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Abstract. Responses of El Niño-Southern Oscillation (ENSO) to global warming remain uncertain, which challenges ENSO

forecasts in a warming climate. We investigate changes in ENSO characteristics and predictability in idealized simulations with

quadrupled CO2 forcing from seven general circulation models. Comparing the warmer climate to control simulations, ENSO

variability weakens, with the neutral state lasts longer, while active ENSO states last shorter and skew to favor the La Niña

state. Six-month persistence-assessed ENSO predictability slightly reduces in five models and increases in two models under5

the warming condition. While the overall changes in ENSO predictability are insignificant, we find significant relationships

between changes in predictability and intensity, duration and skewness of the three individual ENSO states. The maximal

contribution to changes in the predictability of El Niño, La Niña and neutral states stems from changes in skewness and events’

duration. Our findings show that a robust and significant decrease in ENSO characteristics does not imply a similar change

in ENSO predictability in a warmer climate. This could be due to model deficiencies in ENSO dynamics and limitations in10

persistence model when predicting ENSO.

1 Introduction

Improving ENSO predictions is crucial to project large-scale climate variability, which is of great scientific interest and societal

need (Timmermann et al., 2018; Christensen et al., 2013; L’Heureux et al., 2020). Tremendous research efforts have improved

the understanding of ENSO variability (e.g., Wang, 2018) and developed reliable ENSO predictions at 6-12 lead months in15

the present climate (e.g., Cane et al., 1986; Chen et al., 1997; Chapman et al., 2015; Tang et al., 2018; Ham et al., 2019). An-

thropogenic climate change could alter ENSO characteristics in the future. Many studies have analyzed the impacts of climate

change on ENSO characteristics in different warming scenarios with various models, but the impacts of climate change on

ENSO predictability have not been investigated with similar rigor, due to large uncertainties in the simulated ENSO response.

The climate model deficiencies, the short observational record, and the internal variability have prevented us from drawing20

robust conclusions about likely changes of ENSO characteristics in the future (e.g., Beobide-Arsuaga et al., 2021; Zhu, 2021;

Stevenson et al., 2010; Maher et al., 2018; Zheng et al., 2018). Studies have reviewed ENSO response to external CO2 forcing

in models from the Couple Model Intercomparison Project phase 3 and 5 (CMIP3 and CMIP5), and the results show that

changes in ENSO amplitude and frequency under the forcings are model-dependent (Guilyardi, 2006; Guilyardi et al., 2012).

Recent studies suggest that improved climate simulations reduce the model spread of ENSO responses to climate change.25
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For example, Fredriksen et al. (2020) showed that CMIP6 models simulate ENSO spectra, amplitude and teleconnection

in warming scenarios in higher agreement than models in CMIP phase 5 and 3. In addition to model development, longer

simulations, especially those longer than 300 years, are shown to reduce uncertainties in ENSO simulation by stabilizing the

internal variability (e.g., Sun et al., 2018; An et al., 2008; Knutson et al., 1997). Callahan et al. (2021) used millennial-length

simulations from the Long Run Model Intercomparison Project (LongRunMIP) to show that ENSO amplitude and frequency30

changes were stronger and more consistent across models when the climate system equilibrated a CO2 forcing than during the

transient climate state. Building on this finding, we ask if a robust change in ENSO characteristics will lead to a robust change

in ENSO predictability.

ENSO predictability in the present climate is related to ENSO characteristics. Jin et al. (2008) investigated the skill of 6-

month ENSO predictions in the hindcasts of 10 coupled general circulation models (GCMs) and showed that the larger the35

ENSO intensity, the easier the predictions, and that El Niño and La Niña states are better predictable than the neutral state.

Liu et al. (2022) studied retrospective ENSO forecasts in an ensemble prediction system in Community Earth System Model

(CESM) and confirmed that stronger ENSO events exhibit higher predictability.

The relationship between ENSO predictability and characteristics has also been investigated in a warmer future. DelSole

et al. (2014) ascribed a decreased seasonal ENSO predictability to a decreased ENSO variance under a fixed 2095 climate40

forcing in the Community Climate System Model, version 4. Contractively, Berner et al. (2020) showed an increased seasonal

to interannual predictability in a strong warming scenario in CESM, which was attributed to an increased ENSO amplitude

and frequency. However, previous studies have neither provided a model-intercomparison of ENSO predictability change in a

warmer climate, nor an investigation of predictability changes in El Niño, La Niña and neutral states separately.

In this paper, we compare changes in ENSO predictability in a quasi-equilibrated warmer climate across seven models. We45

analyze ENSO predictions using a persistence model, and we investigate predictability of the time series of the Niño index,

and its decomposition into the three ENSO phases. Based on the robust decrease in ENSO characteristics in an equilibrium

climate (in 8 out of 10 models as shown in Callahan et al. (2021)) in combination with the inherent relationship between ENSO

characteristics and predictability, we could expect that ENSO predictability decreases robustly in a quasi-equilibrated warming

climate, or at the very least that the ENSO characteristics-predictability relationship sustains in such a climate.50

This study is organized as follows: in Section 2, we introduce the data and method. In Section 3, we analyze changes in ENSO

characteristics and predictability in response to CO2 forcing, and we regress changes in ENSO predictability onto changes in

ENSO characteristics to determine the relationship. In section 4, we discuss implications of these findings and summarize the

results.

2 Data and Method55

We analyze model outputs from the LongRunMIP archive, a large set of simulations from atmosphere-ocean general circulation

models that last at least 1000 years (Rugenstein et al., 2019). This archive includes 15 models, each contains a pre-industrial

control simulation of constant 1850-forcing and at least one forced simulation, ranging from instantaneous steps of two-, four-,
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eight-, or sixteen-time CO2 to realistic Representative Concentration Pathway (RCP) scenarios with constant forcing beyond

year 2300. We select seven models from the archive with abrupt quadrupling CO2 simulations (hereinafter referred to as60

abrupt4xCO2) and compare them with their pre-industrial control simulations (hereinafter referred to as control). This forcing

level is chosen because it shows a better signal-to-noise ratio than the doubling of CO2. The spatial resolution of these seven

models ranges from 3.75° in both the atmosphere and ocean to 1.4° in the atmosphere and 0.5° in the ocean (Table 1). Though

models with different resolutions might show different ENSO dynamics, our results on ENSO response are robust among the

models. We treat the period between year 150 and the end of the simulation as quasi-equilibrated (Callahan et al. (2021)). Our65

results are not sensitive to this cut of time. In model simulations, we analyze monthly surface air temperature (TAS; Fig. 1)

instead of sea surface temperature (see Rugenstein et al. (2019) for data availability). For the observational record, we analyze

TAS by using the Godded Institute for Space Studies Surface Temperature Analysis version 4 (GISTEMPv4) (GISTEMP

Team, 2022; Lenssen et al., 2019). We compare changes in the relationship between ENSO characteristics and predictability

calculated from the GISTEMPv4 to the one that calculated from control. In comparison to the relatively short observational70

record that shows only 65 El Niño and La Niña events from 1880 to present, we detect over 300 occurrences for both El Niño

and La Niña events per model in control, accentuating the increased statistical robustness and reliability of our analysis by

using millennial-length simulations.

To evaluate ENSO simulations in control, we calculate the Niño3.4 index by computing time series of TAS anomalies

averaged over the Niño3.4 region (170◦W–120◦W, 5◦N–5◦S) with centered 30-year based periods that update every five years75

(Lindsey, 2013). The control show fair distributions of the Nino3.4 index compared to the observational record (Fig. 2a-g),

except for GISSE2R that simulates too many neutral states and too few and weak active ENSO states (Fig. 2d). The power

spectra of the Niño3.4 index is model-dependent in control in terms of the dominant frequency. Three models agree with

the observations that ENSO occurs every 3 to 7 years (Fig. 2i,l,m), three models simulate a more frequent occurrence (Fig.

2h,j,k), and one model simulates a less frequent occurrence (Fig. 2n). To analyze model biases in ENSO dynamics, there are80

generally two most important atmospheric feedbacks that dominate ENSO dynamics: the negative net heat flux feedback and

the positive Bjerknes feedback (e.g., Lloyd et al., 2009). Due to data availability, we only compute the net shortwave heat flux

feedback, regressing TAS anomalies in the Niño3.4 region onto the net shortwave heat flux anomalies in the combined Niño3

and Niño4 region (160◦E–90◦W, 5◦N–5◦S; Bayr et al. (2019)). Six models simulate the observed negative feedback parameter,

albeit with too low or too high magnitudes (Fig. 3). IPSLCM5A simulates an erroneously positive feedback, indicating that the85

IPSLCM5A mistakenly simulates ENSO events to be shortwave-driven (Bayr et al., 2019).

To separate ENSO responses to CO2 forcing into the three ENSO states, we define El Niño and La Niña events as exceedance

of half a standard deviation of the Niño3.4 index for at least six consecutive months (Fig. 4a-g; Bellenger et al. (2014)). Our

results are not sensitive to the choice of different exceedance thresholds. In addition, we define "quasi El Niño" and "quasi La

Niña" events as exceeding the threshold but not lasting long enough to be classified as an active event. We then investigate90

the time series of the Niño3.4 index (hereinafter referred to as "mean"), as well as neutral, El Niño, and La Niña composites

(hereinafter referred to as "states" collectively, and as "active ENSO states" when exempting the neutral state).
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For ENSO mean characteristics, we define the ENSO amplitude as the standard deviation of the Niño3.4 index, and the

frequency as the area of the Niño3.4 spectrum that lies above the Markov red-noise spectra (Wilks (2011); Fig. 4h-n). For the

characteristics of each ENSO state (excluding quasi-events), we define the events’ intensity as the average peak of the Niño3.495

index of the El Niño and La Niña event, and the events’ duration as the average count of months of the El Niño, La Niña or

neutral event. To measure the magnitude of ENSO asymmetry, we compute the skewness of the Niño3.4 index distribution

(Kohyama et al., 2018).

To compute ENSO predictability in control and abrupt4xCO2, we generate a persistence forecast of the Niño3.4 index. This

persistence forecast uses a first-order auto-regressive model initialized in November, which produces the highest skill in short100

lead times (Knaff and Landsea, 1997; Jin et al., 2008) and allows us to investigate the sensitivity of the spring predictability

barrier to global warming. We measure the predictive skill by a categorical metric, the Accuracy, which is obtained from a

contingency table by calculating the proportion of correct predictions for each ENSO state relative to the sum of all predictions

(Wilks, 2011):

Accuracy =
(hits+ correct negatives)

(hits+ correct negatives+misses+ false alarms)
. (1)105

The hits are predictions for which a state that is forecasted to occur does occur, the correct negatives are the number of states

forecasted to not occur and do not occur, the misses are states forecasted to not occur but occur, and the false alarms are states

forecasted to occur but do not occur. We calculate the accuracy of ENSO states for the first six lead-months (as shown in Fig.

5), which is hereafter referred to as November to April. Predictability is defined as the area under the skill curves across the six

lead months.110

Throughout the paper, we focus on the change of ENSO characteristics and predictability in response to a warmer climate.

The change is computed by subtracting the averaged control from every time step in abrupt4xCO2. We test the significance of

changes by one-sided bootstrapping, of which the null hypothesis (changes are not signficant) will be rejected at the 5% signif-

icance level. For changes in the mean characteristic, we bootstrap the Niño3.4 index in control and abrupt4xCO2; for changes

in states’ characteristic, we bootstrap the intensities or durations of each ENSO state. For changes in ENSO predictability, we115

convert contingency tables into arrays, and we bootstrap these arrays at the 5% significance level. For example, we assign four

letters to represent each constituent ("a" for hits, "b" for correct negatives, "c" for misses, and "d" for false alarms) and we

assume a contingency table in control that has one hit (a), two correct negatives (b, b), three misses (c, c, c) and four false

alarms (d, d, d, d). We convert the contingency table into an array ([a, b, b, c, c, c, d, d, d, d]) and bootstrap the array with

replacement 5000 times. We now obtain 5000 values of accuracy for each control and repeat this process for abrupt4xCO2.120

For each lead month, we repeat this bootstrap procedure and calculate changes in accuracy. At last, we test if our original

predictability change is statistical significantly positive or negative.

To investigate relationships between changes in ENSO predictability and characteristics (hereinafter referred to as "ENSO

characteristics-predictability relationship"), we employ a linear regression analysis. We break the time series of the Niño3.4

index into running 30-year windows that update every five years, calculate the mean and the states’ predictability and charac-125

teristics for each 30-year period, and regress the changes in ENSO predictability onto changes in ENSO characteristics. We test
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whether the regression slopes significantly differ from zero by bootstrapping the dependent and independent variables in the

linear equations. In addition, we calculate R2 values to determine the contribution of ENSO characteristic changes to ENSO

predictability changes.

3 Results130

3.1 Changes in ENSO characteristics

ENSO weakens and reddens in abrupt4xCO2 compared to control in most of the models (Fig. 4a-g and 6a,d). Distributions

of the Niño3.4 index narrows in six out of seven models and their central peaks intensify (Fig. 4a-g), reflecting a decrease in

ENSO amplitude. Six models show significantly decreased ENSO amplitudes in abrupt4xCO2 between -0.03 and -0.34 ◦C (4

to 61% compared to their control values; Fig. 6a). They also show a reddening of high frequency in abrupt4xCO2 (Fig. 4h-n)135

accompanied by a significant decrease in the power of high frequencies (-2.35 to -21.0 ◦C/year, which is 24 to 92% of the

values in control; Fig. 6d). MPIESM12, being the only exception, shows an increase in ENSO amplitude of 0.15 ◦C (21%) and

an increase in ENSO frequency of 8.53 ◦C/year (85%).

Both the El Niño and La Niña state becomes weaker and shorter (Fig. 6). The El Niño state significantly decreases its

intensity in six out of seven models (-0.14 to -0.54 ◦C, 14 to 44% relative to control; Fig. 6b) and significantly decreases its140

duration in the same six models (-1.49 to -12.0 months, 11 to 59% relative to control; Fig. 6e). Similarly, the La Niña state

significantly decreases its intensity in four models (-0.18 to -0.42 ◦C, 19 to 36% relative to control; Fig. 6c) and significantly

decreases its duration in six models (-1.16 to -10.3 months, 10 to 52% relative to control; Fig. 6f).

The decreased durations of both active states are accompanied by an increased duration of the neutral state. Five models

simulate a significantly longer neutral state in abrupt4xCO2 (3.73 to 60.2 months, 28 to 60.5% relative to control; Fig. 6g).145

The difference in duration changes in both active states suggests changes in the ENSO nonlinearity. To exemplify changes

of the asymmetry in Niño3.4 distributions, we scrutinize HadCM3L (Fig. 4e). In control, the right-side tail of the histogram of

HadCM3L extends further than the left-side tail, denoting more extreme El Niño than La Niña events. In addition, the histogram

peaks around the threshold that differentiates the neutral from the La Niña state, leading to more quasi La Niña than quasi El

Niño events. In abrupt4xCO2, the right tail becomes shorter, while the left tail remains, resulting in fewer extreme El Niño150

events. Additionally, the peak of the distribution moves to the right, resulting in more quasi El Niño events relative to control.

Four models simulate a significantly decreased skewness of the Niño3.4 distribution (-0.12 to -1.07; Fig. 6h), following that

quasi El Nino increases more than quasi La Nina events, while extreme El Nino decreases more than extreme La Nina events

in abrupt4xCO2.

3.2 Changes in ENSO predictability155

ENSO becomes less predictable in five out of seven models, although the changes are mostly insignificant according to our

bootstrap test (Fig. 5a-g and 7a). In control, the mean persistence skill starts at around 0.95 in all seven models, denoting that
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the persistence model is able to correctly predict 95% of ENSO states in November. From December onward, the skill drops to

around 0.72 for April, denoting that 72% of ENSO states are correctly predicted after six months. In abrupt4xCO2, all models

first show equivalent skills from November to January as in control. Then, five models show a decrease in skills, with around160

70% of correct predictions of ENSO states for April, while GISSE2R and MPIESM12 show a small increase in skill. We

quantify changes in the area under the skill curve as the change in predictability, with only HadCM3L showing a significant

decrease in the mean predictability in abrupt4xCO2 (-0.42, 9% relative to control; Fig. 7a).

The predictability of the El Niño state decreases similarly as the mean predictability, while the predictability of the La Niña

state shows no significant change (Fig. 5h-n and 7b-c). In control, the persistence skills of active states reduce from 0.95 to165

0.8 from November to April in all seven models, being indistinguishable from the mean persistence skill. In abrupt4xCO2, the

skill of predicting El Niño state decreases similarly as in control from November to January, then changes sharply and model-

dependently form February onward. In comparison, between November and April, the skill of the La Niña state changes less

than the skill of the El Niño state. Four models show a decrease in the predictability of the El Niño state, with HadCM3L

being again the only model that exhibits a significant change (-0.54, 11% relative to control; Fig. 7b). Five models agree on a170

decrease in the predictability of the La Niña state, while none of the changes are significant (Fig. 7c).

The neutral state in both control and abrupt4xCO2 is harder to predict than the mean and the active states, and its change

in predictability exhibits the largest magnitude (Fig. 5h-n and 7d). In control, the skill of the neutral state begins at 0.9 in

November and decreases to around 0.65 in April. In abrupt4xCO2, the skill decreases similarly to control in the first three

lead months and changes sharply and model-dependently afterward. Five models simulate a decrease in the predictability of175

the neutral state, with HadCM3L showing the only significant change (-0.63, 15% relative to control; Fig. 7d). In summary,

ENSO mean predictability decreases in abrupt4xCO2, mainly caused by predictability changes in neutral and El Niño states.

However, contradictory to our expectations, changes in predictability are neither as robust across models, nor as significant as

changes in ENSO characteristics. Therefore, we test if ENSO characteristics-predictability relationship sustains in the warmer

climate.180

3.3 Changes in ENSO characteristics-predictability relationship

3.3.1 The relationship in the observations

In the observations, the characteristics-predictability relationship is principally significant for most of the analyzed character-

istics for all states (Fig. 8a). The ENSO mean predictability increases when ENSO in general is stronger (R2 = 62%) and less

red (R2 = 42%). La Niña’s predictability is higher when the events are stronger (R2 = 39%), longer-lasting (R2 = 21%) and the185

Niño3.4 distribution more skewed to favor the La Niña state (R2 = 24%). Similarly, the neutral state is more predictable when

the events are shorter (R2 = 36%). As for El Niño’s predictability, it only significantly relates to the intensity of El Niño events

(R2 = 24%). In summary, in the observations, ENSO predictability is affected by ENSO amplitude, which is attributed from

the intensity of both El Niño and La Niña states.
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3.3.2 The relationship in control190

In control, signs and significances of the characteristics-predictability relationship is model-dependent; the overall contribution

of ENSO characteristics to ENSO predictability is lower than in the observations. For the mean, the relationship between ENSO

predictability and ENSO amplitude is significant across four models (Fig. 8c). Looking at individual models, CNRMCM61

shows the largest R2 value in relationships of the mean predictability to ENSO amplitude (18%) and frequency (14%), while

GISSE2R is the only model that shows significance in all three relationships but demonstrates extremely small R2 values (1%195

for amplitude, 1% for frequency, and 2% for skewness).

For active ENSO states, the relationships between El Niño’s predictability and its characteristics are significant across at

least five models (Fig. 8c). Looking at individual models, MPIESM12 shows the largest R2 values in relationships of the

predictability to El Niño’s intensity (14%) and duration (19%), but the smallest R2 value in the skewness-predictability rela-

tionship. Similarly, the characteristics-predictability relationships of the La Niña state are significant in at least five models.200

CNRMCM61 shows the largest R2 values in relationships of the predictability to La Niña’s intensity (13%) and duration (17%).

For the neutral state, the relationship between its duration and predictability is significant for four models, while the sign of

the relationship is model-dependent. CESM104 shows the largest R2 value (12%) in such a relationship, while CNRMCM61

shows the second largest R2 (7%) but matches the sign of the relationship apparent in the observations (Fig. 8a).

In summary, the ENSO characteristics-predictability relationship is overall lower in the models in control than in the observa-205

tions. In control, ENSO predictability is mainly affected by states’ intensity and duration, counter to ENSO mean characteristics

which dominates in the observations.

3.3.3 The relationship in the changes

Moving from the relationship in the observations and control, we regress changes in ENSO predictability onto changes in

ENSO characteristics, for which the change is the difference between control and abrupt4xCO2. Similar to the relationship210

in control, the sign and significance of relationships of changes are model-dependent. The contribution of changes in ENSO

characteristics to predictability becomes more divergent across models but overall even lower than in control. The amplitude-

predictability relationship is significant across four models (Fig. 8d). Among models who show significant results, HadCM3L

has the largest R2 value in the amplitude-predictability relationship (11%), and IPSLCM5A has the largest R2 in the skewness-

predictability relationships (17%). However, models with the strongest relationships between changes in predictability and215

changes in amplitude and skewness exhibit erroneous signs of the respective relationships compared to the observations.

For active ENSO states, on the one hand, the relationships between changes in El Niño’s predictability and its characteristics

are significant across four models (Fig. 8d). Among models which show significant results, IPSLCM5A has the largest R2 in the

relationships of changes in predictability to changes in El Niño’s intensity (18%) and the skewness (23%); MPIESM12 has the

largest R2 in the duration-predictability relationship (16%). On the other hand, the characteristics-predictability relationships220

of changes in the La Niña state are significant in four of seven models (Fig. 8d). Among models which show significant results,

HadCM3L has the largest R2 in the relationships of changes in predictability to changes in La Niña’s intensity (27%) and
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the skewness (40%), and IPSLCM5A has the largest R2 in the duration-predictability relationship (35%). Four out of seven

models in control agree with the observations that El Niño and La Niña states typically end in spring (March – May; figure not

shown). In abrupt4xCO2, active states end around 1 to 3 months earlier than in control, which shortens their decaying phase225

and advances the transition to the neutral state. The persistence model fails to predict such a transition correctly, explaining the

sharp decrease in the persistence skills from February onward (Fig. 5) and leading to the decreased predictability (Fig. 6e and

f).

For the neutral state, the relationship between changes in its duration and predictability is significant in five out of seven

models, with four models showing a positive and one model showing a negative relationship (Fig. 8d). CNRMCM61 is the only230

model that shows a significant and negative duration-predictability relationship (8%), agreeing with the observations, while

four models show a positive relationship with the mean R2 value at 14%. For these four models, we find that the increased

duration of the neutral state exercises two effects on its predictability. On the one hand, an increased duration of neutral states

decreases the duration of active states. The decreased duration of active states fastens their transitions to the neutral state, which

decreases the predictability of the neutral state, as its earlier occurrence cannot be predicted by the November initialization of235

the persistence model. On the other hand, the pronounced increase in the neutral state causes each neutral event to last on

average 13 months longer in abrupt4xCO2 than in control (Fig. 6g). This cross-years duration increases the persistence of

the neutral state and improves its predictability. Overall, because the predictability of the neutral state in these four models

decreases (Fig. 7d), we deduce that the effect of early-occurrence of the neutral state during the spring overcompensates the

effect of its cross-year duration on the predictability change.240

We find that the relationships of ENSO states are more significant and have higher R2 values than relationships of the

mean. The characteristics we analyze are not independent, as they may offset each other’s contributions or have two competing

effects on the predictability change. Thus, we suspect that the mean characteristics (amplitude, frequency and skewness) may

be too aggregated to be as clearly related to the mean predictability change as the states’ characteristics (intensity and duration).

Furthermore, given that ENSO is a highly non-linear process, it is likely that the three ENSO states respond to external forcings245

differently (e.g., Cai et al., 2015). This highlights the importance of decomposing different ENSO states from the mean ENSO

behavior in order to study ENSO response to an external forcing.

In summary, R2 values are relatively large in the observations, lower in control, more divergent and even lower in changes

between abrupt4xCO2 and control. We suspect that it might be attributed to model parameterizations and tuning processes that

models simulate ENSO events for wrong reasons (e.g., Bayr et al., 2019; Dommenget et al., 2014). However, the difference250

between the magnitudes of the feedback (Fig. 3) seems to be unrelated to magnitudes of the R2 values between changes in

ENSO characteristics and predictability.
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4 Summary and conclusion

We study the equilibrated ENSO response to abruptly quadrupled CO2 forcing in seven models from the LongRunMIP archive.

We analyze changes of the whole time series of Niño3.4 index, as well as separate El Niño, La Niña and neutral states. Our255

results show that:

– ENSO mean characteristics significantly change in a warmer climate. The ENSO amplitude and the skewness of the

Niño3.4 index distribution decreases, agreeing to the degree with findings in Callahan et al. (2021) and Kohyama et al.

(2018). The ENSO frequency decreases, which is different from the transient ENSO response analyzed in Berner et al.

(2020).260

– ENSO states’ characteristics significantly change in a warmer climate. The decreased intensity of El Niño and La Niña

states is different from the transient ENSO response shown in other studies (e.g., Cai et al., 2021).

The weakening in ENSO characteristics can be seen in both ultra-high-resolution models and proxy records. Wengel et al.

(2021) showed a decreased ENSO amplitude in a model with resolution 0.25° in the atmosphere and 0.1° in the ocean, which

is both qualitatively and quantitatively consistent with our results (compare their Fig. 4a with our Fig.6a). White and Ravelo265

(2020) showed a reduced El Niño amplitude during early Pliocene, during which the climate resembles closely the one projected

in RCP4.5 scenario (Burke et al., 2018).

From the robust response of ENSO characteristics under abrupt4xCO2 forcing, we would expect ENSO predictability to

change similarly (e.g., Jin et al., 2008; Liu et al., 2022). We find that:

– ENSO predictability reduces for the mean and the three ENSO states in five out of seven models. However, the changes270

are small and statistically insignificant.

We find a relationship between ENSO characteristics and predictability in the observational record. We test whether models

reproduce that relationship with and without forcing. We find that:

– In the observations, this relationship is strong. The mean ENSO characteristics and La Niña state’s characteristics explain

more than 60% of the variance in ENSO predictability.275

– In control, this relationship is weaker. Although the regression slopes significantly differ from zero, the ENSO charac-

teristics only explain 20% of variance in ENSO predictability.

– In changes between control and abrupt4xCO2, the regression slopes are significant. The decreased ENSO mean char-

acteristics correlates to the decreased ENSO predictability, consistent with previous studies (e.g., DelSole et al., 2014;

Berner et al., 2020; Tang et al., 2008). The decreased intensity of active ENSO states correlates with the decreased280

predictability, consistent with results from Jin et al. (2008), and with the decreased duration, which reduces the persis-

tence skills mainly in spring. While the slopes are significant, the explained variance of changes in ENSO predictability

by ENSO characteristics is overall small, though some models show R2 values being around 40%. This reduction in

explained variances probably contributes to changes in ENSO predictability being insignificant.
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Dommenget and Vijayeta (2019) studied the inconsistent change between ENSO characteristics and predictability under285

RCP8.5 scenarios relative to the historical simulation, which can be attributed to compensating effects of changes in the

growth rate of the thermocline depth and sea surface temperature. While this might explain our results as well, we cannot

verify this hypothesis, due to the lack of monthly ocean data in LongRunMIP. Aside from changes in ENSO characteristics

studied here, other factors influence ENSO predictability: ENSO phase-locking (e.g., Jin and Kinter III, 2009), the Atlantic

Niño (e.g., Martín-Rey et al., 2015), the Pacific Decadal Oscillation (e.g., Kumar et al., 2013), and volcanic eruptions (e.g.,290

Khodri et al., 2017; Singh et al., 2020). However, given our findings that changes in the persistence-assessed predictability

are very small, we suspect changes in these factors barely contribute to predictability changes or offset each other. Instead of

the persistence forecast, other dynamical prediction models could be used to analyze whether ENSO predictability in warmer

climates is indeed unchanged, or, if a significant change is detected, whether its relationship to previously revealed ENSO

characteristics sustains. In addition, ENSO predictability is also affected by model development such as improved physical pa-295

rameterizations, refined spatial and temporal resolutions, and reduced biases in air-sea interaction (e.g., Chen and Cane, 2008;

Tang et al., 2018; Guilyardi et al., 2020; Lu et al., 2020; Fredriksen et al., 2020).

To conclude, if our set of simulations were representative of possible real-world changes, we do not find robust reasons to

expect global warming to substantially alter six lead-month ENSO predictability. Yet, given the large range suggested by the

different models, further analysis and deeper understanding of unforced control states and the expected changes under global300

warming as well as their implications are necessary to be able to reduce the large uncertainties of the present assessment.
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Table 1. Overview of model simulations.

Model name

(short name)

Modelling

center

Forcing

levels

Simulation length

(years)

Atmosphere resolution

(latitude x longiture)

Ocean resolution

(latitude x longiture)

CCSM3

(CCSM3)
NCAR

control

abrupt4x

1530

2120
3.75◦ x 3.75◦ 1.80◦ x 3.10◦

CESM 1.0.4

(CESM104)
NCAR

control

abrupt4x

1320

5900
1.88◦ x 2.50◦ 0.47◦ x 18.0◦

CNRM-CM6-1

(CNRMCM61)
CNRS

control

abrupt4x

2000

1850
1.41◦ x 1.41◦ 1.00◦ x 1.00◦

GISS-E2-R

(GISSE2R)
NASA

control

abrupt4x

5225

1000
2.00◦ x 2.50◦ 1.00◦ x 1.25◦

HadCM3L

(HadCM3L)
Hadley Centre

control

abrupt4x

1000

1000
2.47◦ x 3.75◦ 2.47◦ x 3.75◦

IPSL-CM5A-LR

(IPSLCM5A)
IPSL

control

abrupt4x

1000

1000
1.88◦ x 3.75◦ 1.21◦ x 1.98◦

MPI-ESM-1.2

(MPIESM12)
MPI

control

abrupt4x

1237

1000
1.88◦ x 1.88◦ 0.82◦ x 1.41◦
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Figure 1. (a – h) Time series of Niño3.4 mean TAS and (g) CO2 concentrations in control and abrupt4xCO2 simulations. The dash lines

mark the year 150, the period after which we assume a quasi-equilibrium.
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  Figure 2. (a – g) Histograms and (h – n) power spectra of the Niño3.4 index in the observations and control. The blue and red shades in the

upper panels represent La Niña and El Niño events, respectively. The dash lines in the bottom panels represent the 0.95 confidence bound of

Markov red noise spectrum in the observations (grey) and control (black).
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Figure 3. Net shortwave heat flux feedback in the observations and control.
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  Figure 4. (a – g) Histograms and (h – n) power spectra of the Niño3.4 index in control and abrupt4xCO2. The blue and red shades in the

upper panels represent La Niña and El Niño events, respectively. The dash lines in the bottom panels represent the 0.95 confidence bound of

Markov red noise spectrum in control and abrupt4xCO2.
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Figure 5. (a – g) Accuracy of persistence predictions of the mean ENSO state in control and abrupt4xCO2. (h – n) Accuracy of persistence

predictions of the El Niño, La Niña and neutral state in control and abrupt4xCO2.
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  Figure 6. (a – c) Changes in abrupt4xCO2 relative to control in ENSO amplitude, and in intensity of El Niño and La Niña states. (d – g)

Changes in abrupt4xCO2 relative to control in ENSO frequency, and in duration of El Niño, La Niña and neutral states. (h) Changes in the

skewness of the Niño3.4 index distribution. Solid bars represent changes that are significant at the 5% level of a bootstrap test, hatched bars

represent changes that are insignificant.
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Figure 7. Changes in ENSO predictability in the mean state, in El Niño, La Niña and neutral states. Solid bars represent changes that are

significant at the 5% level of a bootstrap test, while hatched bars represent changes that are insignificant.
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Figure 8. (a) R2 values in the observations, which are calculated from regression analyses between 10 ENSO metrics and predictability

as shown in the label bar. (b) Example plot of the regression analysis that represents the uppermost bar in (a). The small grey dots are

30-year chunks from the time series, and the line shows the regression slope. (c) Similar to (a) but for control. (d) Similar to (a) and (c) with

regression analyses between changes in ENSO characteristics and predictability. The sign of bars represents the sign of regression slopes.

The solid (hatched) bars represent regression slopes that significantly (insignificantly) differ from zero.
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