produced from the Hybrid and the ESA-CCI 504 

LC products, respectively, and are compared with those based on the GLC2000 dataset currently 505 

used in CLASSIC. The results show that the spatial distribution of PFTs from the ESA-CCI 506 

dataset is in better agreement with those from the Hybrid map, while there are large differences 507 

in the PFTs from the GLC2000 dataset and from the Hybrid/ESA-CCI datasets. The CW-table 508 

developed over Canada is adjusted and also used to map PFTs based on the ESA-CCI LC 509 

product for use in CLASSIC simulations at the global scale. 510 

Our PFT mapping approach for the ESA-CCI dataset is mainly based on sub-pixel fractional 511 

composition analyses using the Hybrid map and the Hansen tree cover fraction data, and 512 

therefore the accuracy of the latter two datasets affects the PFT mapping process. Some LC 513 

categories in the ESA-CCI legend either have limited presence or no presence in Canada, such as 514 

the Needleleaf deciduous trees, Broadleaf Evergreen trees, and Broadleaf Dry Deciduous trees 515 

etc., and the sub-pixel fractional composition analyses therefore can not be performed for these 516 

LC categories. The needleleaf deciduous tree cover classes are assigned to the same fractions as 517 

the needleleaf evergreen tree cover classes in the CW-table, and values based on the default CW-518 

table from the ESA-CCI user guide are used for the other LC categories. Therefore potentially 519 
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large uncertainties may be associated with these classes in the resulting fractional coverage of 520 

PFTs especially at the global scale. Similar analyses for other regions (e.g. Eurasia and tropics) 521 

for which high quality regional land cover maps are available will be helpful in reducing these 522 

uncertainties in the future work. In addition, the exercise of mapping PFTs at the global scale in 523 

this study reveals that there are inconsistencies in the representation of fractional coverage for 524 

some LC categories in the ESA-CCI map for different regions of the globe. Future improvements 525 

in the consistency of the LC categories globally in the ESA-CCI LC product would greatly 526 

benefit the land surface and the earth system modelling community. In the meantime, caution 527 

should be exercised when using this product for mapping PFTs represented in any LSM based on 528 

a single cross-walking table at the global scale.  529 

CLASSIC simulations driven with meteorological data from the CRU-JRA product show that the 530 

simulated winter albedo is improved when using PFT distributions based on the ESA-CCI LC 531 

product compared to that based on the GLC2000 product, which is consistent with findings from 532 

previous studies. While, CLASSIC simulations could also have been performed using its PFT 533 

distributions based on the Hybrid LC product, the reason for using the ESA-CCI based PFT 534 

fractions for CLASSIC is that ESA-CCI is a global product. CLASSIC simulations are routinely 535 

performed at the global scale both in the framework of the Canadian Earth System Model (Swart 536 

et al., 2019), where CLASSIC serves as its land component, and offline where global CLASSIC 537 

simulations driven with the CRU-JRA meteorological data contribute to the annual global carbon 538 

budget assessments of the Global Carbon Project (Friedlingstein et al., 2020; Seiler et al., 2021). 539 

Untreated crop stubble appears to be contributing to the positive winter albedo biases in southern 540 

Canada, which needs to be addressed in a future version of CLASSIC. These results underscore 541 
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the importance of accurate representation of vegetation distribution in a realistic simulation of 542 

surface albedo in LSMs. 543 

Previous methods for mapping PFTs from LC datasets have mainly been based on class 544 

descriptions, expert knowledge, and the spatial distribution of global biomes, which is a largely 545 

subjective process. As a consequence, a PFT method developed for mapping one LC dataset to 546 

PFTs represented in one model can not be easily transferred to other LC datasets even for 547 

deriving PFTs in the same model. The development of satellite and computing technology has 548 

enabled the creation of more detailed global LC products at finer spatial resolutions in recent 549 

years, however, the lack of an objective PFT mapping method impedes the implementation of the 550 

new improved LC products in LSMs. Here, we have proposed a method to inform the cross-551 

walking process using sub-pixel fractional composition analyses based on a tree cover fraction 552 

dataset and a fine-resolution LC map. Our results suggest that the sub-pixel fractional 553 

composition analyses provide an effective way to reduce uncertainties in the cross-walking 554 

process and therefore, to some extent, objectifies the otherwise subjective process. The PFT 555 

mapping approach developed in this study can also be applied to other LC datasets for mapping 556 

PFTs used in other LSMs. 557 

 558 

Appendix A 559 

In CLASSIC, the surface albedo for a canopy over snow ( ) is: 560 

                            csnowsnowsnowcsnowc ff   111 ,                     (1) 561 

                                   χ = exp (–K*PAI)                                                                                       (2)  562 

 563 
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calculated using separate parameters (c, c,snow,c and K) for both the visible (VIS) and near 564 

infrared (NIR) bands, where c is the snow-free canopy albedo, c,snow the snow-covered canopy 565 

albedo, fsnow the fraction of the canopy with snow on it, snow the snowpack albedo. c is canopy 566 

transmissivity and is modeled using a Beer’s law approach, ignoring multiple reflections 567 

(Verseghy et al. 1993). K is an extinction coefficient that varies with vegetation type. The 568 

appearance of c in the last term of Eq.1 accounts for the shading of the snowpack by the canopy, 569 

converting the simulated snowpack albedo to an effective value of the canopy gaps. PAI is plant 570 

area index which is the sum of leaf area index and stem area index.  571 

 572 

Appendix B 573 

Based on Table 4, the fractional coverage of nine CLASSIC PFTs are also produced on a global 574 

scale. However, some adjustments to Table 4 were found necessary. This is because fractions of 575 

NLE (Needleleaf evergreen forests) in Eurasia are found to be too low relative to the Hansen 576 

TCF data, with maximum values of only around 0.45 in most NLE dominated areas, where the 577 

maximum TCF from the Hansen dataset is around 0.80. Needleleaf evergreen forests are 578 

represented by LC classes 70 (closed to open), 71 (closed), and 72 (open). Examining the ESA-579 

CCI LC map shows that in Eurasia nearly all needleleaf evergreen forests are classified as LC70 580 

(closed to open), with only less than 400 pixels as LC71 (closed), and none as LC72 (open). In 581 

contrast, in Canada 36% of needleleaf evergreen forest are classified as LC70 (closed to open), 582 

64% as LC71 (closed), and less than 1% as LC72 (open). This is understandable given that sub-583 

classes were only assigned where surface samples were available (ESA, 2017). Sub-pixel 584 

fractional composition analyses of the ESA-CCI classes based on the Hansen TCF dataset show 585 
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that in Eurasia TCF for LC70 (closed to open) is 66% and for LC71 (closed) is 35% (note the 586 

few pixels within this class). This is in contrast with those in Canada where the TCF for LC70 587 

( closed to open) is 39% and for LC71 (closed) is 62%, explaining the too low NLE fractions in 588 

Eurasia when mapping PFTs based on Table 4, and also the too high TCF in northwestern 589 

Canada when mapping PFTs based on the default CW-table (Wang et al., 2018). In order to 590 

apply Table 4 globally, the original LC70 (closed to open) was split into two classes: LC73 (a 591 

new class) which is the same as LC70 over Canada (and zero everywhere else), and LC70 592 

(revised) which is the same as before except zero over Canada. The fractions for the new LC70 593 

class are made the same as for LC71 in Table 4, which applies to NLE outside of Canada.  594 

Essentially, the closed-to-open needleleaf forest LC70 class over Eurasia is treated as the closed 595 

needleleaf forest.   596 
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Table 1. Cross-walking table for mapping the 30 m Hybrid land cover map to CLASSIC PFTs in Canada. 835 

Nine PFTs in CLASSIC: NLE - Needleleaf Evergreen trees, NLD - Needleleaf Deciduous trees, BLE - 836 

Broadleaf Evergreen trees, BCD - Broadleaf Cold Deciduous trees, BDD - Broadleaf Dry Deciduous 837 

trees, C3C – C3 Crops, C4C - C4 Crops, C3G – C3 Grasses, and C4C -  C4 Grasses. 838 

ID Map description 1 
NLE 

2 
NLD 

3 
BLE 

4+5 
BCD 
BDD 

6+7 
C3C 
C4C 

8+9 
C3G 
C4G 

Urban Lake Bare 

2 Sub-polar taiga  
needleleaf forest         

0.20     0.60   0.20 

11 
Sub-polar or polar  
shrubland-lichen-
moss 

     0.65   0.35 

12 
Sub-polar or polar  
grassland-lichen-
moss 

     0.45   0.55 

13 
Sub-polar or polar  
barren-lichen-
moss 

     0.10   0.90 

15 Cropland     1.0     
16 Barren lands         1.0 
17 Urban       1.0   
20 Water        1.0  
31 Snow_ice         1.0 
32 Rock_rubble         1.0 

50 Shrubland    0.20  0.60   0.20 

80 Wetland    0.05  0.85   0.10 

81 Wetland-treed 0.55   0.05  0.35   0.05 

100 Herbs      0.80   0.20 

210 Coniferous 1.0         

220 Broadleaf    1.0      

230 Mixedwood 0.50   0.50      

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

 848 
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Table 2. The sub-pixel fractional tree cover fraction for ESA-CCI (European Space Agency - Climate 849 

Change Initiative) land cover classes (with forest cover) based on the Hansen TCF (Tree Cover Fraction) 850 

dataset in Canada. Ratios of TCF between the main class and the closed class, and between the open class 851 

and the closed class are also included.   852 

ESA-
CCI class 

ESA-CCI class description 
Tree cover 

Fraction (%) 

Ratio of TCF 
relative to 

closed class 

30 
Mosaic cropland (>50%) / natural 
vegetation (<50%) 

13.7  

40 
Mosaic natural vegetation (>50%) / 
cropland (<50%) 

45  

60 
Tree cover broadleaved deciduous closed 
to open (>15%) 

68.5 0.8 

61 
Tree cover broadleaved deciduous closed 
(>40%) 

86.7 1 

62 
Tree cover broadleaved deciduous open 
(15-40%) 

37.4 0.43 

70 
Tree cover needleleaf evergreen closed to 
open (>15%) 

39.3 0.6 

71 
Tree cover needleleaf evergreen, closed 
(>40%) 

61.7 1 

72 
Tree cover needleleaf evergreen open 
(15-40%) 

23.2 0.38 

90 Tree cover Mixed 80.9  

100 
Mosaic tree and shrub (>50%) / 
herbaceous cover (<50%) 

37.3  

110 
Mosaic herbaceous cover (>50%) / tree 
and shrub (<50%) 

19.6  

120 Shrubland 28.1  

150 
Sparse vegetation (tree shrub herbaceous 
cover) (< 15%) 

4  

160 Tree cover, flooded fresh/brackish 43  

180 Shrub or herbaceous cover, flooded 26.9  

 853 

 854 

 855 

 856 

 857 

 858 

 859 

 860 
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Table 3. The sub-pixel fractional composition for ESA-CCI classes (columns, homogenous ESA-CCI 861 

pixels) based on the Hybrid land cvoer map (rows) for dominant land cover classes in Canada. The 862 

fractions for NLE and BCD are computed based on equation (1). 863 

 864 

 865 

 866 

 867 

 868 

 869 

 870 

Hybrid/ 
ESACCI 

Class 
Hybrid description 30 40 60 70 71 90 100 120 130 140 150 160 180 

2 
Sub-polar taiga 

needleleaf forest 
      0.02     0.01   0.01         

11 
Sub-polar/polar 

shrubland-lichen-
moss 

                  0.01 0.05     

12 
Sub-polar/polar 

grassland-lichen-
moss 

      0.04       0.03 0.01 0.24 0.27 0.03 0.04 

13 
Sub-polar/polar 

barren-lichen-moss 
      0.02     0.01 0.02 0.01 0.34 0.09   0.02 

15 Cropland 0.92 0.37 0.02           0.1         

16 Barren lands                 0.01 0.15 0.17     

50 Shrubland 0.01 0.07 0.06 0.13 0.05 0.04 0.32 0.46 0.09 0.14 0.25 0.06   

80 Wetland   0.03 0.08 0.2 0.05 0.03 0.27 0.2 0.02 0.06 0.09 0.37 0.75 

81 Wetland treed   0.01 0.01 0.17 0.07 0.03 0.11 0.12       0.43 0.15 

100 Herbs 0.06 0.27 0.08 0.02   0.02 0.06 0.09 0.72 0.01 0.03 0.01 0.01 

210 Coniferous   0.01 0.02 0.29 0.72 0.07 0.04 0.03   0.01 0.02 0.06   

220 Broadleaf 0.01 0.13 0.57 0.02 0.01 0.28 0.07 0.01 0.01     0.01   

230 Mixedwood   0.1 0.14 0.09 0.07 0.52 0.12 0.03       0.02   

NLE 
Needleleaf 
evergreen 

  0.07 0.09 0.44 0.8 0.32 0.19 0.16 0.01 0.02 0.05 0.31 0.08 

BCD 
Broadleaf cold 

deciduous 
0.01 0.19 0.66 0.09 0.06 0.57 0.18 0.09 0.02 0.02 0.03 0.05 0.03 
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Table 4. Cross-walking table for mapping ESA-CCI land cover dataset to CLASSIC PFTs. 871 

 ID 
ESA-CCI class 
description 

1 
NLE 

2 
NLD 

3 
BLE 

4+5 
BCD 
BDD 

6+7 
C3C 
C4C 

8+9 
C3G 
C4G 

Urban Lake Ocean Bare 

10 
Cropland, rainfed 
(CR) 

    0.80 0.20     

11 CR Herbaceous cover     0.90 0.10     

12 
CR Tree or shrub 
cover 

   0.60  0.30    0.10 

20 
Cropland, irrigated or 
post-flood 

   0.05 0.85 0.10     

30 

Mosaic cropland 
(>50%) / natural 
vegetation (tree, 
shrub, herb) 

0.05   0.15 0.60 0.20     

40 

Mosaic natural 
vegetation 
(tree,shrub, 
herb) >50% / crop 

0.10   0.20 0.40 0.30     

50 

Tree cover 
broadleaved 
evergreen closed to 
open 

  0.95 0.05  0.0     

60 

Tree cover 
broadleaved 
deciduous closed to 
open 

   0.70  0.25    0.05 

61 
Tree cover 
broadleaved 
deciduous closed 

   0.90  0.10     

62 
Tree cover 
broadleaved 
deciduous open 

   0.40  0.40    0.20 

70 
Tree cover needleleaf 
evergreen closed to 
open 

0.85   0.05  0.10     

71 
Tree cover needleleaf 
evergreen, closed 

0.85   0.05  0.10     

72 
Tree cover needleleaf 
evergreen open 

0.35   0.10  0.40    0.15 

73 
Replace LC70 in 
Canada 

0.45   0.10  0.30    0.15 

80 
Tree cover needleleaf 
deciduous closed to 
open 

0.05 0.40  0.10  0.35    0.10 

81 
Tree cover needleleaf 
deciduous closed 

0.05 0.80  0.05  0.15     

82 
Tree cover needleleaf 
deciduous open 

0.05 0.30  0.10  0.45    0.15 

90 Tree cover Mixed 0.25 0.05  0.60  0.10     

100 

Mosaic tree and 
shrub (>50%) / 
herbaceous cover 
(<50%) 

0.15 0.05  0.20  0.45    0.15 

110 
Mosaic herbaceous 
cover (>50%) / tree 
and shrub (<50%) 

0.05 0.05  0.10  0.65    0.15 

120 Shrubland    0.30  0.45    0.25 
121 Shrubland evergreen 0.15  0.15   0.45    0.25 
122 Shrubland deciduous    0.30  0.45    0.25 
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130 Grassland      0.70    0.30 
140 Lichens and mosses      0.20    0.80 

150 

Sparse vegetation 
(tree shrub 
herbaceous cover) (< 
15%) 

   0.05  0.35    0.60 

151 Sparse tree (<15%)    0.05  0.35    0.60 
152 Sparse shrub (<15%)      0.30    0.70 

153 
Sparse herbaceous 
cover (<15%) 

     0.30    0.70 

160 
Tree cover, flooded 
fresh/brackish  

0.30   0.10  0.45  0.1  0.05 

170 
Tree cover, flooded 
saline water  

0.30   0.10  0.40   0.1 0.10 

180 
Shrub or herbaceous 
cover, flooded 

0.10   0.05  0.45  0.15 0.15 0.10 

190 Urban areas 
0.02

5 
  0.025  0.15 0.75 0.05   

200 Bare areas          1.0 

201 
Consolidated bare 
areas 

         1.0 

202 
Unconsolidated bare 
areas 

         1.0 

210 Water bodies        1.0   

220 
Permanent snow and 
ice 

         1.0 
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 887 

 888 

Figure 1. The Hybrid land cover map of Canada based on VLCE and NALCMS land cover maps for 889 

2010. The red polygons represent 18 ecozones used in this study. 890 
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Figure 2. Schematic flow chart of the process for creating the cross-walking table for ESA-CCI land 898 

cover (LC) dataset. NALCMS: the North America Land Change Monitoring System; VLCE: the Virtual 899 

Land Cover Engine; TCF: Tree Cover Fraction.  900 
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 913 

Figure 3. The spatial distribution of CLASSIC PFTs based on the Hybrid (left), ESA-CCI (middle), and 914 

GLC2000 (right) land cover datasets respectively. The maps for C4C and C4G are not shown for their 915 

fractions are small (0.5% for C4 crops and 0.1% for C4 grasses) in Canada. The last panel shows fractions 916 

for bare ground from the three datasets. 917 
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 932 

 933 

 934 

Figure 4. The difference in PFTs based on ESA-CCI and GLC2000 datasets for selected PFTs (a) NLE, 935 

(b) BCD, (c) C3C, (d) C3G, and (e) Bare. 936 
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 949 

 950 
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 954 

 955 

 956 

 957 

 958 

Figure 5. Surface albedo bias (relative to MODIS) in CLASSIC simulations using PFT distributions 959 

based on (a) ESA-CCI, and (b) GLC2000 land cover products. Panels (c) and (d) show the difference in 960 

simulated surface albedo (c) and leaf area index (d) between the two simulations.   961 
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