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Abstract 1 

Plant functional types (PFTs) are used to represent vegetation distribution in land surface models 2 

(LSMs). Previous studies have shown lLarge differences are found in the geographical 3 

distribution of PFTs currently used in various LSMs, which may. These differences arise from 4 

the differences in the underlying land cover products but also the methods used to map or 5 

reclassify land cover data to the PFTs that a given LSM represents. There are large uncertainties 6 

associated with existing PFT mapping methods since they are largely based on expert judgment 7 

and therefore are subjective. In this study, we propose a new approach to inform the mapping or 8 

the cross-walking process using analyses from sub-pixel fractional error matrices, which allows 9 

for a quantitative assessment of the fractional composition of the land cover categories in a 10 

dataset. We use the Climate Change Initiative (CCI) land cover product produced by the 11 

European Space Agency (ESA). A pPrevious studywork has shown that compared to fine-12 

resolution maps over Canada, the ESA-CCI product provides an improved land cover 13 

distribution compared to that from the GLC2000 dataset currently used in the CLASSIC 14 

(Canadian Land Surface Scheme Including Biogeochemical Cycles) model. A tree cover fraction 15 

dataset and a fine-resolution land cover map over Canada are used to compute the sub-pixel 16 

fractional composition of the land cover classes in ESA-CCI, which is then used to create a 17 

cross-walking table for mapping the ESA-CCI land cover categories to nine PFTs represented in 18 

the CLASSIC model. There are large differences between the new PFT distributions and those 19 

currently used in the model. Offline simulations performed with the CLASSIC model using the 20 

ESA-CCI based PFTs show improved winter albedo compared to that based on the GLC2000 21 

dataset. This emphasizes the importance of accurate representation of vegetation distribution for 22 

realistic simulation of surface albedo in LSMs. Results in this study suggest that the sub-pixel 23 
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fractional composition analyses are an effective way to reduce uncertainties in the PFT mapping 24 

process and therefore, to some extent, objectify the otherwise subjective process.  25 

 26 

1. Introduction 27 

Land cover is a critical component of the earth system that affects the exchange of energy, water, 28 

and carbon between the land surface and the atmosphere (Pielke et al., 1998; Sterling et al., 29 

2013). Accurate representation of global land cover (LC) is important for land surface models 30 

(LSMs) which provide the lower boundary conditions to the atmosphere in numerical weather 31 

forecasting, climate, and earth system models (ESMs). Plant functional types (PFTs) are groups 32 

of plant species that share similar structural, phenological, and physiological traits, and have 33 

been commonly used in LSMs to represent vegetation distribution. This simplification has 34 

allowed the simulation of structural attributes of vegetation dynamically within ESMs (Arora & 35 

Boer, 2010; Bonan et al., 2003; Krinner et al., 2005). In order to improve the representation of 36 

ecosystem ecology and vegetation demographic processes within ESMs, both species-based and 37 

trait-based models have been attempted in LSMs (Fisher et al., 2018; Zakharova et al., 2019).  38 

However, these individual-based models are computionally too expensive to This is because it is 39 

far more challenging to model biogeochemical processes, especially photosynthesis and the 40 

carbon cycle at the global scale, at the species level (Bonan et al., 2002; Smith et al., 1997; 41 

2001).  As a compromise, “cohort-based” models have been developed where individual plants 42 

with similar properties (size, age, functional type) are grouped together and have been 43 

implemented in some ESMs (Fisher et al., 2018). Though there are limitations in PFTs-based 44 

models (Scheiter et al., 2013; Zakharova et al., 2019), PFTs are commonly used in LSMs that 45 
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participate routinely in the Global Carbon Project (Friedlingstein et al., 2020) and in ESMs that 46 

participate in the Coupled Models Intercomparison Project (CMIP, Wang et al., 2016).  47 

There are three approaches for modeling PFTs: (1) static, where the fractional coverage of PFTs 48 

is prescribed and does not vary through time; (2) forced, where the fractional coverage of PFTs 49 

is still prescribed but vary through time based on scenarios of land cover/land-use change; and 50 

(3) dynamic, where the fractional coverage of PFTs is simulated dynamically with competition 51 

for available space and resources between PFTs (Fisher et al., 2018; Melton and Arora, 2016). 52 

The number and type of PFTs used in each LSM differ. Global land cover datasets are typically 53 

used to derive the fractional coverage and geographical distribution of PFTs for use in LSMs. 54 

However, large differences exist in both the fractional coverage and the geographical distribution 55 

of PFTs, which are caused by differences in the LC datasets themselves but also due to the 56 

methods used to map LC datasets to the PFTs represented in various models (Fritz et al, 2011; 57 

Hartley et al., 2017; Ottle et al., 2013; Wang et al., 2016). 58 

Since different PFTs are characterized by different physical and biogeochemical processes and 59 

parameter values, the spatial distribution and fractional cover of PFTs constitute one of the 60 

important geophysical fields that are required for realistic simulation of carbon, water, and 61 

energy budgets in LSMs (Arora and Boer, 2010; Betts, 2001). For example, the sSurface 62 

roughness for short or tall vegetation is also very different, which affects simulated turbulent 63 

exchanges. Tthe surface albedos for needleleaf evergreen trees, broadleaf deciduous trees, and 64 

grasslands are also very different, especially during winter when deciduous trees are leafless and 65 

short vegetation is largely buried by snow (Bartlett and Verseghy, 2015; Moody et al., 2007). 66 

Surface roughness for short or tall vegetation is also very different, which affects simulated 67 

turbulent exchanges. Wang et al. (2016) found that the bias in winter albedo in selected boreal 68 
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forest regions among the CMIP5 models participating in the fifth phase of the Coupled Model 69 

Intercomparison Project (CMIP5) was largely related to biases in leaf area index (LAI) and tree 70 

cover fraction. Model experiments using the MPI-ESM by Georgievski and Hagemann (2019) 71 

suggested that uncertainties in vegetation distribution may lead to noticeable variations in near-72 

surface climate variables and large-scale circulation patterns.  73 

The Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC) is an open-74 

source community land model that is designed to address research questions that explore the role 75 

of the land surface in the global climate system (Melton et al., 2020). It is the successor to the 76 

coupled modelling framework based on the Canadian Land Surface Scheme (CLASS; Verseghy, 77 

1991; 1993) and the Canadian Terrestrial Ecosystem Model (CTEM; Arora and Boer, 2005; 78 

Melton and Arora, 2016). The physics and biogeochemistry modules of CLASSIC are based on 79 

CLASS and CTEM models, respectively. Since the development of CTEM in the early 2000s, 80 

the GLC2000 LC product has been used to specify the spatial distribution of PFTs for CLASSIC 81 

when employed as the land surface component of the Canadian Earth system model developed 82 

by Environment and Climate Change Canada (Arora et al., 2009; Wang et al., 2006). The 83 

Climate Change Initiative (CCI) LC product recently produced by the European Space Agency 84 

(ESA) is available at an annual temporal resolution for the period 1992 to 2018 at 300 m spatial 85 

resolution (ESA, 2017). It was produced based on broad user consultation, specifically to address 86 

the needs of the climate modelling community (Bontemps et al., 2012). Wang et al. (2019) 87 

showed that when compared to the finer resolution maps over Canada, the 300 m ESA-CCI 88 

product provides much improved LC distribution over Canada compared to that from the 1 km 89 

GLC2000 dataset.  90 
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To map LC classes to PFTs, a cross-walking table (CW-table) is usually created to assign 91 

fractions of each LC class to the different PFTs, such that the sum of the fractions for each class 92 

is always one (including fractions of water and bare ground). Previous methods for creating such 93 

CW-tables are mainly based on LC class descriptions, expert knowledge, and the spatial 94 

distribution of global biomes (Ottle et al., 2013; Poulter et al., 2011; 2015; Sun and Liang, 2007; 95 

Wang et al., 2006). Because LC maps only provide the types of vegetation, and each class can be 96 

associated with a broad range of fractional cover of either one or more vegetation types, there are 97 

large uncertainties associated with any cross-walking or reclassification process. Wang et al. 98 

(2019) reclassified the 10 PFTs in the default CW-table provided in the ESA-CCI LC product 99 

user manual (Table 7-2, ESA, 2017) into  PFTs represented in the CLASSIC model, and 100 

compared them with those based on the GLC2000 dataset. The results suggest that uncertainties 101 

in the CW-tables were a major source of large differences in the PFT distributions. In addition, 102 

the fractional coverage of tree PFTs based on the default CW-table for the ESA-CCI LC dataset 103 

was overestimated along the taiga-tundra transition zone in western Canada, which led to 104 

underestimation in winter albedo in CLASSIC offline simulations driven with observation-based 105 

reanalysis data (Wang et al., 2018).  106 

The objective of this study is to develop a new CW-table for reclassifying the ESA-CCI LC 107 

classes into PFTs representedused in the CLASSIC model for use over the model’s Canadian 108 

domain, and to compare and assess the performance of CLASSIC offline simulations using the 109 

new and existing PFT distributions. Given the close link between the bias in winter albedo and 110 

the vegetation distribution in the models (Wang et al., 2016), our assessment of model 111 

performance focuses on the simulated surface albedo during the maximum snow accumulation 112 

period (February–March for the boreal forest). This simplifies our analyses by excluding the 113 
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fall/spring transition periods when biases in snow accumulation and melt timing can have a large 114 

influence on surface albedo simulated by LSMs (Wang et al., 2014). In addition, we extend the 115 

CW-table for the ESA-CCI LC dataset to the global domain. A comprehensive assessment of the 116 

impact of the PFT distribution based on the new CW-table and the ESA-CCI LC dataset on the 117 

performance of the CLASSIC model at the global scale is presented in Arora et al. (2022). 118 

2. Data and the CLASSIC model 119 

2.1 The Hybrid LC map over Canada 120 

The open access to the United States Geological Survey archive of Landsat imagery has provided 121 

open and free access to georeferenced and spectrally corrected analysis-ready imagery (Wulder 122 

et al., 2012), which makes it possible to generate time series of LC maps to study LC change. 123 

Recently two of these products based on Landsat imagery weare generated over Canada, 124 

including the North America Land Change Monitoring System (NALCMS) LC dataset 125 

(Latifovic et al., 2017) and the Virtual Land Cover Engine (VLCE) framework-generated LC 126 

dataset (Hermosilla et al., 2018). 127 

Based on the random forest algorithm and local optimization method, the Canada Centre for 128 

Remote Sensing has generated the NALCMS LC maps of Canada for the years 2010 and 2015 at 129 

30 m resolution using Landsat imagery (Latifovic et al., 2017). These LC products are the 130 

Canadian contribution to the 30 m resolution 2010/2015 LC map of North America to the joint 131 

collaborative effort by the Mexican, American, and Canadian government institutions under the 132 

NALCMS umbrella. The NALCMS LC map has 19 classes based on the United Nations Land 133 

Cover Classification System (LCCS; Di Gregorio, 2005). Assessment based on reference 134 
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samples showed an overall accuracy of 76.6% for the year 2010 data (Latifovic et al., 2017), 135 

which is used in this study.  136 

VLCE is an automated framework to enable change-informed annual LC mapping using time 137 

series of Landsat surface reflectance, informed by spatially explicit forest change and a priori 138 

knowledge of ecological succession. Temporally consistent annual LC maps representative of 139 

Canada’s forested ecosystems from 1984 to 2012 were generated using the VLCE framework, 140 

characterizing LC dynamics following wildfire and harvesting events by Hermosilla et al. 141 

(2018). The VLCE maps have 12 LC classes in a hierarchical classification structure following 142 

that of the National Forest Inventory. Assessment based on reference samples showed an overall 143 

accuracy of 70.3% for the map of the year 2005 (the year with the greatest number of reference 144 

samples; Hermosilla et al., 2018). Land cover data from the year 2010 are used in this study.  145 

Overall, the 19-class NALCMS product presents a more detailed LC distribution than the 12-146 

class VLCE map over Canada. For example, areas classified as “Exposed/Barren lands” in the 147 

VLCE map correspond to either “Sub-polar or polar grassland-lichen-moss”, “Sub-polar or polar 148 

barren-lichen-moss”, or “Barren lands” in the NALCMS map. Areas of cropland are not 149 

separated from grassland in the VLCE map. A recent study showed that the wetland class in 150 

NALCMS suffers from large uncertainty in forest cover mapping because treed-wetland was not 151 

separated from herbaceous wetland in its legend (Wang et al., 2019). To take advantage of both 152 

datasets, we created a hybrid product by combining them through the following steps: (1) 153 

Reproject the VLCE data from its Lambert Conformal Conic projection to the same Lambert 154 

Azimuthal Equal Area projection that is used for the NALCMS data; (2) Replace pixels 155 

classified as “Exposed/Barren lands” and “Bryoids” in the VLCE data with the more specific LC 156 

classes from the NALCMS data; (3) Replace pixels classified as “Herbs” in the VLCE data with 157 



 

9 
 

the “Cropland” class in the NALCMS data (remains “Herbs” if not classified as “Cropland” in 158 

NALCMS); (4) and merge the rest of LC classes from NALCMS to the corresponding classes in 159 

the VLCE data. There are a total of 17 classes in this new hybrid product, which we will 160 

henceforth refer to it as the Hybrid LC dataset and is shown in Figure 1.  161 

2.2 The global LC products 162 

The GLC2000 dataset was generated from SPOT/VEG data collected from November 1999 to 163 

December 2000 at 1 km resolution (Bartholomé and Belward, 2005). It was produced by 21 164 

separate regional expert groups using an unsupervised image classification method. Based on the 165 

LCCS, the regional products were merged into one global product with a generalized LCCS 166 

legend of 22 classes. Assessment based on a random sampling of reference sites globally 167 

estimated an overall accuracy of 68.6% for the GLC2000 product (Mayaux et al., 2006). 168 

The annual ESA-CCI LC data at 300 m resolution are available for the period 1992-2018, which 169 

were generated from baseline data and annual LC changes (ESA, 2017). The baseline data were 170 

generated using a combination of machine learning and unsupervised image classification 171 

methods from the entire archive of ENVISAT/Medium Resolution Imaging Spectrometer for the 172 

period of 2003-2012. The annual LC changes were detected at 1 km resolution from the 173 

Advanced Very High Resolution Radiometer time series between 1992 and 1999, SPOT/VEG 174 

time series between 1999 and 2013, and the PROBA-V time series between 2013 and 2018. 175 

Based on the LCCS legend, the ESA-CCI LC data have 22 level 1 classes, and 15 level 2 sub-176 

classes. Assessment based on the GlobCover validation database estimated an overall accuracy 177 

of 71% for the ESA-CCI LC product (ESA, 2017). 178 

2.3 Other datasets 179 
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Airborne Lidar has been used to monitor forests since the 1980s and is well suited to estimate 180 

vegetation height, volume, and biomass (Hopkinson et al., 2006; Wulder et al., 2008). Vegetation 181 

cover percentage for canopy height above 2 m from airborne Lidar data are used to estimate the 182 

fraction of tall versus low vegetation for LC classes with a mix of woody and herbaceous 183 

vegetation in this study. The Lidar data were collected along 34 survey flights across the boreal 184 

forest of Canada in the summer of 2010 by the Canadian Forest Service (Wulder et al., 2012). A 185 

25 by 25 m tessellation was generated with the approximately 400 m wide Lidar swath, with 186 

each cell treated as an individual Lidar plot.  187 

A tree cover fraction (TCF) dataset for 2010 is also used in this study (Hansen et al., 2013; 188 

hereafter the Hansen TCF dataset). It was based on Landsat images at 30 m resolution. In 189 

contrast to the discrete LC classification datasets (providing a certain number of LC classes) as 190 

described above, the Hansen dataset is a vegetation continuous field product (providing tree 191 

cover fractions from 0 – 100%), in which the satellite spectral information was used to estimate 192 

the TCF in each pixel using a regression tree algorithm (Hansen et al., 2002; 2010). This may 193 

better represent heterogeneous areas than is possible by discrete LC classification. Tree cover is 194 

defined to exist over pixels where canopy closure is observed for vegetation taller than 5 m in 195 

height. Forests are generally defined as woody vegetation taller than 3 m in the regional and 196 

global LC datasets. The different definitions of tree heights should not result in much difference 197 

in areas with mature forests, such as most boreal forests in Canada.  198 

Simulated surface albedo by the CLASSIC model in offline experiments is evaluated against the 199 

Moderate Resolution Imaging Spectroradiometer (MODIS) (MCD43C3) broadband (0.3–5.0 200 

μm) white-sky albedo (Schaaf et al., 2002), with quality flags of 0–2 (75% or more full 201 

inversions and 25% or fewer fill values) and solar zenith angles less than 70°. The MODIS 202 



 

11 
 

albedo product used in this study is at 0.05 degree resolution, and is regridded to the 0.22 degree  203 

resolution used for the CLASSIC simulations (see Section 2.4.2).  204 

2.4 The CLASSIC model and simulation setup  205 

2.4.1 The CLASSIC model 206 

CLASSIC is the successor to the coupled modelling framework based on the Canadian Land 207 

Surface Scheme (CLASS; Verseghy, 1991; 1993) and the Canadian Terrestrial Ecosystem Model 208 

(CTEM; Arora and Boer, 2005; Melton and Arora, 2016). The physics and biogeochemistry 209 

components of CLASSIC are based on CLASS and CTEM, respectively.  210 

For the physics component, the default model’s vegetation is represented in terms of the 211 

fractional coverage of the four PFTs (needleleaf trees, broadleaf trees, crops, and grasses). The 212 

physics component represents a single snow layer with variable depth and a single vegetation 213 

canopy layer. As a first-order treatment of subgrid-scale heterogeneity, each grid cell is divided 214 

up into four sub-areas, consisting of vegetated and bare soil areas, each with and without snow 215 

cover. The visible and near-infrared albedos of each PFT/vegetation category are specified.  216 

These albedos are further modified by taking into account the fraction of the ground that is seen 217 

from the sky above referred to as the sky view factor (which is modelled as a function of the leaf 218 

area index). The albedo of the ground that is seen from the sky above depends on if the ground is 219 

snow covered or not but also on the soil moisture of the top soil layer, since wet soil is darker 220 

than the dry soil. Canopy snow processes such as interception/unloading, sublimation, and melt 221 

are all simulated. The aggregated visible and near-infrared albedos for the bulk canopy are 222 

incremented using the current values weighted by the fractional coverage of the vegetation 223 

categories (Verseghy 1993). More details can be found in Appendix A. The overall surface 224 

albedo of a grid cell albedo is computed as a weighted mean using the fractional coverages for 225 
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each the four sub-areassurface type. Twenty ground layers represent the soil profile, starting with 226 

10 layers of 0.1 m thickness. The thicknesses of the layers gradually increase to 30 m for a total 227 

ground depth of over 61 m. Liquid and frozen soil moisture contents, and soil temperature, are 228 

determined prognostically for permeable soil layers. 229 

The biogeochemistry component of CLASSIC used here represents vegetation in terms of nine 230 

PFTs: Needleleaf Evergreen trees (NLE), Needleleaf Deciduous trees (NLD), Broadleaf 231 

Evergreen trees (BLE), Broadleaf Cold Deciduous trees (BCD), Broadleaf Dry Deciduous trees 232 

(BDD), C3 and C4 Crops (C3C/C4C), and C3 and C4 Grasses (C3G/C4G). These nine PFTs map 233 

directly onto the four PFTs used by CLASSIC’s physics component. When the physics and 234 

biogeochemistry components are coupled together, as in the case of simulations carried out in 235 

this study, the structural attributes of vegetation including leaf area index, canopy mass, rooting 236 

depth, and vegetation height are simulated dynamically as a function of environmental 237 

conditions by the biogeochemistry component. When the biogeochemistry component is turned 238 

off, specified structural attributes of vegetation for use by the physics component are extracted 239 

from look-up tables.  240 

2.4.2 Simulation set up 241 

Gridded meteorological data based on the Climatic Research Unit (CRU, 242 

https://crudata.uea.ac.uk/cru/data/hrg/) and Japanese reanalysis (JRA) (CRUJRA) are used to 243 

drive CLASSIC simulations. The data are constructed by regridding data from the JRA and 244 

adjusting where possible to align with the CRU TS 4.05 data. The blended product from January, 245 

1901 to December, 2020 has the 6-hourly temporal resolution of the reanalysis product but 246 

monthly means adjusted to match the CRU data (Harris, 2020).  The 6-hourly data are 247 

disaggregated on-the-fly within CLASSIC into half-hourly data following the methodology by 248 
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Melton and Arora (2016) for the following seven meteorological variables that are used to force 249 

the model: 2 m air temperature, total precipitation, specific humidity, downward solar radiation 250 

flux, downward longwave radiation flux, surface pressure, and wind speed. Surface temperature, 251 

surface pressure, specific humidity, and wind speed are linearly interpolated. Long-wave 252 

radiation is uniformly distributed across a 6-hour period, and shortwave radiation is diurnally 253 

distributed over a day based on a grid cell’s latitude and day of year with the maximum value 254 

occurring at solar noon. Precipitation is treated following Arora (1997), where the total 6-hour 255 

precipitation amount is used to determine the number of wet half hours in a 6-hour period. The 6-256 

hour precipitation amount is then spread randomly, but conservatively, over the wet half-hourly 257 

periods. In CLASSIC, the phase of precipitation is determined by a threshold surface air 258 

temperature with three options available (Bartlett et al., 2006). The 0°C air temperature threshold 259 

is used to partition precipitation into rain or snow in this study. This choice does not have a 260 

significant impact on the simulated surface albedo in CLASSIC escpecially during the February-261 

March months when the snow cover is near its maximum (Wang et al. 2014).  262 

Two simulations over the 1850-2020 historical period are performed using PFTs derived from 263 

the ESA-CCI and the GLC2000 datasets respectively, which is the only difference between the 264 

two simulations. Static PFTs are used in the simulations where the fractional coverage of PFTs is 265 

prescribed and does not vary through time. Besides land cover and meteorological forcings, 266 

CLASSIC requires globally averaged atmospheric CO2 concentration, and geographically 267 

varying time-invariant soil texture and soil permeable depth. The atmospheric CO2 concentration 268 

values are provided by the Global Carbon Project protocol 269 

(https://www.globalcarbonproject.org/index.htm). The soil texture information consists of the 270 

percentage of sand, clay, and organic matter and is derived from the SoilGrids250m dataset 271 
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(Hengl et al., 2017), and permeable soil depth is based on Shangguan et al. (2017). The 272 

simulations are performed at a 0.22 degree rotated latitude-longitude grid over a domain 273 

including Canada and part of Alaska (Fig. 3). Pre-industrial simulations that correspond to the 274 

year 1850 are required prior to doing the historical simulations so that model’s carbon pools, 275 

including leaf biomass which determines leaf area index, are spun up to near equilibrium for 276 

each land cover. The pre-industrial simulations use 1901-1920 meteorological data repeatedly 277 

with atmospheric CO2 concentration specified at its 1850 level. Each historical simulation is then 278 

initialized from its corresponding pre-industrial simulation after it has reached equilibrium (with 279 

carbon fluxes to conditions corresponding to the year 1850). For the period 1851-1900, the 280 

CRUJRA meteorological data for the first 20 years (1901-1920) are used repeatedly. For the 281 

1901-2020 period the meteorological data corresponding to each actual year are used. The period 282 

from 2001 to 2015 was selected for analyzing the simulated results.  283 

3. PFT mapping methods and results 284 

The CW-table for the ESA-CCI LC dataset is generated through a multi-step process that 285 

combines multiple land cover maps at different spatial and categorical resolutions with ancillary 286 

data on tree cover and vegetation height (Fig. 2). This includes the following steps: (1) 287 

combining two existing land cover maps (NALCMS and VLCE) to produce a harmonized 30 m 288 

land cover (Hybrid) map with improved categorical precision (as described in Section 2.1); (2) 289 

creating a CW-table for the Hybrid land cover map through a direct mapping of classes from the 290 

Hybrid map onto the CLASSIC PFTs, such that each land cover class corresponds to a particular 291 

mix of PFTs as represented in CLASSIC. This step is supported by vegetation height data from 292 

an airborne Lidar campaign over parts of Canada; (3) computing the sub-pixel fractional 293 

composition for classes in the ESA-CCI land cover map (300 m resolution) based on the 30 m 294 
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Hybrid land cover dataset and the Hansen tree cover fraction dataset; (4) using the sub-pixel 295 

fractional composition analysis to create a CW-table for mapping the ESA-CCI land cover 296 

classes onto PFTs as represented in CLASSIC; and (5) since the ESA-CCI dataset is global, the 297 

CW-table developed over Canada is extended to the whole globe.A CW-table for the Hybrid LC 298 

map based on the Lidar plots, tree species, field surveys, and high-resolution images is first 299 

created. We then compute the sub-pixel fractional composition of the LC classes in the 300 m 300 

ESA-CCI data using the 30 m Hansen TCF and the 30 m Hybrid LC data respectively, which are 301 

in turn used to create the CW-table for the ESA-CCI dataset (Fig. 2). Finally the CW-table 302 

developed for the ESA-CCI dataset over Canada is extended to the whole globe as explained in 303 

Section 3.3. 304 

3.1 CW-table for mapping Hybrid LC classes to CLASSIC PFTs 305 

Among the nine CLASSIC PFTs, BLE and BDD forests are not present in Canada. These are 306 

primarily tropical PFTs as represented in CLASSIC. NLD only accounts for less than 1% of 307 

coniferous forests in Canada (Wang et al., 2019). Therefore we do not consider NLD, BLE, and 308 

BDD from here on in this study. Considering the fine resolution (30 m) of the Hybrid map, 309 

especially relative to the model resolution (~16 km) used in this study, we assign fractions of 1.0 310 

to the two pure forest classes (LC210 and LC220), the cropland (LC15), and the five non-311 

vegetative classes (LC16 to LC32) in its CW-table (Table 1). The mixed-wood category (LC230) 312 

is split evenly into NLE and BCD in the table based on the definition in the VLCE legend 313 

(Hermosilla et al., 2018; Wulder et al., 2003). Note that in Table 1, broadleaf deciduous trees 314 

(BDD and BCD) are considered together and separated later into their cold and drought 315 

deciduous versions., Similarly, andcrops and grasses ( C3 and C4 )crops and grasses, are 316 

considered together and separated later into their C3 and C4 varieties. The reason for this is that 317 
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the separation of broadleaf trees into their cold and deciduous phenotypes is based on latitude 318 

(Wang et al., 2006). The separation of crops and grasses based on their photosynthetic pathway 319 

(C3 or C4) is done based on the C4 fraction from Still and Berry (2003), which is available at 1° 320 

resolution. 321 

CLASSIC explicitly represents shrub PFTs (Meyer et al., 2021), but this work does not use that 322 

model version, and therefore the fraction of tall shrubs is assigned to one of the tree PFTs as was 323 

done in creating the CW-table for GLC2000 for use with CLASSIC (Wang et al., 2006). Four 324 

(LC2 - Sub-polar taiga needleleaf forest, LC50 - Shrubland, LC80 - Wetland, and LC81- 325 

Wetland-treed) out of the 17 classes in the Hybrid map are characterized by a mosaic of trees, 326 

shrubs, and herbaceous vegetation. The vegetation coverage for canopy height above 2 m from 327 

Lidar plots is used to inform the partitioning of forest (tall vegetation) to non-forest (low 328 

vegetation) fractions for these mixed classes. We overlay the Lidar plots on the Hybrid land 329 

cover map in ArcGIS. Samples (20 to 40, note that these classes do not cover large areas in 330 

Canada) for the four mixed classes in the Hybrid map are selected where there are Lidar data. 331 

The vegetation coverage data (for canopy height above 2 m) from Lidar plots for samples of each 332 

class are used to compute an average coverage of tall vegetation (> 2 m) for that class, which is 333 

then used to assign forest fractions for these four classes in Table 1.  334 

The distribution of tree species from Beaudoin et al. (2014) is used to guide the separation of 335 

coniferous versus broadleaf forest fractions. For example, for the Wetland-treed category 336 

(LC81), maps of tree species show that coniferous forests dominate wetland-treed regions, while 337 

broadleaf forests are generally non-existent. We, therefore, assign most of the forest fraction to 338 

NLE (0.55), only 0.05 to BCD, 0.35 to grasses, and the remaining to the bare ground for LC81 339 

(Table 1). The presence of evergreen shrubs is rare in Canada according to National Forest 340 
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Inventory ground plots data (Gillis et al., 2005), thus we only assign an estimated tall shrub 341 

fraction (0.20) in the shrub class (LC50) to BCD. The sub-polar or polar classes (LC11 to LC13) 342 

are located above the treeline and mainly consist of low shrubs and grass. The fractions of grass 343 

(including low shrubs) and bare ground are based on field surveys of fractional vegetation cover 344 

and tundra PFT data in Bjorkman et al. (2018) and Macander et al. (2020) (by compuating the 345 

average fractions at the field sites which overlap with the sub-polar or polar classes in the 346 

Hybrid/NALCMS land cover map). High-resolution images from Google Earth engine or Bing 347 

Maps are also used to examine the ratio of vegetated versus bare ground for all classes in which 348 

bare ground is present. 349 

3.2. CW-table for mapping ESA-CCI LC classes to CLASSIC PFTs over Canada 350 

3.2.1 The error and sub-pixel fractional error matrices 351 

A standard approach for the accuracy assessment of LC products is to use an error matrix. It is a 352 

square array or table of numbers arranged in rows and columns, in which the classification from 353 

the LC product (usually represented by the rows) is compared to the reference data (usually 354 

represented by the columns) for each category (Congalton, 1991). The major diagonal of the 355 

matrix presents the number of correct classifications indicating the agreement between the LC 356 

and the reference data for each category. In practice, fine-resolution regional maps are often used 357 

to assess large-scale LC products derived from coarse-resolution data (Cihlar et al., 2003). In 358 

such cases, the fine-resolution reference data are aggregated/regridded to match the grid of the 359 

coarse-resolution data. Several classes in the reference data may be present in a single coarse-360 

resolution pixel depending on the homogeneity of the landscape. In order to compare the 361 

reference and the LC data on a one-to-one basis, the dominant LC class (the class with the most 362 
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abundant fractions based on all fine-resolution pixels in the reference data) is often assigned to 363 

the regridded reference pixel.   364 

The sub-pixel fractional error matrices have been introduced as a more appropriate way of 365 

assessing the accuracy of mixed pixels by Latifovic and Olthof (2004). In contrast with an error 366 

matrix where only the dominant LC class is used as described above, the sub-pixel fractional 367 

error matrix is produced by assigning sub-dominant LC classes from all fine-resolution pixels in 368 

the reference data to the corresponding single coarse-resolution pixel. It thus allows a 369 

quantitative assessment of the fractional composition of the LC classes in the coarse resolution 370 

dataset. In this study, both the 30 m Hansen TCF data and the 30 m Hybrid LC map are used to 371 

compute the sub-pixel fractional error matrices of the 300 m ESA-CCI dataset (Table 2 and 372 

Table 3). However, the objective here is not an accuracy assessment as in Latifovic and Olthof 373 

(2004) but rather to obtain the fractional composition of the LC classes in the ESA-CCI product 374 

and to inform the PFT mapping process. We refer to this process as the sub-pixel fractional 375 

composition analyses in the rest of this paper. Sub-pixel fractional composition analyses is first 376 

performed for each ecozone and then weighted mean fractions for each ESA-CCI cslass are 377 

computed based on pixel counts in each of the ecozones (see the location of ecozones in Fig. 1). 378 

For the Hansen TCF data, results are shown only for the ESA-CCI LC classes containing forests 379 

in Canada (Table 2). In the ESA-CCI legend (Table 4), two sub-classes for broadleaf (LC61 and 380 

LC62) and needleleaf (LC71 and LC72) forests are included as the closed (>40% forest cover) 381 

and open (10-40% forest cover) categories apart from the main classes (LC60 and LC70, closed 382 

to open (>15%)). As expected, the TCF is larger for the closed classes than for the main and the 383 

open classes (Table 2). In Table 2, we also include ratios of TCF between the main class and the 384 

closed class, and between the open class and the closed class. We note that the ratios are 385 
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different for broadleaf (main class vs. closed class: 68.5/86.7=0.8; open class vs. closed class: 386 

0.43/86.7=0.43) and needleleaf (main class vs. closed class: 39.3/61.7=0.6; open class vs. closed 387 

class: 23.2/61.7=0.38) forests, which need to be taken into account when creating the CW-table 388 

for the ESA-CCI dataset. 389 

To obtain representative class compositions of the ESA-CCI dataset, only homogenous ESA-CCI 390 

pixels are included in the sub-pixel composition analyses based on the Hybrid LC data. The 391 

homogenous pixels are defined following the method in Herold et al. (2008). To quantify 392 

landscape heterogeneity, 3×3 pixel neighborhoods are assessed for the ESA-CCI data. A 393 

neighborhood is considered homogenous if only one LC class is present. The weighted mean 394 

fraction for each class is computed from ecozones with more than 10 homogenous ESA-CCI 395 

pixels for that class (Table 3). Only 13 out of the 37 ESA-CCI classes are included in Table 3, 396 

the rest of the classes either have limited presence in Canada or are non-vegetative (Table 4).  397 

In the Hybrid CW-table (Table 1), four LC classes (2, 81, 210, and 230) contribute to the 398 

fractional cover of NLE, and five LC classes (50, 80, 81, 220, and 230) contribute to the 399 

fractional cover of BCD. In Table 3, we also include an integrated fractional cover (F) for NLE 400 

and BCD (last two rows) for each of the ESA-CCI classes based on the following formula: 401 

                                                     F = ∑ 𝐹1𝑖 ∗ 𝐹2𝑖
𝑁
𝑖=1                                                   (1) 402 

Where 𝐹1𝑖 are fractions in Table 3, 𝐹2𝑖 are fractions in Table 1, and N is the number of Hybrid 403 

LC classes contributing to NLE (N = 4) or BCD (N = 5) as shown in Table 1. As an example, the 404 

fraction of NLE for the LC70 (Tree cover needleleaf evergreen closed to open) in ESA-CCI data 405 

in Table 3 (see the NLE row and the column for class 70) is obtained as follows: F = 0.02×0.20 + 406 

0.17×0.55 + 0.29×1.0 + 0.09×0.5 = 0.44. This process reduces the subjectivity in assigning the 407 
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ESA-CCI land cover classes to CLASSIC’s two tree PFTs (NLE and BCD) that are present in 408 

Canada since the process is based on the high-resolution Hybrid LC data. 409 

3.2.2 CW-table for the ESA-CCI LC dataset over Canada 410 

Table 2 and Table 3 thus form the basis for creating the CW-table for mapping the ESA-CCI LC 411 

classes to CLASSIC’s PFTs (Fig. 2 and Table 4). For the ESA-CCI class LC61 (Tree cover 412 

broadleaved deciduous closed)  (not included in Table 3 due to limited presence in Canada), 413 

ratios of TCF for LC60 vs LC61 in Table 2 and the fractions of LC60 (Tree cover broadleaved 414 

deciduous closed to open) in Table 3 are used to derive fractions for LC61 in Table 4. The 415 

remapping of  LC62 (Tree cover broadleaved deciduous open) and LC72 (Tree cover needleleaf 416 

evergreen open) into CLASSIC’s PFTs is done in a similar way. Since NLD is not included in 417 

either Table 2 or Table 3, the needleleaf deciduous tree cover classes (LC80-82) are assigned to 418 

the same fractions as the needleleaf evergreen tree cover classes (LC70-72). For simplicity, the 419 

fractions in Table 3 are rounded to values with either “0” or “5” at the hundredth place when 420 

used in Table 4. For the rest of the classes not included in either Table 2 or Table 3, values are 421 

based on the default CW-table from the ESA-CCI user guide (Table 7-2, ESA, 2017). The spatial 422 

distribution of LC classes is also taken into consideration when determining the fractions in the 423 

CW-table. For example, the sparse vegetation class (LC150) is mainly distributed above the 424 

treeline in alpine and Arctic tundra environments, thus we only assign 0.05 to BCD, the rest to 425 

C3G/C4G and bare ground (Table 4).  426 

The six CLASSIC PFTs (those present in Canada) are produced from the Hybrid and the ESA-427 

CCI maps based on Table 1 and Table 4 respectively. The PFTs from the Hybrid map are used as 428 

a reference here to map ESA-CCI land cover classes to CLASSIC’s PFTs. To make the spatial 429 
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distribution of PFTs from ESA-CCI agree better with those from the Hybrid dataset, fractions for 430 

the following classes in Table 4 are adjusted upward by 0.05: LC60 from 0.65 to 0.70 for BCD; 431 

LC71 and LC81 from 0.80 to 0.85 for NLE; and LC120 from 0.10 to 0.15 for BCD. Values for 432 

LC10-20 are also slightly adjusted to reduce crop fractions.  433 

3.3. CW-table for the ESA-CCI LC dataset over the globe 434 

Based on Table 4, the fractional coverage of nine CLASSIC PFTs are also produced on a global 435 

scale and used in offline CLASSIC simulations in Arora et al. (2022), who carry out a 436 

comprehensive assessment of the impact of using two different LC datasets (ESA-CCI versus 437 

GLC2000) for representing the nine PFTs in the CLASSIC model. However, some adjustments 438 

to Table 4 are found to be necessary. This is because fractions of NLE (Needleleaf evergreen 439 

forests) in Eurasia are found to be too low relative to the Hansen TCF data, with maximum 440 

values only around 0.45 in most NLE dominated areas, where the maximum TCF from the 441 

Hansen dataset is around 0.80. This indicates that the needleleaf evergreen forests classes (LC 442 

70-72) in the ESA-CCI map may represent different forest/tree cover fractions in Canada and 443 

Eurasia, which is confirmed by sub-pixel fractional composition analyses based on the Hansen 444 

TCF dataset. Details are presented in Appendix B. Needleleaf evergreen forests are represented 445 

by LC classes 70 (closed to open), 71 (closed), and 72 (open). Examining the ESA-CCI LC map 446 

shows that in Eurasia nearly all needleleaf evergreen forests are classified as LC70 (closed-to-447 

open), with only less than 400 pixels as LC71 (closed), and none as LC72 (open). In contrast, in 448 

Canada 36% of needleleaf evergreen forest is classified as LC70 (closed-to-open), 64% as LC71 449 

(closed), and less than 1% as LC72 (open). Sub-pixel fractional composition analyses of the 450 

ESA-CCI classes based on the Hansen TCF dataset show that in Eurasia TCF for LC70 (closed-451 

to-open) is 66% and for LC71 (closed) is 35% (note few pixels with this class). This is in 452 
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contrast with those in Canada where TCF for LC70 ( closed-to-open) is 39% and for LC71 453 

(closed) is 62%, explaining the too low NLE fractions in Eurasia when mapping PFTs based on 454 

Table 4, and also the too high TCF in northwestern Canada when mapping PFTs based on the 455 

default CW-table (Wang et al., 2018). In order to apply Table 4 globally, the original LC70 456 

(closed-to-open) was split into two classes: LC73 (a new class) which is the same as LC70 over 457 

Canada (and zero everywhere else), and LC70 (revised) which is the same as before except zero 458 

over Canada. The fractions for the new LC70 class are made the same as for LC71 in Table 4, 459 

which applies to NLE outside of Canada.  Essentially, the closed-to-open needleleaf forest LC70 460 

class over Eurasia is treated as the closed needleleaf forest.   461 

The global PFTs based on Table 4 are They also assess the effect of using land cover 462 

reconstructions based on the ESA-CCI and GLC2000 datasets on the simulated surface energy, 463 

water, and CO2 fluxes in the CLASSIC model. 464 

4. Results 465 

3.4.1 Comparison of PFTs from Hybrid, ESA-CCI, and GLC2000 data 466 

Figure 3 shows the spatial distribution of PFTs derived from the Hybrid, ESA-CCI, and 467 

GLC2000 LC datasets respectively. C4 crops (C4C) and grasses (C4G) are sparse in Canada as 468 

would be expected since C4 PFTs grow only in warmer temperatures when the average monthly 469 

temperature exceeds 22 °C (Fox et al., 2018). Based on the fractional distribution of C4 470 

vegetation in Still and Berry (2003) and the Hybrid map, the average fraction is 0.5% for C4 471 

crops and 0.1% for C4 grasses in Canada. Therefore, only four out of the six PFTs (those present 472 

in Canada) are shown in Figure 3. In general, the spatial distributions of the PFTs from the ESA-473 

CCI and the Hybrid datasets agree well except for C3 grasses (C3G) (Fig. 3j and Fig. 3k). This is 474 
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not surprising given that the CW-table for the ESA-CCI dataset is based on the Hybrid map. 475 

Areas mapped as C3G in Hybrid (Fig. 3j), were mainly classified as sparse vegetation (LC150) 476 

in the ESA-CCI legend (Table 4). However, LC150 from ESA-CCI was also found in some areas 477 

of the high Arctic islands, where barren land is the dominant class in the Hybrid map (grey 478 

coloured areas in Fig. 1). If too much grass were assigned to LC150, it would yield 479 

unrealistically large fractional coverage of grass in the high Arctic islands. In Table 4, for 480 

LC150, 0.05 is assigned to BCD, 0.35 to grasses, and the rest to the bare ground for LC150, 481 

which yields a total vegetation cover of 40% and is more than the definition (<15% vegetation) 482 

used in the ESA-CCI legend. Yet, this still results in less C3G and less bare ground in the ESA-483 

CCI map (Fig. 3k and Fig. 3n) than those from the Hybrid map (Fig. 3j and Fig. 3m).  This 484 

suggests that it is not ideal to classify areas in the high Arctic islands and in the Arctic tundra 485 

region as being in the same land cover category.   486 

There are large differences in the spatial distribution of the PFTs based on the GLC2000 LC 487 

product and those based on the Hybrid and ESA-CCI datasets (Fig. 3 and Fig. 4). Relative to 488 

PFTs from ESA-CCI, GLC2000 has less NLE and more BCD in northwestern Canada, and more 489 

NLE in southern and eastern Canada (Fig. 4a and Fig. 4b). GLC2000 based CLASSIC PFT 490 

fractions also exhibit more crops, less grass, and more bare ground (Fig. 4c-4e). These 491 

differences partly stem from the differences in the ESA-CCI and GLC2000 LC datasets, but are 492 

also due to the fact how the fractions in the CW-tables of the two datasets are used to translate 493 

LC data to fractional coverage of PFTs as demonstrated in Wang et al. (2019).  494 

3.54.2 Bias in simulated surface albedo and LAI  495 
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The top row of Figure 5 shows the bias in winter albedo (March) simulated by CLASSIC when 496 

using PFT distributions based on the ESA-CCI (Fig. 5a) and GLC2000 products (Fig. 5b). While 497 

model biases are the result of both the driving geophysical and meteorological data that are used 498 

to force the model, as well as the model itself, the comparison between the two simulations does 499 

show the effect of differences in the distribution of PFTs.  Relative to observed surface albedo 500 

from MODIS, there are relatively large negative biases in the southwest of Hudson Bay and 501 

central Quebec, while there are relatively large positive biases in western Canada and Alaska in 502 

the simulation when using the  GLC2000 product to obtain PFT distributions (Fig. 5b). Both the 503 

negative and the positive biases are largely reduced in the simulation using PFT distributions 504 

based on the ESA-CCI product (Fig. 5a). The lower row of Figure 5 shows the spatial 505 

distribution of the difference in surface albedo (Fig. 5c) and leaf area index (Fig. 5d) between the 506 

two simulations, which are closely correlated (r = -0.85). Given the same meteorological forcing 507 

dataset is used to drive both simulations, the differences in the simulated LAI are due mainly to 508 

the different PFT distributions used in the two simulations. Since NLE is the only PFT with 509 

LAI > 0 during winter in Canada, the LAI difference in March as shown in Figure 5d is mainly 510 

due to the different fractional coverage of NLE based on the ESA-CCI and GLC2000 products 511 

(Fig. 4a).       512 

In contrast, the large positive albedo biases (up to ~ 0.4) in southern Canada are more or less the 513 

same in both simulations (Fig. 5a and Fig. 5b), where the dominant PFT is C3 crops (Fig. 3h and 514 

Fig. 3i). Those positive albedo biases are likely due to the standing crop stubble and the lack of 515 

the representation of blowing snow and its sublimation currently  in CLASSIC (Harder et al., 516 

2018; Pomeroy et al., 1993). Harder et al. (2018) showed that the height of the stubble over 517 

wheat and canola field in Saskatchewan, Canada may range from 10 to 40 cm, with a maximum 518 
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PAI (plant area index) of 1.0.  Wang et al. (2016) showed that surface albedo in CLASSIC  519 

decreased exponentially with increasing PAI for the bare or snow-covered canopy over snow, 520 

while most reductions of the albedo were achieved through the increase of PAI from 0 to 1.0. 521 

They showed that surface albedo decreased from 0.75 to 0.31 in CLASSIC when PAI increased 522 

from 0 to 1.0 for the bare canopy over snow, which appears to account for most of the positive 523 

albedo biases in the agricultural areas of southern Canada (Fig. 5a and Fig. 5b). Improvements to 524 

the crop module of CLASSIC to improve cropland albedo are currently being considered.  525 

45. Summary and conclusions 526 

A hybrid land cover map at 30 m resolution is created by merging the NALCMS and VLCE land 527 

cover products over Canada. Vegetation height data from Lidar plots, tree species, and high 528 

resolution images are used to inform the creation of a CW-table for mapping the 17 LC classes 529 

of the Hybrid map to six CLASSIC PFTs that are present in Canada. Both the Hybrid map and 530 

the Hansen tree cover fraction data are used to compute the sub-pixel fractional composition of 531 

the LC classes in the ESA-CCI LC dataset, which is then used to create a cross-walking table for 532 

mapping the 37 ESA-CCI categories to CLASSIC PFTs over the model’s Canadian domain. 533 

Based on the new CW-tables, PFT distributions are produced from the Hybrid and the ESA-CCI 534 

LC products, respectively, and are compared with those based on the GLC2000 dataset currently 535 

used in CLASSIC. The results show that the spatial distribution of PFTs from the ESA-CCI 536 

dataset is in better agreement with those from the Hybrid map, while there are large differences 537 

in the PFTs from the GLC2000 dataset and from the Hybrid/ESA-CCI datasets. The CW-table 538 

developed over Canada is adjusted and also used to map PFTs based on the ESA-CCI LC 539 

product for use in CLASSIC simulations at the global scale. 540 
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Our PFT mapping approach for the ESA-CCI dataset is mainly based on sub-pixel fractional 541 

composition analyses using the Hybrid map and the Hansen tree cover fraction data, and 542 

therefore the accuracy of the latter two datasets affects the PFT mapping process. Some LC 543 

categories in the ESA-CCI legend either have limited presence or no presence in Canada, such as 544 

the Needleleaf deciduous trees, Broadleaf Evergreen trees, and Broadleaf Dry Deciduous trees 545 

etc., and the sub-pixel fractional composition analyses therefore can not be performed for these 546 

LC categories. The needleleaf deciduous tree cover classes are assigned to the same fractions as 547 

the needleleaf evergreen tree cover classes in the CW-table, and values based on the default CW-548 

table from the ESA-CCI user guide are used for the other LC categories. Therefore potentially 549 

large uncertainties may be associated with these classes in the resulting fractional coverage of 550 

PFTs especially at the global scale. Similar analyses for other regions (e.g. Eurasia and tropics) 551 

for which high quality regional land cover maps are available will be helpful in reducing these 552 

uncertainties in the future work. In addition, the exercise of mapping PFTs at the global scale in 553 

this study reveals that there are inconsistencies in the representation of fractional coverage for 554 

some LC categories in the ESA-CCI map for different regions of the globe. Future improvements 555 

in the consistency of the LC categories globally in the ESA-CCI LC product would greatly 556 

benefit the land surface and the earth system modelling community. In the meantime, caution 557 

should be exercised when using this product for mapping PFTs represented in any LSM based on 558 

a single cross-walking table at the global scale.  559 

CLASSIC simulations driven with meteorological data from the CRU-JRA product show that the 560 

simulated winter albedo is improved when using PFT distributions based on the ESA-CCI LC 561 

product compared to that based on the GLC2000 product, which is consistent with findings from 562 

previous studies. While, CLASSIC simulations could also have been performed using its PFT 563 
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distributions based on the Hybrid LC product, the reason for using the ESA-CCI based PFT 564 

fractions for CLASSIC is that ESA-CCI is a global product. CLASSIC simulations are routinely 565 

performed at the global scale both in the framework of the Canadian Earth System Model (Swart 566 

et al., 2019), where CLASSIC serves as its land component, and offline where global CLASSIC 567 

simulations driven with the CRU-JRA meteorological data contribute to the annual global carbon 568 

budget assessments of the Global Carbon Project (Friedlingstein et al., 2020; Seiler et al., 2021). 569 

Untreated crop stubble appears to be contributing to the cause for positive winter albedo biases 570 

in southern Canada, which needs to be addressed in a future version of CLASSIC. These results 571 

underscore the importance of accurate representation of vegetation distribution in a realistic 572 

simulation of surface albedo in LSMs. 573 

Previous methods for mapping PFTs from LC datasets have mainly been based on class 574 

descriptions, expert knowledge, and the spatial distribution of global biomes, which is a largely 575 

subjective process. As a consequence, a PFT method developed for mapping one LC dataset to 576 

PFTs represented in one model can not be easily transferred to other LC datasets even for 577 

deriving PFTs in the same model. The development of satellite and computing technology has 578 

enabled the creation of more detailed global LC products at finer spatial resolutions in recent 579 

years, however, the lack of an objective PFT mapping method impedes the implementation of the 580 

new improved LC products in LSMs. Here, we have proposed a method to inform the cross-581 

walking process using sub-pixel fractional composition analyses based on a tree cover fraction 582 

dataset and a fine-resolution LC map. Our results suggest that the sub-pixel fractional 583 

composition analyses provide an effective way to reduce uncertainties in the cross-walking 584 

process and therefore, to some extent, objectifies the otherwise subjective process. The PFT 585 
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mapping approach developed in this study can also be applied to other LC datasets for mapping 586 

PFTs used in other LSMs. 587 

 588 

Appendix A 589 

In CLASSIC, the surface albedo for a canopy over snow ( ) is: 590 

                            csnowsnowsnowcsnowc ff   111 ,                     (1) 591 

                                   χ = exp (–K*PAI)                                                                                       (2)  592 

 593 

calculated using separate parameters (c, c,snow,c and K) for both the visible (VIS) and near 594 

infrared (NIR) bands, where c is the snow-free canopy albedo, c,snow the snow-covered canopy 595 

albedo, fsnow the fraction of the canopy with snow on it, snow the snowpack albedo. c is canopy 596 

transmissivity and is modeled using a Beer’s law approach, ignoring multiple reflections 597 

(Verseghy et al. 1993). K is an extinction coefficient that varies with vegetation type. The 598 

appearance of c in the last term of Eq.1 accounts for the shading of the snowpack by the canopy, 599 

converting the simulated snowpack albedo to an effective value of the canopy gaps. PAI is plant 600 

area index which is the sum of leaf area index and stem area index.  601 

 602 

Appendix B 603 

Based on Table 4, the fractional coverage of nine CLASSIC PFTs are also produced on a global 604 

scale. However, some adjustments to Table 4 were found necessary. This is because fractions of 605 

NLE (Needleleaf evergreen forests) in Eurasia are found to be too low relative to the Hansen 606 
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TCF data, with maximum values of only around 0.45 in most NLE dominated areas, where the 607 

maximum TCF from the Hansen dataset is around 0.80. Needleleaf evergreen forests are 608 

represented by LC classes 70 (closed to open), 71 (closed), and 72 (open). Examining the ESA-609 

CCI LC map shows that in Eurasia nearly all needleleaf evergreen forests are classified as LC70 610 

(closed to open), with only less than 400 pixels as LC71 (closed), and none as LC72 (open). In 611 

contrast, in Canada 36% of needleleaf evergreen forest are classified as LC70 (closed to open), 612 

64% as LC71 (closed), and less than 1% as LC72 (open). This is understandable given that sub-613 

classes were only assigned where surface samples were available (ESA, 2017). Sub-pixel 614 

fractional composition analyses of the ESA-CCI classes based on the Hansen TCF dataset show 615 

that in Eurasia TCF for LC70 (closed to open) is 66% and for LC71 (closed) is 35% (note the 616 

few pixels within this class). This is in contrast with those in Canada where the TCF for LC70 617 

( closed to open) is 39% and for LC71 (closed) is 62%, explaining the too low NLE fractions in 618 

Eurasia when mapping PFTs based on Table 4, and also the too high TCF in northwestern 619 

Canada when mapping PFTs based on the default CW-table (Wang et al., 2018). In order to 620 

apply Table 4 globally, the original LC70 (closed to open) was split into two classes: LC73 (a 621 

new class) which is the same as LC70 over Canada (and zero everywhere else), and LC70 622 

(revised) which is the same as before except zero over Canada. The fractions for the new LC70 623 

class are made the same as for LC71 in Table 4, which applies to NLE outside of Canada.  624 

Essentially, the closed-to-open needleleaf forest LC70 class over Eurasia is treated as the closed 625 

needleleaf forest.   626 
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Table 1. Cross-walking table for mapping the 30 m Hybrid land cover map to CLASSIC PFTs in Canada. 883 

Nine PFTs in CLASSIC: NLE - Needleleaf Evergreen trees, NLD - Needleleaf Deciduous trees, BLE - 884 

Broadleaf Evergreen trees, BCD - Broadleaf Cold Deciduous trees, BDD - Broadleaf Dry Deciduous 885 

trees, C3C – C3 Crops, C4C - C4 Crops, C3G – C3 Grasses, and C4C -  C4 Grasses. 886 

ID Map description 1 
NLE 

2 
NLD 

3 
BLE 

4+5 
BCD 
BDD 

6+7 
C3C 
C4C 

8+9 
C3G 
C4G 

Urban Lake Bare 

2 Sub-polar taiga  
needleleaf forest         

0.20     0.60   0.20 

11 
Sub-polar or polar  
shrubland-lichen-
moss 

     0.65   0.35 

12 
Sub-polar or polar  
grassland-lichen-
moss 

     0.45   0.55 

13 
Sub-polar or polar  
barren-lichen-
moss 

     0.10   0.90 

15 Cropland     1.0     
16 Barren lands         1.0 
17 Urban       1.0   
20 Water        1.0  
31 Snow_ice         1.0 
32 Rock_rubble         1.0 

50 Shrubland    0.20  0.60   0.20 

80 Wetland    0.05  0.85   0.10 

81 Wetland-treed 0.55   0.05  0.35   0.05 

100 Herbs      0.80   0.20 

210 Coniferous 1.0         

220 Broadleaf    1.0      

230 Mixedwood 0.50   0.50      

 887 

 888 

 889 

 890 

 891 

 892 

 893 

 894 

 895 

 896 
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Table 2. The sub-pixel fractional tree cover fraction for ESA-CCI (European Space Agency - Climate 897 

Change Initiative) land coverLC classes (with forest cover) based on the Hansen TCF (Tree Cover 898 

Fraction) dataset in Canada. Ratios of TCF between the main class and the closed class, and between the 899 

open class and the closed class are also included.   900 

ESA-
CCI class 

ESA-CCI class description 
Tree cover 

Fraction (%) 

Ratio of TCF 
relative to 

closed class 

30 
Mosaic cropland (>50%) / natural 
vegetation (<50%) 

13.7  

40 
Mosaic natural vegetation (>50%) / 
cropland (<50%) 

45  

60 
Tree cover broadleaved deciduous closed 
to open (>15%) 

68.5 0.8 

61 
Tree cover broadleaved deciduous closed 
(>40%) 

86.7 1 

62 
Tree cover broadleaved deciduous open 
(15-40%) 

37.4 0.43 

70 
Tree cover needleleaf evergreen closed to 
open (>15%) 

39.3 0.6 

71 
Tree cover needleleaf evergreen, closed 
(>40%) 

61.7 1 

72 
Tree cover needleleaf evergreen open 
(15-40%) 

23.2 0.38 

90 Tree cover Mixed 80.9  

100 
Mosaic tree and shrub (>50%) / 
herbaceous cover (<50%) 

37.3  

110 
Mosaic herbaceous cover (>50%) / tree 
and shrub (<50%) 

19.6  

120 Shrubland 28.1  

150 
Sparse vegetation (tree shrub herbaceous 
cover) (< 15%) 

4  

160 Tree cover, flooded fresh/brackish 43  

180 Shrub or herbaceous cover, flooded 26.9  

 901 

 902 

 903 

 904 

 905 

 906 

 907 

 908 
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Table 3. The sub-pixel fractional composition for ESA-CCI classes (columns, homogenous ESA-CCI 909 

pixels) based on the Hybrid LCland cvoer map (rows) for dominant LCland cover classes in Canada. The 910 

fractions for NLE and BCD are computed based on equation (1). 911 

 912 

 913 

 914 

 915 

 916 

 917 

 918 

Hybrid/ 
ESACCI 

Class 
Hybrid description 30 40 60 70 71 90 100 120 130 140 150 160 180 

2 
Sub-polar taiga 

needleleaf forest 
      0.02     0.01   0.01         

11 
Sub-polar/polar 

shrubland-lichen-
moss 

                  0.01 0.05     

12 
Sub-polar/polar 

grassland-lichen-
moss 

      0.04       0.03 0.01 0.24 0.27 0.03 0.04 

13 
Sub-polar/polar 

barren-lichen-moss 
      0.02     0.01 0.02 0.01 0.34 0.09   0.02 

15 Cropland 0.92 0.37 0.02           0.1         

16 Barren lands                 0.01 0.15 0.17     

50 Shrubland 0.01 0.07 0.06 0.13 0.05 0.04 0.32 0.46 0.09 0.14 0.25 0.06   

80 Wetland   0.03 0.08 0.2 0.05 0.03 0.27 0.2 0.02 0.06 0.09 0.37 0.75 

81 Wetland treed   0.01 0.01 0.17 0.07 0.03 0.11 0.12       0.43 0.15 

100 Herbs 0.06 0.27 0.08 0.02   0.02 0.06 0.09 0.72 0.01 0.03 0.01 0.01 

210 Coniferous   0.01 0.02 0.29 0.72 0.07 0.04 0.03   0.01 0.02 0.06   

220 Broadleaf 0.01 0.13 0.57 0.02 0.01 0.28 0.07 0.01 0.01     0.01   

230 Mixedwood   0.1 0.14 0.09 0.07 0.52 0.12 0.03       0.02   

NLE 
Needleleaf 
evergreen 

  0.07 0.09 0.44 0.8 0.32 0.19 0.16 0.01 0.02 0.05 0.31 0.08 

BCD 
Broadleaf cold 

deciduous 
0.01 0.19 0.66 0.09 0.06 0.57 0.18 0.09 0.02 0.02 0.03 0.05 0.03 
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Table 4. Cross-walking table for mapping ESA-CCI land cover dataset to CLASSIC PFTs. 919 

 ID 
ESA-CCI class 
description 

1 
NLE 

2 
NLD 

3 
BLE 

4+5 
BCD 
BDD 

6+7 
C3C 
C4C 

8+9 
C3G 
C4G 

Urban Lake Ocean Bare 

10 
Cropland, rainfed 
(CR) 

    0.80 0.20     

11 CR Herbaceous cover     0.90 0.10     

12 
CR Tree or shrub 
cover 

   0.60  0.30    0.10 

20 
Cropland, irrigated or 
post-flood 

   0.05 0.85 0.10     

30 

Mosaic cropland 
(>50%) / natural 
vegetation (tree, 
shrub, herb) 

0.05   0.15 0.60 0.20     

40 

Mosaic natural 
vegetation 
(tree,shrub, 
herb) >50% / crop 

0.10   0.20 0.40 0.30     

50 

Tree cover 
broadleaved 
evergreen closed to 
open 

  0.95 0.05  0.0     

60 

Tree cover 
broadleaved 
deciduous closed to 
open 

   0.70  0.25    0.05 

61 
Tree cover 
broadleaved 
deciduous closed 

   0.90  0.10     

62 
Tree cover 
broadleaved 
deciduous open 

   0.40  0.40    0.20 

70 
Tree cover needleleaf 
evergreen closed to 
open 

0.85   0.05  0.10     

71 
Tree cover needleleaf 
evergreen, closed 

0.85   0.05  0.10     

72 
Tree cover needleleaf 
evergreen open 

0.35   0.10  0.40    0.15 

73 
Replace LC70 in 
Canada 

0.45   0.10  0.30    0.15 

80 
Tree cover needleleaf 
deciduous closed to 
open 

0.05 0.40  0.10  0.35    0.10 

81 
Tree cover needleleaf 
deciduous closed 

0.05 0.80  0.05  0.15     

82 
Tree cover needleleaf 
deciduous open 

0.05 0.30  0.10  0.45    0.15 

90 Tree cover Mixed 0.25 0.05  0.60  0.10     

100 

Mosaic tree and 
shrub (>50%) / 
herbaceous cover 
(<50%) 

0.15 0.05  0.20  0.45    0.15 

110 
Mosaic herbaceous 
cover (>50%) / tree 
and shrub (<50%) 

0.05 0.05  0.10  0.65    0.15 

120 Shrubland    0.30  0.45    0.25 
121 Shrubland evergreen 0.15  0.15   0.45    0.25 
122 Shrubland deciduous    0.30  0.45    0.25 
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130 Grassland      0.70    0.30 
140 Lichens and mosses      0.20    0.80 

150 

Sparse vegetation 
(tree shrub 
herbaceous cover) (< 
15%) 

   0.05  0.35    0.60 

151 Sparse tree (<15%)    0.05  0.35    0.60 
152 Sparse shrub (<15%)      0.30    0.70 

153 
Sparse herbaceous 
cover (<15%) 

     0.30    0.70 

160 
Tree cover, flooded 
fresh/brackish  

0.30   0.10  0.45  0.1  0.05 

170 
Tree cover, flooded 
saline water  

0.30   0.10  0.40   0.1 0.10 

180 
Shrub or herbaceous 
cover, flooded 

0.10   0.05  0.45  0.15 0.15 0.10 

190 Urban areas 
0.02

5 
  0.025  0.15 0.75 0.05   

200 Bare areas          1.0 

201 
Consolidated bare 
areas 

         1.0 

202 
Unconsolidated bare 
areas 

         1.0 

210 Water bodies        1.0   

220 
Permanent snow and 
ice 

         1.0 
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 935 

 936 

Figure 1. The Hybrid land cover map of Canada based on VLCE and NALCMS land cover maps for 937 

2010. The red polygons represent 18 ecozones used in this study. 938 
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 946 

Figure 2. Schematic flow chart of the process for creating the cross-walking table for ESA-CCI land 947 

cover  (LC) dataset. NALCMS: the North America Land Change Monitoring System; VLCE: the Virtual 948 

Land Cover Engine; TCF: Tree Cover Fraction.  949 
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 962 

Figure 3. The spatial distribution of CLASSIC PFTs based on the Hybrid (left), ESA-CCI (middle), and 963 

GLC2000 (right) land cover datasets respectively. The maps for C4C and C4G are not shown for their 964 

fractions are smallnegligible (0.5% for C4 crops and 0.1% for C4 grasses) in Canada. The last panel 965 

shows fractions for bare ground from the three datasets. 966 

(a) (b) (c) 

(g) (h) (i) 

(m) (n) (o) 

(d) (e) (f) 

(j) (k) (l) 
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 967 
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 976 

 977 

 978 

 979 

 980 

 981 

 982 

 983 

Figure 4. The difference in PFTs based on ESA-CCI and GLC2000 datasets for selected PFTs (a) NLE, 984 

(b) BCD, (c) C3C, (d) C3G, and (e) Bare. 985 
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 994 

 995 

 996 

 997 

 998 

 999 

 1000 

 1001 

 1002 

 1003 

 1004 

 1005 

 1006 

 1007 

Figure 5. Surface albedo bias (relative to MODIS) in CLASSIC simulations using PFT distributions based 1008 

on (a) ESA-CCI, and (b) GLC2000 land cover products. Panels (c) and (d) show the difference in 1009 

simulated surface albedo (c) and leaf area index (d) between the two simulations.   1010 
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