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Abstract. Studies focusing on virga are rare, even though it is a commonly occurring phenomenon. In this study, we 

investigated aerosol backscatter profiles from a ceilometer located on the University of Texas at El Paso (UTEP) campus from 10 

2015-2021 to identify virga events. Ceilometer data effectively captured virga events from regular precipitation based on the 

backscattering intensities. To characterize the virga phenomena, a systematic method was developed using ceilometer profiles, 

soundings, surface rain gauges, and radar data from the nearest National Weather Service (NWS). A total of 50 virga events 

were identified during the study period. These events appeared only during a specific time of the year, revealing a seasonal 

occurrence pattern. We identified and classified these virga events and investigated their impact on the surface measurements 15 

recorded by the on-campus Continuous Ambient Air Monitoring Station (CAMS). Virga events were classified as columnar 

and non-columnar events based on their aerosol profiles. We observed that during some of the columnar virga events, surface 

PM levels displayed a sudden upward trend indicating aerosol loading in the surface layer after precipitation evaporation. 

Twenty of the virga events showed a columnar structure out of the fifty identified in this study. More detailed analysis of 

selected events shows that virga affects regional air quality. A significant result of this study is that analysis of sudden changes 20 

in local air quality need to consider the possible effects of virga on the surface layer. 

1 Introduction 

Extreme weather events and climate variability directly impact the hydrological cycle, which affects all life on Earth. 

Understanding hydrologic processes require a quantitative description of temporal variability in precipitation. Meteorologists 

define precipitation as liquid or solid water that falls from the sky to the ground. However, a type of precipitation known as 25 

virga never reaches the ground. Petterssen in his work, defined virga as the rain that falls from the clouds but evaporates before 

making it to the ground (Petterssen, 1958). Virga is also described as a sudden change in the brightness of a precipitation 

(water or ice particles) shaft beneath a cloud (Fraser and Bohren, 1992). It is a commonly observed phenomenon in hot, arid 

regions. According to Ludlam, the cumulus cloud bases in desert regions are higher above the ground (3-4 km), and that causes 

the precipitation on dry days to evaporate completely before reaching the ground (Ludlam, 1980).  30 Deleted: even 
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Water has a high heat of vaporization (40.65 kJ/mol (540 calories g-1)), so the transition from liquid to gas requires a significant 

amount of heat energy (Henderson-Sellers, 1984). Precipitation evaporating at a high altitude can heat up as it falls, due to 

adiabatic compression, resulting in a gusty downburst that can significantly and rapidly warm the surface temperature. The 

abrupt changes in the lower troposphere therefore can have a significant impact on weather forecasting, climate prediction, 35 

aviation, local air quality, and vegetation. Singh and O’Neil reviewed Earth’s climate system using the second law of 

thermodynamics (Singh and O’Neill, 2022). However, the thermodynamics involved during the virga events is not entirely 

known. During virga, the rain changes from liquid to vapor form, removing significant amounts of heat from the air and causing 

various weather effects. Colder air parcels can descend quickly to the ground, causing wet or dry microbursts that can pose 

extreme danger to small planes and other aircraft. A well-known example is the tragic crash of Eastern Airlines Flight 66 on 40 

June 24, 1975, while approaching New York's John F. Kennedy International airport. Fujita (Fujita and Byers, 1977) coined 

the term "downburst" to describe the induced wind shear that affected the airport. The Joint Airport Weather Studies (JAWS) 

project, designed to study the three-dimensional structure of microbursts in space and time, discovered that some microburst 

events were associated with virga shafts with little or no rain on the surface (McCarthy et al., 1982). Wilson et al. claimed that 

dry microbursts and wet microbursts exist, each with a different forcing mechanism, and they associated dry microbursts with 45 

virga events using doppler radar measurements from the JAWS project (Wilson et al., 1984). 

Even though virga is a captivating visual phenomenon with broader research implications, scientific publications on the subject 

are scarce. Previous studies investigated it using remote sensing instruments such as ground-based or airborne radar and/or 

lidar, and in some cases satellite observations. Wang et al. (2018) quantified global virga using spaceborne radars. They 

showed that it accounted for about 50% and 30% of overall false precipitation events detected by the Tropical Rainfall 50 

Measuring Mission (TRMM) Microwave Imager and Global Precipitation Measurement Microwave Imager, respectively, in 

arid regions. Using long-term measurements from the TRMM's Precipitation Radar data over India and the surrounding oceans, 

Saikranthi et al. (2014) discovered significant virga occurrences (20% and 14%) in the dry, semi-arid regions of Northwest 

India and Southeast Peninsular India, respectively. They also discovered the highest occurrence of virga in India during the 

pre-monsoon. Airey et al. (2021) derived the characteristics of desert precipitation in the UAE using a dataset of ceilometer 55 

observations spanning two years. They discovered that 28 of the 105 rain-producing events were virga, with small droplets, 

high cloud bases, reduced cloud depths, and cold cloud bases as multiple regional contributing factors. The authors also 

highlighted the significance of understanding the amount of precipitation in drought-prone arid regions with limited water 

resources for agriculture, irrigation, and domestic usage. 

Cheng and Yi used ground-based lidars to observe mixed-phase virga from a thin supercooled liquid layer cloud base on 20 60 

occasions. They discovered that the ice crystal particles in these virga cases had smaller mean diameters and narrower size 

distributions as altitude increased (Cheng and Yi, 2020). Beynon and Hocke detected and studied snow virga in Bern, 

Switzerland using a Doppler Micro Rain Radar (MRR). In their work, they specifically focused on a 22-hour long snow virga 

event from 17 March 2013 (Beynon and Hocke, 2022). The authors concluded that the 22-hour virga was caused by prevailing 

wind shear, which carried moisture-saturated air in the upper air layers over the measuring station while the wind blew in the 65 
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lower air layers, carrying unsaturated air with it. The authors also discovered a discrepancy between the MRR observations 75 

and the ERA-5 dataset, a global atmospheric reanalysis produced at the European Centre for Medium-Range Weather Forecasts 

by the Copernicus Climate Change Service (C3S) (ECMWF). Unlike MRR, which did not record any ground precipitation 

during the snow virga event, the latter showed a drizzle on the ground for 4 hours. The preceding work also highlights the 

importance of high resolution and frequency radiosonde, lidar, radar, and radiometer observations for model validation or data 

assimilation  (Beynon and Hocke, 2022). Similar snow virga has been detected and observed by Jullien et al. (2020) and 80 

Grazioli et al. (2017) in the Antarctic region. Virga was even linked with severe climatic events such as droughts. Evans et al. 

used radar data to classify precipitation over three locations in the Canadian prairie during the 1994-2004 droughts. They 

classified the precipitation over the drought region as convective, stratiform, or virga. Virga with an average cloud base 

temperature greater than 0°C resulted in efficient sublimation loss of precipitation that contributed to decreased surface 

precipitation (Evans et al., 2011). 85 

While all the above studies clearly advanced knowledge and understanding of regional virga detection and its variations to a 

great extent, some critical questions remain unanswered. Although heterogeneous-components and dissolved aqueous-phase 

constituents are released when cloud water or falling rain droplets (hydrometeors) either sublimate or evaporate, the 

contribution of this material towards local air quality is not yet well quantified. According to Tost et al. (2006), during this 

evaporation or sublimation process, any non-ionic, volatile compounds are converted to gas, scavenged by aerosol particles 90 

and redistributed into aerosols. Non-volatile components such as chlorides, sulfates and similar ionic compounds could serve 

as condensation nuclei for new aerosol particles. The quantification of the relationship between virga and the aerosol loading 

in the lower troposphere is an important new research question for atmospheric chemistry.  

El Paso with a semi-arid climate is a border city at the western tip of Texas, USA. It borders with the Mexican city Ciudad 

Juarez and together this region hosts two large airports and several small aerodromes. As a result, it is critical to research 95 

regional virga events thoroughly. The current study focuses on two aspects of virga events observed in this region. First is the 

characterization of virga seasonal pattern for the region and second is the analysis of ground measurements during the virga 

event. This region hosts a ceilometer located at the University of Texas at El Paso campus and has been functional since 2015. 

Virga events were detected primarily using the aerosol backscatter profiles from the ceilometer. El Paso is known for its high 

ozone events during summer (Karle et al., 2020) and the high PM events during winter (Lara et al., 2022; Fitzgerald et al., 100 

2021). Because virga's impact on local air quality has yet to be published, we present our observations, analysis, and discussion 

of case studies of some of the events observed in El Paso.  

The following is how this paper is structured. In Section 1, we present an introduction to previous studies and their significance. 

Section 2 covers the instrumentation and datasets used and the data collection method. Section 3 discusses the criterion for 

selecting virga events for this study. Section 4 examines the seasonal pattern of virga events in this region, followed by two 105 

case studies. Section 5 discusses and concludes our findings. 
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2 Dataset and Methodology 115 

Various datasets were used in this study to conduct a thorough analysis and consolidate observations and scientific claims to 

build substantial research. Dataset used in this work includes the ceilometer observations, vertical profiles from radiosonde, 

and Doppler weather radar, and ground-based air quality in-situ measurements.  

2.1 Site description 

The city of El Paso (latitude: 31°47′20"; longitude: −106°25′20"; elevation: 1145 m a.s.l.) is in the far western corner of Texas, 120 

separated by the Rio Grande River from the Mexican city of Juárez and surrounded by the Chihuahuan desert. El Paso has a 

semi-arid climate characteristic of the southwestern US climate. It is also known as "Sun City" because of its approximately 

302 days of sunshine annually. The Sun City's monsoon season starts on 15 June and runs through the end of September. The 

rainy period of the year lasts for around 4 months, from mid-June to the end of October, with a sliding 31-day rainfall of at 

least 0.5 inches. The month with the most rain in El Paso is August, with an average rainfall of 1.5 inches. The rainless period 125 

of the year lasts for around 7-8 months, from the end of October to first week of June. The month with the least rain in El Paso 

is April, with an average rainfall of 0.2 inches (Karle, 2021). 

2.2 Instrument 

2.2.1 Ceilometer CL31 and CL51 

Based on attenuated aerosol backscatter profile measurement, the ceilometer is an essential instrument in both robust 130 

functionality and cost efficiency in detecting cloud cover, cloud base height and aerosol layer height, which can be used to 

infer the planetary boundary layer (PBL). A ceilometer located at the University of Texas at El Paso (UTEP) campus is used 

to measure the intensity of backscatter caused by precipitation, clouds, fog, and the haze and creates profiles of signal strength 

vs. height measured over time. Two Vaisala ceilometer models, CL31 and CL51, were used to monitor the aerosol layer in 

this region using aerosol backscatter profiles. Both ceilometers are eye-safe single-lens mini-lidar systems that detect cloud 135 

base heights and vertical visibility by continuously monitoring aerosol backscatter profiles at 910 ± 10 nm (infrared light). 

CL31 has an InGaAs MOCVD diode with a pulse frequency of 10 kHz and a measurement range of 0-7.7 km. The typical 

uncertainty of the attenuation of the backscatter coefficient for a 30-minute average duration is 20%. 

A CL31 was installed on the University of Texas at El Paso (UTEP) campus in March of 2015. It was subsequently replaced, 

and a new CL51 was commissioned in August 2020. The CL51 has a spatial resolution of 10 m and can measure clouds and 140 

aerosol layers up to 15,400 m vertically. CL51's diode-laser technology, like the CL31's, is a semiconductor InGaAs diode 

laser with a wavelength of 910 ± 10 nm. The CL51, on the other hand, has a more powerful laser with a pulse energy of 3 µJ, 

which is higher than the CL31's 1.2 µJ, and a pulse frequency of 6.5 kHz. Furthermore, the instrument's single-lens optics 

allow it to detect anomalies in a measurement range of approximately 50 m above the ground surface. 
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2.2.2 Data processing 150 

The ceilometer's laser pulses are scattered back by all types of hydrometeors. Although the ceilometer is primarily meant to 

offer a constant indication of cloud base height, it also keeps a complete record of the returned signal strength as a function of 

height. Analysis of the backscatter signal can be in terms of the vertical profiles of the backscattering coefficient and the 

extinction coefficient using the LIDAR equation. The ceilometer data includes profiles through rain, snow, haze, and strong 

returns from the cloud base because it operates continually. Rogers et al., in their work, have discussed in detail the extinction 155 

and backscattering by these atmospheric constituents (Rogers et al., 1997). The Vaisala proprietary software BL-view (version 

2.1.1) was used extensively in this work for data analysis. The software uses a combination of gradient methods along with 

built in sky condition algorithms containing five modules to detect and measure cloud base heights and the planetary boundary 

layer heights from the measured attenuated backscatter profiles (Schafer et al., 2004). Both the spatial and temporal aerosol 

backscatter intensity profiles for the detection of virga events were obtained by processing them using the BL-view. 160 

 

2.2.3 Next-Generation Radar information 

The Weather Surveillance Radar (WSR-88D), developed in 1988 with a Doppler capability, is part of the next-generation radar 

(NEXRAD) network. There are over 158 such WSR-88Ds that operate around the United States. With a power output of 

750,000 watts, it is one of the world's most powerful radars. Its 28-foot-diameter antenna inside the dome can gaze at 14 165 

different elevations every 5 minutes. A detailed description of the MSR-88D instrument is available on NWS's webpage 

(www.weather.gov/iwx/wsr_88d). During the virga occurrences, data from the doppler radar at the NWS in Santa Teresa, New 

Mexico, was vital in detecting and confirming precipitation in the air. We obtained and used 5-minute resolution data for each 

day of the virga event from (www.ncdc.noaa.gov/nexradinv/). We extensively used open-source NOAA's National Centre for 

Environmental Information (NCEI) Radar software (www.ncdc.noaa.gov/wct/) for data visualization and analysis. 170 

2.3 Vertical profiles from the National Weather Service 

Radiosonde observations were obtained from the nearest National Weather Service (NWS) (31°52'33" N, 106°36'39" W) 

located at Santa Teresa, New Mexico, 21 km away from the study site. The local NWS launches two radiosondes daily at 0 

UTC (UTC -6 hrs MDT and UTC -7 hrs MST) and 12 UTC. Skew-T plots helped us analyse the upper air conditions, 

especially the temperature and moisture content on the event days. These Skew-T graphs were useful for analysing the 175 

thermodynamics of the atmospheric profiles. All the soundings data used in this study was obtained from the University of 

Wyoming Atmospheric Science Radiosonde Archive database (weather.uwyo.edu/upperair/sounding.html). 

2.4 Continuous Ambient Monitoring Stations (CAMS) 

There are 12 Continuous Ambient Air Monitoring Stations (CAMS) that have been installed in various parts of El Paso for 

decades. These sites continuously monitor the ambient air and report and issue warnings when pollution anomalies occur. 180 
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CAMS 12, located on the UTEP campus (EPA side number 48-141-0037, 31°76'82" N, 106°50'12" W), is one such station 

operated and maintained by the Texas Commission on Environmental Quality (TCEQ) El Paso regional office. This station 

provided local meteorological data such as temperature, relative humidity, dew point temperature, wind speed, and maximum 

wind gusts. Usually, CAMS data are provided on an hourly basis and the same was used in this research. The hourly data from 

the CAMS was used to calculate the rate of change of meteorological variables during virga events to investigate the changes 190 

associated with the virga on the surface layer. Later, linear regression was used to determine any correlations between these 

parameters and investigate virga's impact on them. 

3 Virga events selection criteria 

One of the critical factors for precipitation is the acceptable moisture content in the air between the ground and the cloud base. 

These humid conditions facilitate the precipitation falling from the clouds to make it to the ground. However, when the layer 195 

of air between the cloud base and the ground is dry, precipitation evaporates before reaching the ground. This evaporating 

precipitation appears as streaks extending down the cloud. Extensive use of the UTEP ceilometer for analysing planetary 

boundary layer heights (PBLHs) and their impact on local air quality is well documented (Karle, 2017; Karle et al., 2020; 

Karle, 2021; Karle et al., 2021).  Several precipitation events with streaks extending down the cloud were observed during the 

investigation of the aerosol backscatter profiles for PBLH measurements from 2015 to 2021 for these studies. We investigated 200 

the events further using ground measurements and other remote sensing data for the region and identified them to be virga 

occurrences. 

Since the literature on virga and detection of its various forms is scarce, we decided to establish our criteria based on a 

combination of available datasets from various sources. In our method, backscatter intensity profiles from the ceilometer were 

the primary source of virga detection. Days in which precipitation below the cloud base was observed to fade as it falls towards 205 

the ground were chosen. All the selected events had virga detected for at least an hour. There were also instances where 

precipitation was observed before or after the virga events. National Weather Service (NWS) radiosonde vertical profiles were 

used to estimate the cloud base and analyse the dryness in the air near the surface. Radar data from NWS confirmed the 

presence of precipitation of rain clouds, and finally, using the data from the CAMS located at UTEP, the absence of any 

precipitation was confirmed. By combining these data sources, we ruled out the possibility that the virga event described in 210 

this study was not part of the precipitation that reached the ground in the form of light rain. 

Figure 1 depicts an attenuated aerosol backscatter profile obtained from Vaisala CL31 on January 25, 2017, from 00-15 UTC. 

The strongest signal (indicated in red) is from precipitation below the cloud base, and the remaining signal (light blue, green 

and yellow with increasing intensity) is from aerosol backscatter. A streak of precipitation is observed extending downwards 

from 7:45 UTC to 13:30 UTC. Base reflectivity imagery from the NEXRAD WSR-88D located at National Weather Service 215 

(NWS), Santa Teresa, New Mexico (purple dot) is examined (Figure 2). We observe light precipitation at the research site 

UTEP shown in a red dot (Figure 2). The Base Reflectivity colour over UTEP site at 8:56 UTC correspond to the intensity of 
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the radiation received by the radar antenna at NWS (KEPZ). A threshold of 20 dBZ is usually the point at which light rain 220 

begins as seen in this case over the study site UTEP (red dot) in Figure 2. However, no precipitation was recorded at the ground 

station at UTEP, indicating that the precipitation had not reached the ground, thus confirming the occurrence of virga. The 

NWS (KEPZ) vertical profiles at 00 (5 pm MST) and 12 UTC (5 am MST) revealed a large gap between T (temperature in 

red) and Td (dew point temperature in blue) above the surface, indicating dry air (Figure 3). In the 12 UTC profile, at 680 hPa, 

we notice the T and Td close to each other, implying moist air, and at 560 hPa, T and Td overlap, indicating saturated air. 225 

 

 
Figure 1: Aerosol backscatter profile obtained from CL31 for 25 January 2017 from 00-15 UTC showing virga occurrence from early 8 
UTC to 13 UTC (shaded region). The blue dashed lines and circles indicate availability of radiosonde data. 

 230 
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Figure 2: Base reflectivity imagery from the NEXRAD WSR-88D located at National Weather Service (NWS), Santa Teresa, New Mexico 
(purple dot). We can observe light precipitation at the research site UTEP shown in red dot. However, no precipitation is recorded at the 
ground station indicating occurrence of virga. Source: NOAA’s weather and climate toolkit (https://www.ncdc.noaa.gov/wct/). 235 

 

 
Figure 3:  Skew-T plot for 25 January 2017, 00 UTC (left) and 12 UTC (right) of the radiosonde data from the NWS, Santa Teresa, New 
Mexico. The dewpoint temperature Td is indicated with blue line and temperature T is indicated with red line. The wind barbs on right side 
of each skew-T plot provides wind speed and direction at the corresponding air pressure and altitude. 240 
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The above case serves as an example of the steps followed in determining and confirming virga events during the study period 

of 2015-21. This criterion is not flawless but serves as a good starting point with the data availability for this region. All events 

which met the above criteria were visually inspected and ascertained as examples of virga. The next section will review the 

total virga found during the study and the search for patterns in their occurrences. 

4 Regional seasonal virga patterns 250 

When virga was classified by season, finer temporal resolution revealed important patterns. Different characteristics of virga, 

like any precipitation, are unique to each location, emphasizing the variability and evolution of humidity and dryness in the 

air. Seven years worth of backscatter profiles from the ceilometer installed at the UTEP campus were examined, and a long-

term pattern of virga was established for this region. The ceilometer detected 50 virga events during the study period which 

met the detection criteria described in Section 3. Figure 4 depicts the distribution of virga events throughout the study period 255 

(March 2015 – December 2021). The burgundy squares characterize days with virga, while the red squares represent days 

when the ceilometer data was unavailable. Figure 4 (a) illustrates that virga events occurred during the dry months of the year, 

with most of the events occurring during the winter and spring seasons. Some occurrences have also been reported in the early 

and late fall seasons. 

Throughout the study, 2021 had the highest number of virga events. This high rate of successful virga detection can be 260 

attributed to two factors: a new ceilometer CL51 (which was commissioned in August 2020), with a greater vertical range and 

more powerful laser replacing the previous CL31, and the instrument's continuous operation. Most virga events in 2021 

occurred during the winter and spring seasons, with only one occurring in the early fall. Three virga events were recorded in 

December 2020, with one event each in January, February, and April, and two in March. Similarly to 2021, most of the virga 

events in 2019 occurred during the winter and spring months, with only one occurring in late December. 2015 had the fewest 265 

virga events, followed by 2018 and 2017 due to the unavailability of the ceilometer dataset as a result of technical difficulties 

and maintenance issues. Even though continuous ceilometer data was available throughout the year, 2016 saw the fewest virga 

events. 

Figure 4 (b) reveals a pattern in virga occurrences. Not a single virga event was recorded in May, June, July, and August. From 

June to October, El Paso has humid days when the average monthly precipitation ranges from 0.43 – 1.67 inches, as seen in 270 

Figure 4 (c). Even though September has an average of 1.52 inches of precipitation, three virga events were observed. On the 

remaining days of the year, this region is dry with plenty of sunlight (Karle et al., 2020). During the summer monsoon season, 

conditions are mostly humid and thus not ideal for virga occurrence. January recorded the most virga events, followed by 

March and April, which are some of the driest months of the year, with average precipitation of less than 0.4 inches. Not a 

single event was observed in October and only two were recorded in November.  275 
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(b) 

 

 
(c) 

Figure 4: (a) A total of 50 virga events (burgundy) observed over the 7 years period (2015-2021). There are days when the instrument was 290 
not functional, such days are marked in red, (b) monthly distribution of the virga events, (c) monthly climate normal (1991-2020) for El 
Paso, Texas (Image Courtesy: National Weather Service, https://weather.gov).  

Deleted: 



12 
 

5 Impact of virga on ground measurements 

The observed virga events were classified into two types based on a thorough analysis of the aerosol backscatter profiles: 295 

columnar and non-columnar virga events. We observed a columnar aerosol profile from the base of the virga entering the 

surface layer in columnar occurrences using a ceilometer, whereas aerosols were not detected between the virga and the surface 

aerosol layer in non-columnar events. Twenty of the 50 events observed were columnar, while the remaining 30 were non-

columnar. In the following section, we will examine two case studies representing each of the virga types mentioned above. 

 300 

5.1 Case study 1: Columnar virga event of 31 March 2015 

The virga event on March 31, 2015, was unusual in several ways. The virga occurred between 11 and 15 UTC (local time is 

UTC -7 hrs) and lasted for an hour. The occurrences, however, were not continuous, and we suspect the cloud moved away 

from the ceilometer, hence the discontinuity in virga detection. At 17 UTC, we witness another virga event, lasting more than 

5 hours (until 22:45 UTC). The initial height of the virga (precipitation (red) depth from below the base of the cloud until it 305 

completely evaporates, i.e., no precipitation signal traced by the ceilometer) is slightly more than 0.5 km. However, as seen in 

Figure 5, the streak of aerosols (green) elongates below the precipitation and enters the surface aerosol layer (blue), forming a 

columnar structure. During the virga episode, the cloud base appears to be well above 4 km.  

 

 310 
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Figure 5: Virga event from 31 March 2015 (shaded region), when a columnar aerosol profile can be seen approximately 20-22 UTC 315 
reaching the surface aerosol layer. The blue dashed lines and circles indicate availability of radiosonde data. 

 

Figure 6 (a, c, d) depicts hourly (in UTC) measurements from the CAMS 12 for March 31, 2015. According to (Theodore 

Fujita, 1990) and (Wakimoto, 1985), a downburst (microbursts) is a strong downdraft that causes an outflow of intense winds 

at or near the surface. Wind speed and maximum wind gust accelerated after 19 UTC and reached their maximum values (6.5 320 

and 12.3 m/s, respectively) for the day between 21-22 UTC. However, since the ground measurements were hourly averaged, 

the spike in wind gust due to dry microburst is missed out (Figure 6a). The precipitation evaporated after descending below 

the cloud base and into the dry layer, causing the air to cool and become negatively buoyant, as shown in Figure 5. During the 

virga event, the evaporation or sublimation of melting particles is accompanied by the absorption of latent heat, which 

eventually leads to a progressive cooling of the lower atmospheric layers especially below 1.5 km (Lolli et al., 2017). Since 325 

the vertical profiles of temperature and dewpoint temperature in Figure 6b exhibits a deep and dry layer, changes in wind speed 

and maximum wind gust at 19 UTC can also be attributed to dry microbursts due to the availability of favourable environmental 

conditions. On the other hand, temperatures show a steep decline during this period, indicating that the moisture content in the 

air from the virga contributed to surface cooling (Figure 6a). The relative humidity and dewpoint temperature have a local 

peak at 12 UTC and 15 UTC, respectively, before falling precipitously as seen in Figure 6c. At 19 UTC, the relative humidity 330 

and dewpoint temperature rise dramatically, peaking at 23 UTC, thus providing another good characteristic of the virga 

phenomenon detected by the ceilometer. In Figure 6d, the particulate matter (PM) concentration charts exhibit varying 

characteristics, at the beginning of the day between 0-4 UTC, both PM2.5 and PM10 display increase in concentration, however 

at 19-22 UTC when the ceilometer observes the columnar structure from the virga, we see an collective increase in the PM 

concentrations, especially at 22 UTC when we observe PM2.5 (11.6 µg/m3) and PM10 (81.4 µg/m3). We believe when the virga 335 

produced dry microburst air hit the ground it spread out. The increase in the maximum wind gust was representing the gust 

front which led to the increase in the PM concentrations by lifting the aerosols from the ground into the air. Another possibility 

which could explain the increase in PM2.5 levels is the cloud condensation nuclei (CCN) reaching the ground after evaporation 

of the droplets. 

 340 
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Figure 6: Hourly measurements from TCEQ CAMS 12 UTEP for 31 March 2015, (a) wind speed (solid blue), maximum wind gust (dotted 

blue) in m/s and surface temperature (red) in Celsius; (b) sounding along with wind barbs from NWS for 31 March 2015 12 UTC and 1 

April 2015 00 UTC (Td: blue, T:red); (c) relative humidity (purple) and dewpoint temperature (pink); (d) PM2.5 concentration (olive) and 375 
PM10 concentration (teal). Shaded portions represent virga event and black dashed lines, and dots represent availability of radiosonde data. 
 

Figure 6a shows an increase in surface wind speed and maximum gust during the virga event (shaded). The daytime 

temperature peaks at 19 UTC and then begins to fall. The radiosonde vertical profiles on 31 March 2015 at 12 UTC and 1 

April 2015 at 0 UTC provide a better understanding of the thermodynamic state of the atmosphere within and above the 380 

boundary layer (Figure 6b). Temperature (red) and dew point temperature (blue) are further apart between 876 mb (1.3 km 

above sea level, a.s.l.) and 577 mb (4.7 km a.s.l.), indicating lower relative humidity at these levels. In the 0 UTC sounding, 

we observe the temperature drifting from the adiabatic ascent curve showing a diabatic behaviour. This loss of latent heat 

energy of the air parcel can be attributed to the air column which has cooled down after the evaporation of precipitation 

underneath the clouds. Another important piece of information we obtain from the soundings is the wind intensity near the 385 

surface. As seen in the wind barbs associated with the 12 and 0 UTC sounding, winds are calm between 732 mb (2.7 km a.s.l.) 

and 655 mb (3.7 km a.s.l.). However, near the surface we observe strong winds (around 10-11 m/s) which appears to be 

decoupled from winds between the cloud base and the surface. Based on the thermodynamic and meteorological evidence, it 

can be concluded that virga in Case 1 was intense in nature. 

 390 

5.2 Case study 2: Virga event of 10 March 2019 

On March 10, 2019, the ceilometer recorded a 16-hour-long virga event beginning approximately at 10:30 UTC and ending at 

23 UTC, followed by precipitation. Figure 7 depicts the CL31 ceilometer's attenuated aerosol backscattering. The cloud base 

height is roughly 4 km. Again, the ceilometer cloud detection algorithm fails to calculate cloud base height accurately and 

misidentifies signals from larger rain droplets as clouds. The virga's height ranges between 1-1.5 km from 10-0 UTC and 395 

gradually decreases. We observe some precipitation reaching the ground around 3 UTC, but the ground instrument (rain gauge) 

fails to capture this relatively little precipitation. The red profile indicates a strong backscatter signal indicating rain, while the 

yellow and green profiles indicate reduced intensities. At 15 UTC, we see a small section of virga entering the surface layer, 

but it is not as noticeable as in Case 1 with the columnar section. During 10-15 UTC and 15:30-22 UTC, no aerosol signal is 

recorded between the virga and the surface layer, indicating a disconnect between the virga and the surface aerosol layer. 400 
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Figure 7: Virga event from 10-11 March 2019 (shaded region), starting from 10:30-20 UTC, light precipitation can also be observed 

between 3-4 UTC. 430 
 

Maximum wind gusts were higher from 12 UTC to 20 UTC, as shown in (Figure 8 a). The temperature gradually rose after 

sunrise at 11 UTC and peaked at 17 UTC before sharply declining. We attribute the sudden drop in temperature to a significant 

increase in air humidity (Figure 8 c). Sounding profiles show the presence of dry air near and above the surface, especially at 

00 UTC, because the difference between Td and T is large at the surface and peaks at 677 mb (Figure 8 b). The 12 UTC profile 435 

is no different; dry air can be seen at the surface, even though the difference between Td and T is not as large as in 00 UTC. 

The air aloft appears to be moister as the difference between Td and T shrinks, and they get closer at 605 mb. The moisture in 

the upper atmosphere can be ascribed to the virga. The sudden huge increase in maximum wind gust after 11 UTC is another 

clear indication of virga induced dry microburst. However, unlike in Case 1, no significant fluctuations in PM concentrations 

were observed, even though maximum wind gusts were recorded during the virga event (Figure 8 d). This leads us to believe 440 

that no aerosol loading occurred in the surface layer following precipitation evaporation. Another significant difference 

between the two cases is the humidity in the air. In Case 1, we observe percent relative humidity increasing from 16 to 31 % 

during the time of the virga event. Whereas, in this case we observe that the percent relative humidity is around does not show 

a lot of fluctuation from 11 UTC till 17 UTC, eventually showing a sudden growth around 18 UTC. 

 445 
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Figure 8: Hourly surface measurements in UTC from CAMS 12 UTEP for 10-11 March 2019, (a) wind speed (solid blue), maximum wind 

gust (dotted blue) in m/s and surface temperature (red) in Celsius; (b) sounding along with wind barbs from NWS for 10 March 2017 12 

UTC and 11 March 2017 00 UTC (Td: blue, T:red); (c) relative humidity (purple) and dewpoint temperature (pink); (d) PM2.5 concentration 490 
(olive) and PM10 concentration (teal). Shaded portions represent the virga event and black dashed lines, and dots represent availability of 

radiosonde data. 
 

The radiosonde vertical profiles reveal the absence of strong winds on the surface and within the boundary layer in the case of 

non-columnar virga. The 12 UTC profile overlaps with the virga's initial phase, whereas the 0 UTC profile provides 495 

information after the virga has ended (Figure 8b). Both soundings indicate the presence of dry layers between 900 and 600 mb 

and 600 and 300 mb, respectively. In contrast to the columnar virga, the temperature profile at 0 UTC follows the adiabatic 

ascent curve between 880 to 600 mb. Figure 8a shows that the surface wind and gust intensity were lower than what was 

observed in the columnar case. Based on ground measurements, we can see in Figure 8c that the surface was relatively more 

humid than in the columnar case and that the percent relative humidity increased rapidly at the end of the virga event. Based 500 

on the evidence presented above, we hypothesize that the virga intensity was lower in the non-columnar case, resulting in mild 

winds at the surface and as shown in Figure 8d, hence relatively lower concentrations of fine aerosol loading into the 

atmosphere. Furthermore, the higher moisture content in the air resulted in lower PM concentrations. 

 

5.3 Relationship between ground measurements during virga events 505 

We performed linear regression for several ground measurements during the virga events to quantify and analyse changes at 

the ground level. The rate of change of wind speed (DWS) during the episode was compared with rate of change of DPM2.5, 

DPM10, DTair, and DTd during both the columnar and non-columnar virga events as seen in Table 1. We calculated the p-value, 

a statistical parameter to validate a hypothesis against observed data and observed that all p-values were higher than 0.05; 

meaning we cannot affirm that the slope calculated for the linear regression is not zero with 95% confidence interval. The R-510 

squared values show slight improvement for most of the regressions for column virga cases. DWS vs. DPM2.5 had a higher R-

squared value in columnar episodes than in the other cases. All of this indicates that the hourly surface values which were 

obtained from the CAMS hinders the detection of the virga as well as microburst effects on the surface measurement time 

series.  

 515 

Table 1: Regression parameters for several surface parameters of the Column virga cases (c) and not column virga cases (nc).  

WS = wind speed, PM2.5 = particulate matter 2.5 μm, PM10 = particulate matter 10 μm, Tair = air temperature, Td= dew point 

temperature.  Linear fit parameters: R2 = squared correlation coefficient, P = p-value, N = sample size.  Values in parenthesis 

are the standard error. 

 520 
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Regression Intercept Slope R2 P N 

DWS vs DPM2.5 (nc) -0.7 (1.3) 0.05 (0.49) 0.0004 0.92 28 

DWS vs DPM2.5 (c) -1.1 (3.0) 1.7 (1.1) 0.11 0.15 18 

DWS vs DPM10 (nc) 0.8 (1.9) -0.34 (0.72) 0.008 0.63 28 

DWS vs DPM10 (c) 11.2 (5.6) -0.6 (2.2) 0.004 0.78 16 

DWS vs DTair (nc) -0.1 (0.4) 0.01 (0.16) 0.004 0.93 28 

DWS vs DTair (c) 0.51(0.69) 0.27 (0.26) 0.05 0.31 18 

DWS vs DTd (nc) 0.12 (0.79) -0.32 (0.33) 0.03 0.34 27 

DWS vs DTd (c) 1.50 (0.78) -0.27 (0.31) 0.045 0.38 17 

 

6 Discussion and Conclusions 535 

This study investigated and characterized virga events in El Paso, Texas, using a combination of ceilometer, radiosonde, radar, 

meteorological and PM ground measurements and analysed its impact on local air quality. In the literature, very few studies 

cover a wide range of virga forms and circumstances. However, this work has special merit due to the many events detected, 

classified, and analysed. Our research extends the literature by providing an initial investigation into virga’s impact on ground 

level PM concentrations. A gradient in attenuated aerosol backscatter intensities detected by ceilometers (CL31 and CL51) 540 

helped identify virga. Retrieving the cloud base height during some virga events was difficult due to large rain droplets. 

Backscatter profiles from 2015 to 2021 revealed 50 virga events that occurred locally. The inspection of virga events during 

the study period revealed a seasonal pattern of occurrence. No virga event was observed during the summer season when the 

moisture content in the region is high due to the arrival of the American monsoon. It was further shown that January reported 

maximum virga events followed by March. 545 

Every event observed and analysed during this work was unique in its way. No two events were the same; however, we 

identified and categorized these 50 events into two types: columnar and non-columnar events. Columnar virga events displayed 

a columnlike aerosol structure below the virga entering the surface layer, whereas non-columnar events displayed no such 

structures, but instead, we observe the absence of aerosol between the virga and surface layer. Since it was impossible to 

discuss all 50 events in this paper, we presented only the most significant ones as case studies. The virga cases discussed in 550 

this work lasted for more than 4 hours, during which no precipitation was recorded at the ground level, however the surface 

measurements did indicate an increase in moisture content in the air. Both the events were characterized with gusty winds as 

indicated by the hourly maximum wind gusts data. Non-columnar virga case of 10 March 2019 was gustier than the columnar 
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event. Relative humidity and dewpoint temperature data in both the cases showed a sudden increase during the virga phase 

indicating a sudden increase in the moisture content in the air. The sudden increase in PM concentrations in the columnar virga 

episode on 10 March 2019, can be attributed to a microburst-produced gust front, which caused a sudden spike in PM levels 

by lifting aerosols from the ground into the air. Another possible explanation for the sudden increase in PM2.5 levels is cloud 560 

condensation nuclei (CCN) reaching the ground after droplet evaporation. We also observe that with the gradual increase in 

humidity levels, the PM levels eventually drop, since these PM would serve as the raindrop nuclei. 

This study also shows that a ceilometer can be a good and affordable alternative to lidars for detection of virga episodes and 

could provide more information on dry microbursts. Ceilometers are available throughout all the airports in the United States, 

but they gather mostly cloud height information. If the attenuated aerosol backscatter profiles from these ceilometers are made 565 

available, then they can provide useful information on phenomena such as virga and dry microbursts. 

The availability of higher temporal resolution ground measurements will undoubtedly improve and solidify the correlation 

between the various parameters discussed in Table 1. If funds are available, using an all-sky camera (capable of capturing finer 

temporal resolution images) in conjunction with the ceilometer would greatly aid in capturing the virga precipitation. During 

the virga event, launching collocated radiosondes could provide an excellent dataset of vertical atmospheric profiles, especially 570 

the wind flows. A comprehensive study that includes such instrumentation and approaches would allow researchers to 

investigate the possibility of a strong connection between vertical winds, virga, and a local rise in PM levels. It also emphasizes 

the importance of having diverse instrumentation at the El Paso site, such as sonic anemometers, wind profilers, and 

barometers, which will provide a comprehensive dataset that will further enhance our understanding of virga and dry 

microbursts in the region. This research work will undoubtedly be a starting point for researchers to better comprehend the 575 

link between virga events and air quality. It will be worth analysing the impact virga has on the climatology of precipitation 

in semi-arid regions. 
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