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Abstract 19 

The chemical transport model (CTM) is an essential tool for air quality prediction 20 

and management, widely used in air pollution control and health risk assessment. 21 

However, the current models do not perform very well in simulating PM2.5 components. 22 

Studies suggested that the uncertainties of model chemical mechanism, source emission 23 

inventory and meteorological field can cause inaccurate simulation results. Still, the 24 

emission source profile of PM2.5 has not been fully taken into account in current 25 

numerical simulation. This study aims to answer (1) Whether the variation of source 26 

profile adopted in chemical transport models (CTMs) has an impact on the simulation 27 

of PM2.5 chemical components? (2) How much does it impact? (3) How does the impact 28 

work? Based on the characteristics and variation rules of chemical components in 29 

typical PM2.5 sources, different simulation scenarios were designed and the sensitivity 30 

of components simulation results to PM2.5 sources profile was explored. Our findings 31 

showed that the influence of source profile changes on simulated PM2.5 concentration 32 

was insignificant, but its impact on PM2.5 components could not be ignored. The 33 

variations of simulated components ranged from 8% to 167% under selected different 34 

source profiles, and simulation results of some components were sensitive to the 35 

adopted PM2.5 source profile in CTMs. These influences are connected to the chemical 36 

mechanisms of the model since the variation of species allocations in emission sources 37 

directly affected the thermodynamic equilibrium system. We also found that the 38 

perturbation of the PM2.5 source profile caused the variation of simulated gaseous 39 

pollutants, which indirectly indicated that the perturbation of the source profile affected 40 

the simulation of secondary PM2.5 components. Given the vital role of air quality 41 

simulation in environment management and health risk assessment, the 42 

representativeness and timeliness of source profile should be considered. 43 
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1. Introduction 46 

Ambient fine particulate matter (PM2.5) pollution in some key regions of China 47 

has attracted much attention (Liang et al., 2020; Huang et al., 2021). The chemical 48 

components of PM2.5, including elements (Al, Si, Fe, Mn, Ti, Cu, Zn, Pb, etc.), water-49 

soluble ions (SO4
2-, NO3

-, Cl-, F-, NH4
+, Na+, K+, Mg2+, Ca2+, etc.), and carbon-50 

containing components (Organic Carbon, OC; Elemental Carbon, EC) (Yang et al., 51 

2011; Li et al., 2013), have different physical and chemical properties, such as reactivity, 52 

thermal stability, particle size distribution, residence time, optical properties, health 53 

hazards, etc (Seinfeld and Pandis, 2006; Tang et al., 2006). According to long-term 54 

monitoring results, in most regions of China, SO4
2-, NO3

-, NH4
+ and OC are the most 55 

important species in ambient PM2.5 (Li et al., 2017a; Li et al., 2021), which has a certain 56 

adverse impact on human health (Shi et al., 2018) and ecosystem (Han et al., 2019; 57 

Zhou et al., 2018), such as acid rain in southwest China (Han et al., 2019), food security 58 

(Zhou et al., 2018), etc.  59 

The chemical transport models (CTMs) play an important role in policy making 60 

for regulatory purposes. Based on the scientific understanding of atmospheric physical 61 

and chemical processes, CTMs are built to simulate the transport, reaction and removal 62 

of pollutants on a certain scale in horizontal and vertical directions. With the 63 

development of CTMs, the simulation accuracy of PM2.5 concentration has been 64 

significantly improved. Higher requirements have been put forward for the precise 65 

simulation of PM2.5 components so as to provide support for the use of CTMs in human 66 

health risk assessment, climate effects, pollution sources apportionment, and so on 67 

(Peterson et al., 2020; Lv et al., 2021). However, the current models perform not very 68 

well in simulating some components (for example, PM2.5-bound sulfate, nitrate, 69 

ammonium, trace elements, etc.) (Zheng et al., 2015; Fu et al., 2016; Ying et al., 2018; 70 

Cao et al., 2021). In the current literature, the correlation coefficient (R) and normalized 71 

mean bias (NMB) are highly variable and inconsistent between the simulated and the 72 

observed values (listed in Table S1). This is mainly attributable to the uncertainties of 73 
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model chemical mechanism, source emission inventory and meteorological field 74 

simulation.  75 

The chemical mechanisms involved in CTMs are derived from parameterized 76 

assumptions based on laboratory simulation and field observations. The actual 77 

atmospheric chemical processes are very complex, and some reaction mechanisms are 78 

still limitedly understood. In addition, the integration of chemical reactions and 79 

simplified treatment methods in the model cannot fully reflect the correlation among 80 

atmospheric pollutants. For example, in some model mechanisms, other important 81 

sulfate and nitrate formation pathways were added through new heterogeneous 82 

chemistry, including the chemical reaction between SO2 and aerosol, NO2/NO3/N2O3 83 

and aerosol (Zheng et al., 2015), nitrous acid oxidized SO2 to produce sulfate (Zheng 84 

et al., 2020), dust particles promoted the oxidation of SO2 (Yu et al., 2020), modified 85 

the uptake coefficients for heterogeneous oxidation of SO2 to sulfate (Zhang et al., 86 

2019), updated the heterogeneous N2O5 parameterization (Foley et al., 2010). Even 87 

though the aforementioned processes can significantly improve the simulation of SO4
2- 88 

and NO3
-, there is still a gap between the modeled and the actual atmospheric chemical 89 

processes. 90 

The uncertainty of source emission inventory also significantly affects the 91 

simulation results of PM2.5 components (Shi et al., 2017; Sha et al., 2019). Due to 92 

incomplete information or insufficient representativeness, pollutant emissions are 93 

sometimes overestimated or underestimated, and the method for temporal and spatial 94 

allocation also needs to be improved.  95 

The uncertainty of meteorological field simulation is another crucial reason for the 96 

simulation deviation, especially on heavy pollution days, the variation trends of PM2.5 97 

chemical components were not well-captured (Ying et al., 2018; Qi et al., 2019; Wang 98 

et al., 2022). Precipitation is the key meteorological factor determining wet removal of 99 

pollutants; boundary layer height and wind speed are the main factors affecting 100 

convection and transport of pollutants; solar radiation, temperature and relative 101 

humidity are the key factors affecting the formation of secondary particles (Huang et 102 
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al., 2019; Chen et al., 2020). Some literature reported that deviation from precipitation 103 

and wind field simulation might lead to underestimation of SO4
2-, NO3

- and NH4
+ 104 

(Cheng et al., 2015; Zhang et al., 2017). Devaluation of liquid water path and cloud 105 

cover cause a decrease of sulfate formation in cloud, and ultimately results in 106 

significantly underestimated components in simulation values (Sha et al., 2019; Foley 107 

et al., 2010). Underestimation of temperature and relative humidity may also cause 108 

adverse effects of temperature- and/or relative humidity-dependence chemical reaction 109 

in the simulation (Sha et al., 2019). 110 

In particular, the emission source profile of PM2.5 (Hereinafter referred to as 111 

"source profile”), creating speciated emission inventories for CTMs (Hsu et al., 2019), 112 

has not been fully taken into account in the current numerical simulation by CTMs. In 113 

the reported literature, PM2.5 species allocation coefficients of emission sources are 114 

commonly treated in the following ways: (1) allocated PM2.5 components of source 115 

emissions by referring to source profile data in published literature or database like the 116 

US SPECIATE (Fu et al., 2013; Wang et al., 2014; Ying et al., 2018); (2) chemical 117 

profiles come from local measurement (Fu et al., 2013; Appel et al., 2013). However, 118 

with the development of production technology and the innovation of pollution 119 

treatment technology in recent years, some source profiles have changed dramatically 120 

(Bi et al., 2019), such as SO4
2- from coal burning, SO4

2- content in PM2.5 is generally 121 

low in coal-fired power plant without desulfurizing facilities, while existing coal-fired 122 

power plants using limestone/gypsum wet desulphurization, the contents of SO4
2- in 123 

PM2.5 are significantly higher than that without desulfurization facilities (Zhang et al., 124 

2020). The timeliness of PM2.5 species allocation coefficients in current CTMs also 125 

needs to be considered. 126 

This paper attempts to answer the following questions: (1) Whether the variation 127 

of the source profile adopted in the air quality model has an impact on the simulated 128 

results of PM2.5 chemical components? (2) How much does it impact? (3) How does 129 

the impact work? Aiming at these problems above, chemical composition and its 130 

variation law for typical PM2.5 emission sources are summarized, on this basis, 131 
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sensitivity tests are designed to identify whether PM2.5 source profiles and species 132 

allocation in the model are important parameters that affect the simulation results of 133 

chemical components in PM2.5. We take CMAQ (one of the most widely used CTMs), 134 

MEIC (a high-resolution inventory of anthropogenic air pollutants in China) as the 135 

carriers. The same kind of experiment is also applicable to other CTMs and emission 136 

inventories. The aim of this study is to provide support for the effective utilization of 137 

source profiles in the CTMs and improvement of the simulation schemes. 138 

2. Model and Data 139 

2.1 Model configuration 140 

Weather Research and Forecasting model (WRF-3.7.1), the widely used 141 

Community Multiscale Air Quality model (CMAQv5.0.2), and Multi-resolution 142 

Emission Inventory for China (MEICv1.3) have been used in this study. MEIC provided 143 

the emission inventory which is developed by Tsinghua University, mainly tracked 144 

anthropogenic emissions in China including coal-fired power plants, industry, vehicles, 145 

residents and agriculture (http://meicmodel.org/?page_id=135) (Li et al., 2017b; Zheng 146 

et al., 2018). The WRF model was used to generate meteorological inputs for the 147 

CMAQ model. Three nested modeling domains consisting of 36 km×36 km (Dom1), 148 

12 km×12km (Dom2), and 4 km×4km (Dom3) horizontal grid sizes were set, as shown 149 

in Fig. 1. The initial and boundary conditions for WRF were based on the North 150 

American Regional Reanalysis data archived at National Center for Atmospheric 151 

Research (NCAR). In addition, surface and upper air observations obtained from 152 

NCAR were used to further refine the analysis data. The major configurations we used 153 

in CMAQ were illuminated as follows: Gas-phase chemistry was based on the CB05 154 

mechanism and the aerosol dynamics/chemistry was based on the aero6 module 155 

(cb05tucl_ae6_aq). The detailed model configurations were shown in Table S2, 156 

regional distribution of PM2.5 emission sources were shown in Fig. S2. 157 



 

7 

 

 158 

Fig.1 Modeling domains of the CMAQ model. 159 

 160 

Fig.1 Modeling domains of the CMAQ model. (a) The three-domain nested CMAQ domains; (b) 161 

Land use and observation sites of Dom3 (Data source of Land use: GLOBELAND30, 162 

www.globeland30.org, National Geomatics Center of China). 163 

2.2 Selection and comparison of PM2.5 source profile 164 

The PM2.5 emission source profiles from database of Source Profiles of Air 165 

Pollution (SPAP) (http://www.nkspap.com:9091/), U.S. Environmental Protection 166 

Agency’s (EPA) SPECIATE database (https://www.epa.gov/air-emissions-167 

(a)         

(b)         
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modeling/speciate) as well as from published literature were selected, respectively. The 168 

SPAP was developed by the State Environment Protection Key Laboratory of Urban 169 

Particulate Air Pollution Prevention, Nankai University, China. This database contains 170 

more than 3000 size-resolved source profiles of stationary combustion sources, 171 

industrial processes, vehicle exhaust, biomass burning, dust and cooking emissions and 172 

other sources, collected from more than 40 cities in China since 2001. In addition to 173 

inorganic elements, water-soluble ions, OC, EC and other conventional components, 174 

some source profiles also encompass a series of tracer information, such as organic 175 

markers, isotopes, single particle mass spectrometry, VOCs and other gaseous 176 

precursors. Based on species in the aerosol chemical mechanism (AERO6) (Appel et 177 

al., 2013; Chapel Hill, 2012), we selected 15 components in PM2.5 source profiles 178 

including Al, Ca, Cl, EC, Fe, K, Mg, Mn, Na, OC, Si, Ti, NH4
+, NO3

- and SO4
2-, the 179 

remaining components are classified as “other”. Emission sources are divided into four 180 

main categories referred to the classification in MEIC: coal combustion by power plants 181 

(PP), industrial processes (IN), residential emission (RE) and transportation sector (TR). 182 

Coal-fired power plants remain the main coal consumers in China, which 183 

accounted for 50.2% of total coal consumption in 2019 (NBS, 2021) and gained much 184 

more attention (Wu et al., 2022), especially with the wide implementation of the 185 

strictest ultralow emission standards, PM2.5 emission characteristics have changed 186 

accordingly (Wu et al., 2020). There are obvious differences in PM2.5 source profiles 187 

between SPAPPC (SPAP database and published source profiles in China) and 188 

SPECIATE (SPECIATE database), detailed information is shown in Table S3. The 189 

percentages of species in PP source profiles are plotted in Fig. 2. The main components 190 

in SPAPPC are sorted by Si, SO4
2-, OC, Ca with average values of 8.7±6.8%, 8.5±11.5%, 191 

6.8±9.1% and 6.5±6.9%, respectively; The SPECIATE are enriched in SO4
2- 192 

(16.9%±20.0%), OC (12.7±21.8%), Si (9.6±5.0%) and Ca (9.3±7.3%), higher than 193 

SPAPPC. Coal properties, burning conditions, pollution control measures and sampling 194 

methods are the main reasons for those great percentage fluctuations. Different 195 

treatment processes of flue gases, e.g. wet/dry limestone, ammonia and double-alkali 196 
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flue gas desulfurization, will affect the percentages of components in source profiles 197 

(Zhang et al., 2020). It has been reported that the percentage of Ca, Mg, SO4
2- and Cl- 198 

in PP profiles increased after the limestone-gypsum method was used in coal-fired 199 

power plants (Bi et al., 2019). Besides that, the percentage of Cl- in SPAPPC is 200 

obviously higher than that in SPECIATE, which might attribute to the generally higher 201 

Cl- content in raw coal in China (Guo et al., 2004). 202 

 203 

Fig. 2 Chemical profiles for PM2.5 emitted from coal-fired power plant (PP). Data obtained from 204 

SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 205 

SPECIATE database) 206 

Industrial emissions are one of the major sources of PM2.5 (Hopke et al., 2020), 207 

the percentages of Ca, Fe, OC and SO4
2- are relatively high both in SPAPPC and 208 

SPECIATE of industrial processes, but the shares in different source profile database 209 

varied (Detailed information were shown in Table S4~S7). In SPAPPC, these four 210 

components account for 16.4±14.9%, 10.4±14.4%, 6.9±6.1%, 6.2±6.4%, the 211 

proportions in SPECIATE are 10.4±9.8%, 11.4±10.6%, 8.5±4.9%, 16.3±13.3%, 212 

respectively (Fig. 3). Large variations of components and their percentages in industrial 213 
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processes are attributed to the manufacturing processes, raw material, pollution control 214 

measures and so on (Ji et al., 2017; Bi et al., 2019; Gao et al., 2022). For example, Ca, 215 

Al, OC and SO4
2- are found to have the highest percentage in cement sources (Guo et 216 

al., 2021); Fe, Si and SO4
2- are the most abundant species in steel industry emission 217 

(Guo et al., 2017). 218 

 219 
Fig. 3 Chemical profiles for PM2.5 emitted from industry processes (IN). Data obtained from 220 

SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 221 

SPECIATE database)  222 

Traffic contributed a large fraction of PM2.5 in many locations (Hopke et al., 2022). 223 

It is well-known that the transportation sector makes a dominant contribution of OC 224 

and EC. The main components of PM2.5 emitted from traffic sources are OC, EC and 225 

SO4
2- both in SPAPPC and SPECIATE, but still vary in wide range (Detailed 226 

information was given in Table S8~S10). In SPAPPC, the percentages of OC, EC and 227 

SO4
2- are 40.8±15.0%, 23.1±13.8%, 3.1±3.7%, and in SPECIATE, the percentages are 228 

40.6±16.4%, 36.1±21.5%, 6.4±9.9%, respectively (Fig. 4). These significant 229 

differences mainly attribute to the vehicle type, fuel quality, mixing ratio between oil 230 
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and gas and the combustion phase in vehicle engine and so on (Xia et al., 2017).  231 

 232 
Fig. 4 Chemical profiles for PM2.5 emitted from transportation sector (TR). Data obtained from 233 

SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 234 

SPECIATE database)  235 

Residential coal combustion, as the leading source of global PM2.5 emission 236 

(Weagle et al., 2018), has a much higher emission factor than coal-fired power plant 237 

(Wu et al., 2022). The fraction of components varied greatly in the profiles measured 238 

from SPAPPC and SPECIATE (Detailed information was given in Table S11), SO4
2-, 239 

OC, NH4
+ and EC make the main contribution to PM2.5 emitted from residential coal 240 

combustion. In SPAPPC, the average percentages of SO4
2-, OC, NH4

+, EC are 241 

27.1±10.1%, 20.7±20.6%, 11.3±7.7%, 2.6±2.8%, respectively. In SPECIATE, the 242 

average percentages are OC (58.2±14.0%), EC (24.6±5.4%), SO4
2- (3.2±2.3%) and 243 

NH4
+ (1.6±1.0%) (Fig. 5). Total percentages of OC and EC in SPECIATE are over 80%, 244 

obviously higher than that in SPAPPC, while a higher percentage of SO4
2-, Cl-, K and 245 

Si are observed in SPAPPC. The coal type and properties, burning condition are the 246 

main factors affecting the percentages of PM2.5 components, like the chunk coal burning 247 
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has relatively higher percentages of OC, EC, SO4
2-, NO3

- and NH4
+ than honeycomb 248 

briquette (Wu et al., 2021; Song et al., 2021). 249 

 250 

Fig. 5 Chemical profiles for PM2.5 emitted from residential coal combustion (RE). Data obtained 251 

from SPAPPC (SPAP database and published source profiles in China) and SPECIATE (U.S. EPA 252 

SPECIATE database) 253 

Briefly, many factors can affect PM2.5 source profiles, and with the innovation of 254 

manufacturing technique and pollution control technology, changes in fuel and raw and 255 

auxiliary materials, the main chemical components and their percentages would change 256 

dramatically. To explore whether the variations of source profile would be one of the 257 

important factors affecting the simulation results of PM2.5 species in CTMs, we 258 

designed a series of simulation tests as follows. 259 

3 Whether the variation of source profile adopted in CTMs has an impact on the 260 

simulation of chemical components in PM2.5? 261 

In this part, we separately selected source profiles from SPAPPC and SPECIATE 262 

databases and applied them in emission inventory for simulating PM2.5 and its 263 
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components with other modeling conditions unchanged, corresponding to case 264 

CMAQ_SPA and CMAQ_SPE. The detailed information on of source profiles is shown 265 

in Figure S1. To determine the similarity between the two groups of source profiles, 266 

Coefficient divergence Divergence (CD) is calculated using the following formula 267 

(Wongphatarakul et al., 1998): 268 

2

1

1
CD

=

 −
=   + 


p ij ik

jk i
ij ik

x x

p x x
…………………………（1） 269 

Where CDjk is the coefficient of divergence of source profile j and k, p was the 270 

number of chemical components in source profile, xij is the weight percentage for 271 

chemical component i in source profile j, xik is the weight percentage for i in source 272 

profile k (%). The CD value is in the range of 0 to 1, if the two source profiles are 273 

similar, the value of CD is close to 0; if the two are very different, the value was close 274 

to 1. 275 

By comparing the selected SPAPPC source profiles with the selected SPECIATE 276 

source profiles, the coefficient divergences for the four main source categories were 277 

CDPP(0.67)>CDRE(0.62)>CDTR(0.60)>CDIN(0.60), which meant the selected source 278 

profiles in the two simulation cases were quite different. The simulated concentration 279 

of PM2.5 and its components (For this part and each test case in next section) at 10 280 

ambient air quality monitoring stations (Table S12) were extracted from CMAQ outputs 281 

of the innermost simulation domain. We selected one air quality monitoring station to 282 

study the influence of PM2.5 source profile on numerical simulation of PM2.5-bound 283 

components and to explore the relevant laws in the atmosphere, then used the left 9 sites 284 

to further illustrate the conclusions suggested.  285 

The simulation results for PM2.5 species under CMAQ_SPA and CMAQ_SPE 286 

cases also showed big differences (as shown in Fig. 6 and Table S13), in which the 287 

largest difference in simulated concentration was EC with CAMQ_SPE giving higher 288 

by 167% than CMAQ_SPA; For OC and Mn, higher values were also given by 289 

CMAQ_SPE than by CMAQ_SPA (45% and 126% on average, respectively); For the 290 

remaining components, the simulated concentration by CMAQ_SPE was lower than 291 
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CMAQ_SPA with Ti (58%), Na (55%), Mg (53%), Ca (51%), Al (33%), Cl (30%), K 292 

(29%), Si (22%), Fe (16%), NH4
+ (9%), SO4

2- (9%), NO3
- (8%), separately. While the 293 

simulated PM2.5 concentrations under the two cases were quite close. The influence of 294 

source profile variation on the simulated PM2.5 concentration was not significant, but 295 

the influence on the simulation of chemical components in PM2.5 could not be ignored. 296 

 297 

Fig. 6 The percentage difference of simulated concentration (PM2.5 and its components) between 298 

CMAQ_SPE and CAMQ_SPA (relative to CAMQ_SPA); PM2.5 source profiles from SPAPPC and 299 

SPECIATE database were applied in emission inventory for simulating PM2.5 and its components, 300 

corresponding to case CMAQ_SPA and CMAQ_SPE, respectively. 301 

4 How much did the variation of source profile adopted in CTMs impact on the 302 

simulation of chemical components in PM2.5?  303 

In order to quantitatively characterize how much the source profiles affect the 304 

simulation results of PM2.5 and its components, we selected the chemical composition 305 

of code 000002.5 (Variety of different categories, used for the overall average 306 
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composite profiles (Hsu et al., 2019)) in the US EPA Speciate_5.0_0 database as species 307 

allocation of PM2.5 components. The corresponding percentages of EC, OC, Mn, Fe, Ti, 308 

Al, Si, Ca, Mg, K, Na, Cl, NH4
+, NO3

- and SO4
2- in PM2.5 were shown in Fig. 7 (SGL, 309 

base case simulation).  310 

311 

 312 

Fig. 7 The general roadmap of sensitivity tests 313 

(The histogram in each case were the speciation profile in CTMs) 314 

Table 1 The content of sensitivity experiment cases 315 
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Cases Description 

Pre-experimentcCase S0 (DBL):  

add perturbation to Non-

SNA and SNA 

The percentage of all the listed components in the source 

profile of base case (SGL) were doubled, and the proportion 

of unlisted components (Other) decreased to 9%. 

Case S1 (DBP): 

add perturbation to Non-SNA 

The percentages of non-SNA were doubled and SNA( SO4
2-, 

NO3
-, NH4

+) species stayed the same with that in SGL (the 

cumulative percentage of listed species was 85.3%), the 

proportion of unlisted components decreased to 14.7%. 

Case S2 (DBS and TPS): 

add perturbation to SO4
2- 

The percentage of SO4
2- was doubled (11%, DBS, 

represented Double Sulfate), tripled (16.5%, TPS, 

represented Triple Sulfate) and the other listed 14 species 

stayed the same with that in SGL (the cumulative percentage 

of listed species was 51% and 57%, respectively), the 

proportion of unlisted components decreased to 49% and 

43%. 

Case S3 (TWN and FON): 

add perturbation to NO3
- 

The NO3
- content was raised up to 20 times (3.3%, TWN) 

and 40 times (6.6%, FON) of that in SGL (0.16%), the other 

14 species stayed the same with SGL (the cumulative 

percentage of listed species was 48.6% and 51.9%, 

respectively), the proportion of unlisted components 

decreased to 51.4% and 48.1%. 

Case S4 (OHA and THA): 

add perturbation to NH4
+ 

The NH4
+ content was raised up to 100 times (2.2%, OHA), 

200 times (4.4%, THA) of that in SGL (0.02%), the other 14 

species stayed the same with SGL (the cumulative 

percentage of listed species was 47.7% and 49.9%, 

respectively), the proportion of unlisted components 

decreased to 52.3% and 50.1%. 

Note: The source profiles in all cases listed in the table were calculated based on the base case 

SGL. In the design of simulation cases, the reason why the disturbance amplitude of NH4
+ and 

NO3
- were significantly higher than that of other components such as SO4

2- and Non-SNA, was 

because the percentages of NH4
+ and NO3

- in the base source profile (SGL, based on the chemical 

composition of code 000002.5 in the EPA Speciate_5.0_0 database ) were very low, while the 

percentage of NH4
+ and NO3

- in SPAPPC exhibited in section 2.2 were orders of magnitude higher 

than those in SGL. 

Given the large number and complex chemical composition of PM2.5, it is 316 

advisable to classify it reasonably before designing sensitivity experiments. The pre-317 

experimentCase S0 was to double the percentage of the listed 15 components mentioned 318 

above (SGL) in PM2.5 species allocation for emission sources (DBL case, the 319 

cumulative percentage was 91%, the details were shown in Fig. 7 and Table 1). As the 320 

percentage of these components increased, the proportion of unlisted components 321 
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(represented by Other) decreased to 9% in order to meet the requirement that the total 322 

percentage of all components is 100%. Then we compared the simulation results before 323 

(SGL case) and after perturbation (DBL case) in species allocation of PM2.5 sources. 324 

In the case DBL, when the percentage of all the components except “other” were 325 

doubled in the source profile, the simulated concentrations of Al, Ca, Cl, EC, Fe, K, 326 

Mg, Mn, Na, OC, Si and Ti doubled as well, while the simulated concentration of NO3
-, 327 

SO4
2- and NH4

+ only increased at about 3%, 10% and 4%, respectively, although the 328 

simulated concentration of PM2.5 was not obviously changed (Detailed simulation 329 

results were shown in Table S14). Through this pre-experimentCase S0, we found that 330 

the results for SNA (SO4
2-, NO3

-, and NH4
+) and Non-SNA were obviously different. 331 

Therefore, we divided the components in the source profile into two groups (Non-SNA 332 

and SNA) and designed a series of sensitivity tests listed in next section to further 333 

explore how species allocation of PM2.5 in emission sources of CTMs would affect the 334 

simulation results. 335 

4.1 Sensitivity tests design 336 

Based on the pre-experimentCase S0 results, sensitivity tests were designed by 337 

changing the percentages of the target components and related components in the base 338 

case (SGL): perturbation on each component of Non-SNA, perturbation on SO4
2-, 339 

perturbation on NO3
-, and perturbation on NH4

+. The general roadmap of sensitivity 340 

tests was shown in Fig. 7, and the illustration of each case was summarized in Table 1. 341 

The basic rules must be followed: a) perturbation on the percentage of each component 342 

in source profile fell within the variation range of its measured value described in 343 

section 2.2. b) The sum of the percentage of listed Non-SNA, SNA and Other 344 

components in PM2.5 source profile was 100%. 345 

4.2 Evaluation index for simulation result  346 

In order to quantify the concentration changes of simulated PM2.5 components 347 

caused by the perturbation in source profile, we proposed the sensitivity coefficient (δ) 348 

as evaluation index. The calculation formula is as follows: 349 
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Wherein, δi is the sensitivity coefficient of component i, representing the change 351 

of the simulated value of its content in ambient PM2.5 corresponded to 1% perturbation 352 

in the source profiles. Ci_case is the simulation result of component i in different 353 

sensitivity experiment cases, μg/m3; Ci_base is the simulation result of components i in 354 

base case, μg/m3; CPM2.5_case
 is the simulation result of PM2.5 in different sensitivity 355 

experiment cases, μg/m3; CPM2.5_base
 is the simulation result of PM2.5 in base case, μg/m3; 356 

Pi_case is the percentage of component i in different source profile of sensitivity 357 

experiment cases, %; Pj_case is the percentage of perturbed component j in different 358 

source profile of sensitivity experiment cases, %; Pi_base is the percentage of component 359 

i in base case source profile, %; ; Pj_base is the percentage of perturbed component j in 360 

base case source profile, %.  361 

The positive value of δ means the simulated concentration of PM2.5 component 362 

increases (decreases) with the increase (decrease) of the perturbation to the percentage 363 

of components in source profile, while the meaning of negative δ is just the opposite. If 364 

the absolute value of δ is less than or equal to 0.1, the simulated result of PM2.5 chemical 365 

component is considered to be insensitive to the corresponding variation of source 366 

profile; If the absolute value of δ falls between 0.1 and 0.4 (included), the simulated 367 

results of PM2.5 chemical component is considered to be sensitive to the variation of 368 

source profile; If the absolute value of δ is larger than 0.4, the simulated results of PM2.5 369 

chemical component is very sensitive to the variation of source profile. The greater the 370 

absolute value of δ is, indicates the variation of source profile adopted in CMAQ has 371 

more obvious impact on the simulated results of PM2.5 chemical components. 372 
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4.3 The response of simulated PM2.5 components 373 

Fig.8 listed the sensitivity coefficients of simulated ambient PM2.5 components to 374 

the perturbation of source profile under each test case. In case DBL (The percentage of 375 

all the listed components in the source profile of base case (SGL) was doubled), the 376 

sensitivity coefficient (δ) of NH4
+ was negative, and the absolute value was the highest, 377 

indicating that the simulated proportion of NH4
+ in ambient PM2.5 decreased, and it was 378 

very sensitive to the variation of source profile. Conversely, the sensitivity coefficient 379 

of NO3
- was close to 1, which illustrated that the simulated proportion of NO3

- in 380 

ambient PM2.5 increased proportionally with the change in source profile. The δ of SO4
2- 381 

also showed a very sensitive property. The simulated Non-SNA concentrations were 382 

doubled when compared to the base case (SGL). 383 

 384 

Fig. 8 The sensitivity coefficients (δ) of simulated components to the perturbation of adopted source 385 

profile in different cases. Note: Each small color box in the figure represented the sensitivity level 386 

(indicated by the legend on the right) of PM2.5 components (the x-coordinate) in different cases (y-387 

coordinate). The blank grids in DBP case indicated no perturbation to SNA in PM2.5 source profile 388 

under this case. 389 

In case DBP, when the percentages of listed Non-SNA in the source profile were 390 

doubled, the simulated proportions of Non-SNA (Al, Ca, Cl, EC, Fe, K, Mg, Mn, Na, 391 

OC, Si and Ti) in ambient PM2.5 synchronous increased, and were very sensitive to the 392 



 

20 

 

change in the adopted source profile with a sensitivity coefficient (δ) of 0.5. 393 

Interestingly, the simulated concentration of SNA in ambient PM2.5 also changed 394 

although the SNA in source profile did not change, the concentration of NO3
- and SO4

2- 395 

increased by 2% and 3%, respectively, NH4
+ decreased by 10% (Detail simulation 396 

results of different cases were shown on Table S15~S21).  397 

Under SO4
2- perturbation cases (Case DBS and Case TPS), we found the simulated 398 

results of Non-SNA and NO3
- had no obvious variation when compared with the base 399 

case. Either in Case DBS or in Case TPS, the δ of Non-SNA and NO3
- were always 400 

between -0.1 to 0.1. But when the percentage of SO4
2- was doubled in PM2.5 source 401 

profile (DBS), the simulated concentration of NH4
+ and SO4

2- increased by 6% and 8%, 402 

respectively. In Case TPS (the percentage of SO4
2- was tripled), the simulated 403 

concentration of NH4
+ and SO4

2- were increased by 11% and 16%, respectively. The δ 404 

of NH4
+ and SO4

2- were 0.12 and 0.36, sensitive toward to positive direction with the 405 

increase of SO4
2- in the source profile. 406 

In the situation of NO3
- perturbation (Case TWN and Case FON), the simulated 407 

concentrations of Non-SNA hardly change when compared to the base case, while the 408 

changing characteristics of SNA concentrations were different. In cases TWN and FON, 409 

the simulation concentration of NH4
+ increased by 2.6% and 5.4% when compared with 410 

the base case, the simulated NO3
- increased by 14% and 30%, the simulated SO4

2- 411 

decreased slightly, even could be neglected in some observation sites. The simulated 412 

concentrations of Non-SNA and SO4
2- were insensitive to the perturbation of NO3

- in 413 

PM2.5 source profile; NH4
+ was sensitive, and NO3

- was very sensitive.  414 

When we put perturbation to NH4
+ in the source profile (Case OHA and Case 415 

THA), the simulation results of Non-SNA were almost not changed, the simulated 416 

concentration of SO4
2-, NH4

+, NO3
- increased in OHA and THA. The δ of SNA to the 417 

variation of NH4
+ in the source profile were positive and δ(SO4

2-) >δ(NH4
+) >δ(NO3

-), 418 

SO4
2- and NH4

+ were sensitive to the NH4
+ perturbation in the source profile, but NO3

- 419 

was not so sensitive. 420 

In general, the simulation results of components in ambient PM2.5 were affected in 421 
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one way or another by the change of source profiles adopted by CMAQ. Both of the 422 

simulated Non-SNA and SNA were very sensitive to the perturbation of Non-SNA in 423 

source profile. When the percentage of SNA changed in the source profile, simulated 424 

concentrations of Non-SNA generally have little change, but the simulation results of 425 

SNA could change in different levels: the simulated SO4
2- was very sensitive and NH4

+ 426 

was sensitive to the perturbation of SO4
2- in source profile, simulated NO3

- was very 427 

sensitive and NH4
+ was sensitive to the perturbation of NO3

-, SO4
2- and NH4

+ were 428 

sensitive to the perturbation of NH4
+. The simulated component such as SO4

2- was 429 

influenced not only by the change of SO4
2- itself but also by other components like 430 

some Non-SNA and NH4
+ in the source profile. In other words, there was a linkage 431 

effect, variation of some components in the source profile would bring changes to the 432 

simulated results of other components. 433 

5 How the variation of source profile adopted in CTMs impact on the simulation 434 

of chemical components in PM2.5?  435 

The variation of species allocation in emission sources directly affected the 436 

composition of aerosol system in CTMs. In CMAQv5.0.2, the aerosol thermodynamic 437 

equilibrium process was carried out according to ISORROPIA Ⅱ, including a SO4
2--438 

NO3
--Cl--NH4

+-Na+-K+-Mg2+-Ca2+-H2O system which was established on the basis of 439 

ISORROPIA I by adding the effects of K+, Ca2+ and Mg2+ (Detailed equilibrium 440 

relations were shown in Table S22). Some assumptions had been made in the 441 

ISORROPIA model to simplify the simulation system (Fountoukis and Nenes, 2007): 442 

(1) Because the vapor pressure of sulfuric acid and metal salts (such as Na+, Ca2+, K+, 443 

Mg2+) were very low, it was assumed that all the sulfuric acid and metal salts in the 444 

system existed in the aerosol phase; (2) For ammonia in the system, it was preferred to 445 

have an irreversible reaction with sulfuric acid to produce ammonium sulfate. Only 446 

when there was still surplus NH3 after the neutralization of H2SO4, can it have a 447 

reversible reaction with HNO3 and HCl to produce NH4NO3 and NH4Cl. (3) For sulfuric 448 

acid in the system, if there were metal ions (such as Ca2+, Mg2+, K+, Na+) in the system, 449 

sulfuric acid would react with metal ions to produce metal salts. Only in the case of 450 



 

22 

 

insufficient sodium, sulfuric acid would react with ammonia. Based on these 451 

assumptions, the ISORROPIA model introduced the following three judgment 452 

parameters (R1, R2 and R3 were calculated by the following formulas) to determine the 453 

simulation subsystems. In this paper, R1, R2, R3 and the corresponding solid phase 454 

species under different perturbation cases on source profiles were shown in Table 3. 455 

These components achieved thermodynamic equilibrium in the order of preference for 456 

more stable salts, obviously, the simulation processes of these components may 457 

influence each other. 458 

+ 2+ + 2+
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1 2
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+
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Table 2 Potential aerosol species in ISORROPIA II under different cases 462 

Cases R1 R2 R3 Solid phase species* 

SGL、DBL 

TWN、FON 
2.53 2.52 1.9 

CaSO4, MgSO4, K2SO4, Na2SO4, NaCl, NaNO3, 

NH4Cl, NH4NO3 

DBS 1.26 1.26 0.95 
CaSO4, MgSO4, K2SO4, KHSO4, Na2SO4, NaHSO4, 

(NH4)2SO4, NH4HSO4, (NH4)3H(SO4)2 

TPS 0.84 0.84 0.63 CaSO4, KHSO4, NaHSO4, NH4HSO4 

DBP 5.04 5.03 3.79 CaSO4, MgSO4, K2SO4, CaCl2, Ca(NO3)2, MgCl2, 

Mg(NO3)2, KCl, KNO3, NaCl, NaNO3, NH4Cl, 

NH4NO3 

OHA 3.58 2.52 2.95 

THA 4.64 2.52 4.02 

* The solid phase species were determined based on the research of (Fountoukis and Nenes, 2007) 463 

In Non-SNA perturbation case, when the percentage of Non-SNA in source profile 464 

doubled (Case DBP), meant there were more Na, K, Mg, Ca, Cl participated in aerosol 465 

chemistry, the model system needed more SO4
2- and NO3

- on the basis of charge balance 466 

and the thermodynamic equilibrium shifted to the direction of consuming Ca Mg, K 467 

and Na, which resulted in the increase of the simulated concentration of SO4
2- and NO3

-. 468 

Meanwhile, according to the rule of anions preferentially binding with nonvolatile 469 

cations in ISORROPIA, the increased cations Na+, K+, Mg2+, Ca2+ directly leaded to 470 
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the decrease of anions binding with NH4
+, there were less reaction dose between SO4

2- 471 

and NH4
+ to form (NH4)2SO4 or NH4HSO4, ultimately resulted in a decrease in 472 

simulated concentration of NH4
+ when compared to the base case. Because in this case 473 

more anions such as SO4
2- were passively needed, according to the principle of chemical 474 

equilibrium mentioned above, the chemical conversion of SO2 to SO4
2- was promoted, 475 

the simulated secondary SO4
2- increased, this could be proved by that the δ of SO2 in 476 

Case DBP was negative (shown in Fig. 9, details of other monitoring stations were 477 

shown Table S24).  478 

 479 

Fig.9 The sensitivity coefficients (δ) of simulated gas pollutants to the change of adopted source 480 

profile in different cases. 481 

Similarly, with the increase of metal ions in the system to bond with anions, the 482 

number of anions which can bind to NH4
+ decreased. The system needed less NH4

+ and 483 

weakened the need for conversion from NH3 to NH4
+, the simulated NH4

+ concentration 484 

decreased while the δ of NH3 was positive and very sensitive. Different trends of 485 

simulated concentration of gaseous pollutants mirrored the rules mentioned above from 486 

another aspect. The δ of SO2 and NOx was negative, NH3 was positive. We could see 487 

the same phenomena in DBL case (Fig. 9). When the percentages of Non-SNA in source 488 

profile increased, they not only affected the simulated concentration of Non-SNA, but 489 

also the secondary SO4
2-, NO3

- and NH4
+.  490 

In SO4
2- perturbation cases (Case DBS and TPS), as the percentage of SO4

2- in 491 
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source profile increased, for the chemical reactions of sulfate radical consuming (as 492 

shown in Table S22), the chemical equilibrium would move toward the products when 493 

compared to the base case. While for the chemical reactions of sulfate radical formation 494 

(The equations were shown in Table S23), meant the product was added in, the chemical 495 

equilibrium would be pushed toward the reactants. The chemical reactions between 496 

SO4
2- and NH4

+ would shift to the direction of (NH4)2SO4 generation, we could see the 497 

simulated concentrations of NH4
+ in DBS and TPS were both higher and NH3 were 498 

lower than those in the base case (SGL). In addition, when more SO4
2- was added in, 499 

the conversion of SO2 to SO4
2- was affected in some level and consumed less SO2 than 500 

the base case, simulated SO2 showed insensitive but positive trend (Fig.9). And from 501 

the potential solid phase species in ISORROPIA II under DBS and TPS cases (Table 3), 502 

the solid phase species were mainly consisted of sulfate salts, so the simulated 503 

concentration of NO3
- did not change apparently. 504 

As the percentage of NO3
- in source profile increased (Case FON and TWN), the 505 

associated chemical equilibrium shifted towards the consumption of NO3
-, such as NH4

+ 506 

+ NO3
- → NH4NO3, which would also consume more NH4

+ and form more ammonium 507 

salt, finally consumed more NH3 because of NH3(gas) + H2O(aq) → NH4
+(aq) + OH-508 

(aq). The simulation results also manifested that the concentration of NH4
+ increased 509 

while that of NH3 decreased. Based on the assumption of ISORROPIA, the cations like 510 

Na+, K+, Mg2+, Ca2+ and NH4
+ preferentially to react with SO4

2-, only if there were 511 

cations left after neutralized SO4
2-, could they react with NO3

- to form salts, so the 512 

simulated concentration of SO4
2- was not obviously changed. Accordingly, the 513 

simulated concentration of NOx and SO2 almost unchanged (The δ of NOx and SO2 was 514 

insensitive). 515 

In the cases of NH4
+ perturbation (Case OHA and THA), when the percentage of 516 

NH4
+ in source profile increased, the related chemical equilibrium shifted towards the 517 

direction of NH4
+ consumption, such as in 2NH4

+ + SO4
2- → (NH4)2SO4, more SO4

2- 518 

was consumed at the same time, which further promoted the conversion of SO2 to SO4
2-. 519 

The increased NH4
+ in OHA and THA also would inhibit the conversion of NH3 to NH4

+ 520 
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when compared to the base case. This, in turn appeared as the increase of the simulated 521 

secondary SO4
2- and NH3, and the decrease of the simulated SO2.  522 

In summary, the effects of source profile variation on the simulation results of 523 

different components were linked. When the percentages of Non-SNA, SO4
2-, NO3

- and 524 

NH4
+ in the source profile changed, they not only affected the simulated concentration 525 

of themselves, but also affected the simulation results of some other components. Both 526 

the simulation results of primary components and secondary components were affected 527 

by the change of source profile, the secondary SO4
2- and NH4

+ were affected more than 528 

the secondary NO3
-. 529 

6 Conclusions 530 

Although the influence of source profile variation on the simulated concentration 531 

of ambient PM2.5 is not significant, its influence on the simulated chemical components 532 

cannot be ignored. The variation of simulated components ranges from 8% to 167% 533 

under selected different source profiles, and the simulation results of some components 534 

are sensitive to the adopted PM2.5 source profile in CTMs, e.g., both the simulated Non-535 

SNA and SNA are sensitive to the perturbation of Non-SNA in source profile, the 536 

simulated SO4
2- and NH4

+ are sensitive to the perturbation of SO4
2-, simulated NO3

- and 537 

NH4
+ are sensitive to the perturbation of NO3

-, SO4
2- and NH4

+ are sensitive to the 538 

perturbation of NH4
+. These influences are not only specific to an individual component, 539 

but also can be transmitted and linked among components, that is, the influence path is 540 

connected to chemical mechanisms in the model since the variation of species allocation 541 

in emission sources directly affect the thermodynamic equilibrium system 542 

(ISORROPIA Ⅱ, SO4
2--NO3

--Cl--NH4
+-Na+-K+-Mg2+-Ca2+-H2O system).  543 

Traditionally, the source profiles are regarded as a primary emission, but 544 

interestingly, their variation could affect the simulation result of secondary components 545 

as well in CTMs. We found the perturbation of PM2.5 source profile caused the variation 546 

of simulated gaseous pollutants, and related chemical reactions like gas-phase 547 

chemistry of SO2, NOx and NH3, which mirrored that the perturbation of source profile 548 
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had an effect on the simulation of secondary PM2.5 components. Overall, the emission 549 

source profile used in CTMs is one of the important factors affecting the simulation 550 

results of PM2.5 chemical components. Additionally, organic species are one of the most 551 

important components in PM2.5 and gain much more attention on human health. While 552 

the number of organic species in source profile is relatively scarce which brings a 553 

challenge for simulation test designing, the variation of source profile adopted in CTMs 554 

has an impact on the simulation of organic species is not taken into account in this study.  555 

With the change of fuel and raw materials, the development of production 556 

technology and the innovation of pollution treatment technology in recent years, some 557 

components have changed significantly in the source profile. Given the important role 558 

of air quality simulation in environment management and health risk assessment, the 559 

representativeness and timeliness of the source profile should be considered.  560 

Our study tentatively discussed the impact mechanism of emission source profiles 561 

on PM2.5 components simulation results in CTMs. In the next work, we will use 562 

different source profile for simulation, compare the simulation results with local 563 

measured PM2.5 components and discuss the influence of sub-source profiles variation 564 

on the simulation results. In addition, the size distribution, mixing state, aging and 565 

solubility for different aerosol components might have something to do with source 566 

profile, how much the influence of source profile changes on these physical and 567 

chemical process, is deserved to do in the future. 568 
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