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Abstract 21 

The chemical transport model (CTM) is an essential tool for air quality prediction 22 

and management, widely used in air pollution control and health risk assessment. 23 

However, the current models do not perform very well in reproducing the observations 24 

of some major chemical components, for example, sulfate, nitrate, ammonium and 25 

organic carbonsimulating PM2.5 components. Studies suggested that the uncertainties 26 

of model chemical mechanism, source emission inventory and meteorological field can 27 

cause inaccurate simulation results. Still, the emission source profile (used to create 28 

speciated emission inventories for CTMs) of PM2.5 has not been fully taken into account 29 

in current numerical simulation. This study aims to answer (1) Whether the variation of 30 

source profile adopted in CTMs has an impact on the simulation of PM2.5 chemical 31 

components? (2) How much does it impact? (3) How does the impact work? Based on 32 

the characteristics and variation rules of chemical components in typical PM2.5 sources, 33 

different simulation scenarios were designed and the sensitivity of simulated PM2.5 34 

componentscomponents simulation results to PM2.5 sources chemical profile was 35 

explored. Our findings showed that the influence of source profile changes on simulated 36 

PM2.5 concentration was insignificant, but its impact on simulated PM2.5 components 37 

could not be ignored.. The variations of simulated components ranged from 8% to 167% 38 

under selected different source profiles, and simulation  Simulation results of some 39 

components were sensitive to the adopted PM2.5 source profile in CTMs. Moreover, 40 

there was a linkage effect, the variation of some components in the source profile would 41 

bring changes to the simulated results of other components. These influences are 42 

connected to the chemical mechanisms of the model since the variation of species 43 

allocations in emission sources directly affected the can affect potential composition 44 

and phase state of aerosols, chemical reaction priority and multicomponent chemical 45 

balance in thermodynamic equilibrium system. We also found that the perturbation of 46 

the PM2.5 source profile caused the variation of simulated gaseous pollutants, which 47 

indirectly indicated that the perturbation of the source profile would affected the 48 
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simulation of secondary PM2.5 components. Given the vital role of air quality simulation 49 

in environment management and health risk assessment, the representativeness and 50 

timeliness of source profile should be considered. 51 
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1. Introduction 54 

Ambient fine particulate matter (PM2.5) pollution in some key regions of China 55 

has attracted much attention (Liang et al., 2020; Huang et al., 2021). The chemical 56 

components of PM2.5, including elements (Al, Si, Fe, Mn, Ti, Cu, Zn, Pb, etc.), water-57 

soluble ions (SO4
2-, NO3

-, Cl-, F-, NH4
+, Na+, K+, Mg2+, Ca2+, etc.), and carbon-58 

containing components (Organic Carbon, OC; Elemental Carbon, EC) (Yang et al., 59 

2011; Li et al., 2013), have different physical and chemical properties, such as reactivity, 60 

thermal stability, particle size distribution, residence time, optical properties, health 61 

hazards, etc (Seinfeld and Pandis, 2006; Tang et al., 2006). According to long-term 62 

monitoring results, in most regions of China, SO4
2-, NO3

-, NH4
+ and OC are the most 63 

important species in ambient PM2.5 (Li et al., 2017a; Li et al., 2021), which has a certain 64 

adverse impact on human health (Shi et al., 2018) and ecosystem, such as acid rain in 65 

southwest China (Han et al., 2019), food security (Zhou et al., 2018), etc.  66 

The chemical transport models (CTMs) play an important role in policy making 67 

for regulatory purposes. Based on the scientific understanding of atmospheric physical 68 

and chemical processes, CTMs are built to simulate the transport, reaction and removal 69 

of pollutants on a certain scale in horizontal and vertical directions. With the 70 

development of CTMs, the simulation accuracy of PM2.5 concentration has been 71 

significantly improved. Higher requirements have been put forward for the precise 72 

simulation of PM2.5 components so as to provide support for the use of CTMs in human 73 

health risk assessment, climate effects, pollution sources apportionment, and so on 74 

(Peterson et al., 2020; Lv et al., 2021). However, the current models perform not very 75 

well in simulating some components (for example, PM2.5-bound sulfate, nitrate, 76 

ammonium, trace elements, etc.) (Zheng et al., 2015; Fu et al., 2016; Ying et al., 2018; 77 

Cao et al., 2021). In the current literatures, the correlation coefficient (R) and 78 

normalized mean bias (NMB) are highly variable and inconsistent between the 79 

simulated and the observed values (listed in Table S1). This is mainly attributable to the 80 

uncertainties of model chemical mechanism, source emission inventory and 81 
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meteorological field simulation.  82 

The chemical mechanisms involved in CTMs are derived from parameterized 83 

assumptions based on laboratory simulation and field observations. The actual 84 

atmospheric chemical processes are very complex, and some reaction mechanisms are 85 

still limitedly understood. In addition, the integration of chemical reactions and 86 

simplified treatment methods in the model cannot fully reflect the correlation among 87 

atmospheric pollutants. For example, in some model mechanisms, other important 88 

sulfate and nitrate formation pathways through new heterogeneous chemistry were 89 

added through new heterogeneous chemistry, including the chemical reaction between 90 

SO2 and aerosol, NO2/NO3/N2O3 and aerosol (Zheng et al., 2015), nitrous acid oxidized 91 

SO2 to produce sulfate (Zheng et al., 2020), dust particles promoted the oxidation of 92 

SO2 (Yu et al., 2020), modified the uptake coefficients for heterogeneous oxidation of 93 

SO2 to sulfate (Zhang et al., 2019), updated the heterogeneous N2O5 parameterization 94 

(Foley et al., 2010). Even though the aforementioned processes can significantly 95 

improve the simulation of SO4
2- and NO3

-, there is still a gap between the modeled and 96 

the actual atmospheric chemical processes. 97 

The uncertainty of source emission inventory also significantly affects the 98 

simulation results of PM2.5 components (Shi et al., 2017; Sha et al., 2019). Due to 99 

incomplete information or insufficient representativeness, pollutant emissions are 100 

sometimes overestimated or underestimated, and the method for temporal and spatial 101 

allocation also needs to be improved. 102 

The uncertainty of meteorological field simulation is another crucial reason for the 103 

simulation deviation, especially on heavy pollution days, the variation trends of PM2.5 104 

chemical components were not well-captured (Ying et al., 2018; Qi et al., 2019; Wang 105 

et al., 2022). Precipitation is the key meteorological factor determining wet removal of 106 

pollutants; boundary layer height and wind speed are the main factors affecting 107 

convection and transport of pollutants; solar radiation, temperature and relative 108 

humidity are the key factors affecting the formation of secondary particles (Huang et 109 

al., 2019; Chen et al., 2020). Some literature reported that deviation from precipitation 110 



 

6 

 

and wind field simulation might lead to underestimation of SO4
2-, NO3

- and NH4
+ 111 

(Cheng et al., 2015; Zhang et al., 2017). Devaluation of liquid water path and cloud 112 

cover cause a decrease of sulfate formation in cloud, and ultimately results in 113 

significantly underestimated components in simulation values (Sha et al., 2019; Foley 114 

et al., 2010). Underestimation of temperature and relative humidity may also cause 115 

adverse effects of temperature- and/or relative humidity-dependence chemical reaction 116 

in the simulation (Sha et al., 2019). 117 

The uncertainty of source emission inventory also significantly affects the 118 

simulation results of PM2.5 components (Shi et al., 2017; Sha et al., 2019). Due to 119 

incomplete information or insufficient representativeness, pollutant emissions are 120 

sometimes overestimated or underestimated, and the method for temporal and spatial 121 

allocation also needs to be improved. 122 

In particular, the emission source profile of PM2.5 (Hereinafter referred to as 123 

"source profile”), used to createing speciated emission inventories for CTMs (Hsu et 124 

al., 2019), has not been fully taken into account in the current numerical simulation. In 125 

the reported literatures, PM2.5 species allocation coefficients of emission sources are 126 

commonly treated in the following ways: (1) allocated PM2.5 components of source 127 

emissions by referring to source profile data in published literature or database like the 128 

US SPECIATE (Fu et al., 2013; Wang et al., 2014; Ying et al., 2018); (2) chemical 129 

profiles come from local measurement (Fu et al., 2013; Appel et al., 2013). However, 130 

with the development of production technology and the innovation of pollution 131 

treatment technology in recent years, some source profiles have changed dramatically 132 

(Bi et al., 2019), such as SO4
2- from coal burning, SO4

2- content in PM2.5 is generally 133 

low in coal-fired power plant without desulfurizing facilities, while existing coal-fired 134 

power plants using limestone/gypsum wet desulphurization, the contents of SO4
2- in 135 

PM2.5 are significantly higher than that without desulfurization facilities (Zhang et al., 136 

2020). The timeliness of PM2.5 species allocation coefficients in current CTMs also 137 

needs to be considered. 138 

This paper attempts to answer the following questions: (1) Whether the variation 139 
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of the source profile adopted in the air quality model has an impact on the simulated 140 

results of PM2.5 chemical components? (2) How much does it impact? (3) How does 141 

the impact work? Aiming at these problems above, chemical composition and its 142 

variation law for typical PM2.5 emission sources are summarized, on this basis, 143 

sensitivity tests are designed to identify whether PM2.5 source profiles and species 144 

allocation in the model are important parameters that affect the simulation results of 145 

chemical components in PM2.5. We take CMAQ (one of the most widely used CTMs), 146 

MEIC (a high-resolution inventory of anthropogenic air pollutants in China) as the 147 

carriers. The same kind of experiment is also applicable to other CTMs and emission 148 

inventories. The aim of this study is to provide support for the effective utilization of 149 

source profiles in the CTMs and improvement of the simulation schemes. 150 

2. Model and Data 151 

2.1 Model configuration 152 

Weather Research and Forecasting model (WRF-3.7.1), the widely used 153 

Community Multiscale Air Quality model (CMAQv5.0.2), and Multi-resolution 154 

Emission Inventory for China (MEICv1.3) have been used in this study. MEIC , 155 

developed by Tsinghua University provided the emission inventory which is developed 156 

by Tsinghua University, mainly tracked anthropogenic emissions in China including 157 

coal-fired power plants, industry, vehicles, residents and agriculture 158 

(http://meicmodel.org/?page_id=135) (Li et al., 2017b; Zheng et al., 2018). The WRF 159 

model was used to generate meteorological inputs for the CMAQ model. Three nested 160 

modeling domains consisting of 36 km×36 km (Dom1), 12 km×12km (Dom2), and 4 161 

km×4km (Dom3) horizontal grid sizes were set, as shown in Fig. 1. The initial and 162 

boundary conditions for WRF were based on the North American Regional Reanalysis 163 

data archived at National Center for Atmospheric Research (NCAR). In addition, 164 

surface and upper air observations obtained from NCAR were used to further refine the 165 

analysis data. The modeling was conducted from Oct. 1 to Oct.30 in 2018, The and 166 

major configurations we used in CMAQ were illuminated as follows: Gas-phase 167 
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chemistry was based on the CB05 mechanism and the aerosol dynamics/chemistry was 168 

based on the aero6 module (cb05tucl_ae6_aq). The detailed model configurations were 169 

shown in Table S2, and regional distribution of PM2.5 emission sources were shown in 170 

Fig. ure S2S1. 171 

 172 

Fig.1 Modeling domains of the CMAQ model. (a) The three-domain nested CMAQ domains; (b) 173 

Land use and observation sites of Dom3 (Data source of Land use: GLOBELAND30, 174 

www.globeland30.org, National Geomatics Center of China). 175 

2.2 Selection and comparison of PM2.5 emission source profile 176 

The PM2.5 emission source profiles from database of Source Profiles of Air 177 

Pollution (SPAP) (http://www.nkspap.com:9091/), U.S. Environmental Protection 178 

Agency’s (EPA) SPECIATE database (https://www.epa.gov/air-emissions-179 

modeling/speciate) as well as from published literature were selected, respectively. The 180 

SPAP was developed by the State Environment Protection Key Laboratory of Urban 181 

Particulate Air Pollution Prevention, Nankai University, China. This database contains 182 

more than 3000 size-resolved source profiles of stationary combustion sources, 183 

industrial processes, vehicle exhaust, biomass burning, dust and cooking emissions and 184 

(a)        

(b)       



 

9 

 

other sources, collected from more than 40 cities in China since 2001. In addition to 185 

inorganic elements, water-soluble ions, OC, EC and other conventional components, 186 

some source profiles also encompass a series of tracer information, such as organic 187 

markers, isotopes, single particle mass spectrometry, VOCs and other gaseous 188 

precursors. Based on species in the aerosol chemical mechanism (AERO6) of CMAQ 189 

(Appel et al., 2013; Chapel Hill, 2012), we selected 15 components in PM2.5 source 190 

profiles including Al, Ca, Cl, EC, Fe, K, Mg, Mn, Na, OC, Si, Ti, NH4
+, NO3

- and SO4
2-, 191 

the remaining components are classified as “other”. Emission sources are divided into 192 

four main categories referred to the classification in MEIC: coal combustion by power 193 

plants (PP), industrial processes (IN), residential emission (RE) and transportation 194 

sector (TR). In the database of Source Profiles of Air Pollution (SPAP) and U.S. 195 

Environmental Protection Agency’s (EPA) SPECIATE database, these four source 196 

categories (coal-fired power plant, industry process, transportation sector and 197 

residential coal combustion) contain a series of sub-categories. But the MEIC emission 198 

inventory does not include the corresponding sub-categories. So we take the average 199 

values of source profiles in each source category as representing source profile, the 200 

details could also be seen in our previous work (Bi et al., 2019); Then multiply 201 

inventory emissions by profile fraction to get emissions of specific chemical 202 

components.  203 

To determine the similarity between the two groups of source profiles, Coefficient 204 

Divergence (CD) is calculated using the following formula (Wongphatarakul et al., 205 

1998): 206 

2

1

1
CD

=

 −
=   + 


p ij ik

jk i
ij ik

x x

p x x
…………………………（1） 207 

Where CDjk is the coefficient of divergence of source profile j and k, p wasis the 208 

number of chemical components in source profile, xij is the weight percentage for 209 

chemical component i in source profile j, xik is the weight percentage for i in source 210 

profile k (%). The CD value is in the range of 0 to 1, if the two source profiles are 211 

similar, the value of CD is close to 0; if the two are very different, the value wasis close 212 
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to 1. 213 

Coal-fired power plant (PP). Coal-fired power plants  remain the main coal 214 

consumers in China, which accounted for 50.2% of total coal consumption in 2019 215 

(NBS, 2021) and gained much more attention, especially with the wide implementation 216 

of the strictest ultralow emission standards, PM2.5 emission characteristics have 217 

changed accordingly (Wu et al., 2020; Wu et al., 2022). There are obvious differences 218 

in PM2.5 source profiles between SPAPPC (SPAP database and published source profiles 219 

in China) and SPECIATE (U.S.EPA SPECIATE database), the CD value of these two 220 

groups lie between 0.34 and 0.92 (0.64±0.10), detailed information is shown in Table 221 

S3 and Figure S2. The percentages of species in PP source profiles are plotted in Fig. 222 

2(a). The main components in SPAPPC are sorted by Si, SO4
2-, OC, Ca with average 223 

values of 8.7±6.8%, 8.5±11.5%, 6.8±9.1% and 6.5±6.9%, respectively; The SPECIATE 224 

are enriched in SO4
2- (16.9%±20.0%), OC (12.7±21.8%), Si (9.6±5.0%) and Ca 225 

(9.3±7.3%), higher than SPAPPC. Coal properties, burning conditions, pollution control 226 

measures and emission sampling methods are the main reasons for those great 227 

percentage fluctuations. Different treatment processes of flue gases, e.g. wet/dry 228 

limestone, ammonia and double-alkali flue gas desulfurization, will affect the 229 

percentages of components in source profiles (Zhang et al., 2020). It has been reported 230 

that the percentage of Ca, Mg, SO4
2- and Cl- in PP profiles increased after the limestone-231 

gypsum method was used in coal-fired power plants (Bi et al., 2019). Besides that, the 232 

percentage of Cl- in SPAPPC is obviously higher than that in SPECIATE, which might 233 

attribute to the generally higher Cl- content in raw coal in China (Guo et al., 2004). 234 
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 235 

Fig. 2 Chemical profiles for PM2.5 emitted from coal-fired power plant (PP). Data obtained from 236 

SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 237 

SPECIATE database)238 
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 239 

Fig. 2 Chemical profiles for PM2.5 emitted from (a) coal-fired power plants (PP), (b) industry 240 

processes (IN), (c) transportation sector (TR), (d) residential coal combustion (RE). Data obtained 241 

from SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 242 

SPECIATE database) 243 

Industrial process(IN). Industrial emissions are one of the major sources of PM2.5 244 

(Hopke et al., 2020), the percentages of Ca, Fe, OC and SO4
2- are relatively high both 245 

in SPAPPC and SPECIATE of industrial processes, but the shares in different source 246 

profile database varied, their CD values vary from 0.45 to 0.94 (0.72±0.09) (Detailed 247 

information were shown in Table S4~S7 and Figure S3). In SPAPPC, these four 248 

components account for 16.4±14.9%, 10.4±14.4%, 6.9±6.1%, 6.2±6.4%, the 249 

proportions in SPECIATE are 10.4±9.8%, 11.4±10.6%, 8.5±4.9%, 16.3±13.3%, 250 

respectively (Fig. 32(b)). Large variations of components and their percentages in 251 

industrial processes are attributed to the manufacturing processes, raw material, 252 

pollution control measures and so on (Ji et al., 2017; Bi et al., 2019; Gao et al., 2022). 253 

For example, Ca, Al, OC and SO4
2- are found to have the highest percentage in cement 254 

sources (Guo et al., 2021); Fe, Si and SO4
2- are the most abundant species in steel 255 

industry emission (Guo et al., 2017). 256 
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 257 
Fig. 3 Chemical profiles for PM2.5 emitted from industry processes (IN). Data obtained from 258 

SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 259 

SPECIATE database)  260 

Transportation sector (TR). Traffic contributed a large fraction of PM2.5 in many 261 

locations (Hopke et al., 2022). It is well-known that the transportation sector makes a 262 

dominant contribution of OC and EC. The main components of PM2.5 emitted from 263 

traffic sources are OC, EC and SO4
2- both in SPAPPC and SPECIATE, but still vary in 264 

wide range, their CD values fall between 0.33 and 0.86 (0.69±0.09) (Detailed 265 

information was given in Table S8~S10 and Figure S4). In SPAPPC, the percentages of 266 

OC, EC and SO4
2- are 40.8±15.0%, 23.1±13.8%, 3.1±3.7%, and in SPECIATE, the 267 

percentages are 40.6±16.4%, 36.1±21.5%, 6.4±9.9%, respectively (Fig. 42(c)). These 268 

significant differences mainly attribute to the vehicle type, fuel quality, mixing ratio 269 

between oil and gas and the combustion phase in vehicle engine and so on (Xia et al., 270 

2017).  271 



 

14 

 

 272 
Fig. 4 Chemical profiles for PM2.5 emitted from transportation sector (TR). Data obtained from 273 

SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 274 

SPECIATE database)  275 

Residential coal combustion (RE). Residential coal combustion, as the leading 276 

source of global PM2.5 emission (Weagle et al., 2018), has a much higher emission 277 

factor than coal-fired power plant (Wu et al., 2022). The fraction of components varied 278 

vary greatly in the profiles measured from SPAPPC and SPECIATE, their CD values 279 

are 0.75±0.10 (Detailed information was given in Table S11 and Figure S5), SO4
2-, OC, 280 

NH4
+ and EC make the main contribution to PM2.5 emitted from residential coal 281 

combustion. In SPAPPC, the average percentages of SO4
2-, OC, NH4

+, EC are 282 

27.1±10.1%, 20.7±20.6%, 11.3±7.7%, 2.6±2.8%, respectively. In SPECIATE, the 283 

average percentages are OC (58.2±14.0%), EC (24.6±5.4%), SO4
2- (3.2±2.3%) and 284 

NH4
+ (1.6±1.0%) (Fig. 52(d)). Total percentages of OC and EC in SPECIATE are over 285 

80%, obviously higher than that in SPAPPC, while a higher percentage of SO4
2-, Cl-, K 286 

and Si are observed in SPAPPC. The coal type and properties, burning condition are the 287 

main factors affecting the percentages of PM2.5 components, like the chunk coal burning 288 
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has relatively higher percentages of OC, EC, SO4
2-, NO3

- and NH4
+ than honeycomb 289 

briquette (Wu et al., 2021; Song et al., 2021). 290 

 291 

Fig. 5 Chemical profiles for PM2.5 emitted from residential coal combustion (RE). Data obtained 292 

from SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 293 

SPECIATE database) 294 

Briefly, many factors can affect PM2.5 source profiles, and with the innovation of 295 

manufacturing technique and pollution control technology, changes in fuel and raw and 296 

auxiliary materials, the main chemical components and their percentages would change 297 

dramatically. To explore whether the variations of source profile adopted in CMAQ 298 

model would be one of the important factors affecting the simulation simulated results 299 

of PM2.5 species componentin CTMs, we designed a series of simulation tests to address 300 

the following issuesas follows. 301 
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3 Whether the variation of source profile adopted in CTMs has an impact on the 302 

simulation of chemical components in PM2.5?Is there an impact of variation of 303 

source profile on the simulation results? 304 

In this part, we separately selected source profiles from SPAPPC and SPECIATE 305 

databases and applied them in emission inventory for simulating PM2.5 and its 306 

components with other modeling conditions unchanged, corresponding to case 307 

CMAQ_SPA and CMAQ_SPE. The detailed information of source profiles is shown in 308 

Figure S1S6. To determine the similarity between the two groups of source profiles, 309 

Coefficient Divergence (CD) is calculated using the following formula 310 

(Wongphatarakul et al., 1998): 311 

2

1

1
CD

=

 −
=   + 


p ij ik

jk i
ij ik

x x

p x x
…………………………（1） 312 

Where CDjk is the coefficient of divergence of source profile j and k, p was the 313 

number of chemical components in source profile, xij is the weight percentage for 314 

chemical component i in source profile j, xik is the weight percentage for i in source 315 

profile k (%). The CD value is in the range of 0 to 1, if the two source profiles are 316 

similar, the value of CD is close to 0; if the two are very different, the value was close 317 

to 1. 318 

By comparing the selected SPAPPC source profiles with the selected SPECIATE 319 

source profiles, the coefficient divergences for the four main source categories were 320 

CDPP(0.67)>CDRE(0.62)>CDTR(0.60)>CDIN(0.60), which meant the selected source 321 

profiles in the two simulation cases were quite different. The average simulated 322 

concentration of PM2.5 and its components at each10 ambient air quality monitoring 323 

stations (Table S12) were extracted from CMAQ outputs. of the innermost simulation 324 

domain. We selected one air quality monitoring station (Site 8, as the selected station 325 

here and any one  site could be available) to explore the effect of emission source 326 

chemical profiles on simulated PM2.5 componentsstudy the influence of PM2.5 source 327 

profile on numerical simulation of PM2.5-bound components and to explore the relevant 328 

laws in the atmosphere, then used the left 9 sites to further illustrate the conclusions 329 
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suggested.  330 

The simulation results for PM2.5 species under CMAQ_SPA and CMAQ_SPE 331 

cases also showed big differences (as shown in Fig. 6 3 and Table S13), ). in which the 332 

The largest difference in average simulated concentration was EC with CAMQ_SPE 333 

giving higher by 167% than CMAQ_SPA; For OC and Mn, higher values were also 334 

given by CMAQ_SPE than by CMAQ_SPA (45% and 126% on average, respectively); 335 

For the remaining other components of concern, the simulated concentration by 336 

CMAQ_SPE was lower than CMAQ_SPA with Ti (58%), Na (55%), Mg (53%), Ca 337 

(51%), Al (33%), Cl (30%), K (29%), Si (22%), Fe (16%), NH4
+ (9%), SO4

2- (9%), NO3
- 338 

(8%), separately. While the simulated PM2.5 concentrations under the two cases were 339 

quite close. The influence of source profile variation on the simulated PM2.5 340 

concentration was not significant, but the influence on the simulation of chemical 341 

components in PM2.5 could not be ignored. 342 

343 
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 344 

Fig. 6 3 The percentage relative concentration difference of average simulated concentration result 345 

(PM2.5 and its components) between CMAQ_SPE and CAMQ_SPA (relative to CAMQ_SPA) 346 

during simulation period; PM2.5 source profiles from SPAPPC and SPECIATE database were 347 

applied in emission inventory for simulating PM2.5 and its componentsused to create speciated 348 

emission inventories for CMAQ, corresponding to case CMAQ_SPA and CMAQ_SPE, respectively. 349 

4 How much did is the variation of source profile adopted in CTMs impact on 350 

the simulation of chemical components in PM2.5? How much does it impact? 351 

In order to To quantitatively characterize how much the source profiles affect the 352 

simulation results of PM2.5 and its components, we selected the chemical composition 353 

of code 000002.5 (Variety of different categories, used for the overall average 354 

composite profiles (Hsu et al., 2019)) in the US EPA Speciate_5.0_0 database as for 355 

species allocation of PM2.5 components. The corresponding percentages of EC, OC, Mn, 356 

Fe, Ti, Al, Si, Ca, Mg, K, Na, Cl, NH4
+, NO3

- and SO4
2- in PM2.5 were shown in Fig. 7 357 

4 (SGL, base case simulation).  358 
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 359 

Fig. 7 4 The general roadmap of sensitivity tests (The histogram in each case were the speciation 360 

profile in CTMs; SNA represent SO4
2-, NO3

-, and NH4
+, Non-SNA represent other components in 361 

PM2.5). 362 

Table 1 The content of sensitivity experiment cases 363 

Experiment Cases Description3 

Case S0 (DBL): 

add perturbation to Non-SNA 

and SNA1 

The percentage of all the listed components in the source 

profile of base case (SGL) were doubled, and the proportion 

of unlisted components (Other) 2 decreased to 9%. 

Case S1 (DBP): 

add perturbation to Non-SNA 

The percentages of non-SNA were doubled and SNA( SO4
2-, 

NO3
-, NH4

+) species stayed the same with that in SGL (the 

cumulative percentage of listed species was 85.3%), the 

proportion of unlisted components decreased to 14.7%. 

Case S2 (DBS and TPS): 

add perturbation to SO4
2- 

The percentage of SO4
2- was doubled (11%, DBS, 

represented Double Sulfate), tripled (16.5%, TPS, 

represented Triple Sulfate) and the other listed 14 species 

stayed the same with that in SGL (the cumulative percentage 

of listed species was 51% and 57%, respectively), the 

proportion of unlisted components decreased to 49% and 

43%. 

Case S3 (TWN and FON): 

add perturbation to NO3
- 

The NO3
- content was raised up to 20 times (3.3%, TWN) 

and 40 times (6.6%, FON) of that in SGL (0.16%), the other 

14 species stayed the same with SGL (the cumulative 

percentage of listed species was 48.6% and 51.9%, 

respectively), the proportion of unlisted components 

decreased to 51.4% and 48.1%. 
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Case S4 (OHA and THA): 

add perturbation to NH4
+ 

The NH4
+ content was raised up to 100 times (2.2%, OHA), 

200 times (4.4%, THA) of that in SGL (0.02%), the other 14 

species stayed the same with SGL (the cumulative 

percentage of listed species was 47.7% and 49.9%, 

respectively), the proportion of unlisted components 

decreased to 52.3% and 50.1%. 

Note:  

1. SNA represent SO4
2-, NO3

-, and NH4
+, Non-SNA represent other components in PM2.5.  

2. The listed components contain Al, Ca, Cl, EC, Fe, K, Mg, Mn, Na, OC, Si, Ti, NH4
+, NO3

- and 

SO4
2-, unlisted components are classified as Other. 

3. The source profiles in all cases listed in the table were calculated based on the base case SGL. 

In the design of simulation cases, the reason why the disturbance amplitude of NH4
+ and NO3

- 

were significantly higher than that of other components such as SO4
2- and Non-SNA, was because 

the percentages of NH4
+ and NO3

- in the base source profile (SGL, based on the chemical 

composition of code 000002.5 in the EPA Speciate_5.0_0 database ) were very low, while the 

percentage of NH4
+ and NO3

- in SPAPPC exhibited in section 2.2 were orders of magnitude higher 

than those in SGL.  

Given the large number and complex chemical composition of PM2.5, it is 364 

advisable to classify it them reasonably before designing sensitivity experiments. The 365 

Case DBLS0 was to double the percentage of the listed 15 components mentioned in 366 

the above (SGLbase case(SGL) ) in PM2.5 species allocation for emission sources (DBL 367 

case, the cumulative percentage was 91%, the details were are shown in Fig. 4 and Table 368 

1). As the percentage of these components increased, the proportion of unlisted 369 

components (represented by “Other”) decreased to 9% in order to meet the requirement 370 

that the total percentage of all components is 100%. Then we compared the simulation 371 

results before (SGL case) and after perturbation (DBL case) in species allocation of 372 

PM2.5 sources. 373 

In the case DBL, when the percentage of all the components except “other” were 374 

doubled in the source profile, the simulated concentrations of Al, Ca, Cl, EC, Fe, K, 375 

Mg, Mn, Na, OC, Si and Ti doubled as well, while the simulated concentration of NO3
-, 376 

- and SO4
2- and NH4

+ only increased at about 3%, 10% and  NH4
+ decreased by 4%, 377 

respectively, although the simulated concentration of PM2.5 was not obviously changed 378 

(Detailed simulation results were shown in Table S14). Through this Case S0DBL, we 379 

found that the The simulation test results for SNA (SO4
2-, NO3

-, and NH4
+) and Non-380 

SNA were obviously different. Therefore, we divided the components in the source 381 
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profile into two groups (Non-SNA and SNA) and designed a series of sensitivity tests 382 

listed in next section to further explore how species allocation of PM2.5 in emission 383 

sources of CTMs would affect the simulation results. The sketch of sensitivity 384 

experiment design idea is shown in Figure S7. 385 

4.1 Sensitivity tests design 386 

Based on the Case S0 DBL results, sensitivity Sensitivity tests were designed by 387 

changing the percentages of the target components and related components in the base 388 

case (SGL): add perturbation on each component of Non-SNA, perturbation on SO4
2-, 389 

perturbation on NO3
-, and perturbation on NH4

+. The general roadmap of sensitivity 390 

tests was is shown in Fig. 4, and the illustration of each case was summarized in Table 391 

1. The basic rules must be followed: a) perturbation on the percentage of each 392 

component in source profile fell within the variation range of its measured value 393 

described in section 2.2. b) The sum of the percentage of listed Non-SNA, SNA and 394 

Other components in PM2.5 source profile was 100%. 395 

4.2 Sensitivity of simulated components to changes in source profileEvaluation 396 

index for simulation result  397 

In order to quantify the concentration changes of simulated PM2.5 components 398 

caused by the perturbation in source profile, we We proposed the sensitivity coefficient 399 

(δ) as evaluation index. The calculation formula is as follows: 400 
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Wherein, δi,p is the sensitivity coefficient of component i relative to component p, 404 
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representing the change of in the simulated value of its content in ambient PM2.5 405 

corresponded to 1% perturbation in the source profiles. Ci_case is the simulation result 406 

of component iI in different each sensitivity experiment cases, μg/m3; Ci_base is the 407 

simulation result of components i in base case, μg/m3; CPM2.5_case
  is the simulation 408 

result of PM2.5 in different each sensitivity experiment cases, μg/m3; CPM2.5_base
 is the 409 

simulation result of PM2.5 in base case, μg/m3; PiPp_case is the percentage of component 410 

i p in different source profile of sensitivity experiment cases, %; Pj_casej is the percentage 411 

of perturbed component j in different source profile of sensitivity experiment cases, %; 412 

PiPp_base is the percentage of component i p in base case source profile of base case, %;  413 

Pj_base is the percentage of perturbed component j in base case source profile, %.  414 

The positive value of δ means the simulated concentration of PM2.5 component 415 

increases (decreases) with the increase (decrease) of the perturbation to on the 416 

percentage of components in source profile, while the meaning of negative δ is just the 417 

opposite. If the absolute value of δ is less than or equal to 0.1, the simulated result of 418 

PM2.5 chemical component is considered to be insensitive to the corresponding 419 

variation of source profile; If the absolute value of δ falls between 0.1 and 0.4 (included), 420 

the simulated results of PM2.5 chemical component is considered to be sensitive to the 421 

variation of source profile; If the absolute value of δ is larger than 0.4, the simulated 422 

results of PM2.5 chemical component is very sensitive to the variation of source profile. 423 

The greater the absolute value of δ is, indicates the variation of source profile adopted 424 

in CMAQ has more obvious impact on the simulated results of PM2.5 chemical 425 

components. 426 

4.3 The response of simulated PM2.5 components 427 

Fig.8 5 listed the sensitivity coefficients of simulated ambient PM2.5 components 428 

to the perturbation of source profile under each test case. In case DBL (doubled the 429 

percentage of the listed components in the source profile of base case and decreased the 430 

proportion of unlisted other components to 9% ),  (The percentage of all the listed 431 

components in the source profile of base case (SGL) was doubled), the sensitivity 432 
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coefficient (δ) of NH4
+ was negative, and the absolute value was the highest, indicating 433 

that the simulated proportion of NH4
+ in ambient PM2.5 decreased, and it was very 434 

sensitive to the variation of source profile. Conversely, the sensitivity coefficient of 435 

NO3
- was close to 1, which illustrated that the simulated proportion of NO3

- in ambient 436 

PM2.5 increased proportionally with the change in source profile. The simulatedδ of 437 

SO4
2- also showed a very sensitive property. The simulated Non-SNA concentrations 438 

were doubled when compared to the base case (SGL). 439 

 440 

 441 
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Fig. 8 5 The sensitivity coefficients (δ) of simulated components to the perturbation of adopted 442 

source profile in different cases. Note: Each small color box in the figure represented the sensitivity 443 

level (indicated by the legend on the right) of PM2.5 components (the x-coordinate) in different cases 444 

(y-coordinate). The blank grids in DBP case indicated no perturbation to SNA in PM2.5 source profile 445 

under this case. 446 

In case DBP, when the percentages of listed Non-SNA (Al, Ca, Cl, EC, Fe, K, Mg, 447 

Mn, Na, OC, Si and Ti) in the source profile were doubled, the simulated proportions 448 

of Non-SNA (Al, Ca, Cl, EC, Fe, K, Mg, Mn, Na, OC, Si and Ti) in ambient PM2.5 449 

synchronous increased, and were very sensitive to the change in the adopted source 450 

profile with a sensitivity coefficient (δ) of 0.5. Interestingly, the simulated concentration 451 

of SNA in ambient PM2.5 also changed although the SNA in source profile did not 452 

change, the concentration of NO3
- and SO4

2- increased by 2% and 3%, respectively, 453 

NH4
+ decreased by 10% (Detail simulation results of different each cases were shown 454 

on Table S15~S21).  455 

Under SO4
2- perturbation cases (Case DBS and Case TPS), we found the simulated 456 

results of Non-SNA and NO3
- had no obvious variation when compared with the base 457 

case. Either in Case DBS or in Case TPS, the δ of Non-SNA and NO3
- were always 458 

between -0.1 to 0.1. But when the percentage of SO4
2- was doubled in PM2.5 source 459 

profile (DBS), the simulated concentration of NH4
+ and SO4

2- increased by 6% and 8%, 460 

respectively. In Case TPS (the percentage of SO4
2- was tripled), the simulated 461 

concentration of NH4
+ and SO4

2- were increased by 11% and 16%, respectively. The δ 462 

of NH4
+ and SO4

2- were 0.12 and 0.36, sensitive toward to positive direction with the 463 

increase of SO4
2- in the source profile. 464 

In the situation of NO3
- perturbation in source profile (Case TWN and Case FON), 465 

the simulated concentrations of Non-SNA hardly change when compared to the base 466 

case, while the changing characteristics patterns of simulated SNA concentrations were 467 

different. In cases TWN and FON, the The simulation concentration of NH4
+ increased 468 

by 2.6% and 5.4% when compared with the base case, the simulated NO3
- increased by 469 

14% and 30%, the simulated SO4
2- decreased slightly, even could be neglected in some 470 

observation sites. The simulated concentrations of Non-SNA and SO4
2- were insensitive 471 

to the perturbation of NO3
- in PM2.5 source profile; NH4

+ was sensitive, and NO3
- was 472 
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very sensitive.  473 

When we put perturbation to on NH4
+ in the source profile (Case OHA and Case 474 

THA), the simulation results of Non-SNA were almost not changed, the simulated 475 

concentration of SO4
2-, NH4

+, NO3
- increased in OHA and THA. The δ of SNA to the 476 

variation of NH4
+ in the source profile were positive and 2

4 4SO ,NH− + δ(SO42-) >
4 4NH ,NH+ +477 

δ(NH4
+) > -

3 4NO ,NH + δ(NO3
-), SO4

2- and NH4
+ were sensitive to the NH4

+ perturbation in 478 

the source profile, but NO3
- was not so sensitive. 479 

In general, the simulation results of components in ambient PM2.5 were affected in 480 

one way or another by the change of source profiles adopted by CMAQ. Both of the 481 

simulated Non-SNA and SNA were very sensitive to the perturbation of Non-SNA in 482 

source profile. When the percentage of SNA changed in the source profile, simulated 483 

concentrations of Non-SNA generally have little change, but the simulation results of 484 

SNA could change in different levelspatterns: the simulated SO4
2- was very sensitive 485 

and NH4
+ was sensitive to the perturbation of SO4

2- in source profile, ; simulated NO3
- 486 

was very sensitive and NH4
+ was sensitive to the perturbation of NO3

- in source profile, 487 

-; SO4
2- and NH4

+ were sensitive to the perturbation of NH4
+ in source profile. The 488 

simulated component such as SO4
2- was influenced not only by the change of SO4

2- 489 

itself but also by other components like some Non-SNA and NH4
+ in the source profile. 490 

In other words, there was a linkage effect, variation of some components in the source 491 

profile would bring changes to the simulated results of other components. 492 

5 How does the variation of source profile adopted in CTMs impact on the 493 

simulation of chemical components in PM2.5?How does the impact work? 494 

The variation of species allocation in emission sources can directly affected the 495 

composition of aerosol system in CTMs. In CMAQv5.0.2, the aerosol thermodynamic 496 

equilibrium process was is carried out according to ISORROPIA Ⅱ, including a SO4
2--497 

NO3
--Cl--NH4

+-Na+-K+-Mg2+-Ca2+-H2O system which was established on the basis of 498 

ISORROPIA I by adding the effects of K+, Ca2+ and Mg2+ (Detailed equilibrium 499 

relations were shown in Table S22). Some assumptions had been made in the 500 
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ISORROPIA model to simplify the simulation system (Fountoukis and Nenes, 2007): 501 

(1) Because the vapor pressure of sulfuric acid and metal salts (such as Na+, Ca2+, K+, 502 

Mg2+) were very low, it was assumed that all the sulfuric acid and metal salts in the 503 

system existed in the aerosol phase; (2) For ammonia in the system, it was preferred to 504 

have an irreversible reaction with sulfuric acid to produce ammonium sulfate. Only 505 

when there was still surplus NH3 after the neutralization of H2SO4, can it have a 506 

reversible reaction with HNO3 and HCl to produce NH4NO3 and NH4Cl. (3) For sulfuric 507 

acid in the system, if there were metal ions (such as Ca2+, Mg2+, K+, Na+) in the system, 508 

sulfuric acid would react with metal ions to produce metal salts. Only in the case of 509 

insufficient sodium, sulfuric acid would react with ammonia. Based on these 510 

assumptions, the ISORROPIA model introduced the following three judgment 511 

parameters (R1, R2 and R3 were calculated by the following formulas) to determine the 512 

simulation subsystems, these parameters are calculated by the following formulas: 513 
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Where [X] denotes molar concentration of component (mol·m−3), R1, R2 and R3 517 

are termed as “total sulfate ratio”, “crustal species and sodium ratio” and “crustal 518 

species ratio” respectively; The number of species and equilibrium reactions are 519 

determined by the relative abundance of NH3, Na, Ca, K, Mg, HNO3, HCl, H2SO4, as 520 

well as the ambient relative humidity and temperature. Guided by the value of R1, R2 521 

and R3, 5 aerosol composition regimes in ISORROPIA are defined. (Detail rules are 522 

shown in Table S27).  523 

In this paper, R1, R2, R3 and the potential aerosol speciescorresponding solid phase 524 

species under different each perturbation sensitivity test cases on source profiles were 525 

shown in Table 2. These components achieved thermodynamic equilibrium in the order 526 
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of preference for more stable salts, obviously, the simulation processes of these 527 

components may influence each other. 528 
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Table 2 Potential aerosol species in ISORROPIA II under different cases 532 

Cases R1 R2 R3 Solid phase species* 

SGL、DBL 

TWN、FON 
2.53 2.52 1.9 

CaSO4, MgSO4, K2SO4, Na2SO4, NaCl, NaNO3, 

NH4Cl, NH4NO3 

DBS 1.26 1.26 0.95 
CaSO4, MgSO4, K2SO4, KHSO4, Na2SO4, NaHSO4, 

(NH4)2SO4, NH4HSO4, (NH4)3H(SO4)2 

TPS 0.84 0.84 0.63 CaSO4, KHSO4, NaHSO4, NH4HSO4 

DBP 5.04 5.03 3.79 CaSO4, MgSO4, K2SO4, CaCl2, Ca(NO3)2, MgCl2, 

Mg(NO3)2, KCl, KNO3, NaCl, NaNO3, NH4Cl, 

NH4NO3 

OHA 3.58 2.52 2.95 

THA 4.64 2.52 4.02 

* The solid phase species were determined based on the research of (Fountoukis and Nenes, 2007) 533 

Table 2 Potential aerosol species in ISORROPIA II under different cases 534 

Cases R1 R2 R3 Solid phase species* 

SGL 2.53 2.52 1.9 
CaSO4, MgSO4, K2SO4, Na2SO4, NaCl, NaNO3, 

NH4Cl, NH4NO3 

DBL 2.53 2.52 1.9 
CaSO4, MgSO4, K2SO4, Na2SO4, NaCl, NaNO3, 

NH4Cl, NH4NO3 

DBP 5.04 5.03 3.79 

CaSO4, MgSO4, K2SO4, CaCl2, Ca(NO3)2, MgCl2, 

Mg(NO3)2, KCl, KNO3, NaCl, NaNO3, NH4Cl, 

NH4NO3 

DBS 1.26 1.26 0.95 
CaSO4, MgSO4, K2SO4, KHSO4, Na2SO4, NaHSO4, 

(NH4)2SO4, NH4HSO4, (NH4)3H(SO4)2 

TPS 0.84 0.84 0.63 CaSO4, KHSO4, NaHSO4, NH4HSO4 

TWN 2.53 2.52 1.9 
CaSO4, MgSO4, K2SO4, Na2SO4, NaCl, NaNO3, 

NH4Cl, NH4NO3 

FON 2.53 2.52 1.9 
CaSO4, MgSO4, K2SO4, Na2SO4, NaCl, NaNO3, 

NH4Cl, NH4NO3 

OHA 3.58 2.52 2.95 
CaSO4, MgSO4, K2SO4, CaCl2, Ca(NO3)2, MgCl2, 

Mg(NO3)2, KCl, KNO3, NaCl, NaNO3, NH4Cl, 
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NH4NO3 

THA 4.64 2.52 4.02 

CaSO4, MgSO4, K2SO4, CaCl2, Ca(NO3)2, MgCl2, 

Mg(NO3)2, KCl, KNO3, NaCl, NaNO3, NH4Cl, 

NH4NO3 

* The solid phase species were determined based on the research of (Fountoukis and Nenes, 2007) 535 

In Non-SNA perturbation case, when the percentage of Non-SNA in source profile 536 

doubled (Case DBP), meant there were more Na, K, Mg, Ca, Cl participated in aerosol 537 

chemistry, the model system needed more SO4
2- and NO3

- on the basis of charge balance 538 

and the thermodynamic equilibrium shifted to the direction of consuming Ca Mg, K 539 

and Na, which resulted in the increase of the simulated concentration of SO4
2- and NO3

-. 540 

Meanwhile, according to the rule of anions preferentially binding with nonvolatile 541 

cations in ISORROPIA, the increased cations Na+, K+, Mg2+, Ca2+ directly leaded to 542 

the decrease of anions binding with NH4
+, there were less reaction dose between SO4

2- 543 

and NH4
+ to form (NH4)2SO4 or NH4HSO4, ultimately resulted in a decrease in 544 

simulated concentration of NH4
+ when compared to with the base case. Because in this 545 

case more anions such as SO4
2- were passively needed, according to the principle of 546 

chemical equilibrium mentioned above, the chemical conversion of SO2 to SO4
2- was 547 

promoted, the simulated secondary SO4
2- increased, this could be proved by that the 548 

sensitivity coefficient δ of SO2 in Case DBP was negative (shown in Fig. 96, details of 549 

other monitoring stations were shown Table S24).  550 

551 
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 552 

Fig.9 6 The sensitivity coefficients (δ) of simulated gas pollutants to the change of adopted source 553 

profile in different cases. 554 

Similarly, with the increase of metal ions in the system to bond with anions, the 555 

number of anions which can bind to NH4
+ decreased. The system needed less NH4

+ and 556 

weakened the need for conversion from NH3 to NH4
+, the simulated NH4

+ concentration 557 

decreased while the δ of NH3 was positive and very sensitive. Different trends of 558 

simulated concentration of gaseous pollutants mirrored the rules mentioned above from 559 

another aspect. The δ of SO2 and NOx was negative, NH3 was positive. We could see 560 

the same phenomena in DBL case (Fig. 96). When the percentages of Non-SNA in 561 

source profile increased, they not only affected the simulated concentration of Non-562 

SNA, but also the secondary SO4
2-, NO3

- and NH4
+.  563 

In SO4
2- perturbation cases (Case DBS and TPS), as the percentage of SO4

2- in 564 

source profile increased, for the chemical reactions of sulfate radical consuming (as 565 

shown in Table S22), the chemical equilibrium would move toward the products when 566 

compared to with the base case. While for the chemical reactions of sulfate radical 567 

formation (The equations were shown in Table S23), meant the product was added in, 568 

the chemical equilibrium would be pushed toward the reactants. The chemical reactions 569 

between SO4
2- and NH4

+ would shift to the direction of (NH4)2SO4 generation, we could 570 

see the simulated concentrations of NH4
+ in DBS and TPS were both higher and NH3 571 
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were lower than those in the base case (SGL). In addition, when more SO4
2- was added 572 

in the system, the conversion of SO2 to SO4
2- was affected in some level and consumed 573 

less SO2 than the base case, simulated SO2 showed insensitive but positive trend (Fig.9). 574 

And from the potential solid phase species in ISORROPIA II under DBS and TPS cases 575 

(shown in Table 32) , the solid phase species were mainly consisted of sulfate salts, so 576 

the simulated concentration of NO3
- did not change apparently. 577 

As the percentage of NO3
- in source profile increased (Case FON and TWN), the 578 

associated chemical equilibrium shifted towards the consumption of NO3
-, such as NH4

+ 579 

+ NO3
- → NH4NO3, which would also consume more NH4

+ and form more ammonium 580 

salt, finally consumed more NH3 because of NH3(gas) + H2O(aq) → NH4
+(aq) + OH-581 

(aq). The simulation results also manifested that the concentration of NH4
+ increased 582 

while that of NH3 decreased. Based on the assumption of ISORROPIA, the cations like 583 

Na+, K+, Mg2+, Ca2+ and NH4
+ preferentially to react with SO4

2-, only if there were 584 

cations left after neutralized SO4
2-, could they react with NO3

- to form salts, so the 585 

simulated concentration of SO4
2- was not obviously changed. Accordingly, the 586 

simulated concentration of NOx and SO2 almost unchanged (The δ of NOx and SO2 was 587 

displayed insensitive). 588 

In the cases of NH4
+ perturbation (Case OHA and THA), when the percentage of 589 

NH4
+ in source profile increased, the related chemical equilibrium shifted towards the 590 

direction of NH4
+ consumption, such as in 2NH4

+ + SO4
2- → (NH4)2SO4, more SO4

2- 591 

was consumed at the same time, which further promoted the conversion of SO2 to SO4
2-. 592 

The increased NH4
+ in OHA and THA also would inhibit the conversion of NH3 to NH4

+ 593 

when compared to with the base case. This, in turn appeared as the increase of the 594 

simulated secondary SO4
2- and NH3, and the decrease of the simulated SO2.  595 

In summary, the effects of source profile variation on the simulation results of 596 

different components were linked. When the percentages of Non-SNA, SO4
2-, NO3

- and 597 

NH4
+ in the source profile changed, they not only affected the simulated concentration 598 

of themselves, but also affected the simulation results of some other components. Both 599 

the simulation results of primary components and secondary components were affected 600 
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by the change of source profile, the secondary SO4
2- and NH4

+ were affected more than 601 

the secondary NO3
-. 602 

6 Conclusions 603 

Although tThe influence of source profile variation on the simulated concentration 604 

of ambient PM2.5 is not significant, its influence on the simulated chemical PM2.5 605 

components cannot be ignored. , The variation of simulated components ranges from 606 

8% to 167% under selected different source profiles, and as the simulation results of 607 

some components are sensitive to the adopted PM2.5 source profile in CTMs, e.g., both 608 

the simulated Non-SNA and SNA are sensitive to the perturbation of Non-SNA in 609 

source profile, the simulated SO4
2- and NH4

+ are sensitive to the perturbation of SO4
2-, 610 

simulated NO3
- and NH4

+ are sensitive to the perturbation of NO3
-, SO4

2- and NH4
+ are 611 

sensitive to the perturbation of NH4
+. These influences are not only specific to an 612 

individual component, but also can be transmitted and linked among components, that 613 

is,. the The influence path is connected to chemical mechanisms in the model since the 614 

variation of species allocation in emission sources directly affect the thermodynamic 615 

equilibrium system (ISORROPIA Ⅱ, SO4
2--NO3

--Cl--NH4
+-Na+-K+-Mg2+-Ca2+-H2O 616 

system).  617 

It is generally believed that changes in source profile would have an impact on the 618 

simulation result of primary PM2.5,Traditionally, the source profiles are regarded as a 619 

primary emission, but interestingly, the simulation of secondary components could be 620 

affected as well. their variation could affect the simulation result of secondary 621 

components as well in CTMs. We found the perturbation of PM2.5 source profile caused 622 

the variation of simulation results of gaseous pollutantssimulated gaseous pollutants, 623 

and relatedby influencing  related chemical reactions like gas-phase chemistry of SO2, 624 

NOx and NH3, which mirrored that the perturbation of source profile had an effect on 625 

the simulation of secondary PM2.5 components. Overall, the emission source profile 626 

used in CTMs is one of the important factors affecting the simulation results of PM2.5 627 

chemical components. Additionally, organic species are one of the most important 628 
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components in PM2.5 and gain much more attention on human health. While the number 629 

of organic species in source profile is relatively scarce which brings a challenge for 630 

simulation test designing, the influence of source profile on the simulation results of 631 

the variation of source profile adopted in CTMs has an impact on the simulation of 632 

organic species is not taken into account in this study.  633 

With the change of fuel and raw materials, the development of production 634 

technology and the innovation of pollution treatment technology in recent years, some 635 

components have changed significantly in the source profiles. Given the important role 636 

of air quality simulation in decision making for pollution control environment 637 

management and health risk assessment, the representativeness and timeliness of the 638 

source profile should be considered.  639 

Our study tentatively discussed the influenceimpact mechanism of PM2.5 emission 640 

source profiles on the simulation results of PM2.5 components simulation results in 641 

CTMs. In the next work, we will use different source profile for simulation, compare 642 

the simulation results with local measured PM2.5 components and discuss the influence 643 

of sub-source profiles variation on the simulation results. In addition, the The size 644 

distribution, mixing state, aging and solubility for different aerosol components might 645 

have something to do with source profile, how much the influence of source profile 646 

changes on the simulation of these physical and chemical process, is deserved to do in 647 

the future.  648 

Data availability 649 

The input datasets for WRF simulation are available at 650 

https://rda.ucar.edu/datasets/ds351.0/index.html (The National Center for Atmospheric 651 

Research (NCAR)). The Multi-resolution Emission Inventory for China (MEICv1.3) is 652 

available at http://meicmodel.org/?page_id=135. The PM2.5 emission source profiles 653 

from database of Source Profiles of Air Pollution (SPAP) 654 

(http://www.nkspap.com:9091/, Nankai university), SPECIATE database 655 

(https://www.epa.gov/air-emissions-modeling/speciate, U.S. Environmental Protection 656 



 

33 

 

Agency’s (EPA)), Mendeley data repository (https://doi.org/10.17632/x8dfshjt9j.2, Bi 657 

et al., 2019). 658 

Code availability 659 

The source code for CMAQ version 5.0.2 is available at 660 
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Development, 2018). The source code for WRF version 3.7.1 is available at 663 
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